JP4098684B2 - Control device for compression ignition internal combustion engine - Google Patents

Control device for compression ignition internal combustion engine Download PDF

Info

Publication number
JP4098684B2
JP4098684B2 JP2003292802A JP2003292802A JP4098684B2 JP 4098684 B2 JP4098684 B2 JP 4098684B2 JP 2003292802 A JP2003292802 A JP 2003292802A JP 2003292802 A JP2003292802 A JP 2003292802A JP 4098684 B2 JP4098684 B2 JP 4098684B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
valve
combustion engine
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003292802A
Other languages
Japanese (ja)
Other versions
JP2005061325A (en
Inventor
隆 柿沼
修 鈴木
潤一郎 石村
泉 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003292802A priority Critical patent/JP4098684B2/en
Publication of JP2005061325A publication Critical patent/JP2005061325A/en
Application granted granted Critical
Publication of JP4098684B2 publication Critical patent/JP4098684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、圧縮着火内燃機関の制御装置に関する。   The present invention relates to a control device for a compression ignition internal combustion engine.

内燃機関の着火手法としては、軽油を燃料とするディーゼル機関に代表される、高圧縮によって高温にされた空気に直接、燃料(軽油)を注入して自然着火させる圧縮着火手法と、ガソリンを燃料とする機関での火花点火手法の2つがあり、着火手法はほぼ燃料によって決められているのが現状である。それに加え、近時、ガソリン、軽油など種々の燃料を空気と十分に混合させて得た混合気を高温高圧にして供給し、自己着火させる試みもなされている。   As an ignition method for internal combustion engines, a compression ignition method in which fuel (light oil) is injected directly into air that has been heated to high temperature by high compression, such as diesel engines that use light oil as fuel, and gasoline is used as fuel. There are two spark ignition methods in the engine, and the current ignition method is almost determined by the fuel. In addition, recently, attempts have been made to self-ignite by supplying an air-fuel mixture obtained by sufficiently mixing various fuels such as gasoline and light oil with air at high temperature and pressure.

このような機関にあっては燃焼室全体で着火が開始し、同時に反応するため、燃焼は低温酸化反応で開始することとなり、燃焼温度を比較的低くすることができて窒素酸化物の排出を低減できると共に、圧縮比を火花点火機関より上げることができて燃費性能も向上させることができる。この種の機関は圧縮着火機関あるいは予混合圧縮着火機関と呼ばれる。   In such an engine, the ignition starts in the entire combustion chamber and reacts at the same time. Therefore, the combustion starts with a low-temperature oxidation reaction, and the combustion temperature can be made relatively low so that the emission of nitrogen oxides is reduced. In addition to being able to reduce, the compression ratio can be increased from the spark ignition engine, and the fuel efficiency can be improved. This type of engine is called a compression ignition engine or a premixed compression ignition engine.

この圧縮機関(予混合圧縮着火機関)で問題となるのは、負荷の減少につれて着火遅れが増大して、ついには失火に至ることであり、逆に負荷の増加に伴って過早着火が起こってノッキングが発生することである。その対策として、着火の促進には混合気温度を上昇させるのが有効であることが知られており、高温のEGRガスを導入して着火を促進させると共に、そのEGRガス量を負荷に応じて制御することが知られている。(例えば特許文献1参照)。
特開平11−132066号公報
The problem with this compression engine (premixed compression ignition engine) is that the ignition delay increases as the load decreases, eventually leading to misfire. Conversely, pre-ignition occurs as the load increases. Knocking occurs. As a countermeasure, it is known that it is effective to increase the temperature of the air-fuel mixture in order to promote ignition, and while introducing high-temperature EGR gas to promote ignition, the amount of EGR gas is determined according to the load. It is known to control. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-132066

この従来技術においては、気筒当たり2個の排気バルブを設け、第1の排気バルブを排気行程で開弁させる一方、第2の排気バルブを排気行程と吸気行程の両方で開弁させると共に、第2の排気バルブに独立した第2の排気通路を接続し、さらにその第2の排気通路に開閉バルブを設けている。そして、部分負荷時では開閉バルブを開弁して吸気行程で第2の排気通路から排ガスを燃焼室に導入し、吸気バルブを開弁して導入した新気(混合気)と成層化させた上で圧縮着火燃焼させる一方、全負荷時にあっては開閉バルブを閉弁して排ガスの導入を抑止し、火花点火によって混合気を着火している。   In this prior art, two exhaust valves are provided per cylinder, the first exhaust valve is opened in the exhaust stroke, while the second exhaust valve is opened in both the exhaust stroke and the intake stroke. An independent second exhaust passage is connected to the two exhaust valves, and an open / close valve is provided in the second exhaust passage. At the time of partial load, the on-off valve is opened, exhaust gas is introduced from the second exhaust passage into the combustion chamber in the intake stroke, and the intake valve is opened to stratify with the introduced fresh air (air mixture). While compression ignition combustion is performed above, the open / close valve is closed to suppress the introduction of exhaust gas at full load, and the air-fuel mixture is ignited by spark ignition.

上記した従来技術においては、吸気行程中に吸気バルブと排気バルブとを同時に開弁するため、排ガスと混合気あるいは空気が同時に燃焼室に流入する。その結果、燃焼に必要な混合気の量が少ない低負荷時にあっては所期通りに圧縮着火することできるが、負荷の増加に伴って必要な混合気あるいは空気の量が増加するにつれて排ガスの量が不足し、混合気を圧縮着火に必要とされる温度まで昇温させることができず、よって予定する運転領域において圧縮着火(自己着火)を十分に達成することができない不都合がある。   In the above-described prior art, since the intake valve and the exhaust valve are simultaneously opened during the intake stroke, exhaust gas and air-fuel mixture or air flow into the combustion chamber at the same time. As a result, compression ignition can be performed as expected at low loads when the amount of air-fuel mixture required for combustion is low, but as the amount of air-fuel mixture or air increases as the load increases, the amount of exhaust gas increases. There is an inconvenience that the amount is insufficient and the air-fuel mixture cannot be raised to a temperature required for compression ignition, and therefore compression ignition (self-ignition) cannot be sufficiently achieved in the planned operation region.

従って、この発明の目的は上記した課題を解決し、負荷の増加に応じて混合気量あるいは空気量が増加するときも必要な排ガス量を確保し、よって着火性能を向上させて圧縮着火が可能な運転領域を拡大するようにした圧縮着火内燃機関の制御装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and to secure the necessary amount of exhaust gas even when the amount of air-fuel mixture or air increases as the load increases, thereby improving the ignition performance and enabling compression ignition An object of the present invention is to provide a control apparatus for a compression ignition internal combustion engine that expands the operating range.

上記の目的を解決するために、請求項1にあっては、圧縮着火内燃機関の制御装置において、前記内燃機関の排気系に配置され、排気圧力を変更自在な排気圧力可変部材と、前記内燃機関の負荷に応じて前記排気圧力可変部材の動作を制御する排気圧力可変部材制御手段と、前記内燃機関の吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構と、前記可変動弁機構の動作を制御する可変動弁機構制御手段とを備えると共に、前記可変動弁機構制御手段は、前記吸気バルブが所定期間開弁して吸入空気を燃焼室に導入すると共に、前記排気バルブが前記吸気バルブの閉弁に応じて開弁して排ガスを前記燃焼室に導入するように、前記可変動弁機構の動作を制御すると共に、前記排気圧力可変部材制御手段は、前記内燃機関の負荷が増加するにつれて前記排気圧力が増加するように、前記排気圧力可変部材の動作を制御する如く構成した。また、請求項2に係る圧縮着火内燃機関の制御装置あっては、前記可変動弁機構制御手段は、前記内燃機関の負荷が増加するにつれて前記吸気バルブの閉弁時期を変更する如く構成した。 In order to solve the above object, according to claim 1, in a control apparatus for a compression ignition internal combustion engine, an exhaust pressure variable member disposed in an exhaust system of the internal combustion engine and capable of changing an exhaust pressure, and the internal combustion engine Exhaust pressure variable member control means for controlling the operation of the exhaust pressure variable member according to the engine load, a variable valve mechanism capable of opening and closing an intake valve and an exhaust valve of the internal combustion engine at an arbitrary timing, and the variable motion Variable valve mechanism control means for controlling the operation of the valve mechanism, wherein the variable valve mechanism control means opens the intake valve for a predetermined period to introduce intake air into the combustion chamber, and the exhaust valve Controls the operation of the variable valve mechanism so that the exhaust valve is opened in response to closing of the intake valve and introduces exhaust gas into the combustion chamber, and the exhaust pressure variable member control means controls the internal combustion engine. Load So that the exhaust pressure as it pressurization increases, and as configured to control the operation of the exhaust pressure variable member. Further, in the control device for the compression ignition internal combustion engine according to claim 2, the variable valve mechanism control means is configured to change the closing timing of the intake valve as the load of the internal combustion engine increases.

請求項に係る圧縮着火内燃機関の制御装置にあっては、前記内燃機関が複数の気筒を備えると共に、前記排気圧力可変部材が、前記複数の気筒の排気系集合部に配置される如く構成した。 In the control apparatus for a compression ignition internal combustion engine according to claim 3 , the internal combustion engine includes a plurality of cylinders, and the exhaust pressure variable member is arranged at an exhaust system collection portion of the plurality of cylinders. did.

請求項に係る圧縮着火内燃機関の制御装置にあっては、前記排気圧力可変部材が、バルブおよび排気ガスタービン過給機の可変ノズルベーンの少なくともいずれかである如く構成した。 In the control apparatus for the compression ignition internal combustion engine according to claim 4 , the exhaust pressure variable member is configured to be at least one of a valve and a variable nozzle vane of the exhaust gas turbine supercharger.

請求項に係る圧縮着火内燃機関の制御装置にあっては、さらに、前記内燃機関は、付加的な燃料噴射を実行する付加燃料噴射実行手段を備える如く構成した。 In the control apparatus for a compression ignition internal combustion engine according to claim 5 , the internal combustion engine is further configured to include additional fuel injection execution means for executing additional fuel injection.

請求項1に係る圧縮着火内燃機関の制御装置にあっては、吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構の動作を制御する可変動弁機構制御手段は、吸気バルブが所定期間開弁して吸入空気を燃焼室に導入すると共に、排気バルブが吸気バルブの閉弁に応じて開弁して排ガスを燃焼室に導入するようにその動作を制御すると共に、排気圧力可変部材制御手段は、内燃機関の負荷が増加するにつれて排気圧力が増加するように、排気圧力可変部材の動作を制御する如く構成したので、吸気行程中に吸気バルブと排気バルブとを同時に開弁することがなく、排ガスと混合気あるいは空気が同時に燃焼室に流入するのを回避することができる。従って、負荷の増加に伴って必要な混合気あるいは空気の量が増加するときも必要な排ガス量を確保することができる。 In the control apparatus for the compression ignition internal combustion engine according to the first aspect, the variable valve mechanism control means for controlling the operation of the variable valve mechanism that can open and close the intake valve and the exhaust valve at an arbitrary timing includes: is introduced into the combustion chamber intake air by a predetermined period of time open, the exhaust valve for controlling operation thereof so as to introduce into the combustion chamber exhaust gas by opening in response to the closing of the intake valve, an exhaust pressure variable Since the member control means is configured to control the operation of the exhaust pressure variable member so that the exhaust pressure increases as the load of the internal combustion engine increases , the intake valve and the exhaust valve are simultaneously opened during the intake stroke. Therefore, it is possible to avoid the exhaust gas and the air-fuel mixture or air from flowing into the combustion chamber at the same time. Therefore, the necessary amount of exhaust gas can be ensured even when the amount of air-fuel mixture or air that increases as the load increases.

即ち、吸気バルブの閉弁に応じて排気バルブを開弁させることで、導入されるべき排ガスの量が減少するが、負荷が増加するにつれて排気圧力を増加させるように排気圧力可変部材の動作を制御することにより、必要な排ガスの導入量を確保することができ、混合気を圧縮着火に必要とされる温度まで昇温させることができる。従って、負荷の増加に応じて混合気量あるいは空気量が増加するときも必要な排ガス量も確保することができ、よって着火性能を向上させることができて圧縮着火が可能な運転領域を拡大することができる。 That is, by opening the exhaust valve in response to closing of the intake valves, the amount of exhaust gas to be introduced is reduced, the operation of the exhaust pressure variable member so as to increase the exhaust pressure as the load increases By controlling the above, it is possible to secure a necessary amount of introduced exhaust gas and to raise the temperature of the air-fuel mixture to a temperature required for compression ignition. Therefore, a necessary amount of exhaust gas can be ensured even when the amount of air-fuel mixture or air increases as the load increases, so that the ignition performance can be improved and the operating range in which compression ignition is possible is expanded. be able to.

尚、ここで「前記排気バルブが前記吸気バルブの閉弁に応じて開弁して排ガスを前記燃焼室に導入するように」とは、上記から明らかな如く、排ガスと混合気あるいは空気が同時に燃焼室に流入するのを回避するように吸気バルブと排気バルブとを同時に開弁させないことを意味し、従って、吸気バルブの閉弁と排気バルブの開弁とが全くオーバーラップしないことを意味するものでない。即ち、排ガスと混合気あるいは空気が同時に燃焼室に流入するのを回避できれば、吸気バルブの閉弁と排気バルブの開弁とが若干オーバーラップしても良いことを意味する。また、請求項2に係る圧縮着火内燃機関の制御装置にあっては、可変動弁機構制御手段は、内燃機関の負荷が増加するにつれて吸気バルブの閉弁時期を変更する如く構成したので、上記した効果を一層効果的に得ることができる。 As used herein, “so that the exhaust valve is opened in response to the closing of the intake valve and the exhaust gas is introduced into the combustion chamber” means that the exhaust gas and the air-fuel mixture or air are simultaneously mixed. This means that the intake valve and the exhaust valve are not opened at the same time so as to avoid entering the combustion chamber, and therefore the intake valve closing and the exhaust valve opening do not overlap at all. Not a thing. That is, if the exhaust gas and the air-fuel mixture or air can be prevented from flowing into the combustion chamber at the same time, this means that the intake valve closing and the exhaust valve opening may slightly overlap. In the control device for the compression ignition internal combustion engine according to claim 2, the variable valve mechanism control means is configured to change the valve closing timing of the intake valve as the load of the internal combustion engine increases. The obtained effect can be obtained more effectively.

請求項に係る圧縮着火内燃機関の制御装置にあっては、排気圧力可変部材が複数の気筒の排気系集合部に配置される如く構成したので、気筒ごとに開閉バルブを設ける従来技術の構成に比して簡易な構成でありながら、排気圧力を変更することができ、それによって例えば負荷が増加するにつれて排気圧力を増加させることも可能となって排ガス量を一層確実に確保することができる。 In the control apparatus for the compression ignition internal combustion engine according to claim 3 , since the exhaust pressure variable member is arranged in the exhaust system collecting portion of the plurality of cylinders, the configuration of the prior art in which an open / close valve is provided for each cylinder. The exhaust pressure can be changed while the configuration is simpler than that of the engine, and for example, the exhaust pressure can be increased as the load increases, thereby ensuring the amount of exhaust gas more reliably. .

請求項に係る圧縮着火内燃機関の制御装置にあっては、排気圧力可変部材が、バルブおよび過給機の可変ノズルの少なくともいずれかである如く構成したので、請求項で述べたのと同様の効果を得ることができる。 In the control apparatus for a compression ignition internal combustion engine according to claim 4, exhaust pressure variable member, Owing to this arrangement is at least one of the variable nozzle of the valve and the supercharger, that described in claim 3 and Similar effects can be obtained.

請求項に係る圧縮着火内燃機関の制御装置にあっては、さらに、内燃機関は付加的な燃料噴射を実行する付加燃料噴射実行手段を備える如く構成したので、付加的に噴射された燃料を排ガスで燃焼させることで混合気の温度をさらに上昇させることができ、圧縮着火に必要とされる温度まで一層確実に昇温させることができるため、排ガスを導入する排気バルブの開弁期間を短縮することが可能となる。従って、空気あるいは混合気を導入する吸気バルブの開弁期間を延長することによって空気あるいは混合気量を増加させることができ、圧縮着火運転範囲が拡大される。尚、付加的な燃料噴射の実行条件を負荷や排気温度に応じて設定しても良い。 In the control apparatus for the compression ignition internal combustion engine according to claim 5 , the internal combustion engine is further configured to include additional fuel injection execution means for executing additional fuel injection. Combustion with exhaust gas can further increase the temperature of the air-fuel mixture, and the temperature can be raised more reliably to the temperature required for compression ignition, shortening the opening time of the exhaust valve that introduces exhaust gas It becomes possible to do. Therefore, the amount of air or air-fuel mixture can be increased by extending the valve opening period of the intake valve for introducing air or air-fuel mixture, and the compression ignition operation range is expanded. It should be noted that additional fuel injection execution conditions may be set according to the load and exhaust temperature.

以下、添付図面に即してこの発明に係る圧縮着火内燃機関の制御装置を実施するための最良の形態について説明する。   The best mode for carrying out a control apparatus for a compression ignition internal combustion engine according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention.

図1において、符合10は、ガソリンを燃料とする4気筒4サイクル内燃機関(以下「エンジン」という)を示す。エンジン10において、エアクリーナ(図示せず)から吸入されて吸気管12を通る空気はスロットルバルブ14で流量を調節されて吸気マニホルド16を流れ、2個の吸気バルブ18が開弁されるとき、燃焼室(図示せず)に流入する。   In FIG. 1, reference numeral 10 indicates a four-cylinder four-cycle internal combustion engine (hereinafter referred to as “engine”) using gasoline as fuel. In the engine 10, air drawn from an air cleaner (not shown) and passing through the intake pipe 12 is adjusted in flow rate by the throttle valve 14, flows through the intake manifold 16, and burns when the two intake valves 18 are opened. Flows into the chamber (not shown).

吸気バルブ18の付近にはインジェクタ20が配置される。インジェクタ20には燃料供給管(図示せず)を介して燃料タンク(図示せず)に貯留されたガソリン燃料が圧送されると共に、駆動回路22を通じてECU(電子制御ユニット)24に接続される。ECU24から開弁時間を示す駆動信号が駆動回路22に供給されると、インジェクタ20は開弁し、開弁時間に応じたガソリン燃料を燃焼室に噴射する。噴射されたガソリン燃料は流入した空気と混合して混合気を形成する。このように、エンジン10は筒内噴射型のエンジンとして構成される。   An injector 20 is disposed in the vicinity of the intake valve 18. Gasoline fuel stored in a fuel tank (not shown) is pumped to the injector 20 through a fuel supply pipe (not shown) and connected to an ECU (electronic control unit) 24 through a drive circuit 22. When a drive signal indicating the valve opening time is supplied from the ECU 24 to the drive circuit 22, the injector 20 opens and injects gasoline fuel corresponding to the valve opening time into the combustion chamber. The injected gasoline fuel is mixed with the inflowing air to form an air-fuel mixture. Thus, the engine 10 is configured as an in-cylinder injection type engine.

インジェクタ20の左右には2個の点火プラグ26が配置される。点火プラグ26はイグナイタなどからなる点火装置30を介してECU24に接続され、ECU24から点火信号が点火装置30に供給されると、燃焼室に臨む電極間に火花放電を生じ、混合気を着火して燃焼させる。尚、後述するように、混合気は圧縮着火によっても燃焼させられる。即ち、エンジン10は、運転状態に応じて混合気を圧縮着火で燃焼させる圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換える(予混合)圧縮着火エンジン(内燃機関)として構成される。   Two spark plugs 26 are arranged on the left and right of the injector 20. The spark plug 26 is connected to the ECU 24 via an ignition device 30 such as an igniter. When an ignition signal is supplied from the ECU 24 to the ignition device 30, a spark discharge is generated between the electrodes facing the combustion chamber to ignite the air-fuel mixture. And burn. As will be described later, the air-fuel mixture is also combusted by compression ignition. That is, the engine 10 is configured as a compression ignition engine (internal combustion engine) that switches between pre-combustion ignition combustion in which an air-fuel mixture is combusted by compression ignition and spark ignition combustion in which spark ignition is combusted in accordance with an operating state. The

燃焼によって生じたガス(排ガス)は、2個の排気バルブ32が開弁するとき、排気マニホルド34に流れる。排気マニホルド34は下流で集合して排気系集合部34aを形成し、そこに排気管36が接続される。排ガスは排気マニホルド34を流れた後、排気管36を流れ、さらにはエンジン外の大気に放出される。   Gas (exhaust gas) generated by combustion flows to the exhaust manifold 34 when the two exhaust valves 32 are opened. The exhaust manifold 34 gathers downstream to form an exhaust system gathering portion 34a, to which an exhaust pipe 36 is connected. The exhaust gas flows through the exhaust manifold 34, then flows through the exhaust pipe 36, and is further released to the atmosphere outside the engine.

エンジン10のクランクシャフトあるいはカムシャフト(共に図示せず)の付近にはクランク角センサ(図で「ENG回転数」と示す)40が配置され、気筒判別信号と、各気筒のTDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。それらの出力はECU24に入力される。   A crank angle sensor (shown as “ENG rotational speed” in the figure) 40 is disposed in the vicinity of the crankshaft or camshaft (both not shown) of the engine 10, and a cylinder discrimination signal and TDC (top dead center) of each cylinder. ) Or a TDC signal indicating a crank angle in the vicinity thereof, and a crank angle signal obtained by subdividing the TDC signal. Those outputs are input to the ECU 24.

ECU24はマイクロコンピュータからなり、CPU,ROM,RAM,A/D変換回路、入出力回路およびカウンタを備える。ECU24は入力信号の中、クランク角度信号をカウントしてエンジン回転数(ENG回転数)NEを算出(検出)する。   The ECU 24 includes a microcomputer and includes a CPU, ROM, RAM, A / D conversion circuit, input / output circuit, and counter. The ECU 24 counts the crank angle signal in the input signal and calculates (detects) the engine speed (ENG speed) NE.

エンジン10が搭載される車両の運転席(図示せず)の床面にはアクセルペダル(図示せず)が配置されると共に、その付近にはアクセル開度センサ(図で「アクセル開度」と示す)42が設けられ、運転者のアクセルペダル踏み込み量を示すアクセル開度ACCに応じた信号を出力する。その出力もECU24に入力される。   An accelerator pedal (not shown) is arranged on the floor of a driver's seat (not shown) of the vehicle on which the engine 10 is mounted, and an accelerator opening sensor ("Accelerator opening" in the figure) 42) is provided and outputs a signal corresponding to the accelerator opening ACC indicating the amount of depression of the driver's accelerator pedal. The output is also input to the ECU 24.

前記したスロットルバルブ14はアクセルペダルとの機械的な接続を絶たれ、アクチュエータ(ステッピングモータなど)44に接続される。アクチュエータ44はECU24に接続される。ECU24はアクセル開度センサ42を通じて検出されたアクセル開度ACCなどからアクチュエータ44を駆動し、スロットルバルブ14の開度THを制御する。このように、スロットルバルブ14の動作は、DBW方式で制御される。   The throttle valve 14 is mechanically disconnected from the accelerator pedal and connected to an actuator (such as a stepping motor) 44. The actuator 44 is connected to the ECU 24. The ECU 24 drives the actuator 44 from the accelerator opening ACC detected through the accelerator opening sensor 42 and controls the opening TH of the throttle valve 14. Thus, the operation of the throttle valve 14 is controlled by the DBW method.

尚、アクチュエータ44にはロータリエンコーダなどの回転角センサ46が接続され、アクチュエータ44の回転角度を通じてスロットル開度THに応じた信号を出力し、ECU24に送る。   A rotation angle sensor 46 such as a rotary encoder is connected to the actuator 44, and a signal corresponding to the throttle opening TH is output through the rotation angle of the actuator 44 and sent to the ECU 24.

また、エンジン10のエアクリーナの付近にはエアフローメータ50が配置され、エンジン負荷を示す吸入空気量Qに応じた信号を出力する。また、排気管36には温度センサ52が配置され、排気温度TEXに応じた信号を出力する。さらに、エンジン10の冷却水通路(図示せず)には水温センサ(図示せず)が配置されてエンジン冷却水温TWに応じた信号を出力すると共に、エアフローメータ50の付近には別の温度センサ(図示せず)が配置され、吸入空気の温度TAに応じた信号を出力する。これらセンサ群の出力もECU24に入力される。   An air flow meter 50 is disposed near the air cleaner of the engine 10 and outputs a signal corresponding to the intake air amount Q indicating the engine load. A temperature sensor 52 is disposed in the exhaust pipe 36 and outputs a signal corresponding to the exhaust temperature TEX. Further, a water temperature sensor (not shown) is arranged in a cooling water passage (not shown) of the engine 10 to output a signal corresponding to the engine cooling water temperature TW, and another temperature sensor is provided near the air flow meter 50. (Not shown) is arranged and outputs a signal corresponding to the temperature TA of the intake air. The outputs of these sensor groups are also input to the ECU 24.

前記した吸気バルブ18と排気バルブ32は可変動弁機構54に接続される。可変動弁機構54は4個のバルブのシャフト付近にそれぞれ配置される電磁ソレノイドからなり、通電されるときシャフトを駆動して吸気バルブ18あるいは排気バルブ32を開弁あるいは閉弁させる。   The intake valve 18 and the exhaust valve 32 are connected to a variable valve mechanism 54. The variable valve mechanism 54 includes electromagnetic solenoids arranged near the shafts of the four valves, and when energized, drives the shaft to open or close the intake valve 18 or the exhaust valve 32.

また、エンジン10の排気系において4個(複数)の気筒の排気系集合部34a、より具体的にはそれに接続される排気管36には排気圧力(排ガス圧力)を変更自在な排気管開閉バルブ(排気圧力可変部材)56が配置される。排気管開閉バルブ56はスロットルバルブ14と同様なバタフライバルブからなり、その駆動回路60を介してECU24に接続される。ECU24は後述の如く、検出されたエンジン負荷、即ち、吸入空気量Qに応じてその動作(バルブ開度)を制御する。   Further, in the exhaust system of the engine 10, an exhaust pipe opening / closing valve whose exhaust pressure (exhaust gas pressure) can be changed is provided in the exhaust system collecting portion 34a of four (plural) cylinders, more specifically, in the exhaust pipe 36 connected thereto. (Exhaust pressure variable member) 56 is arranged. The exhaust pipe opening / closing valve 56 is a butterfly valve similar to the throttle valve 14, and is connected to the ECU 24 via the drive circuit 60. The ECU 24 controls its operation (valve opening) in accordance with the detected engine load, that is, the intake air amount Q, as will be described later.

次いで、第1実施例に係る圧縮着火内燃機関の制御装置の動作を説明する。   Next, the operation of the control apparatus for the compression ignition internal combustion engine according to the first embodiment will be described.

図2はその動作を示すフロー・チャートである。図示のプログラムは、所定時間、例えば10msecごとに起動される。   FIG. 2 is a flowchart showing the operation. The illustrated program is started every predetermined time, for example, 10 msec.

以下説明すると、S10においてアクセル開度ACCとエンジン回転数NEとから、エンジン10の要求負荷(要求トルク)PMECMD[N・m]を算出する。これは、図3にその特性を示すマップデータを検索することで行う。   Explained below, in S10, the required load (required torque) PMECMD [N · m] of the engine 10 is calculated from the accelerator opening ACC and the engine speed NE. This is done by searching map data whose characteristics are shown in FIG.

次いでS12に進み、クランク角センサ40を除く、前記したセンサ群の出力を読み込み、吸入空気量Q、排気温度TEX、スロットル開度TH、エンジン冷却水温TWなどのエンジン運転パラメータを検出する。   Next, in S12, the output of the above-described sensor group excluding the crank angle sensor 40 is read, and engine operating parameters such as the intake air amount Q, the exhaust temperature TEX, the throttle opening TH, and the engine coolant temperature TW are detected.

次いでS14に進み、エンジン10の運転が予混合圧縮着火(HCCI)運転領域か否か判断する。これは、算出した要求負荷PMECMDとエンジン回転数NEとから、図4にその特性を示すマップデータを検索することで行なう。予混合圧縮着火(HCCI)運転領域は、図示の如く、要求負荷PMECMDとエンジン回転数NEが極小さいアイドル領域などの領域(極低負荷領域)と、要求負荷PMECMDとエンジン回転数NEが高くなる領域(高負荷領域)を除く領域、換言すれば低負荷および中負荷領域とされる。   Next, in S14, it is determined whether or not the operation of the engine 10 is in the premixed compression ignition (HCCI) operation region. This is performed by searching the map data showing the characteristics in FIG. 4 from the calculated required load PMECMD and the engine speed NE. In the premixed compression ignition (HCCI) operation region, as shown in the figure, the required load PMECMD and the engine speed NE are extremely small, such as an idle region (very low load region), and the required load PMECMD and the engine rotational speed NE are high. Regions other than the region (high load region), in other words, low load and medium load regions.

S14で肯定されるときはS16に進み、同様に算出した要求負荷PMECMDとエンジン回転数NEとから、その運転状態で必要とされるEGR量(排ガス量)を算出する。尚、後述するように、EGRは、いわゆる内部EGRによるEGRである。   When the result in S14 is affirmative, the program proceeds to S16, and the EGR amount (exhaust gas amount) required in the operating state is calculated from the similarly calculated required load PMECMD and engine speed NE. As will be described later, EGR is EGR by so-called internal EGR.

次いでS18に進み、同様に算出した要求負荷PMECMDとエンジン回転数NEとから吸気バルブ18と排気バルブ32の開、閉弁時期(バルブタイミングおよびリフト量)を決定する。   Next, the process proceeds to S18, and the opening and closing timing (valve timing and lift amount) of the intake valve 18 and the exhaust valve 32 are determined from the similarly calculated required load PMECMD and the engine speed NE.

図5は、S18で決定される開、閉弁時期(バルブタイミングおよびリフト量)の特性を説明する説明図である。尚、同図(a)は負荷が少ない(吸入空気量Qが少ない)場合、同図(b)は負荷が増加した(吸入空気量Qが増加した)場合の特性を示す。   FIG. 5 is an explanatory diagram for explaining the characteristics of the opening and closing timings (valve timing and lift amount) determined in S18. FIG. 4A shows the characteristics when the load is small (the intake air amount Q is small), and FIG. 4B shows the characteristics when the load is increased (the intake air amount Q is increased).

同図を参照して説明すると、排気行程では排気バルブ32を開弁し、燃焼によって生じた排ガスを排気マニホルド34に排気するように開、閉弁時期を決定する。   Referring to the figure, in the exhaust stroke, the exhaust valve 32 is opened, and the opening and closing timing is determined so that the exhaust gas generated by the combustion is exhausted to the exhaust manifold 34.

それに続く吸気行程では、吸気バルブ18が所定期間開弁して吸入空気を燃焼室に導入すると共に、排気バルブ32が吸気バルブ18の閉弁に応じて開弁して排ガスを燃焼室に導入するように制御する。即ち、吸気行程では、先ず、吸気バルブ18を開弁し、吸入空気を燃焼室に導入する。   In the subsequent intake stroke, the intake valve 18 opens for a predetermined period to introduce intake air into the combustion chamber, and the exhaust valve 32 opens in response to the closing of the intake valve 18 to introduce exhaust gas into the combustion chamber. To control. That is, in the intake stroke, first, the intake valve 18 is opened, and the intake air is introduced into the combustion chamber.

このとき、要求負荷PMECMDとエンジン回転数NEに応じて燃焼に必要な空気量が相違、より正確には要求負荷PMECMDとエンジン回転数NEが増加するにつれて必要空気量が増加することから、PMECMDとNEに応じて同図(a)(b)に対比して示す如く、吸気バルブ18の閉弁時期を変更し、吸入空気量の増加に伴って閉弁時期を遅らせる(クランク角度において)、換言すれば開弁期間(所定期間)を延長するように決定する。   At this time, the amount of air required for combustion differs depending on the required load PMECMD and the engine speed NE. More precisely, the required air amount increases as the required load PMECMD and the engine speed NE increase. As shown in comparison with FIGS. 1A and 1B in accordance with NE, the closing timing of the intake valve 18 is changed, and the closing timing is delayed (in crank angle) as the intake air amount increases. If so, it is determined to extend the valve opening period (predetermined period).

従って、上記した「所定期間」とは固定値ではなく、燃焼に必要な空気量を導入するに足る期間であって可変の値を意味する。尚、この実施例に係るエンジン10は筒内噴射エンジンであることから、ここでは空気量に応じて行うが、燃料が吸気ポートに噴射されるエンジンであれば、混合気の量に応じて吸気バルブ18の閉弁時期を決定することになる。   Therefore, the above-mentioned “predetermined period” is not a fixed value but a period sufficient to introduce an air amount necessary for combustion and means a variable value. The engine 10 according to this embodiment is an in-cylinder injection engine. Therefore, the engine 10 is performed according to the amount of air. However, in the case of an engine in which fuel is injected into the intake port, the intake air is determined according to the amount of air-fuel mixture. The valve closing timing of the valve 18 is determined.

次いで、吸気バルブ18の閉弁時期とほぼ同時に、排気バルブ32を開弁し、S16で算出した量の排気ガスを燃焼室内に導入した後、排気バルブ32を閉弁して圧縮行程に移行する。   Next, almost simultaneously with the closing timing of the intake valve 18, the exhaust valve 32 is opened, and after the amount of exhaust gas calculated in S16 is introduced into the combustion chamber, the exhaust valve 32 is closed and the process proceeds to the compression stroke. .

このように、吸気行程中に吸気バルブ18と排気バルブ32とを同時に開弁することがないことから、排ガスと空気が同時に燃焼室に流入するのを回避することができ、負荷の増加に伴って必要な空気量が増大するときも必要な排ガス量を確保することができる。より具体的には、吸気バルブ18の閉弁に応じて排気バルブ32を開弁させることで、排気バルブ32の開弁時間が短縮されて導入されるべき排ガスの量がS16で算出された量に対して減少する恐れがあるが、後述するように負荷が増加するにつれて排気圧力を増加させるように排気圧力可変部材(排気管開閉バルブ)56の動作を制御することにより、必要な排ガスの導入量を確保するようにした。   Thus, since the intake valve 18 and the exhaust valve 32 are not simultaneously opened during the intake stroke, it is possible to avoid exhaust gas and air from flowing into the combustion chamber at the same time. Therefore, the necessary amount of exhaust gas can be secured even when the necessary amount of air increases. More specifically, by opening the exhaust valve 32 in response to the closing of the intake valve 18, the opening time of the exhaust valve 32 is shortened, and the amount of exhaust gas to be introduced is calculated in S16. As described later, the operation of the exhaust pressure variable member (exhaust pipe opening / closing valve) 56 is controlled so as to increase the exhaust pressure as the load increases, as described later. The amount was secured.

尚、ここで「排気バルブ32が吸気バルブ18の閉弁に応じて開弁して排ガスを燃焼室に導入するように」とは、上記から明らかな如く、排ガスと空気が同時に燃焼室に流入するのを回避するように吸気バルブ18と排気バルブ32とを同時に開弁させないことを意味し、従って、吸気バルブ18の閉弁と排気バルブ22の開弁とが全くオーバーラップしないことを意味するものでない。即ち、排ガスと空気が同時に燃焼室に流入するのを回避できれば足り、吸気バルブ18の閉弁と排気バルブ32の開弁とが若干オーバーラップしても支障ない。   Here, “exhaust valve 32 is opened in response to closing of intake valve 18 to introduce exhaust gas into the combustion chamber”, as is clear from the above, exhaust gas and air simultaneously flow into the combustion chamber. This means that the intake valve 18 and the exhaust valve 32 are not opened at the same time so that the intake valve 18 and the exhaust valve 22 are not opened at the same time. Not a thing. That is, it is only necessary to avoid the exhaust gas and air from flowing into the combustion chamber at the same time, and there is no problem even if the intake valve 18 and the exhaust valve 32 are slightly overlapped.

図2フロー・チャートの説明に戻ると、次いでS20に進み、排気管開閉バルブ(排気圧力可変部材)56のバルブ開度を要求負荷PMECMDとエンジン回転数NEに応じて決定する。前記したように、エンジン負荷が増加するほど、排気バルブ32の開弁期間は短縮されることから、排気管開閉バルブ56の開度は要求負荷PMECMDとエンジン回転数NE、より具体的には、要求負荷PMECMDが増加するほど、換言すればエンジン10の負荷が増加するほど減少させて(閉弁方向に決定して)排気圧力(排ガスの圧力)を増加させ、排気バルブ32の開弁期間の短縮を補償して導入されるべき排ガス(EGR)量を確保する。   Returning to the description of the flow chart of FIG. 2, the process then proceeds to S20, in which the valve opening degree of the exhaust pipe opening / closing valve (exhaust pressure variable member) 56 is determined according to the required load PMECMD and the engine speed NE. As described above, as the engine load increases, the valve opening period of the exhaust valve 32 is shortened. Therefore, the opening degree of the exhaust pipe opening / closing valve 56 depends on the required load PMECMD and the engine speed NE, more specifically, As the required load PMECMD increases, in other words, as the load of the engine 10 increases, the exhaust pressure (exhaust gas pressure) is increased by decreasing (determining the valve closing direction), and the exhaust valve 32 is opened. The amount of exhaust gas (EGR) to be introduced is ensured by compensating for the shortening.

尚、吸入空気量Qはエンジン負荷を示すパラメータであることから、要求負荷PMECMDとエンジン回転数NEに代え、吸入空気量Qとエンジン回転数(あるいは吸入空気量Qのみ)を用いてバルブ開度を決定しても良い。さらには、排気温度TEXもエンジン負荷に比例することから、排気温度TEXとエンジン回転数NE(あるいは排気温度TEXのみ)を用いてバルブ開度を決定しても良い。   Since the intake air amount Q is a parameter indicating the engine load, the valve opening degree is determined by using the intake air amount Q and the engine speed (or only the intake air amount Q) instead of the required load PMECMD and the engine speed NE. May be determined. Furthermore, since the exhaust temperature TEX is also proportional to the engine load, the valve opening degree may be determined using the exhaust temperature TEX and the engine speed NE (or only the exhaust temperature TEX).

次いでS22に進み、火花点火OFF、即ち、点火プラグ26を通じての着火を行わないこととし、スロットル開度THを全開にし、吸、排気バルブ18,32がS18で決定された開、閉弁時期となるように可変動弁機構54の動作を制御する。また、S20で決定された開度となるように駆動回路60を介して排気管開閉バルブ56の動作を制御する。   Next, the routine proceeds to S22, in which spark ignition is turned off, that is, ignition through the spark plug 26 is not performed, the throttle opening TH is fully opened, and the intake and exhaust valves 18, 32 are opened and closed at the timing determined in S18. Thus, the operation of the variable valve mechanism 54 is controlled. Further, the operation of the exhaust pipe opening / closing valve 56 is controlled via the drive circuit 60 so that the opening degree determined in S20 is obtained.

また、燃料噴射量制御も実行する。これは具体的には、要求負荷PMECMDとエンジン回転数NEに応じて予め設定されたマップデータを検索して燃料噴射量を決定し、決定された燃料噴射量の大部分を吸気行程から圧縮行程にかけて噴射すると共に、その残部を次の膨張行程において噴射する(付加的な燃料噴射を実行する)。これにより、付加的に噴射された燃料を排ガスで燃焼させることで混合気の温度をさらに上昇させることができ、筒内ガス温度を圧縮着火に必要とされる温度まで一層確実に昇温させることができる。付加的な燃料噴射の実行条件は、負荷や排気温度に応じて設定しても良い。また、付加的な燃料噴射は膨張行程で実行するように構成したが、ポート噴射エンジンでは膨張行程で付加的な燃料噴射を実行できないため、その場合、主噴射とは別のタイミングで排気行程後に実行するか、あるいは主噴射の前に実行することになる。   Further, fuel injection amount control is also executed. Specifically, the fuel injection amount is determined by searching map data set in advance according to the required load PMECMD and the engine speed NE, and most of the determined fuel injection amount is changed from the intake stroke to the compression stroke. The remaining portion is injected in the next expansion stroke (additional fuel injection is performed). As a result, the temperature of the air-fuel mixture can be further increased by burning the additionally injected fuel with the exhaust gas, and the in-cylinder gas temperature can be more reliably increased to the temperature required for compression ignition. Can do. Additional fuel injection execution conditions may be set according to the load and exhaust temperature. Further, the additional fuel injection is configured to be executed in the expansion stroke. However, in the port injection engine, additional fuel injection cannot be performed in the expansion stroke. In this case, after the exhaust stroke at a timing different from the main injection, To be executed or before the main injection.

他方、S14で否定されるときはS24に進み、要求負荷PMECMDに応じてスロットル開度THを制御する。また、要求負荷PMECMDとエンジン回転数NEに応じて予め設定されたマップデータを検索して点火時期を決定し、決定された点火時期で火花放電を行って混合気を着火する。   On the other hand, when the result in S14 is negative, the program proceeds to S24, in which the throttle opening TH is controlled according to the required load PMECMD. Further, map data set in advance according to the required load PMECMD and the engine speed NE is searched to determine the ignition timing, and spark discharge is performed at the determined ignition timing to ignite the air-fuel mixture.

また、S22で述べたと同様に燃料噴射量を決定し、燃料噴射を実行する(ただし、この場合は決定された燃料噴射量の全てを吸気行程から圧縮行程にかけて噴射し、付加的な燃料噴射を実行しない)。同時に、空燃比(A/F)の制御も実行する。尚、予混合圧縮着火を実行しないことから、排気管開閉バルブ56は全開させる。   Further, the fuel injection amount is determined and fuel injection is executed in the same manner as described in S22 (however, in this case, all of the determined fuel injection amount is injected from the intake stroke to the compression stroke, and additional fuel injection is performed). Do not run). At the same time, the air-fuel ratio (A / F) is also controlled. Since the premixed compression ignition is not executed, the exhaust pipe opening / closing valve 56 is fully opened.

この実施の形態は上記の如く構成したので、吸気行程中に吸気バルブ18と排気バルブ32とを同時に開弁することがなく、排ガスと空気が同時に燃焼室に流入するのを回避することができる。従って、負荷の増加に伴って必要な混合気あるいは空気の量が増加するときも、必要な排ガス量を確保することできる。   Since this embodiment is configured as described above, the intake valve 18 and the exhaust valve 32 are not simultaneously opened during the intake stroke, and the exhaust gas and air can be prevented from flowing into the combustion chamber at the same time. . Therefore, the necessary amount of exhaust gas can be ensured even when the amount of air-fuel mixture or air that increases as the load increases.

即ち、吸気バルブ18の閉弁に応じて排気バルブ32を開弁させることで、導入されるべき排ガスの量が減少するが、排気管開閉バルブ56の開度を負荷が増加するにつれて排気圧力を増加させるように制御することにより、必要な排ガスの導入量を確保でき、筒内ガス温度を圧縮着火に必要とされる温度まで昇温させることができる。従って、負荷の増加に応じて必要な混合気量あるいは空気量が増加するときも必要な排ガス量も確保することができ、よって着火性能を向上させることができて圧縮着火が可能な運転領域を拡大することができる。また、排気管開閉バルブ56も、気筒ごとに開閉バルブを設ける従来技術の構成に比して簡易である。   That is, by opening the exhaust valve 32 in response to the closing of the intake valve 18, the amount of exhaust gas to be introduced decreases, but the exhaust pressure of the exhaust pipe opening / closing valve 56 increases as the load increases. By controlling so as to increase, the necessary amount of exhaust gas introduced can be secured, and the in-cylinder gas temperature can be raised to the temperature required for compression ignition. Therefore, the required amount of exhaust gas can be ensured even when the required amount of air-fuel mixture or air increases as the load increases, so that the ignition performance can be improved and the operating range in which compression ignition can be performed. Can be enlarged. Further, the exhaust pipe opening / closing valve 56 is also simpler than the configuration of the prior art in which an opening / closing valve is provided for each cylinder.

上記を図6と図7を参照して説明する。図6はこの実施例に係る装置の動作を示す説明図であり、図7は従来技術に係る装置の動作を示す説明図である。   The above will be described with reference to FIGS. FIG. 6 is an explanatory view showing the operation of the apparatus according to this embodiment, and FIG. 7 is an explanatory view showing the operation of the apparatus according to the prior art.

図7に示す従来技術の場合、その上図に示すように負荷の増加につれて必要な空気量が増加するのに伴い、前記した理由から導入されるべきEGR(排ガス)量は減少し、その結果、その下図に示すようにある負荷(図中のa点)で筒内の実際の温度が自己着火可能温度を満足できなくなり、圧縮着火を予定する運転領域においても圧縮着火が不可能となる。   In the case of the prior art shown in FIG. 7, the amount of EGR (exhaust gas) to be introduced decreases as described above as the required amount of air increases as the load increases as shown in the upper diagram. As shown in the figure below, the actual temperature in the cylinder cannot satisfy the self-ignitable temperature at a certain load (point a in the figure), and compression ignition is impossible even in the operation region where compression ignition is scheduled.

それに対し、図6に示すこの実施例に係る装置の場合、その上図に示すように排気管開閉バルブ56を例えばa点から閉弁方向に駆動することで、その中図に示すように、破線で示す従来技術に比して導入されるべきEGR量を確保することができ、よってその下図に示すように圧縮着火可能な運転領域を拡大することができる。より正確には、図4に示す圧縮着火を予定する範囲において、圧縮着火を確実に実現することができる。   On the other hand, in the case of the apparatus according to this embodiment shown in FIG. 6, by driving the exhaust pipe opening / closing valve 56 from the point a in the valve closing direction as shown in the upper figure, as shown in the middle figure, The amount of EGR to be introduced can be ensured as compared with the prior art indicated by the broken line, and therefore, the operation region where compression ignition is possible can be expanded as shown in the figure below. More precisely, the compression ignition can be reliably realized in the range where the compression ignition shown in FIG. 4 is scheduled.

次いで、この発明の第2実施例に係る圧縮着火内燃機関の制御装置について説明する。   Next, a control apparatus for a compression ignition internal combustion engine according to a second embodiment of the present invention will be described.

図8は、第2実施例に係る圧縮着火内燃機関の制御装置を全体的に示す、図1と同様の概略図である。   FIG. 8 is a schematic view similar to FIG. 1 showing the overall control apparatus for a compression ignition internal combustion engine according to the second embodiment.

第1実施例と相違する点に焦点をおいて説明すると、第2実施例にあっては、排気圧力可変部材が排気ガスタービン過給機70のタービン70aの可変ノズルベーン70a1からなる如く構成した。第2実施例において、排気ガスタービン過給機(以下「過給機」という)70は、排気管36に介挿されたタービン70aと、吸気管12に介挿され、タービン70aに接続されて回転駆動されるコンプレッサ70bとを備える。タービン70aには可変ノズルベーン70a1が設けられる。   The description will be focused on the differences from the first embodiment. In the second embodiment, the exhaust pressure variable member is constituted by the variable nozzle vane 70a1 of the turbine 70a of the exhaust gas turbine supercharger 70. In the second embodiment, an exhaust gas turbine supercharger (hereinafter referred to as “supercharger”) 70 is inserted into the exhaust pipe 36 and the intake pipe 12 and is connected to the turbine 70a. And a compressor 70b that is driven to rotate. The turbine 70a is provided with a variable nozzle vane 70a1.

過給機70はECU24に接続される。ECU24は、エンジン負荷(要求負荷PMECMDあるいは吸入空気量Q)とエンジン回転数NEなどに応じて可変ノズルベーン70a1を駆動回路72を介してリンクによって駆動してブレード(図示せず)に当たる排ガスの角度を調節し、タービン回転数を過給有効範囲に維持する。   The supercharger 70 is connected to the ECU 24. The ECU 24 drives the variable nozzle vane 70a1 by the link via the drive circuit 72 according to the engine load (required load PMECMD or intake air amount Q), the engine speed NE, and the like, and determines the angle of the exhaust gas hitting the blade (not shown). Adjust and maintain turbine speed in the supercharging effective range.

タービン70aによって回転させられるコンプレッサ70bは吸気管12を流れる空気を圧縮し、吸気マニホルド16から各気筒に導入する。尚、過給圧が過大になるとき、駆動回路74を介してバイパスバルブ(ウェイストゲートバルブ)76が開弁されて降圧される。   The compressor 70b rotated by the turbine 70a compresses the air flowing through the intake pipe 12 and introduces it into each cylinder from the intake manifold 16. When the supercharging pressure becomes excessive, the bypass valve (waste gate valve) 76 is opened via the drive circuit 74 and the pressure is lowered.

第2実施例に係る装置の動作は、第1実施例の図2フロー・チャートで述べたものと同様である。ただし、過給された空気を供給することから、図5に示す特性において吸気バルブ18の開弁時間は短縮しても良い。過給された空気を供給することから、第1実施に比し、さらに高負荷領域まで圧縮着火運転域を拡大することができる。尚、残余の構成および効果は第1実施例と異ならない。   The operation of the apparatus according to the second embodiment is the same as that described in the flowchart of FIG. 2 of the first embodiment. However, since the supercharged air is supplied, the valve opening time of the intake valve 18 may be shortened in the characteristics shown in FIG. Since the supercharged air is supplied, the compression ignition operation region can be expanded to a higher load region than in the first implementation. The remaining configuration and effects are not different from those of the first embodiment.

第2実施例においては上記の如く構成したので、エンジン回転数NEに応じて可変ノズルベーン70a1を制御することで、第1実施例で述べたと同様に負荷の増加に伴って必要な混合気あるいは空気の量が増加するときも、エンジン負荷の増加に応じて排気圧力を高めることができ、必要な排ガスの導入量を確保することができる。   Since the second embodiment is configured as described above, by controlling the variable nozzle vane 70a1 according to the engine speed NE, the necessary air-fuel mixture or air as the load increases as described in the first embodiment. When the amount of exhaust gas increases, the exhaust pressure can be increased according to the increase in engine load, and the necessary amount of exhaust gas introduced can be ensured.

以上の如く、この発明の第1および第2実施例にあっては、圧縮着火内燃機関、より具体的には運転状態に応じて混合気を圧縮着火で燃焼させる圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換える圧縮着火内燃機関(エンジン)10の制御装置において、前記内燃機関の排気系に配置され、排気圧力を変更自在な排気圧力可変部材(排気管開閉バルブ56、可変ノズルベーン70a1)と、前記内燃機関の負荷に応じて前記排気圧力可変部材の動作を制御する排気圧力可変部材制御手段(ECU24,駆動回路60,72)と、前記内燃機関の吸気バルブ18と排気バルブ32を任意の時期で開閉自在な可変動弁機構(54)と、前記可変動弁機構の動作を制御する可変動弁機構制御手段(ECU24)とを備えると共に、前記可変動弁機構制御手段は、前記吸気バルブが所定期間開弁して吸入空気を燃焼室に導入すると共に、前記排気バルブが前記吸気バルブの閉弁に応じて開弁して排ガスを前記燃焼室に導入するように、前記可変動弁機構の動作を制御すると共に、前記排気圧力可変部材制御手段は、前記内燃機関の負荷が増加するにつれて前記排気圧力が増加するように、前記排気圧力可変部材の動作を制御する(ECU24,S16からS22)如く構成した。また、前記可変動弁機構制御手段は、前記内燃機関の負荷が増加するにつれて前記吸気バルブの閉弁時期を変更する(ECU24,S18,S22)如く構成した。 As described above, in the first and second embodiments of the present invention, compression ignition internal combustion engines, more specifically, combustion by compression ignition combustion and spark ignition in which an air-fuel mixture is combusted by compression ignition according to the operating state. In a control apparatus for a compression ignition internal combustion engine (engine) 10 that switches between spark ignition combustion to be performed, an exhaust pressure variable member (exhaust pipe opening / closing valve 56, variable) disposed in an exhaust system of the internal combustion engine and capable of changing an exhaust pressure. Nozzle vane 70a1), exhaust pressure variable member control means (ECU 24, drive circuits 60, 72) for controlling the operation of the exhaust pressure variable member according to the load of the internal combustion engine, intake valve 18 and exhaust valve of the internal combustion engine And a variable valve mechanism (54) that can freely open and close 32 and variable valve mechanism control means (ECU24) for controlling the operation of the variable valve mechanism. The variable valve mechanism control means opens the intake valve for a predetermined period to introduce intake air into the combustion chamber, and opens the exhaust valve in response to closing of the intake valve to combust the exhaust gas. The exhaust pressure variable member control means controls the operation of the variable valve mechanism so as to be introduced into the chamber, and the exhaust pressure variable member control means adjusts the exhaust pressure so that the exhaust pressure increases as the load of the internal combustion engine increases. The operation of the members is controlled (ECU 24, S16 to S22). Further, the variable valve mechanism control means is configured to change the closing timing of the intake valve (ECU 24, S18, S22) as the load of the internal combustion engine increases.

また、前記内燃機関が複数(4個)の気筒を備えると共に、前記排気圧力可変部材が、前記複数の気筒の排気系集合部34a、より正確にはそれに接続される排気管36に配置される如く構成した。   The internal combustion engine includes a plurality of (four) cylinders, and the exhaust pressure variable member is disposed in an exhaust system collection portion 34a of the plurality of cylinders, more precisely, an exhaust pipe 36 connected thereto. It was configured as follows.

また、前記排気圧力可変部材が、バルブ(排気管開閉バルブ)56および排気ガスタービン過給機70の可変ノズルベーン70a1の少なくともいずれかである如く構成した。   Further, the exhaust pressure variable member is configured to be at least one of a valve (exhaust pipe opening / closing valve) 56 and a variable nozzle vane 70a1 of the exhaust gas turbine supercharger 70.

さらに、前記内燃機関は、付加的な燃料噴射を実行する付加燃料噴射実行手段(ECU24,S22)を備える如く構成した。   Further, the internal combustion engine is configured to include additional fuel injection execution means (ECU 24, S22) for executing additional fuel injection.

尚、上記において、吸気バルブ18と排気バルブ32を2個設けたが、1個であっても良い。   In the above description, two intake valves 18 and two exhaust valves 32 are provided.

また、図5に示す吸気バルブ18と排気バルブ32の開、閉弁特性は例示であり、これに限定されるものではない。   Further, the opening and closing characteristics of the intake valve 18 and the exhaust valve 32 shown in FIG. 5 are merely examples, and the present invention is not limited thereto.

また、筒内噴射エンジンを例にとってこの発明の実施例を説明したが、この発明はポート噴射エンジンであっても妥当する。   Further, although the embodiment of the present invention has been described by taking a cylinder injection engine as an example, the present invention is applicable even to a port injection engine.

この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an overall control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention. 図1に示す装置の動作を説明するフロー・チャートである。It is a flowchart explaining operation | movement of the apparatus shown in FIG. 図2フロー・チャートの処理で使用される要求負荷(要求トルク)PMECMDのマップデータ特性を示す説明グラフである。2 is an explanatory graph showing the map data characteristics of the required load (required torque) PMECMD used in the processing of the flow chart of FIG. 図2フロー・チャートの処理で使用される、予混合圧縮着荷運転領域のマップデータ特性を示す説明グラフである。FIG. 3 is an explanatory graph showing map data characteristics of a premixed compression landing operation region used in the processing of the flow chart of FIG. 2. 図2フロー・チャートの処理で使用される、吸、排気バルブの開、閉弁時期(バルブタイミングおよびリフト量)特性を説明する説明図である。2 is an explanatory diagram for explaining characteristics of intake and exhaust valve opening and valve closing timing (valve timing and lift amount) used in the processing of the flow chart of FIG. 図2フロー・チャートの処理を示す説明図である。2 is an explanatory diagram showing the processing of the flow chart. 従来技術の処理を図6に対比して示す説明図である。It is explanatory drawing which shows the process of a prior art as contrasted with FIG. この発明の第2実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。It is the schematic which shows the control apparatus of the compression ignition internal combustion engine which concerns on 2nd Example of this invention generally.

符号の説明Explanation of symbols

10 圧縮着火内燃機関(エンジン)
18 吸気バルブ
24 ECU(電子制御ユニット)
32 排気バルブ
34 排気マニホルド(排気系)
34a 排気系集合部(排気系)
54 可変動弁機構
56 排気管開閉バルブ(排気圧力可変部材)
70 排気ガスタービン過給機
70a1 可変ノズルベーン(排気圧力可変部材)
10 Compression ignition internal combustion engine (engine)
18 Intake valve 24 ECU (electronic control unit)
32 Exhaust valve 34 Exhaust manifold (exhaust system)
34a Exhaust system assembly (exhaust system)
54 Variable valve mechanism 56 Exhaust pipe open / close valve (exhaust pressure variable member)
70 Exhaust gas turbine supercharger 70a1 Variable nozzle vane (exhaust pressure variable member)

Claims (5)

圧縮着火内燃機関の制御装置において、前記内燃機関の排気系に配置され、排気圧力を変更自在な排気圧力可変部材と、前記内燃機関の負荷に応じて前記排気圧力可変部材の動作を制御する排気圧力可変部材制御手段と、前記内燃機関の吸気バルブと排気バルブを任意の時期で開閉自在な可変動弁機構と、前記可変動弁機構の動作を制御する可変動弁機構制御手段とを備えると共に、前記可変動弁機構制御手段は、前記吸気バルブが所定期間開弁して吸入空気を燃焼室に導入すると共に、前記排気バルブが前記吸気バルブの閉弁に応じて開弁して排ガスを前記燃焼室に導入するように、前記可変動弁機構の動作を制御すると共に、前記排気圧力可変部材制御手段は、前記内燃機関の負荷が増加するにつれて前記排気圧力が増加するように、前記排気圧力可変部材の動作を制御することを特徴とする圧縮着火内燃機関の制御装置。 In a control apparatus for a compression ignition internal combustion engine, an exhaust pressure variable member disposed in an exhaust system of the internal combustion engine and capable of changing an exhaust pressure, and an exhaust for controlling an operation of the exhaust pressure variable member according to a load of the internal combustion engine A pressure variable member control means; a variable valve mechanism that can open and close the intake valve and the exhaust valve of the internal combustion engine at an arbitrary timing; and a variable valve mechanism control means that controls the operation of the variable valve mechanism. The variable valve mechanism control means opens the intake valve for a predetermined period and introduces intake air into the combustion chamber, and opens the exhaust valve in response to closing of the intake valve to release the exhaust gas. so as to introduce into the combustion chamber, to control the operation of the variable valve mechanism, the exhaust pressure varying member control means, as the exhaust pressure increases as the load of the internal combustion engine is increased, before Control system for a compression ignition internal combustion engine and controls the operation of the exhaust pressure variable member. 前記可変動弁機構制御手段は、前記内燃機関の負荷が増加するにつれて前記吸気バルブの閉弁時期を変更することを特徴とする請求項1記載の圧縮着火内燃機関の制御装置。2. The control apparatus for a compression ignition internal combustion engine according to claim 1, wherein the variable valve mechanism control means changes the closing timing of the intake valve as the load of the internal combustion engine increases. 前記内燃機関は複数の気筒を備えると共に、前記排気圧力可変部材が、前記複数の気筒の排気系集合部に配置されることを特徴とする請求項1または2記載の圧縮着火内燃機関の制御装置。 3. The control device for a compression ignition internal combustion engine according to claim 1, wherein the internal combustion engine includes a plurality of cylinders, and the exhaust pressure variable member is disposed in an exhaust system collection portion of the plurality of cylinders. . 前記排気圧力可変部材が、バルブおよび排気ガスタービン過給機の可変ノズルベーンの少なくともいずれかであることを特徴とする請求項1から3のいずれかに記載の圧縮着火内燃機関の制御装置。 The control apparatus for a compression ignition internal combustion engine according to any one of claims 1 to 3, wherein the exhaust pressure variable member is at least one of a valve and a variable nozzle vane of an exhaust gas turbine supercharger. さらに、前記内燃機関は、付加的な燃料噴射を実行する付加燃料噴射実行手段を備えることを特徴とする請求項1からのいずれかに記載の圧縮着火内燃機関の制御装置。 The control apparatus for a compression ignition internal combustion engine according to any one of claims 1 to 4 , wherein the internal combustion engine further includes additional fuel injection execution means for executing additional fuel injection.
JP2003292802A 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine Expired - Fee Related JP4098684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292802A JP4098684B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292802A JP4098684B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005061325A JP2005061325A (en) 2005-03-10
JP4098684B2 true JP4098684B2 (en) 2008-06-11

Family

ID=34369997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292802A Expired - Fee Related JP4098684B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4098684B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783827B2 (en) * 2006-02-13 2011-09-28 耕一 畑村 4-cycle engine
DE102006048269B4 (en) * 2006-10-12 2012-10-04 Man Diesel & Turbo Se Method for operating an internal combustion engine with exhaust gas recirculation and internal combustion engine
DE102006052631A1 (en) * 2006-11-08 2008-05-15 Robert Bosch Gmbh Internal-combustion engine i.e. petrol engine, operating method, involves producing ignitable gas mixture in combustion chamber by inserting fuel, and introducing free gas by compression device during suction cycle in combustion chamber
JP4778879B2 (en) * 2006-11-22 2011-09-21 本田技研工業株式会社 Supercharging pressure control device for internal combustion engine
JP5183630B2 (en) * 2007-05-21 2013-04-17 株式会社畑村エンジン研究事務所 4-cycle engine
JP4946782B2 (en) * 2007-10-19 2012-06-06 トヨタ自動車株式会社 Control device for internal combustion engine
DE102009014087A1 (en) * 2009-03-23 2010-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine
JP5073765B2 (en) * 2010-02-02 2012-11-14 本田技研工業株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
JP2005061325A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
EP2264303B1 (en) Control method and device of engine and corresponding engine
KR100879486B1 (en) Engine
JP4306642B2 (en) Internal combustion engine control system
US6684630B2 (en) Direct-injection spark-ignition engine with a turbo charging device
US7992538B2 (en) Method of controlling an internal combustion engine and system including the engine
KR20060051868A (en) Engine
JP2007113485A (en) Method and device for controlling internal combustion engine
WO2001086125A2 (en) Premixed charge compression ignition engine with variable speed soc control and method of operation
JP4561685B2 (en) Premixed compression ignition engine and intake control method for premixed compression ignition engine
JP2007132319A (en) Controller for four-cycle premixed compression self-igniting internal combustion engine
JP4180995B2 (en) Control device for compression ignition internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
US20100076668A1 (en) Control apparatus for internal combustion engine
JP4102268B2 (en) Compression ignition internal combustion engine
JP5925099B2 (en) Control device for internal combustion engine
JP2008051017A (en) Premixed compression self-igniting internal combustion engine
JP4306462B2 (en) 4-cycle internal combustion engine
JP6870350B2 (en) Internal combustion engine control device
KR100783925B1 (en) Control method for controlled auto ignition of engine
JP2004211618A (en) Engine control system and its method
JP2007023837A (en) Control device of internal combustion engine having supercharger with electric motor
JP7238571B2 (en) Engine control method and engine control device
JP2015004343A (en) Control device of direct injection engine
JP5756399B2 (en) Control device for compression ignition internal combustion engine
EP3730771A1 (en) Engine control method, computer program product, engine control device, and engine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees