JP4180995B2 - Control device for compression ignition internal combustion engine - Google Patents

Control device for compression ignition internal combustion engine Download PDF

Info

Publication number
JP4180995B2
JP4180995B2 JP2003292800A JP2003292800A JP4180995B2 JP 4180995 B2 JP4180995 B2 JP 4180995B2 JP 2003292800 A JP2003292800 A JP 2003292800A JP 2003292800 A JP2003292800 A JP 2003292800A JP 4180995 B2 JP4180995 B2 JP 4180995B2
Authority
JP
Japan
Prior art keywords
compression ignition
internal combustion
combustion engine
egr
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003292800A
Other languages
Japanese (ja)
Other versions
JP2005061323A (en
Inventor
隆 柿沼
健一郎 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003292800A priority Critical patent/JP4180995B2/en
Publication of JP2005061323A publication Critical patent/JP2005061323A/en
Application granted granted Critical
Publication of JP4180995B2 publication Critical patent/JP4180995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

この発明は、圧縮着火内燃機関の制御装置に関する。   The present invention relates to a control device for a compression ignition internal combustion engine.

内燃機関の着火手法としては、軽油を燃料とするディーゼル機関に代表される、高圧縮によって高温にされた空気に直接、燃料(軽油)を注入して自然着火させる圧縮着火手法と、ガソリンを燃料とする機関での火花点火手法の2つがあり、着火手法はほぼ燃料によって決められているのが現状である。それに加え、近時、ガソリン、軽油など種々の燃料を空気と十分に混合させて得た混合気を高温高圧にして供給し、自己着火させる試みもなされている。   As an ignition method for internal combustion engines, a compression ignition method in which fuel (light oil) is injected directly into air that has been heated to high temperature by high compression, such as diesel engines that use light oil as fuel, and gasoline is used as fuel. There are two spark ignition methods in the engine, and the current ignition method is almost determined by the fuel. In addition, recently, attempts have been made to self-ignite by supplying an air-fuel mixture obtained by sufficiently mixing various fuels such as gasoline and light oil with air at high temperature and pressure.

このような機関にあっては燃焼室全体で着火が開始し、同時に反応するため、燃焼は低温酸化反応で開始することとなり、燃焼温度を比較的低くすることができて窒素酸化物の排出を低減できると共に、圧縮比を火花点火機関より上げることができて燃費性能も向上させることができる。この種の機関は圧縮着火機関あるいは予混合圧縮着火機関と呼ばれる。   In such an engine, the ignition starts in the entire combustion chamber and reacts at the same time. Therefore, the combustion starts with a low-temperature oxidation reaction, and the combustion temperature can be made relatively low so that the emission of nitrogen oxides is reduced. In addition to being able to reduce, the compression ratio can be increased from the spark ignition engine, and the fuel efficiency can be improved. This type of engine is called a compression ignition engine or a premixed compression ignition engine.

この圧縮機関(予混合圧縮着火機関)で問題となるのは、負荷の減少につれて着火遅れが増大して、ついには失火に至ることであり、逆に負荷の増加に伴って過早着火が起こってノッキングが発生することである。その対策として、着火の促進には混合気温度を上昇させるのが有効であることが知られており、高温のEGRガスを導入して着火を促進させると共に、そのEGRガス量を負荷に応じて制御することが知られている。(例えば特許文献1参照)。
特開2000−64863号公報
The problem with this compression engine (premixed compression ignition engine) is that the ignition delay increases as the load decreases, eventually leading to misfire. Conversely, pre-ignition occurs as the load increases. Knocking occurs. As a countermeasure, it is known that it is effective to increase the temperature of the air-fuel mixture in order to promote ignition, and while introducing high-temperature EGR gas to promote ignition, the amount of EGR gas is determined according to the load. It is known to control. (For example, refer to Patent Document 1).
JP 2000-64863 A

この従来技術においては、排気バルブと吸気バルブの開弁時期を変更可能な可変動弁機構を備え、機関低負荷時には排気バルブの閉弁時期を進角させると共に、吸気バルブの開弁時期を遅角させることで大量の内部EGRガスを残留させ、新気と均一に混合させて得た高温の混合気を圧縮着火させて燃焼させる一方、機関高負荷時にあっては排気バルブの閉弁時期と吸気バルブの開弁時期を共に上死点付近に設定し、火花点火によって混合気を着火している。   This prior art is equipped with a variable valve mechanism that can change the opening timing of the exhaust valve and the intake valve to advance the closing timing of the exhaust valve and delay the opening timing of the intake valve at a low engine load. A large amount of internal EGR gas remains by making it horn, and a high-temperature mixture obtained by mixing uniformly with fresh air is compressed and ignited and burned. On the other hand, when the engine is under heavy load, The opening timing of the intake valves is set near the top dead center, and the air-fuel mixture is ignited by spark ignition.

しかしながら、上記した従来技術においては、吸気バルブと排気バルブの開、閉弁時期、即ち、それらのバルブタイミングを変更するのみで圧縮着火燃焼を実現するため、バルブタイミングの制御が複雑とならざるを得なかった。また、かかるバルブタイミングの制御を通じて得た内部EGRガスのみによって圧縮着火を実現しようとするため、必要な排ガス(EGR)量を精緻に制御できないことから着火性能の点で必ずしも満足できるものではなかった。   However, in the above-described prior art, the compression ignition combustion is realized only by changing the opening and closing timings of the intake valve and the exhaust valve, that is, the valve timings thereof, so the valve timing control must be complicated. I didn't get it. In addition, since compression ignition is achieved only by the internal EGR gas obtained through the control of the valve timing, the required amount of exhaust gas (EGR) cannot be precisely controlled, so that the ignition performance is not always satisfactory. .

従って、この発明の目的は上記した課題を解決し、吸気バルブと排気バルブのバルブタイミングの変更による内部EGRガスの導入に止まらず、排ガスを吸気系に還流させる外部EGRも実行し、圧縮着火に必要な排ガス量を精緻に制御し、よって着火性能を向上させるようにした圧縮着火内燃機関の制御装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and not only the introduction of the internal EGR gas by changing the valve timing of the intake valve and the exhaust valve, but also the execution of the external EGR that recirculates the exhaust gas to the intake system. It is an object of the present invention to provide a control apparatus for a compression ignition internal combustion engine that precisely controls a necessary amount of exhaust gas and thereby improves ignition performance.

上記の目的を解決するために、請求項1にあっては、圧縮着火式の内燃機関の燃焼室を開閉する吸気バルブと排気バルブの少なくともいずれかのバルブタイミング(およびリフト量)を少なくとも2つの特性の間で変更する可変バルブタイミング機構と、前記可変バルブタイミング機構の動作を制御して前記燃焼室内に排ガスを残留させる内部EGR手段と、前記内燃機関の吸気系と排気系を接続するEGR通路に介挿されたEGRバルブと、前記EGRバルブの開度を調整して前記吸気系に還流されるべき排ガス量を制御する外部EGR制御手段と、前記内燃機関が搭載される車両のアクセル開度と前記内燃機関の回転数に基づいて前記内燃機関の要求負荷を算出する要求負荷算出手段と、前記残留されるべき排ガス量が圧縮着火燃焼運転領域において所定量となるように前記内部EGR手段の動作を制御すると共に、少なくとも前記算出された要求負荷が低くなるにつれて前記吸気系に還流されるべき排ガス量を増加するように前記外部EGR制御手段を動作させ、よって前記燃焼室に供給される混合気を圧縮着火して燃焼させる圧縮着火制御手段とを備える如く構成した。 In order to solve the above-mentioned object, according to claim 1, at least two valve timings (and lift amounts) of an intake valve and an exhaust valve that open and close a combustion chamber of a compression ignition type internal combustion engine are set. A variable valve timing mechanism that changes between characteristics, an internal EGR means that controls the operation of the variable valve timing mechanism to leave exhaust gas in the combustion chamber, and an EGR passage that connects the intake system and the exhaust system of the internal combustion engine An EGR valve inserted in the control unit, an external EGR control means for adjusting the opening of the EGR valve to control the amount of exhaust gas to be recirculated to the intake system, and the accelerator opening of a vehicle on which the internal combustion engine is mounted wherein a required load calculating means for calculating a required load of the engine, compression ignition combustion operation is exhaust gas quantity to be the residual based on the rotational speed of the internal combustion engine and It controls the operation of the internal EGR means so that the predetermined amount in frequency, the external EGR control means so that at least the calculated required load increases the amount of exhaust gas to be recirculated to the intake system as lower And thus, a compression ignition control means for igniting and burning the air-fuel mixture supplied to the combustion chamber.

請求項2に係る圧縮着火内燃機関の制御装置にあっては、前記内燃機関が運転状態に応じて混合気を圧縮着火して燃焼させる前記圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換え可能な内燃機関であり、前記所定量は前記圧縮着火燃焼が可能な前記内燃機関の要求負荷の限界値において必要な排ガス量であると共に、前記圧縮着火制御手段は、前記算出された要求負荷が前記限界値を超えるとき、前記火花点火燃焼に切り換える如く構成した。 In the control apparatus for the compression ignition internal combustion engine according to claim 2, the compression ignition combustion in which the internal combustion engine compresses and ignites the air-fuel mixture according to the operating state and the spark ignition combustion in which the combustion is performed by spark ignition. The predetermined amount is an amount of exhaust gas required at the limit value of the required load of the internal combustion engine capable of compression ignition combustion, and the compression ignition control means is the calculated When the required load exceeds the limit value, it is configured to switch to the spark ignition combustion.

請求項3に係る圧縮着火内燃機関の制御装置にあっては、前記圧縮着火制御手段は、前記可変バルブタイミング機構の動作に応じて前記吸気系に還流させるべき排ガス量を制御するように前記外部EGR制御手段を動作させる如く構成した In the control apparatus for a compression ignition internal combustion engine according to claim 3, the compression ignition control means controls the amount of exhaust gas to be recirculated to the intake system according to the operation of the variable valve timing mechanism. The EGR control means is configured to operate .

請求項1に係る圧縮着火内燃機関の制御装置にあっては、内燃機関が搭載される車両のアクセル開度と内燃機関の回転数に基づいて内燃機関の要求負荷を算出し、吸気バルブと排気バルブの少なくともいずれかのバルブタイミング(およびリフト量)を少なくとも2つの特性の間で変更する可変バルブタイミング機構の動作を制御して残留されるべき排ガス量が圧縮着火燃焼運転領域において所定量となるように内部EGR手段の動作を制御すると共に、少なくとも算出された要求負荷が低くなるにつれてEGRバルブの開度を調整して吸気系に還流されるべき排ガス量を増加するように外部EGR制御手段を動作させ、混合気を圧縮着火して燃焼させる如く構成したので、これによって例えば圧縮着火に必要な混合気温度(筒内ガス温度)を内部EGRによる排ガス量で確保しつつ、外部EGR制御手段によって低負荷域における排ガス量を精緻に制御することが可能となり、よって着火性能を向上させることができる。また、圧縮着火内燃機関の制御装置としての構成を単純にすることができる。 In the control apparatus for a compression ignition internal combustion engine according to claim 1, the required load of the internal combustion engine is calculated based on the accelerator opening of the vehicle on which the internal combustion engine is mounted and the rotational speed of the internal combustion engine, and the intake valve and the exhaust The amount of exhaust gas that should remain by controlling the operation of the variable valve timing mechanism that changes the valve timing (and the lift amount) of at least one of the valves between at least two characteristics becomes a predetermined amount in the compression ignition combustion operation region. The external EGR control means is controlled so as to increase the amount of exhaust gas to be recirculated to the intake system by adjusting the opening of the EGR valve as at least the calculated required load is reduced. Since it is configured to operate and combust the air-fuel mixture by compression ignition, the air-fuel mixture temperature (in-cylinder gas temperature) necessary for compression ignition is thereby determined. While ensuring at the amount of exhaust gas by the internal EGR, it is possible to precisely control the amount of exhaust gas in the low load region by an external EGR control means, thus ignition performance can be improved. Moreover, the structure as a control apparatus of a compression ignition internal combustion engine can be simplified.

請求項2に係る圧縮着火内燃機関の制御装置にあっては、所定量は前記圧縮着火燃焼が可能な内燃機関の要求負荷の限界値において必要な排ガス量であると共に、算出された要求負荷がその限界値を超えるとき、火花点火燃焼に切り換える如く構成したので、上記したように圧縮着火に必要な混合気温度を内部EGRによる排ガス量で確保しつつ、外部EGR制御手段によって低負荷域における排ガス量を精緻に制御することができ、着火性能を向上させることができる。 In the control apparatus for a compression ignition internal combustion engine according to claim 2, the predetermined amount is an exhaust gas amount required at a limit value of a required load of the internal combustion engine capable of compression ignition combustion, and the calculated required load is Since it is configured to switch to spark ignition combustion when the limit value is exceeded, the exhaust gas in the low load range is secured by the external EGR control means while securing the mixture temperature necessary for compression ignition with the exhaust gas amount by the internal EGR as described above. The amount can be precisely controlled, and the ignition performance can be improved.

請求項3に係る圧縮着火内燃機関の制御装置にあっては、可変バルブタイミング機構の動作に応じてEGR量を制御するように外部EGR制御手段を動作させる如く構成したので、外部EGR制御手段によって低負荷域における排ガス量を一層精緻に制御することができ、よって着火性能を一層向上させることができる In the control apparatus for the compression ignition internal combustion engine according to claim 3, since the external EGR control means is operated so as to control the EGR amount in accordance with the operation of the variable valve timing mechanism, the external EGR control means The amount of exhaust gas in the low load range can be controlled more precisely, and therefore the ignition performance can be further improved .

以下、添付図面に即してこの発明に係る圧縮着火内燃機関の制御装置を実施するための最良の形態について説明する。   The best mode for carrying out a control apparatus for a compression ignition internal combustion engine according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention.

図1において、符合10は、ガソリンを燃料とする4気筒4サイクルの直列形の内燃機関(以下「エンジン」という)を示す。エンジン10において、エアクリーナ(図示せず)から吸入されて吸気管12を通る空気はスロットルバルブ14で流量を調節されて吸気マニホルド16を流れ、吸気バルブ18が開弁されるとき、燃焼室(図示せず)に流入する。   In FIG. 1, reference numeral 10 indicates a 4-cylinder 4-cycle in-line internal combustion engine (hereinafter referred to as “engine”) using gasoline as fuel. In the engine 10, the air drawn from an air cleaner (not shown) and passing through the intake pipe 12 is adjusted in flow rate by the throttle valve 14 and flows through the intake manifold 16. When the intake valve 18 is opened, the combustion chamber (see FIG. (Not shown).

吸気バルブ18の手前の吸気ポート付近にはインジェクタ20が配置される。インジェクタ20には燃料供給管(図示せず)を介して燃料タンク(図示せず)に貯留されたガソリン燃料が圧送されると共に、駆動回路22を通じてECU(電子制御ユニット)24に接続される。ECU24から開弁時間を示す駆動信号が駆動回路22に供給されると、インジェクタ20は開弁し、開弁時間に応じたガソリン燃料を吸気ポートに噴射する。噴射されたガソリン燃料は流入した空気と混合して混合気を形成しつつ、燃焼室に流入する。   An injector 20 is disposed near the intake port in front of the intake valve 18. Gasoline fuel stored in a fuel tank (not shown) is pumped to the injector 20 through a fuel supply pipe (not shown) and connected to an ECU (electronic control unit) 24 through a drive circuit 22. When a drive signal indicating the valve opening time is supplied from the ECU 24 to the drive circuit 22, the injector 20 opens and injects gasoline fuel corresponding to the valve opening time into the intake port. The injected gasoline fuel mixes with the inflowing air to form an air-fuel mixture and flows into the combustion chamber.

符号26は点火プラグを示す。点火プラグ26はイグナイタなどからなる点火装置30を介してECU24に接続され、ECU24から点火信号が点火装置30に供給されると、燃焼室に臨む電極間に火花放電を生じ、混合気を着火して燃焼させる。尚、後述するように、混合気は圧縮着火によっても燃焼させられる。即ち、エンジン10は、運転状態に応じて混合気を圧縮着火で燃焼させる圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換える(予混合)圧縮着火エンジン(内燃機関)として構成される。従って、エンジン10にあっては、圧縮比を燃焼効率が最良となる14から16の間の値に設定する。   Reference numeral 26 denotes a spark plug. The spark plug 26 is connected to the ECU 24 via an ignition device 30 such as an igniter. When an ignition signal is supplied from the ECU 24 to the ignition device 30, a spark discharge is generated between the electrodes facing the combustion chamber to ignite the air-fuel mixture. And burn. As will be described later, the air-fuel mixture is also combusted by compression ignition. That is, the engine 10 is configured as a compression ignition engine (internal combustion engine) that switches between pre-combustion ignition combustion in which an air-fuel mixture is combusted by compression ignition and spark ignition combustion in which spark ignition is combusted in accordance with an operating state. The Therefore, in the engine 10, the compression ratio is set to a value between 14 and 16 that provides the best combustion efficiency.

燃焼によって生じたガス(排ガス)は、排気バルブ32が開弁するとき、排気マニホルド34に流れる。排気マニホルド34は下流で集合して排気系集合部を形成し、そこに排気管36が接続される。排ガスは排気マニホルド34を流れた後、排気管36を流れ、さらにはエンジン外の大気に放出される。   Gas (exhaust gas) generated by the combustion flows to the exhaust manifold 34 when the exhaust valve 32 is opened. The exhaust manifold 34 gathers downstream to form an exhaust system gathering portion, to which an exhaust pipe 36 is connected. The exhaust gas flows through the exhaust manifold 34, then flows through the exhaust pipe 36, and is further released to the atmosphere outside the engine.

エンジン10のクランクシャフトあるいはカムシャフト(共に図示せず)の付近にはクランク角センサ(図で「ENG回転数」と示す)40が配置され、気筒判別信号と、各気筒のTDC(上死点)あるいはその付近のクランク角度を示すTDC信号と、TDC信号を細分してなるクランク角度信号とを出力する。それらの出力はECU24に入力される。   A crank angle sensor (shown as “ENG rotational speed” in the figure) 40 is disposed in the vicinity of the crankshaft or camshaft (both not shown) of the engine 10, and a cylinder discrimination signal and TDC (top dead center) of each cylinder. ) Or a TDC signal indicating a crank angle in the vicinity thereof, and a crank angle signal obtained by subdividing the TDC signal. Those outputs are input to the ECU 24.

ECU24はマイクロコンピュータからなり、CPU,ROM,RAM,A/D変換回路、入出力回路およびカウンタを備える。ECU24は入力信号の中、クランク角度信号をカウントしてエンジン回転数(ENG回転数)NEを算出(検出)する。   The ECU 24 includes a microcomputer and includes a CPU, ROM, RAM, A / D conversion circuit, input / output circuit, and counter. The ECU 24 counts the crank angle signal in the input signal and calculates (detects) the engine speed (ENG speed) NE.

エンジン10が搭載される車両の運転席(図示せず)の床面にはアクセルペダル(図示せず)が配置されると共に、その付近にはアクセル開度センサ(図で「アクセル開度」と示す)42が設けられ、運転者のアクセルペダル踏み込み量を示すアクセル開度ACCに応じた信号を出力する。その出力もECU24に入力される。   An accelerator pedal (not shown) is arranged on the floor of a driver's seat (not shown) of the vehicle on which the engine 10 is mounted, and an accelerator opening sensor ("Accelerator opening" in the figure) 42) is provided and outputs a signal corresponding to the accelerator opening ACC indicating the amount of depression of the driver's accelerator pedal. The output is also input to the ECU 24.

前記したスロットルバルブ14はアクセルペダルとの機械的な接続を絶たれ、アクチュエータ(ステッピングモータなど)44に接続される。アクチュエータ44はECU24に接続される。ECU24はアクセル開度センサ42を通じて検出されたアクセル開度ACCなどからアクチュエータ44を駆動し、スロットルバルブ14の開度THを制御する。このように、スロットルバルブ14の動作は、DBW方式で制御される。   The throttle valve 14 is mechanically disconnected from the accelerator pedal and connected to an actuator (such as a stepping motor) 44. The actuator 44 is connected to the ECU 24. The ECU 24 drives the actuator 44 from the accelerator opening ACC detected through the accelerator opening sensor 42 and controls the opening TH of the throttle valve 14. Thus, the operation of the throttle valve 14 is controlled by the DBW method.

尚、アクチュエータ44にはロータリエンコーダなどの回転角センサ46が接続され、アクチュエータ44の回転角度を通じてスロットル開度THに応じた信号を出力し、ECU24に送る。   A rotation angle sensor 46 such as a rotary encoder is connected to the actuator 44, and a signal corresponding to the throttle opening TH is output through the rotation angle of the actuator 44 and sent to the ECU 24.

また、エンジン10のエアクリーナの付近にはエアフローメータ50が配置され、エンジン負荷を示す吸入空気量Qに応じた信号を出力する。さらに、エンジン10の冷却水通路(図示せず)には水温センサ(図示せず)が配置されてエンジン冷却水温TWに応じた信号を出力すると共に、エアフローメータ50の付近には別の温度センサ(図示せず)が配置され、吸入空気の温度TAに応じた信号を出力する。これらセンサ群の出力もECU24に入力される。   An air flow meter 50 is disposed near the air cleaner of the engine 10 and outputs a signal corresponding to the intake air amount Q indicating the engine load. Further, a water temperature sensor (not shown) is arranged in a cooling water passage (not shown) of the engine 10 to output a signal corresponding to the engine cooling water temperature TW, and another temperature sensor is provided near the air flow meter 50. (Not shown) is arranged and outputs a signal corresponding to the temperature TA of the intake air. The outputs of these sensor groups are also input to the ECU 24.

前記した吸気バルブ18と排気バルブ32は可変バルブタイミング機構54に接続される。可変バルブタイミング54は詳細な図示は省略するが、例えば特開平2−275043号公報に開示される構造を備え、カムシャフト上に3個のカムが並列されると共に、その3個のカムに摺接させて3本のロッカアームが配置される。   The intake valve 18 and the exhaust valve 32 described above are connected to a variable valve timing mechanism 54. Although the detailed illustration of the variable valve timing 54 is omitted, for example, the variable valve timing 54 has a structure disclosed in JP-A-2-275043, and three cams are juxtaposed on the camshaft and slid on the three cams. Three rocker arms are arranged in contact with each other.

吸気バルブ側に配置された両端のロッカアームにはそれぞれ1個の吸気バルブ18が連結されると共に、エンジン10の負荷が比較的低く、エンジン回転数も比較的低いときは中央のロッカアームを空転させ、両端のカムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ18を駆動する。また、排気バルブ32に関しても同様に動作するように構成される。   One intake valve 18 is connected to each of the rocker arms at both ends arranged on the intake valve side, and when the load on the engine 10 is relatively low and the engine speed is relatively low, the central rocker arm is idled, The intake valve 18 is driven with valve timing (and lift amount) characteristics determined by cams at both ends. The exhaust valve 32 is also configured to operate in the same manner.

図2にその特性を実線で示す(吸気バルブ18のそれを18、排気バルブ32のそれを32と表示する。後述するように混合気を圧縮着火して燃焼させるとき(「圧縮着火燃焼運転」という)、バルブタイミング(およびリフト量)はこの特性に設定される。より具体的には、図示の如く、排気バルブ32の閉弁時期を進角させると共に、吸気バルブ18の開弁時期を遅角させる(クランク角度において)。それによって、気筒内に所定量の排ガスを残留させて混合気の温度(筒内ガス温度)を高めて圧縮着火運転を可能とする。所定量は、後述する如く、圧縮着火燃焼運転が可能な負荷の限界値において必要な排ガス量に相当する。 The characteristics are shown by solid lines in FIG. 2 (18 for the intake valve 18 and 32 for the exhaust valve 32 ) . As will be described later, when the air-fuel mixture is combusted by compression ignition (referred to as “compression ignition combustion operation”), the valve timing (and lift amount) is set to this characteristic. More specifically, as shown in the figure, the closing timing of the exhaust valve 32 is advanced and the opening timing of the intake valve 18 is retarded (at the crank angle). As a result, a predetermined amount of exhaust gas remains in the cylinder to increase the temperature of the air-fuel mixture (in-cylinder gas temperature), thereby enabling the compression ignition operation. As will be described later, the predetermined amount corresponds to the amount of exhaust gas required at the limit value of the load that allows the compression ignition combustion operation.

3本のロッカアームはピンによって連結自在に構成され、エンジン10の負荷が比較的高く、エンジン回転数も比較的高いときは油圧力でピンを移動させて3本のロッカアームを連結し、中央のカムで決定されるバルブタイミング(およびリフト量)特性で吸気バルブ18を駆動する。排気バルブ32についても同様である。   The three rocker arms are configured to be connectable by pins. When the load on the engine 10 is relatively high and the engine speed is also relatively high, the pins are moved by hydraulic pressure to connect the three rocker arms, and the central cam The intake valve 18 is driven with the valve timing (and lift amount) characteristics determined in step (1). The same applies to the exhaust valve 32.

他方、後述するように混合気を火花点火で燃焼させるとき(「火花燃焼運転」という)、バルブタイミング(およびリフト量)はこの特性に設定される。より具体的には、図示の如く、排気バルブ32の閉弁時期と吸気バルブ18の開弁時期を共にピストン上死点付近に変更させる。それによって、排気バルブ32の閉弁が遅角されて燃焼室内のガスの排出量が増加する一方、吸気バルブ18の開弁が進角されて吸入空気の流入が早められることから、排ガスは燃焼室に残留することなく、排気系に送り出される。   On the other hand, as will be described later, when the air-fuel mixture is burned by spark ignition (referred to as “spark combustion operation”), the valve timing (and lift amount) is set to this characteristic. More specifically, as shown in the drawing, both the valve closing timing of the exhaust valve 32 and the valve opening timing of the intake valve 18 are changed to near the top dead center of the piston. As a result, the closing of the exhaust valve 32 is retarded and the amount of gas discharged in the combustion chamber is increased, while the opening of the intake valve 18 is advanced and the inflow of intake air is accelerated, so that the exhaust gas is combusted. It is sent to the exhaust system without remaining in the chamber.

図1の説明に戻ると、可変バルブタイミング機構54は油圧制御回路56を介してECU24に接続される。ECU24は油圧制御回路56の電磁ソレノイド(図示せず)を励磁・非励磁して上記したピンの移動を制御することで可変バルブタイミング機構54の動作を制御し、吸気バルブ18と排気バルブ32のバルブタイミング(およびリフト量)を上記した2つの特性のいずれかに設定(変更)する。   Returning to the description of FIG. 1, the variable valve timing mechanism 54 is connected to the ECU 24 via the hydraulic control circuit 56. The ECU 24 controls the operation of the variable valve timing mechanism 54 by exciting / de-energizing an electromagnetic solenoid (not shown) of the hydraulic control circuit 56 to control the movement of the above-described pin. The valve timing (and lift amount) is set (changed) to one of the above two characteristics.

また、エンジン10の吸気管12と排気管36の間にはEGR通路60が配置され、エンジン10の吸気系と排気系を接続する。EGR通路60には電磁ソレノイドバルブからなるEGRバルブ60aが介挿される。EGRバルブ60aは駆動回路62を介してECU24に接続される。ECU24は駆動回路62を介してEGRバルブ60aの開度を調整し、吸気系に還流すべき排ガス量を制御する。   An EGR passage 60 is disposed between the intake pipe 12 and the exhaust pipe 36 of the engine 10 to connect the intake system and the exhaust system of the engine 10. An EGR valve 60a composed of an electromagnetic solenoid valve is inserted in the EGR passage 60. The EGR valve 60 a is connected to the ECU 24 via the drive circuit 62. The ECU 24 adjusts the opening degree of the EGR valve 60a via the drive circuit 62 and controls the amount of exhaust gas to be recirculated to the intake system.

次いで、第1実施例に係る圧縮着火内燃機関の制御装置の動作を説明する。   Next, the operation of the control apparatus for the compression ignition internal combustion engine according to the first embodiment will be described.

図3はその動作を示すフロー・チャートである。図示のプログラムは、所定時間、例えば10msecごとに起動される。   FIG. 3 is a flowchart showing the operation. The illustrated program is started every predetermined time, for example, 10 msec.

以下説明すると、S10においてアクセル開度ACCとエンジン回転数NEとから、エンジン10の要求負荷(要求トルク)PMECMD[N・m]を算出する。これは、図4にその特性を示すマップデータを検索することで行う。   Explained below, in S10, the required load (required torque) PMECMD [N · m] of the engine 10 is calculated from the accelerator opening ACC and the engine speed NE. This is done by searching the map data whose characteristics are shown in FIG.

次いでS12に進み、クランク角センサ40を除く、前記したセンサ群の出力を読み込み、吸入空気量Q、スロットル開度TH、エンジン冷却水温TWなどのエンジン運転パラメータを検出する。   Next, in S12, the output of the above-described sensor group excluding the crank angle sensor 40 is read, and engine operating parameters such as the intake air amount Q, the throttle opening TH, and the engine coolant temperature TW are detected.

次いでS14に進み、エンジン10の運転が火花点火運転域か否か判断する。これは、算出した要求負荷PMECMDとエンジン回転数NEとから、図5にその特性を示すマップデータを検索することで行なう。圧縮着火運転領域は、図示の如く、要求負荷PMECMDとエンジン回転数NEが極く小さいアイドル領域などの領域(極低負荷領域)と、要求負荷PMECMDとエンジン回転数NEが高くなる領域(高負荷領域)を除く領域、換言すれば低負荷および中負荷領域とされ、それ以外の領域が火花点火運転域とされる。   Next, in S14, it is determined whether or not the operation of the engine 10 is in the spark ignition operation region. This is performed by searching the map data showing the characteristics in FIG. 5 from the calculated required load PMECMD and the engine speed NE. As shown in the figure, the compression ignition operation region includes a region such as an idle region where the required load PMECMD and the engine speed NE are extremely small (very low load region), a region where the required load PMECMD and the engine speed NE are high (high load). Regions other than (region), in other words, the low load and medium load regions, and the other regions are the spark ignition operation region.

S14で否定されるときはS16に進み、同様に算出した要求負荷PMECMDとエンジン回転数NEとから、その運転状態で必要とされるEGR量(排ガス量)を算出する。尚、EGR量は、内部EGRによるものと外部EGRによるものとの双方を含む。   When the result in S14 is negative, the program proceeds to S16, and the EGR amount (exhaust gas amount) required in the operating state is calculated from the similarly calculated required load PMECMD and engine speed NE. Note that the EGR amount includes both internal EGR and external EGR.

次いでS18に進み、火花点火OFF、即ち、点火プラグ26を通じての着火を行わないこととすると共に、スロットル開度THを全開とする。そして、可変バルブタイミング機構54の動作を制御して図2に示す圧縮着火運転用のバルブタイミング(V/T)特性に切り替える(設定する)と共に、EGRバルブ60aの開度を調整して外部EGR量の制御を行い、バルブタイミング特性の切り替えによって得られる内部EGR量とEGRバルブ60aの開度調整によって得られる外部EGR量が、S16で算出された値となるようEGR制御を行う。 Next, in S18, the spark ignition is turned off, that is, the ignition through the spark plug 26 is not performed, and the throttle opening TH is fully opened. Then, the operation of the variable valve timing mechanism 54 is controlled to switch to (set) the valve timing (V / T) characteristic for compression ignition operation shown in FIG. 2, and the opening of the EGR valve 60a is adjusted to adjust the external EGR. and controls the amount of external EGR amount obtained by the opening adjustment of the internal EGR amount and the EGR valve 60a obtained by switching the valve timing characteristic, performing EGR control such that the calculated value in S16.

これについて図6および図7を参照して説明する。   This will be described with reference to FIG. 6 and FIG.

図6と図7は、エンジン負荷に対する空燃比A/F、EGR制御手法およびそれによって得られるEGR量をこの実施例と従来技術とで対比して示す説明図であり、図6がこの実施例の制御を、図7が前記した従来技術の制御を示す。   FIG. 6 and FIG. 7 are explanatory diagrams showing the air-fuel ratio A / F with respect to the engine load, the EGR control method, and the EGR amount obtained thereby by comparing this embodiment with the prior art, and FIG. 6 shows this embodiment. FIG. 7 shows the control of the prior art described above.

図7に示す従来技術にあっては、バルブタイミングを介してEGR量(内部EGR量)を変化させて筒内ガス温度を変えることでエンジン負荷に対応して圧縮着火運転を確保している。そのときの最低負荷点aでは、また空燃比(A/F)が14.7(理論空燃比)に達することなく、着火温度にも十分余裕がある。即ち、空燃比のリッチ化と筒内ガス温度を下げることが可能な状態にあり、この発明はその点に着目してなされた。   In the prior art shown in FIG. 7, the compression ignition operation is ensured corresponding to the engine load by changing the in-cylinder gas temperature by changing the EGR amount (internal EGR amount) via the valve timing. At the lowest load point a at that time, the air-fuel ratio (A / F) does not reach 14.7 (theoretical air-fuel ratio), and the ignition temperature has a sufficient margin. In other words, the present invention is in a state where the air-fuel ratio can be enriched and the in-cylinder gas temperature can be lowered, and the present invention has been made paying attention to that point.

図6に示すこの実施例の制御を説明すると、この実施例にあっては、圧縮着火運転の最大負荷点であるbより低負荷側においては、バルブタイミングを圧縮着火運転用のそれに固定したまま、外部EGR導入用のEGRバルブ60aを開くと共に、低負荷になるにつれてその開度を徐々に増加することで、内部・外部を合算したトータルのEGR量を増加させ、混合気温度(筒内ガス温度)を高めると共に、吸入空気量を減少(空燃比をリッチ化)するように制御するようにした。   The control of this embodiment shown in FIG. 6 will be described. In this embodiment, the valve timing is fixed to that for the compression ignition operation on the lower load side than b which is the maximum load point of the compression ignition operation. The EGR valve 60a for introducing the external EGR is opened, and the opening degree is gradually increased as the load becomes low, so that the total amount of EGR including the inside and outside is increased, and the mixture temperature (in-cylinder gas Temperature) and control to reduce the intake air amount (enrich the air-fuel ratio).

即ち、圧縮着火燃焼運転用のバルブタイミング(およびリフト量)V/Tを用いることで、気筒内に圧縮着火燃焼運転が可能な負荷の限界値(上記したb点)において必要な排ガス量に相当する(前記した所定量)排ガスを残留させると共に、残余のEGR量を外部EGRによって得ることとする。その場合、従来技術に比して低温の外部EGRを導入することから、EGR量をトータルで増加させて自己着火温度を確保する。それによって混合気温度(筒内ガス温度)を高めて圧縮着火運転を可能とするようにした。   That is, by using the valve timing (and lift amount) V / T for compression ignition combustion operation, it corresponds to the amount of exhaust gas required at the limit value of the load (point b described above) that allows compression ignition combustion operation in the cylinder. The exhaust gas is left (predetermined amount described above) and the remaining EGR amount is obtained by external EGR. In that case, since an external EGR having a temperature lower than that of the prior art is introduced, the amount of EGR is increased in total to ensure the self-ignition temperature. As a result, the mixture gas temperature (in-cylinder gas temperature) was increased to enable the compression ignition operation.

図3のS18の説明に戻ると、同時に燃料噴射量制御も実行する。これは具体的には、要求負荷PMECMDとエンジン回転数NEに応じて予め設定されたマップデータを検索して燃料噴射量を決定し、決定された燃料噴射量の大部分を吸気行程から圧縮行程にかけて噴射する。   Returning to the explanation of S18 in FIG. 3, the fuel injection amount control is also executed at the same time. Specifically, the fuel injection amount is determined by searching map data set in advance according to the required load PMECMD and the engine speed NE, and most of the determined fuel injection amount is changed from the intake stroke to the compression stroke. It sprays over.

他方、S14で肯定されるときはS20に進み、要求負荷PMECMDに応じてスロットル開度THを制御する。また、要求負荷PMECMDとエンジン回転数NEに応じて予め設定されたマップデータを検索して点火時期を決定し、決定された点火時期で火花放電を行って混合気を着火する。また、S18で述べたと同様に燃料噴射量を決定し、燃料噴射を実行する同時に、空燃比(A/F)の制御も実行する。   On the other hand, when the result in S14 is affirmative, the routine proceeds to S20, where the throttle opening TH is controlled according to the required load PMECMD. Further, map data set in advance according to the required load PMECMD and the engine speed NE is searched to determine the ignition timing, and spark discharge is performed at the determined ignition timing to ignite the air-fuel mixture. Further, as described in S18, the fuel injection amount is determined and the fuel injection is executed, and at the same time, the control of the air-fuel ratio (A / F) is also executed.

また、火花燃焼運転域にあることから、バルブタイミング(およびリフト量)V/Tが図2に破線で示す特性となるように、可変バルブタイミング機構54の動作を制御する。尚、S14の火花点火運転域か否かのしきい値は、具体的には、図6のb点相当の値に設定される。   Further, since it is in the spark combustion operation region, the operation of the variable valve timing mechanism 54 is controlled so that the valve timing (and lift amount) V / T has a characteristic indicated by a broken line in FIG. Note that the threshold value for determining whether or not the spark ignition operation region is in S14 is specifically set to a value corresponding to the point b in FIG.

この実施例は上記の如く、吸気バルブ18と排気バルブ32のバルブタイミングの変更による内部EGRガスの導入に止まらず、排ガスを吸気系に還流させる外部EGRも実行するようにしたので、バルブタイミングの制御が簡易かつ単純で足りると共に、圧縮着火に必要な排ガス量を精緻に制御することができ、よって着火性能を向上させることができる。   In this embodiment, as described above, not only the introduction of the internal EGR gas by changing the valve timing of the intake valve 18 and the exhaust valve 32 but also the external EGR for returning the exhaust gas to the intake system is also executed. The control is simple and simple, and the amount of exhaust gas required for compression ignition can be precisely controlled, so that the ignition performance can be improved.

次いで、この発明の第2実施例に係る圧縮着火内燃機関の制御装置について説明する。   Next, a control apparatus for a compression ignition internal combustion engine according to a second embodiment of the present invention will be described.

図8は、第2実施例に係る圧縮着火内燃機関の制御装置を全体的に示す、図3と同様のフロー・チャートである。   FIG. 8 is a flow chart similar to FIG. 3, showing the overall control apparatus for the compression ignition internal combustion engine according to the second embodiment.

第1実施例と相違する点に焦点をおいて説明すると、第2実施例にあっては、可変バルブタイミング機構54を特開平7−180520号公報に記載されるようなカムを備えた構造とし、低負荷で低回転域にあっては図2に実線で示す特性を実現すると共に、高負荷で高回転域にあっては図2に破線で示す特性を実現することに加え、上記した低負荷より低負荷で低回転域にあっては、図2に実線で示す特性よりも排気バルブ32を早く(進角側で)閉弁すると共に、吸気バルブ18を遅く(遅角側で)開弁して内部EGR量を増加させるようにした。   The description will focus on the differences from the first embodiment. In the second embodiment, the variable valve timing mechanism 54 has a structure having a cam as described in JP-A-7-180520. In addition to realizing the characteristics indicated by the solid line in FIG. 2 in the low rotation range at low load, in addition to realizing the characteristics indicated by the broken line in FIG. When the load is lower than the load and in the low rotation range, the exhaust valve 32 is closed earlier (on the advance side) and the intake valve 18 is opened later (on the retard side) than the characteristic indicated by the solid line in FIG. In order to increase the amount of internal EGR.

図8フロー・チャートを参照して説明すると、S10からS16の処理を経てS18aに進むときは、エンジン負荷(具体的には要求負荷PMECMD)とエンジン回転数NEに基づいて2種の特性を選択する(切り換える)ようにした。この場合、図2に実線で示される特性を中負荷とし、上記したそれより低負荷側のそれを低負荷とする。   Explaining with reference to the flow chart of FIG. 8, when proceeding from S10 to S16 and proceeding to S18a, two types of characteristics are selected based on the engine load (specifically, the required load PMECMD) and the engine speed NE. I did (switch). In this case, the characteristic indicated by the solid line in FIG. 2 is the medium load, and the lower load side than that described above is the low load.

図9は第2実施例の処理を示す図6と同様の説明図である。この場合、内部EGR量が2段階に設定されることから、外部EGRの制御量もそれに応じて特性が変更される。   FIG. 9 is an explanatory view similar to FIG. 6 showing the processing of the second embodiment. In this case, since the internal EGR amount is set in two stages, the characteristics of the control amount of the external EGR are changed accordingly.

第2実施例は上記の如く構成したので、圧縮着火に必要な排ガス量を一層精緻に制御することができ、よって着火性能を一層向上させることができる。尚、図8フロー・チャートの残余の処理を含む、第2実施例の残余の構成は、第1実施例のそれと異ならない。   Since the second embodiment is configured as described above, the amount of exhaust gas required for compression ignition can be controlled more precisely, and the ignition performance can be further improved. The remaining configuration of the second embodiment including the remaining processing of the flowchart of FIG. 8 is not different from that of the first embodiment.

以上の如く、この発明の第1および第2実施例にあっては、エンジン(内燃機関)10の燃焼室を開閉する吸気バルブ18と排気バルブ32の少なくともいずれかのバルブタイミング(およびリフト量)を少なくとも2つの特性の間で変更する可変バルブタイミング機構54と、前記可変バルブタイミング機構の動作を制御して前記燃焼室内に排ガスを残留させる内部EGR手段(ECU24,駆動回路56)と、前記内燃機関の吸気系(吸気管12)と排気系(排気管36)を接続するEGR通路60に介挿されたEGRバルブ60aと、前記EGRバルブの開度を調整して前記吸気系に還流されるべき排ガス量を制御する外部EGR制御手段(ECU24,駆動回路62)と、前記内燃機関が搭載される車両のアクセル開度ACCと前記内燃機関の回転数NEに基づいて前記内燃機関の要求負荷(要求トルク)PMECMDを算出する要求負荷算出手段(ECU24,S10)と、前記残留されるべき排ガス量が圧縮着火燃焼運転領域において所定量となるように前記内部EGR手段の動作を制御すると共に、少なくとも前記算出された要求負荷(より具体的には、エンジン要求負荷PMECMDとエンジン回転数NE)が低くなるにつれて前記吸気系に還流されるべき排ガス量を増加するように前記外部EGR制御手段を動作させ、よって前記燃焼室に供給される混合気を圧縮着火して燃焼させる圧縮着火制御手段(ECU24,S18,S18a)とを備える如く構成した。 As described above, in the first and second embodiments of the present invention, the valve timing (and lift amount) of at least one of the intake valve 18 and the exhaust valve 32 that opens and closes the combustion chamber of the engine (internal combustion engine) 10. A variable valve timing mechanism 54 that changes between at least two characteristics, an internal EGR means (ECU 24, drive circuit 56) for controlling the operation of the variable valve timing mechanism to leave exhaust gas in the combustion chamber, and the internal combustion engine An EGR valve 60a inserted in an EGR passage 60 connecting the intake system (intake pipe 12) and the exhaust system (exhaust pipe 36) of the engine, and the opening degree of the EGR valve are adjusted to be returned to the intake system. to external EGR control means (ECU 24, the drive circuit 62) for controlling the amount of exhaust gas and the accelerator opening ACC of the vehicle in which the internal combustion engine is mounted Required load of the internal combustion engine based on the rotational speed NE of the combustion engine required load calculating means for calculating the (required torque) PMECMD (ECU 24, S10) and a predetermined amount the amount of exhaust gas in the compression ignition combustion operation region to be the residual The operation of the internal EGR means is controlled so as to become, and at least the calculated required load (more specifically, the engine required load PMECMD and the engine speed NE) is returned to the intake system as it decreases. The external EGR control means is operated so as to increase the amount of exhaust gas to be discharged, and thus comprises compression ignition control means (ECU 24, S18, S18a) for compressing and igniting the air-fuel mixture supplied to the combustion chamber. did.

また、前記内燃機関が運転状態に応じて混合気を圧縮着火して燃焼させる前記圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換え可能な内燃機関であり、前記所定量は前記圧縮着火燃焼が可能な前記内燃機関の要求負荷の限界値(図6のb点)において必要な排ガス量であると共に、前記圧縮着火制御手段は、前記算出された要求負荷が前記限界値を超えるとき、前記火花点火燃焼に切り換える如く構成した(ECU24,S14)。 The internal combustion engine is an internal combustion engine that is switchable between the compression ignition combustion for compressing and igniting an air-fuel mixture in accordance with the operating state and the spark ignition combustion for combusting by spark ignition, and the predetermined amount is The amount of exhaust gas required at the limit value of the required load of the internal combustion engine capable of compression ignition combustion (point b in FIG. 6), and the compression ignition control means is configured so that the calculated required load exceeds the limit value. At this time, it is configured to switch to the spark ignition combustion (ECU 24, S14).

また、前記圧縮着火制御手段は、前記可変バルブタイミング機構の動作に応じて前記吸気系に還流させるべき排ガス量を制御するように前記外部EGR制御手段を動作させる如く構成した(ECU24,S18a) Further, the compression ignition control means is configured to operate the external EGR control means so as to control the amount of exhaust gas to be recirculated to the intake system in accordance with the operation of the variable valve timing mechanism (ECU 24, S18a) .

尚、上記において、図2に示す吸気バルブ18と排気バルブ32のバルブタイミング特性は例示であり、これに限定されるものではない。   In the above description, the valve timing characteristics of the intake valve 18 and the exhaust valve 32 shown in FIG. 2 are merely examples, and the present invention is not limited thereto.

また、吸気ポート噴射エンジンを例にとってこの発明の実施例を説明したが、この発明は筒内噴射エンジンであっても妥当する。   Further, although the embodiment of the present invention has been described by taking the intake port injection engine as an example, the present invention is applicable even to an in-cylinder injection engine.

この発明の第1実施例に係る圧縮着火内燃機関の制御装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an overall control apparatus for a compression ignition internal combustion engine according to a first embodiment of the present invention. 図1に示す装置の可変バルブタイミング機構によって切り換えられる(設定される)2つのバルブタイミング(およびリフト量)特性を示すグラフである。2 is a graph showing two valve timing (and lift amount) characteristics that are switched (set) by the variable valve timing mechanism of the apparatus shown in FIG. 1. 図1に示す装置の動作を説明するフロー・チャートである。It is a flowchart explaining operation | movement of the apparatus shown in FIG. 図2フロー・チャートの処理で使用される要求負荷(要求トルク)PMECMDのマップデータ特性を示す説明グラフである。2 is an explanatory graph showing the map data characteristics of the required load (required torque) PMECMD used in the processing of the flow chart of FIG. 図2フロー・チャートの処理で使用される、火花点火運転域のマップデータ特性を示す説明グラフである。FIG. 3 is an explanatory graph showing map data characteristics of a spark ignition operation region used in the processing of the flowchart of FIG. 2. 図3フロー・チャートの制御を示す説明図である。3 is an explanatory diagram showing the control of the flow chart. 従来技術の制御を図6に対比して示す説明図である。It is explanatory drawing which shows control of a prior art in contrast with FIG. この発明の第2実施例に係る圧縮着火内燃機関の制御装置を全体的に示す、図3と類似するフロー・チャートである。FIG. 4 is a flowchart similar to FIG. 3, generally showing a control apparatus for a compression ignition internal combustion engine according to a second embodiment of the present invention. 図8フロー・チャートの制御を示す説明図である。8 is an explanatory diagram showing the control of the flow chart.

符号の説明Explanation of symbols

10 圧縮着火内燃機関(エンジン)
18 吸気バルブ
24 ECU(電子制御ユニット)
32 排気バルブ
34 排気マニホルド(排気系)
54 可変バルブタイミング機構
56 油圧制御回路
60 EGR通路
60a EGRバルブ
62 駆動回路
10 Compression ignition internal combustion engine (engine)
18 Intake valve 24 ECU (electronic control unit)
32 Exhaust valve 34 Exhaust manifold (exhaust system)
54 Variable valve timing mechanism 56 Hydraulic control circuit 60 EGR passage 60a EGR valve 62 Drive circuit

Claims (3)

圧縮着火式の内燃機関の燃焼室を開閉する吸気バルブと排気バルブの少なくともいずれかのバルブタイミングを少なくとも2つの特性の間で変更する可変バルブタイミング機構と、前記可変バルブタイミング機構の動作を制御して前記燃焼室内に排ガスを残留させる内部EGR手段と、前記内燃機関の吸気系と排気系を接続するEGR通路に介挿されたEGRバルブと、前記EGRバルブの開度を調整して前記吸気系に還流されるべき排ガス量を制御する外部EGR制御手段と、前記内燃機関が搭載される車両のアクセル開度と前記内燃機関の回転数に基づいて前記内燃機関の要求負荷を算出する要求負荷算出手段と、前記残留されるべき排ガス量が圧縮着火燃焼運転領域において所定量となるように前記内部EGR手段の動作を制御すると共に、少なくとも前記算出された要求負荷が低くなるにつれて前記吸気系に還流されるべき排ガス量を増加するように前記外部EGR制御手段を動作させ、よって前記燃焼室に供給される混合気を圧縮着火して燃焼させる圧縮着火制御手段とを備えることを特徴とする圧縮着火内燃機関の制御装置。 A variable valve timing mechanism for changing a valve timing of at least one of an intake valve and an exhaust valve for opening and closing a combustion chamber of a compression ignition type internal combustion engine between at least two characteristics, and controlling an operation of the variable valve timing mechanism. An internal EGR means for leaving exhaust gas in the combustion chamber, an EGR valve inserted in an EGR passage connecting the intake system and the exhaust system of the internal combustion engine, and adjusting the opening of the EGR valve to adjust the intake system Required EGR control means for controlling the amount of exhaust gas to be recirculated to the engine, and required load calculation for calculating the required load of the internal combustion engine based on the accelerator opening of the vehicle in which the internal combustion engine is mounted and the rotational speed of the internal combustion engine and means, when the amount of exhaust gas to be the residual controls the operation of the internal EGR means so that the predetermined amount in the compression ignition combustion operation region To, compression ignition of the mixture gas to operate the external EGR control means to increase the amount of exhaust gas to be recirculated to the intake system as the required load that is at least the calculated lowered, thus supplied to the combustion chamber And a compression ignition control means for combusting the combustion controller. 前記内燃機関が運転状態に応じて混合気を圧縮着火して燃焼させる前記圧縮着火燃焼と火花点火で燃焼させる火花点火燃焼との間で切り換え可能な内燃機関であり、前記所定量は前記圧縮着火燃焼が可能な前記内燃機関の要求負荷の限界値において必要な排ガス量であると共に、前記圧縮着火制御手段は、前記算出された要求負荷が前記限界値を超えるとき、前記火花点火燃焼に切り換えることを特徴とする請求項1記載の圧縮着火内燃機関の制御装置。 The internal combustion engine is an internal combustion engine that is switchable between the compression ignition combustion in which an air-fuel mixture is compressed and ignited in accordance with an operating state and the spark ignition combustion in which it is burned by spark ignition, and the predetermined amount is the compression ignition The amount of exhaust gas required at the limit value of the required load of the internal combustion engine capable of combustion, and the compression ignition control means switches to the spark ignition combustion when the calculated required load exceeds the limit value. The control apparatus for a compression ignition internal combustion engine according to claim 1. 前記圧縮着火制御手段は、前記可変バルブタイミング機構の動作に応じて前記吸気系に還流させるべき排ガス量を制御するように前記外部EGR制御手段を動作させることを特徴とする請求項1または2記載の圧縮着火内燃機関の制御装置。   3. The compression ignition control means operates the external EGR control means so as to control the amount of exhaust gas to be recirculated to the intake system in accordance with the operation of the variable valve timing mechanism. Control device for compression ignition internal combustion engine.
JP2003292800A 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine Expired - Fee Related JP4180995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292800A JP4180995B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292800A JP4180995B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005061323A JP2005061323A (en) 2005-03-10
JP4180995B2 true JP4180995B2 (en) 2008-11-12

Family

ID=34369995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292800A Expired - Fee Related JP4180995B2 (en) 2003-08-13 2003-08-13 Control device for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4180995B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336466A (en) * 2005-05-31 2006-12-14 Daihatsu Motor Co Ltd Diesel engine
JP4905175B2 (en) * 2006-03-31 2012-03-28 マツダ株式会社 Spark ignition gasoline engine
JP4905200B2 (en) * 2006-03-31 2012-03-28 マツダ株式会社 Spark ignition gasoline engine
DE102006014996A1 (en) * 2006-03-31 2007-10-04 Robert Bosch Gmbh Method for operating an Otto engine with direct fuel injection comprises passing and leaving residual gas in the combustion chamber using an internal and external exhaust gas re-circulating unit
JP4639177B2 (en) * 2006-11-14 2011-02-23 本田技研工業株式会社 Control device for internal combustion engine
JP2008151098A (en) * 2006-12-20 2008-07-03 Honda Motor Co Ltd Valve opening characteristic variable type internal combustion engine
DE102008042717B4 (en) 2007-10-10 2016-08-11 Kabushiki Kaisha Toyota Jidoshokki Fault diagnostic device for a homogeneous charge compression ignition engine
JP4985412B2 (en) * 2008-01-08 2012-07-25 マツダ株式会社 Reciprocating engine
JP4729588B2 (en) * 2008-01-30 2011-07-20 本田技研工業株式会社 Control device for internal combustion engine
WO2018100707A1 (en) * 2016-12-01 2018-06-07 マツダ株式会社 Compression ignition gasoline engine

Also Published As

Publication number Publication date
JP2005061323A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US6234123B1 (en) Four-cycle internal combustion engine and valve timing control method thereof
US7769525B2 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
US6619242B2 (en) Combustion control apparatus for engine
EP2264303B1 (en) Control method and device of engine and corresponding engine
JP2007113485A (en) Method and device for controlling internal combustion engine
JP4172340B2 (en) Control device for spark ignition engine
EP1643104A2 (en) Engine
US6644019B2 (en) Combustion control apparatus for engine
US7971564B2 (en) Premixed compression ignition type engine and method of controlling intake air thereof
WO2001086126A2 (en) Multiple operating mode engine and method of operation
JP2007016685A (en) Internal combustion engine control device
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
JP4180995B2 (en) Control device for compression ignition internal combustion engine
US10337427B2 (en) Control device of compression self-ignition engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP4232590B2 (en) Combustion control system for compression ignition internal combustion engine
JP4102268B2 (en) Compression ignition internal combustion engine
WO2012137055A1 (en) Internal combustion engine starting control device and internal combustion engine starting control method
JP2013133814A (en) Control device for compression-ignition internal combustion engine
KR100783925B1 (en) Control method for controlled auto ignition of engine
JP2021088945A (en) Engine control device
JP4405956B2 (en) Control device for compression ignition internal combustion engine
JP2001182586A (en) Exhaust-temperature raising device
JP5756399B2 (en) Control device for compression ignition internal combustion engine
JP4801744B2 (en) Method and apparatus for operating an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees