JP2008151098A - Valve opening characteristic variable type internal combustion engine - Google Patents

Valve opening characteristic variable type internal combustion engine Download PDF

Info

Publication number
JP2008151098A
JP2008151098A JP2006342740A JP2006342740A JP2008151098A JP 2008151098 A JP2008151098 A JP 2008151098A JP 2006342740 A JP2006342740 A JP 2006342740A JP 2006342740 A JP2006342740 A JP 2006342740A JP 2008151098 A JP2008151098 A JP 2008151098A
Authority
JP
Japan
Prior art keywords
exhaust
valve opening
intake
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006342740A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishizuka
由和 石塚
Teruyoshi Morita
照義 森田
Mitsuru Sugimoto
充 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006342740A priority Critical patent/JP2008151098A/en
Publication of JP2008151098A publication Critical patent/JP2008151098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technique capable of restraining complication of a structure and increase of a manufacturing cost in a valve opening characteristic variable type internal combustion engine performing internal EGR in a prescribed operation region. <P>SOLUTION: It is determined whether an exhaust valve closing angle Ae exceeds a second intake valve opening angle Ai2 by a middle lift cam 22b or not, and a low lift cam 22a is selected in a step S4 when the determination is No. When the determination in a step S3 is Yes, an ECU 9 determines whether the exhaust valve closing angle Ae exceeds a third intake valve opening angle Ai3 by a high lift cam 22c or not in a step S6, and the middle lift cam 22b is selected in a step S7 when the determination is No. When the determination in the step S6 is also Yes, the ECU 9 selects the high lift cam 22c in a step S8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、所定の運転領域で内部EGRが行われる開弁特性可変型内燃機関に係り、詳しくは、構成の複雑化や製造コストの増大を抑制する技術に関する。   The present invention relates to a variable valve opening characteristic internal combustion engine in which internal EGR is performed in a predetermined operating region, and more particularly to a technique for suppressing the complexity of the configuration and the increase in manufacturing cost.

近年、熱効率の向上や有害排出ガス成分の減少等を図るべく、予混合圧縮着火(Homogeneous Charge Compression Ignition:以下、HCCIと記す)モードでの運転を行うエンジンの開発が進められている(特許文献1参照)。HCCIモードは、燃料と空気とを均一に混合した予混合気を燃焼室に導入した後、ピストンにより圧縮することで高温・高圧にして多点同時的に予混合気を自己着火させる燃焼モードであるが、着火時期の制御が難しいことから、この種のエンジンでは、運転状況に応じてHCCIモードと火花点火(Spark Ignition: 以下、SIと記す)モードとが適宜切り換えられる。HCCIモードでの運転では、着火に至るまではピストンに圧縮されることによってのみ混合気の温度が上昇するため、着火時期の制御には圧縮開始時の筒内ガス温度が重要なファクターとなる。   In recent years, in order to improve thermal efficiency, reduce harmful exhaust gas components, etc., development of an engine that operates in a premixed compression ignition mode (hereinafter referred to as HCCI) has been promoted (Patent Literature). 1). The HCCI mode is a combustion mode in which a premixed gas in which fuel and air are uniformly mixed is introduced into the combustion chamber and then compressed by a piston so that the premixed gas is self-ignited at multiple points simultaneously at a high temperature and high pressure. However, since it is difficult to control the ignition timing, in this type of engine, an HCCI mode and a spark ignition (hereinafter referred to as SI) mode are appropriately switched depending on the driving situation. In the operation in the HCCI mode, the temperature of the air-fuel mixture rises only by being compressed by the piston until ignition occurs. Therefore, the in-cylinder gas temperature at the start of compression is an important factor for controlling the ignition timing.

そこで、HCCIモードでエンジンを運転させる際には、圧縮開始時の筒内ガス温度を高めるべく、排気上死点に至る前に排気バルブを閉鎖し、内部EGR(Exhaust gas recirculation:排気ガス再循環)を行わせることが一般的である。そこで、特許文献1のエンジンでは、吸気側と排気側とにそれぞれ可変動弁機構を設け、HCCIモードにおいて、排気上死点を含むクランク角度域で吸気バルブと排気バルブとを共に閉鎖する状態(以下、負のオーバラップと記す)を設ける方法が採られている。なお、特許文献1では、内部EGRガスを増大させて着火性の向上を図るべく、低負荷側ほど負のオーバラップ期間を長くしている。また、負のオーバラップ期間におけるポンピングロスを減少させるべく、排気バルブの閉弁時点から排気上死点までのクランク角(以下、排気閉弁角と記す)と、排気上死点から吸気バルブの開弁時点までのクランク角(以下、吸気開弁角と記す)とを等しく設定している。
特開2003−3873号公報
Therefore, when the engine is operated in the HCCI mode, the exhaust valve is closed before exhaust top dead center to increase the in-cylinder gas temperature at the start of compression, and the internal EGR (Exhaust gas recirculation) ) Is generally performed. Therefore, in the engine of Patent Document 1, variable valve mechanisms are provided on the intake side and the exhaust side, respectively, and in the HCCI mode, both the intake valve and the exhaust valve are closed in the crank angle range including the exhaust top dead center ( Hereinafter, a method of providing a negative overlap) is employed. In Patent Document 1, in order to increase the internal EGR gas and improve the ignitability, the negative overlap period is lengthened toward the lower load side. In order to reduce the pumping loss during the negative overlap period, the crank angle from the exhaust valve closing time to the exhaust top dead center (hereinafter referred to as the exhaust valve closing angle) and the exhaust top dead center to the intake valve The crank angle until the valve opening time (hereinafter referred to as the intake valve opening angle) is set equal.
Japanese Patent Laid-Open No. 2003-3873

HCCIモードでの運転を行う場合、排気側に連続可変型の動弁機構を採用し、機関負荷等に応じて内部EGRガスの量を高精度かつ連続的に制御することが望ましい。ところが、排気側に連続可変型の動弁機構を採用した場合、排気閉弁角と吸気開弁角とを等しくするためには、吸気側にも連続可変型の動弁機構を採用しなければならず、エンジンの構造が複雑になることや構成部品点数が多くなることが避けられなかった。   When operating in the HCCI mode, it is desirable to employ a continuously variable valve operating mechanism on the exhaust side and to control the amount of internal EGR gas with high accuracy and continuously according to the engine load and the like. However, when a continuously variable valve mechanism is employed on the exhaust side, a continuously variable valve mechanism must also be employed on the intake side in order to equalize the exhaust valve closing angle and the intake valve opening angle. Inevitably, the engine structure becomes complicated and the number of components increases.

そこで、本発明者等は、排気閉弁角と吸気開弁角とが等しい場合にポンピングロスが最も少なくなるか否かを確認すべく、排気閉弁角に対して吸気開弁角を変化させながらエンジンを運転し、ポンピングロスがどのように変動するか試験した。その結果、吸気開弁角が排気閉弁角に対してある程度小さい場合にポンピングロスが最も少なくなり、かつ、ポンピングロスが最も少なくなる吸気開弁角の付近では、吸気開弁角を多少増減させてもポンピングロスが殆ど変化しないことが判明した。   Therefore, the present inventors changed the intake valve opening angle with respect to the exhaust valve closing angle in order to confirm whether or not the pumping loss is minimized when the exhaust valve closing angle and the intake valve opening angle are equal. The engine was operated while testing how the pumping loss fluctuated. As a result, when the intake valve opening angle is somewhat smaller than the exhaust valve closing angle, the pumping loss is minimized, and the intake valve opening angle is slightly increased or decreased in the vicinity of the intake valve opening angle at which the pumping loss is minimized. However, it was found that the pumping loss hardly changed.

本発明は、上記知見に基づいてなされたものであり、所定の運転領域で内部EGRを行う開弁特性可変型内燃機関において、構成の複雑化や製造コストの増大を抑制する技術を提供することを目的とする。   The present invention has been made on the basis of the above knowledge, and provides a technique for suppressing a complicated configuration and an increase in manufacturing cost in a variable valve opening characteristic internal combustion engine that performs internal EGR in a predetermined operation region. With the goal.

請求項1の発明は、吸気バルブを開閉駆動する吸気側動弁機構と、排気バルブを開閉駆動する排気側動弁機構と、前記排気バルブの開弁時期を可変制御する排気側開弁特性制御手段とを備え、所定の運転領域において、排気上死点を含む所定のクランク角度域で前記吸気バルブと前記排気バルブとをともに閉鎖する開弁特性可変型内燃機関において、前記運転領域において、前記排気バルブの閉弁時点から排気上死点までのクランク角に対し、排気上死点から前記吸気バルブの開弁時点までのクランク角を−10°〜20°の角度範囲に設定したことを特徴とする。   According to the first aspect of the present invention, there is provided an intake side valve mechanism for opening and closing an intake valve, an exhaust side valve mechanism for opening and closing an exhaust valve, and an exhaust side valve opening characteristic control for variably controlling the opening timing of the exhaust valve. A variable valve opening characteristic internal combustion engine that closes both the intake valve and the exhaust valve in a predetermined crank angle range including an exhaust top dead center in a predetermined operation region. The crank angle from the exhaust top dead center to the valve opening time of the intake valve is set in the range of −10 ° to 20 ° with respect to the crank angle from the exhaust valve closing time to the exhaust top dead center. And

また、請求項2の発明は、請求項1に記載された開弁特性可変型内燃機関において、前記吸気バルブの開弁時期を段階的に可変制御する吸気側開弁特性制御手段を更に備えたことを特徴とする。   The invention according to claim 2 further includes an intake side valve opening characteristic control means for variably controlling the valve opening timing of the intake valve in a stepwise manner in the variable valve opening characteristic internal combustion engine according to claim 1. It is characterized by that.

請求項1の発明によれば、ポンピングロスを増大させることなく、吸気開弁角と排気閉弁角とを常に等しくする必要が無くなるため、吸気側可変動弁機構の設計自由度等を向上させることができる。また、請求項2の発明によれば、吸気側可変動弁機構の構造が簡易なものとなり、エンジン構成の複雑化や製造コストの増大が抑制される。   According to the first aspect of the present invention, it is not necessary to always make the intake valve opening angle and the exhaust valve closing angle equal without increasing the pumping loss, so that the degree of freedom in design of the intake side variable valve mechanism is improved. be able to. According to the invention of claim 2, the structure of the intake side variable valve mechanism is simplified, and the complication of the engine configuration and the increase in manufacturing cost are suppressed.

以下、図面を参照して、本発明を適用したエンジンシステムの一実施形態を詳細に説明する。
図1は実施形態に係るエンジンシステムの模式的構成図であり、図2は実施形態に係る可変動弁機構の概略構成図である。
Hereinafter, an embodiment of an engine system to which the present invention is applied will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine system according to the embodiment, and FIG. 2 is a schematic configuration diagram of a variable valve mechanism according to the embodiment.

<実施形態の構成>
図1に示すエンジンシステムは、直列4気筒エンジン(開弁特性可変型内燃機関:以下、エンジンと記す)1を中核に、エアクリーナ2やサージタンク3、吸気マニホールド4等からなる吸気系と、排気マニホールド5や排気管6、排気浄化触媒7、マフラー8等からなる排気系と、エンジン1の運転制御を行うECU9とを備えている。なお、ECU9は、エンジン1の負荷状態等に基づき、例えば、中低負荷運転領域ではHCCIモードで運転制御を行い、高負荷運転領域ではSIモードでエンジン1を運転制御を行う。
<Configuration of Embodiment>
The engine system shown in FIG. 1 has an in-line four-cylinder engine (variable valve opening type internal combustion engine: hereinafter referred to as an engine) 1 as a core, an intake system including an air cleaner 2, a surge tank 3, an intake manifold 4, and the like, and an exhaust system. An exhaust system including a manifold 5, an exhaust pipe 6, an exhaust purification catalyst 7, a muffler 8, and the like, and an ECU 9 that controls operation of the engine 1 are provided. For example, the ECU 9 performs operation control in the HCCI mode in the middle and low load operation region and performs operation control of the engine 1 in the SI mode in the high load operation region based on the load state of the engine 1 and the like.

エンジン1のシリンダヘッド10には、各気筒ごとに、一対の吸気バルブ11や、一対の排気バルブ12、筒内噴射用燃料噴射弁14、点火プラグ15が設けられている。また、吸気マニホールド4には、各気筒ごとに、吸気管噴射用燃料噴射弁16が設けられている。   The cylinder head 10 of the engine 1 is provided with a pair of intake valves 11, a pair of exhaust valves 12, an in-cylinder fuel injection valve 14, and a spark plug 15 for each cylinder. The intake manifold 4 is provided with an intake pipe injection fuel injection valve 16 for each cylinder.

図2に示すように、シリンダヘッド10の上方には、両吸気バルブ11のリフトを段階的に切り換える吸気側可変動弁機構21と、両排気バルブ12のリフトを連続的に変化させる排気側可変動弁機構31とが設置されている。なお、図示はしないが、シリンダヘッド10には、後述する吸排気カムシャフト22,32の角度位相を可変制御する2つのVTC(Variable valve Timing Control)機構も設置されている。   As shown in FIG. 2, above the cylinder head 10, an intake side variable valve mechanism 21 that switches the lifts of both intake valves 11 stepwise, and an exhaust side variable that continuously changes the lifts of both exhaust valves 12. A variable valve mechanism 31 is installed. Although not shown, the cylinder head 10 is also provided with two VTC (Variable valve Timing Control) mechanisms that variably control the angle phases of intake and exhaust camshafts 22 and 32, which will be described later.

吸気側可変動弁機構21は、3つのカム(低リフトカム22a、中リフトカム22b、高リフトカム22c)を有する吸気カムシャフト22と、各カム22a〜22cに駆動される3つのロッカアーム23a〜23cと、各ロッカアーム23a〜23cの連結/非連結を切り換えるピン式の切換機構24と、切換機構24に油圧を供給する油圧供給路25a,25bとから構成されている。本実施形態の場合、ECU9の指令によって油圧制御電磁弁(図示せず)が作動すると、油圧供給路25a,25bを介して切換機構24に油圧が供給または開放され、各ロッカアーム23a〜23cの連結状態が変化して両吸気バルブ11のリフトが3段階に切り換わる。   The intake side variable valve mechanism 21 includes an intake camshaft 22 having three cams (a low lift cam 22a, a middle lift cam 22b, and a high lift cam 22c), three rocker arms 23a to 23c driven by the cams 22a to 22c, The rocker arms 23 a to 23 c are configured by a pin type switching mechanism 24 that switches connection / disconnection of the rocker arms 23 a to 23 c and hydraulic pressure supply paths 25 a and 25 b that supply hydraulic pressure to the switching mechanism 24. In the present embodiment, when a hydraulic control solenoid valve (not shown) is actuated by a command from the ECU 9, hydraulic pressure is supplied to or released from the switching mechanism 24 via the hydraulic supply paths 25a and 25b, and the rocker arms 23a to 23c are connected. The state changes and the lifts of both intake valves 11 are switched to three stages.

HCCIモードでエンジン1が運転制御される場合、低リフトカム22aが選択されたときの吸気開弁角(排気上死点から両吸気バルブの開弁時点までのクランク角:第1吸気開弁角Ai1)は、中リフトカム22bが選択されたときの吸気開弁角(第2吸気開弁角Ai2)に較べて所定量(例えば、18°)小さくなる。また、高リフトカム22cが選択されたときの吸気開弁角(第3吸気開弁角Ai3)は、中リフトカム22bが選択されたときの吸気開弁角(第2吸気開弁角Ai2)に較べて所定量(例えば、18°)大きくなる。   When the operation of the engine 1 is controlled in the HCCI mode, the intake valve opening angle when the low lift cam 22a is selected (the crank angle from the exhaust top dead center to the opening timing of both intake valves: the first intake valve opening angle Ai1 ) Is smaller by a predetermined amount (for example, 18 °) than the intake valve opening angle (second intake valve opening angle Ai2) when the middle lift cam 22b is selected. The intake valve opening angle (third intake valve opening angle Ai3) when the high lift cam 22c is selected is compared with the intake valve opening angle (second intake valve opening angle Ai2) when the middle lift cam 22b is selected. Increases by a predetermined amount (for example, 18 °).

一方、排気側可変動弁機構31は、単一のカム32aを有する吸気カムシャフト32と、両排気バルブ12を押し下げるロッカアーム33と、先端のローラ34aがカム32aとロッカアーム33との間に介装されたローラリンク34と、ローラリンク34の基端が連結されたギヤリンク35と、ギヤリンク35に噛み合ったドライブギヤ36と、ドライブギヤ36を駆動する電動モータ37とを主要構成要素としている。本実施形態の場合、ECU9の指令によって電動モータ37が作動すると、ドライブギヤ36を介してギヤリンク35が回転駆動され、ローラリンク34の揺動支点が移動して両排気バルブ12のリフトが連続的に変化する。   On the other hand, the exhaust side variable valve mechanism 31 includes an intake camshaft 32 having a single cam 32 a, a rocker arm 33 that pushes down both exhaust valves 12, and a roller 34 a at the front end interposed between the cam 32 a and the rocker arm 33. The main components are the roller link 34, the gear link 35 to which the base end of the roller link 34 is connected, the drive gear 36 engaged with the gear link 35, and the electric motor 37 that drives the drive gear 36. In the case of this embodiment, when the electric motor 37 is actuated by a command from the ECU 9, the gear link 35 is rotationally driven via the drive gear 36, the swing fulcrum of the roller link 34 moves, and the lifts of both exhaust valves 12 continue. Changes.

<実施形態の作用>
エンジンシステムが起動すると、ECU9は、各種センサから入力した運転情報に基づき、例えば、中低負荷運転領域ではHCCIモードとし、高負荷運転領域ではSIモードとして運転制御を行う。HCCIモードでエンジン1を運転させる場合、ECU9は、負のオーバラップが実現されるように、VTC機構によって吸排気カムシャフト22,32の角度位相を制御しながら、所定の処理インターバル(例えば、10ms)をもって、図3のフローチャートにその手順を示すバルブリフト制御を実行する。
<Operation of Embodiment>
When the engine system is activated, the ECU 9 performs operation control based on the operation information input from various sensors, for example, in the HCCI mode in the medium / low load operation region and in the SI mode in the high load operation region. When the engine 1 is operated in the HCCI mode, the ECU 9 controls a predetermined processing interval (for example, 10 ms) while controlling the angular phase of the intake and exhaust camshafts 22 and 32 by the VTC mechanism so that a negative overlap is realized. The valve lift control whose procedure is shown in the flowchart of FIG.

バルブリフト制御を開始すると、ECU9は、先ず、図3のステップS1で、エンジン1の運転状態に基づき目標内部EGR量QEtgtを設定し、ステップS2で目標内部EGR量QEtgtに対応する排気閉弁角(排気バルブの閉弁時点から排気上死点までのクランク角)Aeを図示しないマップから検索する。   When the valve lift control is started, the ECU 9 first sets the target internal EGR amount QEtgt based on the operating state of the engine 1 in step S1 of FIG. 3, and in step S2, the exhaust valve closing angle corresponding to the target internal EGR amount QEgtt. (Crank angle from exhaust valve closing time to exhaust top dead center) Ae is searched from a map (not shown).

次に、ECU9は、ステップS3で、排気閉弁角Aeが中リフトカム22bによる第2吸気開弁角Ai2を超えているか否かを判定し、この判定がNoであれば、ステップS4で低リフトカム22aを選択し、ステップS5で吸気側可変動弁機構21および排気側可変動弁機構31に駆動指令を出力する。   Next, the ECU 9 determines in step S3 whether or not the exhaust valve closing angle Ae exceeds the second intake valve opening angle Ai2 by the middle lift cam 22b. If this determination is No, the low lift cam is determined in step S4. 22a is selected, and drive commands are output to the intake side variable valve mechanism 21 and the exhaust side variable valve mechanism 31 in step S5.

また、ステップS3の判定がYesであった場合、ECU9は、ステップS6で、排気閉弁角Aeが高リフトカム22cによる第3吸気開弁角Ai3を超えているか否かを判定し、この判定がNoであれば、ステップS7で中リフトカム22bを選択し、ステップS5で吸気側可変動弁機構21および排気側可変動弁機構31に駆動指令を出力する。   If the determination in step S3 is Yes, the ECU 9 determines in step S6 whether or not the exhaust valve closing angle Ae exceeds the third intake valve opening angle Ai3 by the high lift cam 22c. If No, the middle lift cam 22b is selected in step S7, and a drive command is output to the intake side variable valve mechanism 21 and the exhaust side variable valve mechanism 31 in step S5.

更に、ステップS6の判定もYesであった場合、ECU9は、ステップS8で高リフトカム22cを選択し、ステップS5で吸気側可変動弁機構21および排気側可変動弁機構31に駆動指令を出力する。   Further, if the determination in step S6 is also Yes, the ECU 9 selects the high lift cam 22c in step S8, and outputs a drive command to the intake side variable valve mechanism 21 and the exhaust side variable valve mechanism 31 in step S5. .

これにより、図4に示すように、HCCIモードでの運転時においては、吸気開弁角Aiが排気閉弁角Aeに対して0°〜18°の角度範囲で小さくなる状態で、負のオーバラップが実現される。図5には、一例として、排気閉弁角Aeが65°であるときに、吸気開弁角Aiを増減させた際のポンピングロスの変化を示した。同図から判るように、ポンピングロスは、吸気開弁角Aiが排気閉弁角Aeに対して10°程度小さいとき(55°のとき)に最も少なくなり、吸気開弁角Aiが排気閉弁角Aeに対して−10°〜20°の角度範囲(45°〜75°:図中にハッチングで示す)ではその変化が殆ど無いことが判る。   As a result, as shown in FIG. 4, during the operation in the HCCI mode, the intake valve opening angle Ai becomes negative over the exhaust valve closing angle Ae in a state where it becomes smaller in the angle range of 0 ° to 18 °. Wrapping is realized. FIG. 5 shows, as an example, a change in pumping loss when the intake valve opening angle Ai is increased or decreased when the exhaust valve closing angle Ae is 65 °. As can be seen from the figure, the pumping loss is minimized when the intake valve opening angle Ai is about 10 ° smaller than the exhaust valve closing angle Ae (when 55 °), and the intake valve opening angle Ai is the exhaust valve closing angle. It can be seen that there is almost no change in the angle range of −10 ° to 20 ° with respect to the angle Ae (45 ° to 75 °: indicated by hatching in the figure).

以上述べたように、本実施形態では、吸気側可変動弁機構21として両吸気バルブ11のリフトを段階的に切り換えるものを採用することで、構成の複雑化や製造コストの増大を抑制しながら、HCCIモードでの運転時におけるポンピングロスをごく少なくすることができた。   As described above, in the present embodiment, by adopting the intake side variable valve mechanism 21 that switches the lifts of both intake valves 11 in stages, while suppressing the complexity of the configuration and the increase in manufacturing cost. The pumping loss during operation in the HCCI mode could be extremely reduced.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態はHCCIモードとSIモードとで運転される内燃機関に本発明を適用したものであるが、ディーゼルエンジン等にも適用可能である。また、上記実施形態では吸気側可変動弁機構として3段階に切り換えられるものを採用したが、2段階に切り換えられるものや、4段階以上に切り換えられるもの等を採用してもよい。また、排気側可変動弁機構についても、上記実施形態に限られるものではなく、種々の構造を備えたものが採用可能である。また、上記実施形態では吸気開弁角を排気閉弁角に対して0°〜18°の角度範囲で小さくするよう設定したが、−10°〜20°の角度範囲内であれば任意に設定可能である。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above embodiment and can be widely modified. For example, although the above embodiment is an application of the present invention to an internal combustion engine that is operated in the HCCI mode and the SI mode, it can also be applied to a diesel engine or the like. Further, in the above-described embodiment, the intake side variable valve mechanism that has been switched to three stages is adopted, but a mechanism that can be switched to two stages or a mechanism that can be switched to four or more stages may be employed. Further, the exhaust side variable valve mechanism is not limited to the above embodiment, and those having various structures can be adopted. Further, in the above embodiment, the intake valve opening angle is set to be smaller in the angle range of 0 ° to 18 ° with respect to the exhaust valve closing angle, but is arbitrarily set as long as it is within the angle range of −10 ° to 20 °. Is possible.

実施形態に係るエンジンの上部を示す要部透視斜視図である。It is a principal part perspective view which shows the upper part of the engine which concerns on embodiment. 実施形態に係る可変動弁機構の概略構成図である。It is a schematic block diagram of the variable valve mechanism which concerns on embodiment. バルブリフト制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of valve lift control. HCCIモードにおける吸気開弁角と排気閉弁角との関係を示すグラフである。It is a graph which shows the relationship between the intake valve opening angle and exhaust valve closing angle in HCCI mode. 吸気開弁角を増減させた際のポンピングロスの変化を示すグラフである。It is a graph which shows the change of the pumping loss at the time of increasing / decreasing an intake valve opening angle.

符号の説明Explanation of symbols

1 エンジン(開弁特性可変型内燃機関)
11 吸気バルブ
12 排気バルブ
21 吸気側可変動弁機構(吸気側動弁機構,吸気側開弁特性制御手段)
22 吸気カムシャフト
31 排気側可変動弁機構(排気側動弁機構,排気側開弁特性制御手段)
32 吸気カムシャフト
1 Engine (variable valve opening characteristics internal combustion engine)
11 Intake valve 12 Exhaust valve 21 Intake side variable valve mechanism (intake side valve mechanism, intake side valve opening characteristic control means)
22 Intake camshaft 31 Exhaust side variable valve mechanism (exhaust side valve mechanism, exhaust side valve opening characteristic control means)
32 Intake camshaft

Claims (2)

吸気バルブを開閉駆動する吸気側動弁機構と、排気バルブを開閉駆動する排気側動弁機構と、前記排気バルブの開弁時期を可変制御する排気側開弁特性制御手段とを備え、所定の運転領域において、排気上死点を含む所定のクランク角度域で前記吸気バルブと前記排気バルブとをともに閉鎖する開弁特性可変型内燃機関において、
前記運転領域において、前記排気バルブの閉弁時点から排気上死点までのクランク角に対し、排気上死点から前記吸気バルブの開弁時点までのクランク角を−10°〜20°の角度範囲に設定したことを特徴とする開弁特性可変型内燃機関。
An intake side valve mechanism that opens and closes the intake valve, an exhaust side valve mechanism that opens and closes the exhaust valve, and an exhaust side valve opening characteristic control means that variably controls the opening timing of the exhaust valve. In the operating region, in the variable valve opening characteristic internal combustion engine that closes both the intake valve and the exhaust valve in a predetermined crank angle range including exhaust top dead center,
In the operating range, the crank angle from the exhaust top dead center to the intake valve open time is -10 ° to 20 ° relative to the crank angle from the exhaust valve close time to the exhaust top dead center. A variable valve opening characteristic internal combustion engine characterized by being set to
前記吸気バルブの開弁時期を段階的に可変制御する吸気側開弁特性制御手段を更に備えたことを特徴とする、請求項1に記載された開弁特性可変型内燃機関。   2. The variable valve opening characteristic internal combustion engine according to claim 1, further comprising intake side valve opening characteristic control means for variably controlling the valve opening timing of the intake valve in a stepwise manner.
JP2006342740A 2006-12-20 2006-12-20 Valve opening characteristic variable type internal combustion engine Pending JP2008151098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342740A JP2008151098A (en) 2006-12-20 2006-12-20 Valve opening characteristic variable type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342740A JP2008151098A (en) 2006-12-20 2006-12-20 Valve opening characteristic variable type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008151098A true JP2008151098A (en) 2008-07-03

Family

ID=39653525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342740A Pending JP2008151098A (en) 2006-12-20 2006-12-20 Valve opening characteristic variable type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008151098A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile
JP2002242715A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Compression ignition type engine
JP2003003873A (en) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd Compression self-ignition internal combustion engine
JP2005061323A (en) * 2003-08-13 2005-03-10 Honda Motor Co Ltd Control device for compression ignition internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile
JP2002242715A (en) * 2001-02-16 2002-08-28 Fuji Heavy Ind Ltd Compression ignition type engine
JP2003003873A (en) * 2001-06-25 2003-01-08 Nissan Motor Co Ltd Compression self-ignition internal combustion engine
JP2005061323A (en) * 2003-08-13 2005-03-10 Honda Motor Co Ltd Control device for compression ignition internal combustion engine

Similar Documents

Publication Publication Date Title
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
JP4893718B2 (en) Internal combustion engine control method and internal combustion engine control apparatus
JP4442659B2 (en) Exhaust gas purification device for internal combustion engine
JP4618236B2 (en) Premixed compression ignition engine and control method thereof
US7992541B2 (en) System and method for controlling auto-ignition
JP2006274951A (en) Four cycle spark ignition engine
WO2006096425A3 (en) Method for transition between controlled auto-ignition and spark ignition modes direct fuel injection engines
JP2007046500A (en) Internal combustion engine
JP6131840B2 (en) Control device for compression ignition engine
JP5589906B2 (en) gasoline engine
JP4803151B2 (en) Control unit for gasoline engine
US7077084B2 (en) Method for operating an internal combustion engine
JP5020071B2 (en) Method for controlling the operation of a group of cylinders in an internal combustion engine
JP4831040B2 (en) Control unit for gasoline engine
JP4425839B2 (en) Control device for internal combustion engine
JP6320428B2 (en) System and method for controlling transition between SI combustion mode and HCCI combustion mode
JP6848412B2 (en) Internal combustion engine control device
JP4591300B2 (en) 4-cycle spark ignition engine
JP2014234821A (en) Ultra-high-efficiency internal combustion engine with centralized combustion chamber
JP2008151098A (en) Valve opening characteristic variable type internal combustion engine
JP4801744B2 (en) Method and apparatus for operating an internal combustion engine
JP2006097653A (en) Four cycle engine
JP5756399B2 (en) Control device for compression ignition internal combustion engine
JP2009085174A (en) Multiple cylinder gasoline engine
JP2010014038A (en) Controller for direct injection type internal-combustion engine equipped with variable dynamic valve system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101