JP2014234821A - Ultra-high-efficiency internal combustion engine with centralized combustion chamber - Google Patents

Ultra-high-efficiency internal combustion engine with centralized combustion chamber Download PDF

Info

Publication number
JP2014234821A
JP2014234821A JP2013144974A JP2013144974A JP2014234821A JP 2014234821 A JP2014234821 A JP 2014234821A JP 2013144974 A JP2013144974 A JP 2013144974A JP 2013144974 A JP2013144974 A JP 2013144974A JP 2014234821 A JP2014234821 A JP 2014234821A
Authority
JP
Japan
Prior art keywords
valve
combustion chamber
dead center
top dead
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013144974A
Other languages
Japanese (ja)
Inventor
北村 修一
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013144974A priority Critical patent/JP2014234821A/en
Publication of JP2014234821A publication Critical patent/JP2014234821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve ultra-high-efficiency for thermal efficiency by adopting ultra-rapid combustion using a centralized combustion chamber and a multi-point plug, and a mirror cycle, and further to achieve ultra-low NOx by significantly delaying the ignition timing of a spark gap through an ultra-high-efficiency combustion method.SOLUTION: Around a combustion chamber 1, a squish part S including a fine gap between a piston top surface at a top dead center position and a cylinder head wall surface is formed and defined as the centralized combustion chamber. Two or more spark gaps oppose the combustion chamber 1. The ignition timing of the spark gap is controlled to a compression top dead center or after that in a high-load area. Further, in a low-load area, close timing of suction valves 3 and 3' is changed by a valve opening/closing timing control device 15 which varies opening/closing timing of the suction valves. Therefore, a mirror cycle is implemented while reducing an effective suction step.

Description

本発明は集中型燃焼室、多点着火方式、高圧縮比・高膨張比・ミラーサイクルなどを採用して超高効率化を達成し、COの大幅削減、NOx発生を極小レベルに抑える超高効4サイクル内燃機関に関する。The present invention adopts a centralized combustion chamber, multi-point ignition system, high compression ratio, high expansion ratio, Miller cycle, etc. to achieve ultra-high efficiency, greatly reducing CO 2 and reducing NOx generation to a minimum level The present invention relates to a high-efficiency four-cycle internal combustion engine.

内燃機関、就中、自動車用内燃機関に課せられた課題は大きく、地球温暖化(CO削減)や大気汚染に対処すべく超高効率化、超低公害化などが急務である。火花点火機関では吸入空気を絞って出力を制御する為、損失の割合がポンプ損失として大きく、圧縮比が12以下の低圧縮比である為、低い熱効率に止まる。
加えて点火プラグによる着火・燃焼開始が上死点前で行なわれる為、負の仕事が発生する上、最高燃焼圧力・温度が高くなり、摩擦損失、冷却損失が増大し、熱効率を悪化させ、多量のNOxを発生させる。他方、ディーゼル機関は高効率ではあるが、摩擦損失が大であり、改善の余地がある。又、上記火花点火機関も同様であるが、圧縮比と膨張比とが等しい為、排気エネルギーは相当余っており、排気損失が大きい。排気浄化対策としては2000気圧にも達するコモンレール式燃料噴装置、ディーゼルパーティキュレートフィルター(DPF)、リーンNOx触媒などが必要で、これらは非常に高価である。
The problems imposed on internal combustion engines, especially automobile internal combustion engines, are great, and there is an urgent need for ultra-high efficiency and ultra-low pollution to cope with global warming (CO 2 reduction) and air pollution. In the spark ignition engine, since the output is controlled by restricting the intake air, the loss ratio is large as the pump loss, and the compression ratio is a low compression ratio of 12 or less, so the heat efficiency is low.
In addition, since ignition and combustion start by the spark plug is performed before the top dead center, negative work occurs, the maximum combustion pressure and temperature increase, friction loss and cooling loss increase, thermal efficiency deteriorates, A large amount of NOx is generated. On the other hand, although the diesel engine is highly efficient, the friction loss is large and there is room for improvement. The spark ignition engine is the same, but since the compression ratio and the expansion ratio are equal, the exhaust energy is excessive and the exhaust loss is large. As an exhaust purification measure, a common rail fuel injection device, diesel particulate filter (DPF), lean NOx catalyst, etc. reaching 2000 atmospheres are required, and these are very expensive.

発明が解決しようとする問題点Problems to be solved by the invention

本発明の目的は第1に熱効率の高効率化を達成する事である。この為、集中型燃焼室(コンパクトな燃焼室)、多点着火方式を採用して燃焼期間を極限にまで短縮させて超急速燃焼を行なわせている(従来の1/3位)。こうすると点火プラグによる着火時期を大幅に遅らせる事ができるから(着火時期は上死点付近とし、高負荷域では上死点又はそれ以降とする)、上死点前の負の仕事がなくなり、最高燃焼圧力・温度が低下し、摩擦損失、冷却損失が減少する。更には15〜18位の高圧縮比を採用すると共に圧縮よりも膨張比が大きいミラーサイクルを採用している。ミラーサイクルは有効吸入行程を短縮化するサイクルであるから、ポンプ損失が減少する。第2に上記の様に超急速燃焼法により着火時期を大幅に遅らせて(場合によっては上死点又はそれ以降とする)、超低NOxエミッション達成を目的としている。これにより高価なリーンNOx触媒が不要となり、予混合燃焼であるから、ディーゼル機関の様なDPFなども不要である。The object of the present invention is to achieve high thermal efficiency. For this reason, a concentrated combustion chamber (compact combustion chamber) and a multi-point ignition method are adopted to shorten the combustion period to the limit and to perform ultra-rapid combustion (1/3 of the conventional). In this way, the ignition timing by the spark plug can be greatly delayed (the ignition timing is near the top dead center and the top dead center or higher in the high load range), so there is no negative work before the top dead center, Maximum combustion pressure and temperature are reduced, and friction loss and cooling loss are reduced. Furthermore, a high compression ratio of 15 to 18 is adopted, and a mirror cycle having a larger expansion ratio than compression is adopted. Since the Miller cycle is a cycle that shortens the effective suction stroke, the pump loss is reduced. Second, as described above, the ultra-rapid combustion method is used to achieve a very low NOx emission by greatly delaying the ignition timing (in some cases, the top dead center or later). This eliminates the need for an expensive lean NOx catalyst and premix combustion, so that a DPF such as a diesel engine is also unnecessary.

課題を解決する為の手段Means to solve the problem

本発明は上記目的を達成する為、燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップが臨む様に構成し、かつ前記火花ギャップの着火時期を高負荷域においては圧縮上死点又はそれ以降となる様に制御せしめ、更に吸気弁の開閉時期を可変化する弁開閉時期制御装置を備えて、これにより低負荷域では吸気弁の閉時期を変化させて有効吸入行程を減少させ、かくして燃焼室内の圧縮された給気を火花ギャップにより着火・燃焼させてミラーサイクルを行なう様にした。In order to achieve the above object, the present invention forms a squish portion having a minute gap between the top surface of the piston and the cylinder head wall surface at the top dead center position around the combustion chamber, thereby making the combustion chamber a concentrated combustion chamber, The combustion chamber is configured so that two or more spark gaps face each other, and the ignition timing of the spark gap is controlled to be at or above the compression top dead center in the high load range. A valve opening / closing timing control device that varies the air-fuel ratio, thereby reducing the effective intake stroke by changing the closing timing of the intake valve in a low load range, thus igniting the compressed supply air in the combustion chamber by a spark gap. The mirror cycle was performed after burning.

発明の効果Effect of the invention

本発明によればコンパクトな集中型燃焼室に2点以上の火花ギャップを臨ませて多点着火方式として超急速燃焼を達成しているから(燃焼期間はクランク角で従来の1/2.5〜3の15°位)、点火プラグによる着火時期を大幅に遅らせて上死点付近とする事ができる(高負荷域では上死点又はそれ以降)。従って最高燃焼温度・圧力が低く、冷却損失、摩擦損失が少なくなるのみならず、上死点前燃焼が殆ど又は全く起らなくなる為、この期間に相当する冷却損失、摩擦損失も少ない特徴がある。高負荷域では着火時期は上死点又はそれ以降とするから、ノッキングの心配はなく(燃焼は膨張行程で行なわれる)、高圧縮比を採用できると共に(燃料がガソリンの場合は14〜15位、天然ガスの場合は17〜18位)、低負荷域ではミラーサイクルを実施して有効圧縮比に対して膨張比を大にしているから、熱効率は非常に高くなる。しかもこのミラーサイクルは有効吸入行程を短縮するサイクルであるから、その分、吸気絞りを少なくしてポンプ損失を大幅に減少させる事ができる。以上により熱効率は飛躍的に向上する。次に上記の如く本発明では超急速燃焼法により着火時期を大幅に遅らせて、上死点付近としている。例えば低負荷域では着火時期は上死点か又はそれより僅か以前に設定するが、希薄混合気を採用している為、NOxは殆ど発生しない。又、高負荷域では着火時期を上死点又はそれ以降としているから、燃焼は膨張行程で行なわれ、NOxの発生は殆ど0である。
従って高価なリーンNOx触媒は不要である(安価な酸化触媒のみ)。
又、上記の様に圧縮比・膨張比が高いから排ガス温度が低く、触媒保護の為に濃混合気を供給する必要がないのみならず、ポートライナーを使用して排気、ポートを断熱化し、触媒の早期活性化を促がす事ができる(従来では排気ポートを断熱化すると高負荷域で触媒の耐久性が劣化する)。かつ、超急速燃焼が可能であるから、エンジン冷態中は着火時期を大幅に遅らせて排ガス温度を高め、触媒の早期活性化を図る事ができる。本発明では予混合燃焼法であるから、排ガス浄化対策としてDPFやコモンレール式燃料噴射装置など高価なシステムは不要である。又、本発明では最高燃焼温度が低いから、熱解離による損失が小さい事も特徴の1つである。
According to the present invention, two or more spark gaps are faced in a compact centralized combustion chamber to achieve ultra-rapid combustion as a multi-point ignition system (the combustion period is 1 / 2.5 of the conventional crank angle). ˜3 (about 15 °), the ignition timing by the spark plug can be greatly delayed to the vicinity of the top dead center (in the high load range or above). Therefore, not only the maximum combustion temperature and pressure are low, the cooling loss and the friction loss are reduced, but also the combustion before the top dead center is hardly or not at all, so the cooling loss and the friction loss corresponding to this period are also small. . In the high load range, the ignition timing is set to the top dead center or later, so there is no worry of knocking (combustion is performed in the expansion stroke), and a high compression ratio can be adopted (if the fuel is gasoline, 14th to 15th) In the case of natural gas, the 17th to 18th positions), in the low load range, the mirror cycle is performed to increase the expansion ratio with respect to the effective compression ratio, so the thermal efficiency becomes very high. Moreover, since this mirror cycle is a cycle for shortening the effective suction stroke, the pump loss can be greatly reduced by reducing the intake throttle accordingly. Thus, the thermal efficiency is dramatically improved. Next, as described above, in the present invention, the ignition timing is greatly delayed by the ultra-rapid combustion method so that it is near the top dead center. For example, in the low load range, the ignition timing is set at the top dead center or slightly before that, but since a lean air-fuel mixture is employed, NOx is hardly generated. In the high load range, the ignition timing is set to the top dead center or later, so combustion is performed in the expansion stroke, and NOx generation is almost zero.
Therefore, an expensive lean NOx catalyst is unnecessary (only an inexpensive oxidation catalyst).
In addition, the exhaust gas temperature is low because the compression ratio and expansion ratio are high as described above, and it is not necessary to supply a rich mixture to protect the catalyst. (In the past, when the exhaust port is insulated, the durability of the catalyst deteriorates in a high load range). In addition, since super-rapid combustion is possible, the ignition timing can be greatly delayed during engine cold to increase the exhaust gas temperature, thereby enabling early activation of the catalyst. In the present invention, since the premixed combustion method is used, an expensive system such as a DPF or a common rail type fuel injection device is not required as an exhaust gas purification measure. In addition, since the maximum combustion temperature is low in the present invention, one of the features is that loss due to thermal dissociation is small.

発明を実施する為の形態Detailed Description of the Invention

図1は本発明による超高効率内燃機関を示し、図1(イ)において図示しない吸気カム軸に備えられたカムにより駆動される吸気弁3、及び排気カム軸6に備えられたカム7により駆動される排気弁2を備えている。排気弁2はロッカーアーム5を介してカム7により駆動され、吸気弁3も図示していないが同様に駆動される。図1(イ)は多気筒機関であるが、その内の1気筒を上方から見て図1(ロ)に示す。図の様に1気筒当り吸気弁、排気弁を各2個づつ有し、排気弁2、吸気弁3は燃焼室1に備えられ、排気弁2′、吸気弁3′はスキッシュ部Sに備えられている(排気弁2′、吸気弁3′もカムにより駆動される)。9は排ガスを浄化する為の触媒、11はアクチュエーター12(電動モーター)により駆動される吸気絞り弁、20は電子制御ユニット、21は油圧制御弁である。本内燃機関は4サイクル機関であり、吸気・圧縮・膨張・排気の各工程をクランク軸2回転で行なうが、これは従来と同じなので省略する。排気カム軸6には弁開閉時期制御装置14′がスプロケット14(又はプーリー)と一体となって備えられ、図示しない吸気カム軸にも同様に弁開閉時期制御装置15′が備えられており(弁開閉時期制御装置14′15′は同じ構造である)、スプロケット14、15はクランク軸とチェーン(又は歯付きベルト)などを介して1/2に減速して駆動される。公知の弁開閉時期制御装置15′はハウジング16とローター17とから成り、ハウジング16はスプロケット15とボルトにより結合・一体化され、ローター17は図示しない吸気カム軸とボルトにより結合・一体化されている。ハウジング16及びローター17により進角室18と遅角室19とが形成され、油圧制御弁21からの作動油が供給される。油圧制御弁21は図示しない油圧ポンプからの油圧が供給され、後述する電子制御ユニット20(以後ECU)からの出力信号により軸方向への移動量が電磁ソレノイド23により駆動制御されるプランジャー22とスプール弁24とを有しており、バネ25の反発力とプランジャー22の押圧力とが均衡する位置でスプール弁24が位置決めされる様になっている。
ECU20には所定のクランク角毎にクランク角を出力するクランク角センサーからの信号、所定のカム角毎にカム角信号を出力するカム角センサーからの信号が入力され、ECU20はカム角センサーから出力される回転角パルスとクランク角センサーから出力される回転角パルスとの間の出力位相差に基づきカム位相角を検出する事ができる。ECU20はローター17の、即ち、吸気カム軸のクランク軸に対する位相差が目標値となる様に油圧制御弁21に制御信号を出力する。そしてECU20は検出したカム位相角をフィードバック信号として取り込み、その制御上の目標位相角との間の偏差に応じて油圧制御弁21の駆動デューティ比率をフィードバック制御する。油圧制御弁21はECU20から指示されるデューティ比率に応じて電磁ソレノイド23を駆動し、進角室18、遅角室19に対する油圧の給・排を調整して吸気カム軸を目標位相角まで進角、又は遅角、或いは中立に維持する(任意のカム位相角に固定する)。ECU20はROM、RAM、CPU、入出力ポート等から成るマイクロコンピューターを中心として構成され、これらは双方向性バスによって相互に接続されている。ECU20にはエンジンの運転状態の把握に必要なパラメーター用の各種センサー、例えばクランク角センサー、カム角センサー、アクセル開度を検出するアクセルセンサー、エンジン冷却水温を検出する水温センサー、大気圧センサー、エンジンに吸入される空気流量センサー、ノックセンサー、Oセンサー等からの各信号が対応するA/Dコンバーターを介して入力ポートに送信される。
尚、エンジン回転速度はクランク角センサーからの出力信号により知る事ができる。又、出力ポートは燃料噴射弁13、点火プラグ4、アクチュエーター12、油圧制御弁21等と各々対応する駆動回路を介して接続され、各々の制御信号を送信する。ROMには燃料噴射弁13の噴射量や噴射時期を決定する為の制御ルーチン、点火プラグ4への通電を制御する為の制御ルーチン等のエンジンを制御する為の制御ルーチンやそれらに用いられる制御値を含むマップが記憶されている。RAMに記憶されている各種データーはエンジン回転速度センサーが信号を出力する度に最新のデータに置き換えられる。
CPUはROMに記憶されたアプリケーションプログラムに従って動作し、燃料の噴射制御、点火時期制御等を実行する。
FIG. 1 shows an ultra-high efficiency internal combustion engine according to the present invention, which includes an intake valve 3 driven by a cam provided on an intake camshaft (not shown in FIG. 1A) and a cam 7 provided on an exhaust camshaft 6. An exhaust valve 2 to be driven is provided. The exhaust valve 2 is driven by a cam 7 via a rocker arm 5, and the intake valve 3 is also driven in the same manner, although not shown. FIG. 1 (a) shows a multi-cylinder engine. FIG. 1 (b) shows one cylinder as viewed from above. As shown in the figure, there are two intake valves and two exhaust valves per cylinder, the exhaust valve 2 and the intake valve 3 are provided in the combustion chamber 1, and the exhaust valve 2 'and the intake valve 3' are provided in the squish portion S. (The exhaust valve 2 'and the intake valve 3' are also driven by cams). 9 is a catalyst for purifying exhaust gas, 11 is an intake throttle valve driven by an actuator 12 (electric motor), 20 is an electronic control unit, and 21 is a hydraulic control valve. The internal combustion engine is a four-cycle engine, and the intake, compression, expansion, and exhaust processes are performed by two rotations of the crankshaft. The exhaust camshaft 6 is provided with a valve opening / closing timing control device 14 'integrally with the sprocket 14 (or pulley), and the intake camshaft (not shown) is similarly provided with a valve opening / closing timing control device 15' (see FIG. The valve opening / closing timing control device 14'15 'has the same structure), and the sprockets 14, 15 are driven by being decelerated to 1/2 through a crankshaft and a chain (or a toothed belt). A known valve opening / closing timing control device 15 'includes a housing 16 and a rotor 17. The housing 16 is connected and integrated with a sprocket 15 and a bolt, and the rotor 17 is connected and integrated with an intake camshaft and a bolt (not shown). Yes. The advance chamber 18 and the retard chamber 19 are formed by the housing 16 and the rotor 17, and hydraulic oil is supplied from the hydraulic control valve 21. The hydraulic control valve 21 is supplied with hydraulic pressure from a hydraulic pump (not shown), and a plunger 22 whose movement in the axial direction is driven and controlled by an electromagnetic solenoid 23 according to an output signal from an electronic control unit 20 (hereinafter referred to as ECU) which will be described later. A spool valve 24 is provided, and the spool valve 24 is positioned at a position where the repulsive force of the spring 25 and the pressing force of the plunger 22 are balanced.
The ECU 20 receives a signal from a crank angle sensor that outputs a crank angle for each predetermined crank angle, and a signal from a cam angle sensor that outputs a cam angle signal for each predetermined cam angle. The ECU 20 outputs the signal from the cam angle sensor. The cam phase angle can be detected based on the output phase difference between the rotation angle pulse generated and the rotation angle pulse output from the crank angle sensor. The ECU 20 outputs a control signal to the hydraulic control valve 21 so that the phase difference of the rotor 17, that is, the intake camshaft with respect to the crankshaft becomes a target value. Then, the ECU 20 takes in the detected cam phase angle as a feedback signal, and feedback-controls the drive duty ratio of the hydraulic control valve 21 in accordance with the deviation from the control target phase angle. The hydraulic control valve 21 drives the electromagnetic solenoid 23 in accordance with the duty ratio instructed from the ECU 20, adjusts the supply / discharge of hydraulic pressure to the advance chamber 18 and the retard chamber 19, and advances the intake camshaft to the target phase angle. Maintain an angle, retard angle, or neutral (fix to an arbitrary cam phase angle). The ECU 20 is mainly composed of a microcomputer including a ROM, a RAM, a CPU, an input / output port and the like, and these are connected to each other by a bidirectional bus. The ECU 20 includes various sensors for parameters necessary for grasping the operating state of the engine, such as a crank angle sensor, a cam angle sensor, an accelerator sensor that detects an accelerator opening, a water temperature sensor that detects an engine cooling water temperature, an atmospheric pressure sensor, an engine Each signal from an air flow sensor, a knock sensor, an O 2 sensor, and the like sucked in is transmitted to the input port via a corresponding A / D converter.
The engine speed can be known from the output signal from the crank angle sensor. The output port is connected to the fuel injection valve 13, the spark plug 4, the actuator 12, the hydraulic control valve 21 and the like via corresponding drive circuits, and transmits respective control signals. The ROM has a control routine for controlling the engine, such as a control routine for determining the injection amount and injection timing of the fuel injection valve 13, a control routine for controlling the energization of the spark plug 4, and controls used for them. A map containing the values is stored. Various data stored in the RAM are replaced with the latest data every time the engine speed sensor outputs a signal.
The CPU operates in accordance with an application program stored in the ROM, and executes fuel injection control, ignition timing control, and the like.

燃焼室1には排気弁2、吸気弁3が備えられ、燃焼室1の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップ(0.8mm位)を有するスキッシュ部を形成して、集中型燃焼室としている(スキッシュ部Sには排気弁2′、吸気弁3′を備えている)。燃焼室1には2点以上の火花ギャップを臨ませ(図では3個の点火プラグ4から成る3点の火花ギャップが臨んでいる)、この火花ギャップの着火時期を高負荷域では上死点又はそれ以降となる様に制御している(低負荷域ではEGRや希薄混合気を採用するから、上死点付近の上死点前が望ましい)。図1(ロ)は図1(イ)の燃焼室1を上方から見たものであるが、これを図2(イ)に簡略化して示す。シリンダー半径をRとすればシリンダー中心に1個の点火プラグを配置した場合の火炎伝播距離はRであり、図2(イ)の様に集中型燃焼室1に点火プラグを3個配

Figure 2014234821
とする)。即ち、シリンダー中心に1個の点火プラグを配置した従来の場合に比し、図2(イ)では火炎伝播距離が1/4に短縮されるが、実際は点火プラグ4が同一直線上になく対向して備えられている為、目減りして1/3位には短縮されると考えて良い(図2(ロ)の様に点火プラグ4を4個配置すれば確実に1/3に短縮される)。この様に本発明では集中型燃焼室1と多点プラグとの相乗効果により、従来の中心1点プラグの場合に比し必要とされる火炎伝播距離が1/3に短縮され、、言い換えると従来クランク角で40°〜50°要した燃焼期間が1/3の15°位に短縮され、超急速燃焼が可能となるのである。この結果、火花ギャップ(点火プラグ)の着火時期を大幅に遅らせ、上死点付近としても(高負荷域では上死点又はそれ以降とし、低負荷域では同様に上死点又はそれ以降とするか、希薄混合気やEGRを採用する場合は上死点より僅か前とする)超急速燃焼が可能であるから、熱効率の悪化はなく、むしろ最高燃焼温度・圧力の低下によって冷却損失、摩擦損失、更には熱解離損失が減って大幅に熱効率が向上する。極く小排気量のエンジンの場合は火炎伝播距離の絶対値が小さい為、2点の火花ギャップでも良く、本発明では燃焼室に2点以上の火花ギャップを臨ませる事を特徴としている。
尚、本発明では火花ギャップとして点火プラグを使用しているが、図2(ハ)の如く火花ギャップ26を多数有するセラミックなどの不導体板27を図2(ニ)の如く燃焼室1に備えても良い。The combustion chamber 1 is provided with an exhaust valve 2 and an intake valve 3, and a squish portion having a minute gap (about 0.8 mm) between the piston top surface and the cylinder head wall surface at the top dead center position around the combustion chamber 1. To form a concentrated combustion chamber (the squish portion S is provided with an exhaust valve 2 'and an intake valve 3'). Combustion chamber 1 has two or more spark gaps (three spark gaps consisting of three spark plugs 4 in the figure), and the ignition timing of this spark gap is top dead center in the high load range. Or it is controlled so that it becomes after that (Because EGR or lean air-fuel mixture is adopted in the low load region, it is desirable to be near the top dead center near the top dead center). FIG. 1 (b) is a view of the combustion chamber 1 of FIG. 1 (a) as viewed from above, and this is shown in a simplified manner in FIG. 2 (a). If the cylinder radius is R, the flame propagation distance when one spark plug is placed at the center of the cylinder is R, and three spark plugs are placed in the centralized combustion chamber 1 as shown in FIG.
Figure 2014234821
And). That is, compared with the conventional case where one spark plug is arranged at the center of the cylinder, the flame propagation distance is shortened to 1/4 in FIG. Therefore, it is possible to think that it will be reduced to 1 / 3rd place by reducing the number of eyes (if 4 spark plugs 4 are arranged as shown in FIG. ) Thus, in the present invention, the synergistic effect of the centralized combustion chamber 1 and the multipoint plug reduces the required flame propagation distance to 1/3 compared to the case of the conventional central single point plug, in other words, The combustion period which conventionally required 40 ° to 50 ° in crank angle is shortened to about 1/3 of 15 °, and ultra-rapid combustion becomes possible. As a result, the ignition timing of the spark gap (ignition plug) is greatly delayed, and even near the top dead center (top dead center or higher in the high load range, and top dead center or lower in the low load range as well) (If lean air-fuel mixture or EGR is used, it should be just before the top dead center.) Super-rapid combustion is possible, so there is no deterioration in thermal efficiency. Rather, cooling loss and friction loss are caused by lowering the maximum combustion temperature and pressure. Furthermore, the thermal dissociation loss is reduced and the thermal efficiency is greatly improved. In the case of an engine with a very small displacement, the absolute value of the flame propagation distance is small, so two spark gaps may be used, and the present invention is characterized by having two or more spark gaps in the combustion chamber.
In the present invention, a spark plug is used as the spark gap. However, as shown in FIG. 2 (c), a non-conductive plate 27 such as ceramic having many spark gaps 26 is provided in the combustion chamber 1 as shown in FIG. 2 (d). May be.

次に本発明による内燃機関の各運転状態について説明する。
本発明では弁開閉時期制御装置14′、15′を備えているので、排気弁2(2′)、吸気弁3(3′)の開閉時期を自在に制御する事ができる(但し、図1で採用した弁開閉時期制御装置14′、15′は弁開閉期間は一定のまま弁開閉時期を変えるものである)。例えば低負荷域では吸気弁3′、3は図3(イ)の如くクランク角で各々上死点後50°CAに20°CAに開となり、下死点後90°CAで共に閉となり、一方排気弁2′、2は図3(ロ)の如く下死点後10°CAで共に開となり、各々上死点、上死点後70°CAで閉となる様に制御される。これにより多量の排ガスが排気通路8から再吸入され(EGR)ると共に、一旦、シリンダー内に吸入された吸気(空気と排ガスの混合物)は吸気通路10内へ戻され、有効吸入行程が減少し、膨張比に対して圧縮比(有効圧縮比)が低いミラーサイクルを行なう様になる。本発明では高負荷域では上死点又はそれ以降に火花ギャップによる着火・燃焼が行なわれる為、高圧縮比でもノッキングは起らないから、燃料がガソリンの場合は圧縮比が14〜15位、天然ガスの場合は17〜18位まで高められる。従ってミラーサイクルにより有効吸入行程が短縮されるから、その分、吸気絞りの度合は少なく、ポンプ損失が減少する。又、多量のEGRが為され、更には混合気の希薄化も行なうからポンプ損失は大幅に低減する。ミラーサイクルは行なっていても有効圧縮比は十分に高く、かつEGRにより圧縮端温度も高いから燃焼は良好である。一方、膨張比は14〜15位(ガソリンの場合)と高膨張比であるから、ポンプ損失の大幅低減と相まって熱効率の向上は著しい。
かつ、多量のEGR、希薄混合気の採用、火花ギャップの着火時期の大幅遅延化(超急速燃焼により可能となる)によりNOxの発生は殆ど0である。高負荷域になると吸気弁3′、3は図3(イ)の如く上死点、上死点前30°CAで開、共に下死点後40°CAで閉となり、一方排気弁2′、2は図3(ロ)の如く下死点前40°CAで共に開、各々上死点前50°CA、上死点後20°CAで閉となり、ミラーサイクルは解除され、圧縮比と膨張比は等しくなるが、従来の12以下に比し高いので、熱効率は向上する。火花ギャップによる着火時期は上死点又は上死点以降であるので、膨張行程で燃焼が行なわれ、NOxの発生は殆どない。又、同じ理由により最高燃焼温度・圧力が低い為、冷却損失、摩擦損失が少ない上、上死点前燃焼がない為、冷却損失、摩擦損失は一層減少する。ところで弁開閉時期制御に関しては吸気弁3、排気弁2は燃焼室1にある為、どの様に制御してもピストンと衝突する事はないが、吸気弁3′、排気弁2′はスキッシュ部Sにある為、ピストンとの衝突を避ける為、前者は上死点前には開かない様に、後者は上死点前には閉じている様に制御する必要がある(弁リセス部を形成すれば10°CA位の若干の角度は許される)。尚、低負荷域では吸気弁3′、3は上死点後に開くが排気弁2は上死点後70°CAまで開いているのでポンプ損失は発生せず、高負荷域では排気弁2′は上死点前50°で閉じるが排気弁2が上死点後20°まで開いているので、排気はスムーズに為される。中負荷域では図3(イ)、(ロ)の中間位置に吸・排気弁の弁開閉時期が為される。エンジンの始動時はミラーサイクルは用いず、高負荷域の弁開閉時期を使って高圧縮比の状態で始動する(圧縮端温度が上昇し、良好な燃焼が得られる)。本発明では集中型燃焼室、2点以上の火花ギャップによる多点着火方式を採用しているから、超急速燃焼が可能であり(前述の如く燃焼期間をクランク角で従来の1/3の15°位に短縮)、従ってエンジン暖機中は着火時期を大幅に遅らせて排気温度を高め、触媒の早期活性化が可能である(始動時は上死点前の着火時期とする)。又、圧縮比、膨張比が高いから、排ガス温度が低く(高負荷域でも低い)、触媒保護の為、濃混合気を供給する必要がないのみならず、ポートライナーを採用して排気ポートを断熱化し、触媒の早期活性化を図る事ができる(従来は排気ポートを断熱化すると排気温度が上昇し、触媒の耐久性を損ねる)。
Next, each operation state of the internal combustion engine according to the present invention will be described.
In the present invention, since the valve opening / closing timing control devices 14 'and 15' are provided, the opening / closing timing of the exhaust valve 2 (2 ') and the intake valve 3 (3') can be freely controlled (however, FIG. 1). The valve opening / closing timing control devices 14 'and 15' employed in the above change the valve opening / closing timing while keeping the valve opening / closing period constant). For example, in the low load range, the intake valves 3 'and 3 are opened at 50 ° CA and 20 ° CA after top dead center, respectively, and closed at 90 ° CA after bottom dead center as shown in FIG. On the other hand, the exhaust valves 2 'and 2 are controlled so that both are opened at 10 ° CA after bottom dead center and closed at 70 ° CA after top dead center as shown in FIG. As a result, a large amount of exhaust gas is re-inhaled (EGR) from the exhaust passage 8 and intake air (a mixture of air and exhaust gas) once sucked into the cylinder is returned to the intake passage 10 to reduce the effective intake stroke. Then, a mirror cycle having a lower compression ratio (effective compression ratio) than the expansion ratio is performed. In the present invention, since ignition / combustion by a spark gap is performed at the top dead center or afterwards in a high load range, knocking does not occur even at a high compression ratio. Therefore, when the fuel is gasoline, the compression ratio is 14-15. In the case of natural gas, it is raised to 17-18. Accordingly, the effective intake stroke is shortened by the mirror cycle, and accordingly, the degree of intake throttling is small and the pump loss is reduced. Further, since a large amount of EGR is performed and the air-fuel mixture is also diluted, the pump loss is greatly reduced. Even if the mirror cycle is performed, the effective compression ratio is sufficiently high and the compression end temperature is also high due to EGR, so that combustion is good. On the other hand, since the expansion ratio is 14 to 15 (in the case of gasoline), which is a high expansion ratio, the improvement in thermal efficiency is remarkable in combination with a significant reduction in pump loss.
In addition, the generation of NOx is almost zero due to the use of a large amount of EGR, a lean air-fuel mixture, and a significant delay in the ignition timing of the spark gap (made possible by ultra-rapid combustion). In the high load range, the intake valves 3 'and 3 open at top dead center and 30 ° CA before top dead center as shown in Fig. 3 (a), and close at 40 ° CA after bottom dead center, while the exhaust valve 2' 2 are both opened at 40 ° CA before the bottom dead center as shown in FIG. 3 (b), and closed at 50 ° CA before the top dead center and 20 ° CA after the top dead center, respectively. Although the expansion ratio is the same, the thermal efficiency is improved because it is higher than the conventional 12 or less. Since the ignition timing by the spark gap is at the top dead center or after the top dead center, combustion is performed in the expansion stroke, and NOx is hardly generated. For the same reason, since the maximum combustion temperature and pressure are low, there is little cooling loss and friction loss, and there is no combustion before top dead center, so cooling loss and friction loss are further reduced. By the way, regarding the valve opening / closing timing control, since the intake valve 3 and the exhaust valve 2 are in the combustion chamber 1, they do not collide with the piston no matter how they are controlled, but the intake valve 3 ′ and the exhaust valve 2 ′ are squish parts. In order to avoid collision with the piston, it is necessary to control the former so that it does not open before top dead center, and the latter is closed before top dead center (to form a valve recess). A slight angle of about 10 ° CA is allowed. Note that the intake valves 3 'and 3 open after top dead center in the low load range, but the exhaust valve 2 opens up to 70 ° CA after top dead center, so no pump loss occurs, and the exhaust valve 2' in the high load range. Is closed at 50 ° before the top dead center, but the exhaust valve 2 is open to 20 ° after the top dead center, so that the exhaust is smoothly performed. In the middle load range, the valve opening / closing timing of the intake / exhaust valves is set at an intermediate position in FIGS. When starting the engine, the mirror cycle is not used, and the engine is started at a high compression ratio using the valve opening / closing timing in a high load range (the compression end temperature rises and good combustion is obtained). The present invention employs a multi-point ignition system with two or more spark gaps in the centralized combustion chamber, so that ultra-rapid combustion is possible (as described above, the combustion period is 15% of the conventional 1/3 at the crank angle). Therefore, when the engine is warming up, the ignition timing is greatly delayed to increase the exhaust temperature, and the catalyst can be activated early (when starting, the ignition timing is before the top dead center). In addition, since the compression ratio and expansion ratio are high, the exhaust gas temperature is low (low even in the high load range), and not only does not need to supply a rich mixture to protect the catalyst, but a port liner is used to insulate the exhaust port. The catalyst can be activated at an early stage (conventionally, if the exhaust port is insulated, the exhaust temperature rises and the durability of the catalyst is impaired).

図4(イ)は燃焼室1に排気弁2を1個(弁開閉時期は図3(ロ)の排気弁2と同様とする)、スキッシュ部Sに吸気弁3a、3bを備えたものである。
吸気弁3a、3bの弁開閉時期は例えば低負荷域では上死点で開、下死点後90°CAで閉としてミラーサイクルを行ない、高負荷域では上死点で開、下死点後40°CAで閉とする(中負荷域ではその中間とする)。但し、弁開閉時期制御装置としては図4(ハ)の電磁式、又は図6に示す二段カム式とする。図4(ロ)は燃焼室1にのみ吸・排気弁を備えたもので、排気弁2の弁開閉時期は図3(ロ)の排気弁2と同様であり、吸気弁3のそれは図3(イ)の吸気弁3と同様である。図4(イ)、(ロ)ではいずれも燃焼室1に2点以上(図では3点)の火花ギャップを臨ませている。本発明では弁開閉時期制御装置としては図1のものの他に、例えばヘリカルスプラインをカム軸方向に移動させて弁開閉時期を制御するもの、立体カムを軸方向に移動するもの等が考えられる。図4(ハ)に示す弁開閉時期制御装置28は電磁式のものを示し、ハウジングには電磁石29、30が弁軸と一体となったプランジャー33を挟んで対向した状態で配置されている。電磁石29、30の中空部にはバネ31、32がプランジャー33を挟む様に取り付けられ、この為弁V(吸・排気弁)はバネ31、32の力のバランスによって弁リフトの中間位置で静止する。電磁石29が磁励されるとプランジャー33が上方へ引き上げられて弁は閉弁し、電磁石30が磁励されるとプランジャー33は下方へ引き付けられ弁Vは開弁する。ドライバー34は弁Vの開閉時期(弁リフトの情報も含めても良い)を指定するECU35からの制御信号に応じて電磁石29、30に交互に励磁電流を供給する。これによると弁Vの開弁、閉弁時期を任意に設定でき、自由度が増す。尚、本発明では排気弁2、2′の弁開閉時期を制御させているのは吸入行程でも排気弁2、2′を開かせて排ガスを再吸入する数であり、その必要がない場合は弁開閉時期を固定しても良い(例えば下死点前40°CAで開、上死点で閉)。この場合、排ガスを再吸入してEGRを実施しないから、その分更なる希薄混合気を用いる。
FIG. 4 (a) shows the combustion chamber 1 with one exhaust valve 2 (the valve opening and closing timing is the same as that of the exhaust valve 2 in FIG. 3 (b)), and the squish portion S is provided with intake valves 3a and 3b. is there.
The valve opening / closing timing of the intake valves 3a and 3b is, for example, open at the top dead center in the low load range and closed at 90 ° CA after the bottom dead center to perform the mirror cycle, and open at the top dead center in the high load range, after the bottom dead center Close at 40 ° CA (in the middle load range). However, the valve opening / closing timing control device is the electromagnetic type shown in FIG. 4 (c) or the two-stage cam type shown in FIG. 4 (b) is provided with an intake / exhaust valve only in the combustion chamber 1. The valve opening / closing timing of the exhaust valve 2 is the same as that of the exhaust valve 2 of FIG. 3 (b), and that of the intake valve 3 is shown in FIG. This is the same as the intake valve 3 in (a). 4 (a) and 4 (b), the combustion chamber 1 is exposed to two or more (three in the figure) spark gaps. In the present invention, in addition to the valve opening / closing timing control device shown in FIG. 1, for example, a device that controls the valve opening / closing timing by moving the helical spline in the cam shaft direction, a device that moves the solid cam in the axial direction, and the like can be considered. The valve opening / closing timing control device 28 shown in FIG. 4C is an electromagnetic type, and the electromagnets 29 and 30 are arranged in the housing in a state of facing each other with a plunger 33 integrated with the valve shaft. . The springs 31 and 32 are attached to the hollow portions of the electromagnets 29 and 30 so as to sandwich the plunger 33. Therefore, the valve V (suction / exhaust valve) is located at the middle position of the valve lift by the balance of the forces of the springs 31 and 32. Quiesce. When the electromagnet 29 is magnetized, the plunger 33 is pulled upward and the valve is closed. When the electromagnet 30 is magnetized, the plunger 33 is attracted downward and the valve V is opened. The driver 34 alternately supplies an exciting current to the electromagnets 29 and 30 in accordance with a control signal from the ECU 35 that designates the opening / closing timing of the valve V (which may include valve lift information). According to this, the opening and closing timing of the valve V can be arbitrarily set, and the degree of freedom increases. In the present invention, the valve opening / closing timing of the exhaust valves 2 and 2 'is controlled by the number of re-inhaling exhaust gas by opening the exhaust valves 2 and 2' even in the intake stroke. The valve opening / closing timing may be fixed (for example, opened at 40 ° CA before bottom dead center and closed at top dead center). In this case, since exhaust gas is re-inhaled and EGR is not performed, a further lean air-fuel mixture is used accordingly.

図1では燃焼室1をシリンダーヘッドに備えたが、ピストン側に備えた本発明による内燃機関を図5に示す。即ち、図5(イ)において、燃焼室38はピストンに備えられ、図5(ロ)の如く例えば2点の点火プラグ4(火花ギャップ)が臨む様に構成されている。36は排気弁、37は吸気弁で、各々1個づつ備えられている。
今、ピストン及び燃焼室1を取り出して描いた図5(ハ)の様にピストン直径を2R、燃焼室1を半径rの円が2r移動した時にできる長円形の形状とし、その深さrとすると、燃焼室1の容積vはほぼ2πrである(斜線部AとBとはほぼ等しい容積とする)。燃料が天然ガス(CH4)の時、圧

Figure 2014234821
おける集中型燃焼室の火炎伝播距離、Rはシリンダー中心に1点火花ギャップの従来の火炎伝播距離であるから1/2.47に短縮される。しかし本発明では圧縮比が17〜18と高圧縮比であるから(ガソリンの場合でも14〜15と高圧縮比)、圧縮上死点付近では燃料の低温酸化反応が進んでおり、これは火炎伝播速度を増大させるから、火炎伝播距離は実際は1/3位まで短縮されると考えて良い。換言すればクランク角で従来40°〜50°であった燃焼期間が1/3の15°位に短縮され、図1と同様に超急速燃焼が可能である。吸気弁が2個、排気弁が1個の時の燃焼室38及び点火プラグ4の配置を図5(ニ)に示す。又、吸気弁、排気弁が各々2個づつの時の燃焼室38、及び点火プラグ4の配置を図5(ホ)に示し、点火プラグ4は3個備えてある(大排気量エンジンに適する)。
再び図5(イ)、(ロ)に戻って吸気弁37、排気弁36の弁開閉時期を図6(ホ)、(ヘ)に示す。即ち、低負荷域では吸気弁37を上死点で開、下死点後90°CAで閉として有効吸入行程を減少させてミラーサイクルを行なうと共に、排気弁36を下死点前40°CAで開、上死点後80°CAで閉(上死点付近では殆ど閉とした後に)として多量のEGRを行ない、高温の排ガスを再吸入して圧縮端温度を高め、燃焼を良好にしている(排気弁36の弁開閉時期制御装置については、これは必要不可欠なものではなく、下死点前40°CAで開、上死点で閉として固定し、EGRを行なわない様にしても良いが、ここでは可変としている)。この時、混合気を希薄化し、より一層ポンプ損失を減少させる事が望ましい。尚、低負荷でミラーサイクルを行なうに当っては、吸気弁37を下死点後90°CAで閉としていたが、下死点前90°CAで閉としても同様に有効行程を短縮化してミラーサイクルを行なう事ができる。
高負荷域では吸気弁37は上死点前10°CAで開、下死点後40°CAで閉、排気弁36は下死点前40°CAで開、上死点で閉としてミラーサイクル、EGRは行なわない。この様に低負荷域と高負荷域とでは弁開閉時期が異なるが、これはエンジン負荷、回転速度などの運転条件により弁開閉用のカムを切り換えて行なう(2段カム切り換え式)。尚、吸気弁37は高負荷域では上死点前10°CAで開くが、弁リフトは僅かなので、適正な弁リセス部によりピストンとの衝突は全く心配ない(排気弁36も上死点後10°CAで閉としても良い)。
エンジン暖機時(冷態時)では吸気弁37は圧縮比の高い高負荷域での弁開閉時期を使用するが、超急速燃焼が可能であるから、着火時期を大幅に遅らせて触媒の早期活性化を図る。この場合、燃焼速度を更に高める為、図5(ロ)のスワール制御弁39によりシリンダー内スワールを強化するのが良い。次に、弁開閉時期を切り換える機構(弁開閉時期制御装置)について説明する。この機構は公知のものであるが、図6(イ)の如く弁Vを駆動するロッカーアーム45に隣接してロッカーアーム44がロッカー軸41(回転しない)に備えられ、X−X′軸にカム42、43を有するカム軸が配置されてロッカアーム44、45を各々駆動する(押し下げる)。ロッカーアーム44は図示しないロストモーションスプリングによりカム42に常時接触している。弁Vが図5(イ)の吸気弁37の場合を説明すると、図示しない油圧制御弁により油圧ポンプからの油圧がロッカー軸41内の油圧に伝達されると、油圧ピストン48aがバネ46に抗してロッカーアーム44の穴に嵌り込み、ロッカーアーム44と45は結合・一体化され、ミラーサイクル用のカム42のプロフィール通りに弁Vが駆動され、上死点で開、下死点後90°CAで閉となる。エンジン負荷・回転速度などの条件を検出してECUからの出力信号によりロッカー軸41内の油圧が低下するとバネ46により油圧ピストン48aがロッカーアーム44の穴から抜け出し、ミラーサイクルは解除され、カム43のプロフィール通りに弁Vが駆動され、上死点前10°CAで開、下死点後40°CAで閉となる。尚、油圧ピストン48aとバネ座47とは各々の端面が常に必らずどこかで接触しており、一瞬でも離れる事がない様になっている。弁Vが図5(イ)の排気弁36の場合も同様の弁開閉時期制御装置により弁開閉時期が制御される(説明略)。
図6(イ)の油圧ピストン48aはX−X′軸方向に移動するが、これと直角方向に移動させてカム42、43の切り換えを行なう事もできる。即ち、図6(ロ)の如くロッカーアーム45′に突出部49を形成し、ここに形成された穴にロッカーアーム44′に内蔵された油圧ピストン48bがX−X′軸と直角方向に移動して嵌り込むのである。ロッカーアーム44′、45′が油圧ピストン48bにより結合されると、ミラーサイクル用カム42のプロフィール通りに弁Vが駆動される。図6(ハ)はロッカーアーム50に切り換え体51を備えたもので、ロッカーアーム50はカム43により駆動されるが、切り換え体51はカム42により駆動されるものである。
C方向から見た図を図6(ニ)に示すが、常にロストモーションスプリング52によりカム42に押し付けられており、このロストモーションスプリング52は弁Vの開閉には何ら関与しない弱いバネである。ロッカー軸41内の油圧が高まると油圧ピストン48C飛び出して切り換え体51をロックし、ロッカーアーム50はカム42のプロフィール通りに駆動され、弁Vが吸気弁37の場合は上死点で開、下死点後90°CAで閉となって、ミラーサイクルを行なう。ロッカー軸41内の油圧が低下すると油圧ピストン48Cはバネにより引っ込み(ロック解除)。切り換え体51はカム42のプロフィール通りに駆動されるがロッカーアーム50を駆動せず(空振り)、これはカム43によって駆動され、上死点前10°CAで開、下死点後40°CAで閉となる。Although the combustion chamber 1 is provided in the cylinder head in FIG. 1, the internal combustion engine according to the present invention provided on the piston side is shown in FIG. That is, in FIG. 5 (a), the combustion chamber 38 is provided in the piston, and is configured such that, for example, two spark plugs 4 (spark gaps) face as shown in FIG. 5 (b). 36 is an exhaust valve, and 37 is an intake valve, each provided one by one.
As shown in FIG. 5C, the piston and the combustion chamber 1 are taken out, and the piston diameter is 2R, and the combustion chamber 1 is formed into an oval shape when a circle with a radius r is moved by 2r. Then, the volume v of the combustion chamber 1 is approximately 2πr 3 (the hatched portions A and B are approximately equal in volume). When the fuel is natural gas (CH4), the pressure
Figure 2014234821
The flame propagation distance of the centralized combustion chamber in this case, R, is a conventional flame propagation distance of one spark flower gap at the center of the cylinder, so it is shortened to 1 / 2.47. However, in the present invention, since the compression ratio is a high compression ratio of 17 to 18 (high compression ratio of 14 to 15 even in the case of gasoline), the low-temperature oxidation reaction of fuel proceeds near the compression top dead center. Since the propagation speed is increased, it can be considered that the flame propagation distance is actually shortened to 1/3. In other words, the combustion period of the conventional crank angle of 40 ° to 50 ° is shortened to about 1/3 of 15 °, and ultra-rapid combustion is possible as in FIG. FIG. 5D shows the arrangement of the combustion chamber 38 and the spark plug 4 when there are two intake valves and one exhaust valve. FIG. 5E shows the arrangement of the combustion chamber 38 and the spark plug 4 when there are two intake valves and two exhaust valves, respectively. Three spark plugs 4 are provided (suitable for large displacement engines). ).
Returning again to FIGS. 5 (a) and 5 (b), the valve opening / closing timings of the intake valve 37 and the exhaust valve 36 are shown in FIGS. 6 (e) and 6 (f). That is, in the low load region, the intake valve 37 is opened at the top dead center and closed at 90 ° CA after the bottom dead center to perform the mirror cycle by reducing the effective intake stroke, and the exhaust valve 36 is set to 40 ° CA before the bottom dead center. Open and close at 80 ° C after top dead center (after almost closed near top dead center), perform a large amount of EGR, re-suction hot exhaust gas to increase compression end temperature, and improve combustion (The valve opening / closing timing control device for the exhaust valve 36 is not indispensable. It is fixed at 40 ° CA before bottom dead center and closed at top dead center so that EGR is not performed. Good but variable here) At this time, it is desirable to dilute the air-fuel mixture and further reduce the pump loss. In performing the mirror cycle at a low load, the intake valve 37 was closed at 90 ° CA after bottom dead center. However, if the intake valve 37 is closed at 90 ° CA before bottom dead center, the effective stroke is shortened in the same way. A mirror cycle can be performed.
In the high load range, the intake valve 37 opens at 10 ° CA before top dead center, closes at 40 ° CA after bottom dead center, and the exhaust valve 36 opens at 40 ° CA before bottom dead center, and closes at top dead center. , EGR is not performed. In this way, the valve opening / closing timing differs between the low load region and the high load region, but this is performed by switching the valve opening / closing cam according to operating conditions such as engine load and rotation speed (two-stage cam switching type). The intake valve 37 opens at 10 ° CA before top dead center in a high load range, but the valve lift is slight, so there is no concern about collision with the piston due to the appropriate valve recess (the exhaust valve 36 is also after top dead center). It may be closed at 10 ° CA).
When the engine is warm (cold), the intake valve 37 uses a valve opening / closing timing in a high load region with a high compression ratio. However, since the super-rapid combustion is possible, the ignition timing is greatly delayed to shorten the catalyst early. Try to activate. In this case, in order to further increase the combustion speed, it is preferable to strengthen the swirl in the cylinder by the swirl control valve 39 in FIG. Next, a mechanism for switching the valve opening / closing timing (valve opening / closing timing control device) will be described. Although this mechanism is known, a rocker arm 44 is provided on a rocker shaft 41 (not rotating) adjacent to a rocker arm 45 for driving the valve V as shown in FIG. Cam shafts having cams 42 and 43 are arranged to drive (depress) the rocker arms 44 and 45, respectively. The rocker arm 44 is always in contact with the cam 42 by a lost motion spring (not shown). The case where the valve V is the intake valve 37 of FIG. 5A will be described. When the hydraulic pressure from the hydraulic pump is transmitted to the hydraulic pressure in the rocker shaft 41 by a hydraulic control valve (not shown), the hydraulic piston 48a resists the spring 46. The rocker arms 44 and 45 are combined and integrated, and the valve V is driven according to the profile of the cam 42 for the mirror cycle, opened at the top dead center, and 90 after the bottom dead center. ° Closes at CA. When conditions such as engine load and rotational speed are detected and the hydraulic pressure in the rocker shaft 41 is lowered by an output signal from the ECU, the hydraulic piston 48a is pulled out of the hole of the rocker arm 44 by the spring 46, the mirror cycle is released, and the cam 43 The valve V is driven in accordance with the profile of FIG. 5 and is opened at 10 ° CA before top dead center and closed at 40 ° CA after bottom dead center. Note that the end surfaces of the hydraulic piston 48a and the spring seat 47 are always in contact with each other so that they are not separated even for a moment. When the valve V is the exhaust valve 36 shown in FIG. 5A, the valve opening / closing timing is controlled by a similar valve opening / closing timing control device (not shown).
The hydraulic piston 48a in FIG. 6 (a) moves in the XX 'axis direction, but the cams 42 and 43 can be switched by moving in the direction perpendicular thereto. That is, as shown in FIG. 6 (b), the protrusion 49 is formed on the rocker arm 45 ', and the hydraulic piston 48b built in the rocker arm 44' moves in the hole formed here in the direction perpendicular to the XX 'axis. It fits in. When the rocker arms 44 ′ and 45 ′ are coupled by the hydraulic piston 48 b, the valve V is driven according to the profile of the mirror cycle cam 42. In FIG. 6C, the rocker arm 50 is provided with a switching body 51, and the rocker arm 50 is driven by a cam 43, but the switching body 51 is driven by a cam 42.
FIG. 6 (d) shows a view as seen from the C direction. The lost motion spring 52 is always pressed against the cam 42 by the lost motion spring 52, and the lost motion spring 52 is a weak spring that is not involved in the opening and closing of the valve V. When the hydraulic pressure in the rocker shaft 41 increases, the hydraulic piston 48C pops out to lock the switching body 51, the rocker arm 50 is driven according to the profile of the cam 42, and when the valve V is the intake valve 37, it opens at the top dead center. Closed at 90 ° CA after the dead point, a mirror cycle is performed. When the hydraulic pressure in the rocker shaft 41 decreases, the hydraulic piston 48C is retracted (unlocked) by the spring. The switching body 51 is driven according to the profile of the cam 42 but does not drive the rocker arm 50 (skipping), which is driven by the cam 43 and opens at 10 ° CA before top dead center and 40 ° CA after bottom dead center. It closes at.

ところで図5(イ)において、多気筒機関では低負荷域でその一部を(例えば4気筒機関では2気筒を)吸排気弁休止とすればポンプ損失が減少して、更に熱効率が向上する(図1も同様である)。そこで次に吸・排気弁の作動も休止もする機構について説明する。即ち図7(イ)においてロッカー軸41には弁Vを駆動するロッカーアーム53に隣接して各々ロッカーアーム54、55が備えられ、ロッカー軸41内は隔壁56により分離され、各々の空間は油圧制御弁57、58に接続している。油圧制御弁57はエンジンの負荷、回転速度、冷却水温などの条件により図示しないECUからの出力信号を受け、油圧ポンプからの油圧をロッカー軸41内に供給する。弁Vは吸気弁又は排気弁であり、説明は吸気弁の場合について為されるが、排気弁の場合も同様に説明される。エンジン高負荷域や始動時では油圧制御弁57により油圧ポンプからの油圧は遮断され(低圧に維持)、従って油圧ピストン48b(図6(ロ)と同様にX−X′軸に垂直に移動)はバネによりロッカーアーム54の穴に押し込まれ、図示の如くロッカーアーム53と54とは結合・一体となり、弁Vはカム43により駆動され、図6(ホ)の如く高負荷域の弁開閉時期となる。部分負荷域では油圧制御弁57は油圧ポンプからの高圧を供給して油圧ピストン48bを抜くと共に(ローカーアーム53と54は分離)、油圧制御弁58は油圧ポンプからの高圧を供給して油圧ピストン48aをロッカーアーム55の穴に押し込み、ロッカーアーム53と55とを結合・一体化させ、これにより弁Vはカム42により駆動され、図6(ホ)の如く低負荷域の弁開閉時期となる。
低負荷域では(吸気・排気弁を休止させるべき低負荷域の一定の領域)油圧制御弁57、58を制御してロッカーアーム53、54、55の相互間の結合を解除し、かつロッカーアーム53はカムでは駆動されないから、弁Vの作動は休止する。図6(ロ)の油圧ピストン48bは高圧が作用するとバネ46に抗してロッカーアーム同志を結合するタイプであったが、図7(イ)の油圧ピストン48bは高圧が作用するとバネに抗してロッカーアーム間の結合を解除するタイプであり、作用を逆にしただけのものである。尚、ロッカー軸41内が高圧になるとロッカーアーム53と54とは結合が解除されると共にロッカーアーム53と55とは結合され、ロッカー軸41内の油圧が低圧になるとロッカーアーム53と54とは結合すると共にロッカーアーム53と55とは結合が解除されるから、油圧制御弁57と58とは共通化する事ができる。排気弁の場合も(弁Vが排気弁)同様に説明される。図5(イ)で排気弁36の弁開閉時期を固定しておく場合は、低負荷域で排気弁36を休止する機構を加えるだけで良く、図7(ロ)の如くロッカー軸41′内の油圧が低圧の場合は、油圧ピストン48Cがバネにより相手の穴に嵌り込んで切り換え体51をロッカーアームに固定し、排気弁36をカムにより駆動するが、油圧が高圧になると油圧ピストン48Cを押し出して、切り換え体51はカムのプロフィール通りに駆動されるが、ロッカーアームを駆動するには到らない。
即ち、排気弁36は休止状態となる。この油圧ピストン48Cは図6(ニ)のものと作用が逆のものである。以上の如く図7(イ)では油圧ピストンにより隣接するロッカーアームを結合又は結合を解除したり、図7(ロ)では油圧ピストンにより、切り換え体51をロッカーアームにロック又はロックを解除したりする事によって弁Vの弁開閉時期を可変化したり、休止させていたが、これらを適当に組み合わせる事によって図7(ハ)、(ニ)の如く更に多くの実施例を考える事ができる。先ず図7(ハ)において図示しない油圧ピストンによってロッカーアーム60と59とが結合・一体化すれば(切り換え体51のロックは解除しておく)、弁Vはカム42のプロフィール通りに駆動され、ロッカーアーム59と60との結合を解除すると共に図示しない油圧ピストンにより駆動体51をロッカーアーム59と結合・一体化(ロック)すれば、弁Vはカム43のプロフィール通りに駆動される。そしてロッカーアーム59と60との結合を解除し、切り換え体51のロックを解除すれば弁Vは休止する。次に図7(ニ)において左右の、切り換え体51のロックを共に解除すれば弁Vは休止し、右側の切り換え体51をロックすれば(左側の切り換え51のロックは解除)弁Vはカム42のプロフィール通りに駆動され、右側の切り換え体51のロックを解除すると共に左側の切り換え体51をロックすれば、弁Vはカム43のプロフィール通りに駆動される。尚、図6、7のロッカーアームはその一端部にロッカー軸を有するものであったが、ロッカーアームの中間位置にロッカー軸を有するものにも本発明は同様に適用され、その一例を図7(ホ)に示す。
By the way, in FIG. 5A, if a part of the multi-cylinder engine is in a low load region (for example, two cylinders in a four-cylinder engine) are deactivated, the pump loss is reduced and the thermal efficiency is further improved ( The same applies to FIG. 1). Next, a mechanism for operating and stopping the intake / exhaust valves will be described. That is, in FIG. 7 (a), the rocker shaft 41 is provided with rocker arms 54 and 55 adjacent to the rocker arm 53 for driving the valve V, and the interior of the rocker shaft 41 is separated by the partition wall 56. The control valves 57 and 58 are connected. The hydraulic control valve 57 receives an output signal from an ECU (not shown) according to conditions such as engine load, rotation speed, and coolant temperature, and supplies hydraulic pressure from the hydraulic pump into the rocker shaft 41. The valve V is an intake valve or an exhaust valve, and the description will be given for the case of the intake valve, but the same applies to the case of the exhaust valve. In the engine high load range or at the time of start-up, the hydraulic pressure from the hydraulic pump is shut off by the hydraulic control valve 57 (maintained at a low pressure), and therefore the hydraulic piston 48b (moves perpendicularly to the XX ′ axis as in FIG. 6 (b)). Is pushed into the hole of the rocker arm 54 by a spring, and the rocker arms 53 and 54 are combined and integrated as shown in the figure, the valve V is driven by the cam 43, and the valve opening / closing timing in a high load region as shown in FIG. It becomes. In the partial load region, the hydraulic control valve 57 supplies the high pressure from the hydraulic pump and pulls out the hydraulic piston 48b (the loker arms 53 and 54 are separated), and the hydraulic control valve 58 supplies the high pressure from the hydraulic pump to the hydraulic piston. 48a is pushed into the hole of the rocker arm 55, and the rocker arms 53 and 55 are combined and integrated. As a result, the valve V is driven by the cam 42, and the valve opening / closing timing in the low load region is reached as shown in FIG. .
In the low load region (a constant region in the low load region where the intake / exhaust valves should be stopped), the hydraulic control valves 57 and 58 are controlled to release the coupling between the rocker arms 53, 54 and 55, and the rocker arm Since 53 is not driven by the cam, the operation of the valve V is stopped. The hydraulic piston 48b in FIG. 6 (b) is a type that couples the rocker arms against the spring 46 when a high pressure acts, whereas the hydraulic piston 48b in FIG. 7 (a) resists the spring when a high pressure acts. This is a type in which the connection between the rocker arms is released, and the action is simply reversed. When the inside of the rocker shaft 41 becomes high pressure, the rocker arms 53 and 54 are uncoupled and the rocker arms 53 and 55 are joined. When the oil pressure inside the rocker shaft 41 becomes low, the rocker arms 53 and 54 Since they are coupled and the rocker arms 53 and 55 are uncoupled, the hydraulic control valves 57 and 58 can be shared. The same applies to the exhaust valve (valve V is the exhaust valve). In the case where the valve opening / closing timing of the exhaust valve 36 is fixed in FIG. 5 (a), it is only necessary to add a mechanism for stopping the exhaust valve 36 in the low load region, and the inside of the rocker shaft 41 'as shown in FIG. 7 (b). When the hydraulic pressure is low, the hydraulic piston 48C is fitted into the mating hole by a spring to fix the switching body 51 to the rocker arm, and the exhaust valve 36 is driven by a cam. Pushing out, the switching body 51 is driven according to the profile of the cam, but does not drive the rocker arm.
That is, the exhaust valve 36 is in a resting state. The hydraulic piston 48C has a reverse action to that of FIG. As described above, in FIG. 7 (a), adjacent rocker arms are coupled or released by the hydraulic piston, and in FIG. 7 (b), the switching body 51 is locked or unlocked to the rocker arm by the hydraulic piston. Although the valve opening / closing timing of the valve V has been changed or stopped by this, more embodiments can be considered as shown in FIGS. 7C and 7D by appropriately combining them. First, when the rocker arms 60 and 59 are coupled and integrated by a hydraulic piston (not shown) in FIG. 7C (the switching body 51 is unlocked), the valve V is driven according to the profile of the cam 42, When the coupling between the rocker arms 59 and 60 is released and the driving body 51 is coupled and integrated (locked) with the rocker arm 59 by a hydraulic piston (not shown), the valve V is driven according to the profile of the cam 43. Then, if the coupling between the rocker arms 59 and 60 is released and the lock of the switching body 51 is released, the valve V is deactivated. Next, in FIG. 7D, the valve V is deactivated when both the left and right switching bodies 51 are unlocked, and the right side switching body 51 is locked (the left switching 51 is unlocked). When the right switching body 51 is unlocked and the left switching body 51 is locked, the valve V is driven according to the profile of the cam 43. 6 and 7 have a rocker shaft at one end thereof, the present invention is similarly applied to a rocker arm having a rocker shaft at an intermediate position of the rocker arm, an example of which is shown in FIG. Shown in (e).

尚、図5の本発明では低負荷域でも吸気弁37の弁開閉時期を高負荷域のそれを使用すると、圧縮比は非常に高くなり、かつ多量のEGRが為される為、圧縮端温度が大幅に上昇するから、HCCI燃焼(予混合圧縮着火燃焼)を行なわせる事ができ、熱効率を大幅に向上させる事ができる。In the present invention of FIG. 5, if the valve opening / closing timing of the intake valve 37 is used in the high load region even in the low load region, the compression ratio becomes very high and a large amount of EGR is performed. , The HCCI combustion (premixed compression ignition combustion) can be performed, and the thermal efficiency can be greatly improved.

本発明による超高効率内燃機関を示す図。1 is a diagram showing an ultra-high efficiency internal combustion engine according to the present invention. 集中型燃焼室と火花ギャップの配置を示す図。The figure which shows arrangement | positioning of a concentrated combustion chamber and a spark gap. 吸・排気弁の弁開閉時期制御を示す図。The figure which shows valve opening / closing timing control of an intake / exhaust valve. 本発明の各種実施例を示す図。The figure which shows the various Example of this invention. 本発明による超高効率内燃機関を示す図。1 is a diagram showing an ultra-high efficiency internal combustion engine according to the present invention. 弁開閉時期制御装置を示す図。The figure which shows a valve opening / closing timing control apparatus. 弁作動休止をも可能とする弁開閉時期制御装置を示す図。The figure which shows the valve opening / closing timing control apparatus which also enables valve operation stop.

1・38は燃焼室、2・2′・36は排気弁、3・3′・37は吸気弁、3a・3bは吸気弁、4は点火プラグ、5・44・45・44′・45′・50・53・54・55・59・60・61はロッカーアーム、6はカム軸、7・42・43はカム、8は排気通路、9は触媒、10は吸気通路、11は吸気絞り弁、12・40はアクチュエーター、13は燃料噴射弁、14・15はスプロケット、14′・15′は弁開閉時期制御装置、16はハウジング、17はローター、18は進角室、19は遅角室、20・35はECU、21・57・58は油圧制御弁、22はプランジャー、23は電磁ソレノイド、24はスプール弁、25・31・32・46はバネ、26は火花ギャップ、27は不導体板、28は弁開閉時期制御装置、29・30は電磁石、33はプランジャー、34はドライバー、39はスワール制御弁、41・41′はロッカー軸、47はバネ座、48a・48b・48Cは油圧ピストン、49は突出部、52はロストモーションスプリング、56は隔壁、Vは弁である、51は切り換え体である。1 and 38 are combustion chambers, 2 and 2 'and 36 are exhaust valves, 3 and 3' and 37 are intake valves, 3a and 3b are intake valves, 4 is a spark plug, 5 · 44 · 45 · 44 '· 45' 50, 53, 54, 55, 59, 60 and 61 are rocker arms, 6 is a camshaft, 7 is 42, 43 is a cam, 8 is an exhaust passage, 9 is a catalyst, 10 is an intake passage, and 11 is an intake throttle valve 12 and 40 are actuators, 13 is a fuel injection valve, 14 and 15 are sprockets, 14 'and 15' are valve timing control devices, 16 is a housing, 17 is a rotor, 18 is an advance chamber, 19 is a retard chamber , 20, 35 are ECUs, 21, 57, 58 are hydraulic control valves, 22 are plungers, 23 are electromagnetic solenoids, 24 are spool valves, 25, 31, 32, 46 are springs, 26 are spark gaps, 27 are non- Conductor plate, 28 is a valve opening / closing timing control device, 29/3 Is an electromagnet, 33 is a plunger, 34 is a driver, 39 is a swirl control valve, 41 and 41 'are rocker shafts, 47 is a spring seat, 48a, 48b and 48C are hydraulic pistons, 49 is a protrusion, 52 is a lost motion spring , 56 are partition walls, V is a valve, and 51 is a switching body.

Claims (2)

吸気弁及び排気弁を有する4サイクル内燃機関において、燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップが臨む様に構成し、かつ前記火花ギャップの着火時期を機関高負荷域においては圧縮上死点又はそれ以降となる様に制御せしめ、更に吸気弁の弁開閉時期を可変化する弁開閉時期制御装置を備えて、これにより機関低負荷域では前記吸気弁の閉時期を変化させて有効吸入行程を減少させ、かくして燃焼室内の圧縮された給気を前記火花ギャップにより着火・燃焼させてミラーサイクルを行なう様に構成した事を特徴とする超高効率内燃機関。In a four-cycle internal combustion engine having an intake valve and an exhaust valve, a squish portion having a minute gap is formed around the combustion chamber between the top surface of the piston at the top dead center position and the wall surface of the cylinder head, and the combustion chamber is intensively combusted. The combustion chamber is configured so that two or more spark gaps face the combustion chamber, and the ignition timing of the spark gap is controlled to be at or above the compression top dead center in the high engine load range. A valve opening / closing timing control device for varying the valve opening / closing timing of the valve is provided, thereby changing the closing timing of the intake valve to reduce the effective intake stroke in the engine low load range, thus reducing the compressed supply in the combustion chamber. An ultra-high-efficiency internal combustion engine configured to perform a mirror cycle by igniting and burning a gas through the spark gap. ピストンに凹部を形成して燃焼室とし、この燃焼室に2点以上の火花ギャップが臨む様に構成した請求項1記載の超高効率内燃機関。2. An ultra-high efficiency internal combustion engine according to claim 1, wherein a recess is formed in the piston to form a combustion chamber, and two or more spark gaps face the combustion chamber.
JP2013144974A 2013-06-03 2013-06-03 Ultra-high-efficiency internal combustion engine with centralized combustion chamber Pending JP2014234821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013144974A JP2014234821A (en) 2013-06-03 2013-06-03 Ultra-high-efficiency internal combustion engine with centralized combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144974A JP2014234821A (en) 2013-06-03 2013-06-03 Ultra-high-efficiency internal combustion engine with centralized combustion chamber

Publications (1)

Publication Number Publication Date
JP2014234821A true JP2014234821A (en) 2014-12-15

Family

ID=52137694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144974A Pending JP2014234821A (en) 2013-06-03 2013-06-03 Ultra-high-efficiency internal combustion engine with centralized combustion chamber

Country Status (1)

Country Link
JP (1) JP2014234821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082169A (en) * 2017-09-29 2019-05-30 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Two valve type internal combustion engine
JP2019082168A (en) * 2017-09-29 2019-05-30 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Internal combustion engine directly injecting fuel in motion direction of intake air
JP2020037906A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Miller cycle engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082169A (en) * 2017-09-29 2019-05-30 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Two valve type internal combustion engine
JP2019082168A (en) * 2017-09-29 2019-05-30 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Internal combustion engine directly injecting fuel in motion direction of intake air
JP7267704B2 (en) 2017-09-29 2023-05-02 イエフペ エネルジ ヌヴェル Internal combustion engine with direct fuel injection in the direction of motion of the intake air
JP2020037906A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Miller cycle engine
JP7151288B2 (en) 2018-09-04 2022-10-12 トヨタ自動車株式会社 miller cycle engine

Similar Documents

Publication Publication Date Title
JP4525517B2 (en) Internal combustion engine
JP4124224B2 (en) Control device for four-cycle premixed compression self-ignition internal combustion engine
US9062598B2 (en) Internal combustion engine operable in homogeneous-charge compression mode
JP6131840B2 (en) Control device for compression ignition engine
JP4335663B2 (en) 4-cycle reciprocating internal combustion engine
JP5589906B2 (en) gasoline engine
US7406937B2 (en) Method for operating an internal combustion engine
JP2014234821A (en) Ultra-high-efficiency internal combustion engine with centralized combustion chamber
US20180283296A1 (en) Control device of compression self-ignition engine
US20190093571A1 (en) Engine control device
US10655546B2 (en) Control device for internal combustion engine
JP2009174432A (en) Engine intake/exhaust control method and engine intake/exhaust control device
JP2009180220A (en) High pressure oxygen injection type internal combustion engine
US7506625B2 (en) Method and apparatus for controlling engine valve timing
EP2063092A1 (en) An internal combustion engine system, and a method in such an engine system
WO2015013141A1 (en) Six stroke internal combustion engine and a method of operation
JP2013194730A (en) Super-high efficiency four-cycle internal combustion engine
US20170298841A1 (en) Diesel engine and method for operating a diesel engine
JP6265082B2 (en) Control device for compression ignition engine
US11156170B2 (en) Control device for internal combustion engine
JP2008309145A (en) Oxygen injection type two-cycle diesel engine
JP6245454B2 (en) Engine control device
JP4801744B2 (en) Method and apparatus for operating an internal combustion engine
JP5359629B2 (en) Combustion control device for internal combustion engine
JP2009133296A (en) Oxygen injection type four-cycle internal combustion engine