JP2013194730A - Super-high efficiency four-cycle internal combustion engine - Google Patents

Super-high efficiency four-cycle internal combustion engine Download PDF

Info

Publication number
JP2013194730A
JP2013194730A JP2012101821A JP2012101821A JP2013194730A JP 2013194730 A JP2013194730 A JP 2013194730A JP 2012101821 A JP2012101821 A JP 2012101821A JP 2012101821 A JP2012101821 A JP 2012101821A JP 2013194730 A JP2013194730 A JP 2013194730A
Authority
JP
Japan
Prior art keywords
valve
combustion
combustion chamber
dead center
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012101821A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012101821A priority Critical patent/JP2013194730A/en
Publication of JP2013194730A publication Critical patent/JP2013194730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably enhance efficiency by adopting a concentrated combustion chamber, multi-point ignition, a high compression ratio, a high expansion ratio, and an HCCI combusting system, and to reduce NOemission by adopting an ignition time of a top dead center or a subsequent point owing to rapid combustion by the multi-point ignition.SOLUTION: A concentrated combustion chamber is constituted by arranging a combustion chamber 1 with an intake valve 8 and an exhaust valve 2 and forming a squish part S with a minute gap between a top face of a piston and a wall surface of a cylinder head at a top dead center around the combustion chamber. Two or more spark gaps (ignition plug 21) are arranged in the combustion chamber and an ignition time of each spark gap is set to the top dead center or the subsequent point. Furthermore, in a premixed compression ignition combustion range, a closing time of an exhaust valve is set later than the top dead center to reabsorb an exhaust gas into a cylinder by a valve timing control device 15 of the exhaust valve, and in the premixed compression ignition combustion range, a closing time of an intake valve is advanced to increase an effective compression ratio by a valve timing control device 16 of the intake valve. Premixed compression ignition combustion and spark ignition combustion are switched depending on an operating condition of an engine.

Description

本発明は集中型燃焼室、多点着火方式、高圧縮比、高膨張比、HCCI燃焼方式などを採用して熱効率の超効率化を達成し、NOxの発生を極小レベルに抑える高効率4サイクル内燃機関に関するものである。The present invention adopts a centralized combustion chamber, multi-point ignition system, high compression ratio, high expansion ratio, HCCI combustion system, etc. to achieve super-efficient thermal efficiency and high efficiency 4 cycles to minimize NOx generation The present invention relates to an internal combustion engine.

一般に4サイクル内燃機関では熱効率が低負荷域で10〜20%、中・高負荷域で30〜35%と低い値に留まっている。この理由はノッキング回避から圧縮比が12以下であること、吸気絞りによるポンプ損失があること、希薄燃焼が困難なこと、3〜8気筒の多気筒採用による摩擦損失・冷却損失が大きいことなどが原因である。特に、近年、超希薄燃焼が可能であり、ポンプ損失及び冷却損失が大幅に低減するHCCI燃焼法(予混合圧縮着火燃焼)が研究されているが、圧縮端温度が1000K必要であると言われ、4サイクル機関では実現が困難である。In general, in a four-cycle internal combustion engine, the thermal efficiency remains at a low value of 10 to 20% in a low load region and 30 to 35% in a medium / high load region. This is because the compression ratio is 12 or less to avoid knocking, there is a pump loss due to the intake throttle, the lean combustion is difficult, and the friction loss / cooling loss due to the adoption of multiple cylinders of 3 to 8 cylinders is large. Responsible. In particular, in recent years, the HCCI combustion method (premixed compression ignition combustion), in which ultra lean combustion is possible and pump loss and cooling loss are greatly reduced, is said to require a compression end temperature of 1000K. It is difficult to achieve with a 4-cycle engine.

本発明の目的は第1に熱効率の超高効率化を達成することである。この為、集中型燃焼室、多点着火方式、14〜15位の高圧縮比、18位の膨張比、HCCI燃焼方式、更には従来は3〜8気筒機関であったものを2〜4気筒の少数気筒化して摩擦損失、冷却損失を減少させる手段を採用している。第2に多点着火による急速燃焼法により上死点又はそれ以降の着火時期を採用して超低NOxエミッションの実現を目的としている。低負荷域では火花着火方式に頼らないHCCI燃焼方式により超低NOxエミッションを実現し、かくして全負荷域で超低NOxエミッションを達成することである。The object of the present invention is first to achieve ultra-high efficiency of thermal efficiency. For this reason, a concentrated combustion chamber, a multipoint ignition system, a high compression ratio of 14 to 15th, an expansion ratio of 18th, an HCCI combustion system, and a conventional 2 to 4 cylinder engine that was a 3 to 8 cylinder engine A means to reduce friction loss and cooling loss by adopting a small number of cylinders is adopted. Secondly, it aims at realizing ultra-low NOx emission by adopting top dead center or subsequent ignition timing by a rapid combustion method by multi-point ignition. To achieve ultra-low NOx emission by the HCCI combustion method that does not rely on the spark ignition method in the low-load region, and thus achieve ultra-low NOx emission in the entire load region.

課題を解決する為の手段Means to solve the problem

本発明は上記課題を解決する為、吸気カム軸に備えられたカムにより駆動される吸気弁及び排気カム軸に備えられたカムにより駆動される排気弁を有する4サイクル内燃機関において、前記排気弁を燃焼室に備え、前記燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップを臨ませ、かつ前記火花ギャップの着火時期を圧縮上死点又はそれ以降となる様に制御せしめ、更に前記排気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では前記排気弁の閉時期を上死点より遅らせて排ガスをシリンダー内に再吸入し、エンジン負荷に対応して前記排気弁の開時期を制御して有効膨張比を有効圧縮比よりも大きくなる様に制御した。この第1の発明では前記吸気弁を燃焼室に備え、吸気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では吸気弁の閉時期を早めて有効圧縮比を高め、エンジンの負荷、回転速度などの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える様にした。第2の発明では前記吸気弁を燃焼室に備えると共にその開閉時期を固定化し、エンジンの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える様にした。第3の発明では前記吸気弁を前記スキッシュ部に臨む様に備え、エンジンの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える様にした。In order to solve the above problems, the present invention provides a four-cycle internal combustion engine having an intake valve driven by a cam provided on an intake cam shaft and an exhaust valve driven by a cam provided on an exhaust cam shaft. In the combustion chamber, and a squish portion having a minute gap is formed between the top surface of the piston and the cylinder head wall surface at the top dead center position around the combustion chamber so that the combustion chamber is a concentrated combustion chamber. A valve opening / closing timing control device that allows two or more spark gaps to face and controls the ignition timing of the spark gap to be at or above the compression top dead center and further varies the opening / closing timing of the exhaust valve. In the premixed compression ignition combustion region, the exhaust valve closing timing is delayed from the top dead center, the exhaust gas is re-inhaled into the cylinder, and the exhaust valve opening timing is controlled according to the engine load. To control the expansion ratio as greater than the effective compression ratio. In the first aspect of the invention, the intake valve is provided in the combustion chamber, and the valve opening / closing timing control device that varies the opening / closing timing of the intake valve increases the effective compression ratio by increasing the closing timing of the intake valve in the premixed compression ignition combustion region. The premixed compression ignition combustion and the spark ignition combustion are switched according to the operating conditions such as engine load and rotation speed. In the second aspect of the invention, the intake valve is provided in the combustion chamber and the opening / closing timing thereof is fixed, so that the premixed compression ignition combustion and the spark ignition combustion are switched according to the operating condition of the engine. In the third aspect of the invention, the intake valve is provided so as to face the squish portion, and the premixed compression ignition combustion and the spark ignition combustion are switched depending on the operating condition of the engine.

発明の効果Effect of the invention

本発明によればコンパクトな集中型燃焼室に2点以上の火花ギャップを臨ませて多点着火方式とし、超急速燃焼を達成しているから(燃燃期間はクランク角で従来の1/3の15°位)、上死点又はそれ以降の着火時期を採用する事ができる。従って最高燃焼温度、圧力が低く冷却損失、摩擦損失が少ないのみならず、上死点前燃焼が起らない為、この期間に相当する冷却損失、摩擦損失が少ない特徴がある。特に冷却損失に関しては図4(ロ)の如く火炎がスキッシュ部Sまで達しても、スキッシュ部Sは空気のみの良好な断熱層である為、冷却損失は非常に少ない。着火時期は上死点又はそれ以降であるから、ノッキングの心配はなく高圧縮比(14位)を採用できると共に、膨張比は圧縮比よりも高い為(18位)、熱効率は非常に高い。しかも低負荷域では熱効率の高いHCCI燃焼を行なう事ができる為、熱効率の向上幅は大きい。以上から飛躍的な熱効率の向上が見込める。
HCCI燃焼領域では排気弁の閉時期を上死点後の例えば70°として排ガスの再吸入を実施しているから、18位の高圧縮比の効果と相まって圧縮端温度が上昇し、HCCI燃焼領域を拡大する事ができる。
この為、ポンプ損失が大幅に減少する。又、燃料は燃焼室のみに留まる様に燃焼室内に噴射されるから(吸気弁閉後に噴射)、スキッシュ部Sは空気のみであり、未燃のHC、COは排出されない。かつ上死点又はそれ以降の着火時期を採用しているから、NOxの発生は殆ど0であり、従って高価なリーンNOx浄化触媒を必要としない(安価な酸化触媒のみ)。しかも上死点又はそれ以降の着火時期であり、18位の高膨張比を採用しているから、排ガス温度が低く、触媒保護の為に濃混合気を供給する必要はない(高負荷域)。
According to the present invention, a multi-point ignition system is achieved by facing two or more spark gaps in a compact concentrated combustion chamber to achieve ultra-rapid combustion (the combustion period is 1/3 of the conventional crank angle). The ignition timing at or above the top dead center can be adopted. Accordingly, not only the maximum combustion temperature and pressure are low, but also cooling loss and friction loss are small, and combustion before top dead center does not occur. Therefore, there is a feature that cooling loss and friction loss corresponding to this period are small. It is particularly reaches the flame as shown in FIG. 4 with respect to the cooling loss (b) until the squish portion S 1, because squish portion S 2 is a good heat insulating layer of air only, cooling loss is very small. Since the ignition timing is at or above the top dead center, there is no worry of knocking and a high compression ratio (14th) can be adopted, and since the expansion ratio is higher than the compression ratio (18th), the thermal efficiency is very high. Moreover, since the HCCI combustion with high thermal efficiency can be performed in the low load region, the improvement range of the thermal efficiency is large. From the above, a dramatic improvement in thermal efficiency can be expected.
In the HCCI combustion region, exhaust gas is re-inhaled at an exhaust valve closing timing of, for example, 70 ° after top dead center. Therefore, the compression end temperature rises in combination with the effect of the 18th high compression ratio, and the HCCI combustion region. Can be expanded.
For this reason, the pump loss is greatly reduced. Further, since the fuel is injected into the combustion chamber so as to remain only in the combustion chamber (injection after the intake valve is closed), the squish portion S is only air, and unburned HC and CO are not discharged. In addition, since the ignition timing at or above the top dead center is adopted, NOx generation is almost zero, and therefore an expensive lean NOx purification catalyst is not required (only an inexpensive oxidation catalyst). Moreover, the ignition timing is at the top dead center or later, and a high expansion ratio of 18th is adopted, so the exhaust gas temperature is low, and it is not necessary to supply a rich mixture to protect the catalyst (high load range) .

発明を実施する為の形態BEST MODE FOR CARRYING OUT THE INVENTION

図1は本発明による超高効率4サイクル内燃機関を示し、図示しない吸気カム軸に備えられたカムにより駆動される吸気弁8及び排気カム軸4に備えられたカム5により駆動される排気弁2を備えている。排気弁2はロッカーアーム3を介してカム5により駆動され、吸気弁8も図示してないが同様に駆動される。本4サイクル内燃機関は吸気・圧縮・膨張・排気の各行程をクランク軸2回転で行なうが、その作動は従来と同じなので省略する。本発明では従来3〜8気筒であったものを2〜4気筒の小数気筒化し、図1(イ)では2気筒機関として燃焼室1を上方から見た点火プラグ21、燃料噴射弁12などのレイアウトを図1(ロ)に示す。
7は排ガスを浄化する為の触媒、10はアクチュエーター(電動モーター)11により駆動される吸気絞り弁、22は電子制御ユニット、24は油圧制御弁である。排気カム軸4には弁開閉時期制御装置15がスプロケット(又はプーリー)13と一体となって備えられ、図示しない吸気カム軸にも同様に弁開閉時期制御装置16が備えられており(弁開閉時期制御装置15は弁開閉時期制御装置16と同じ構造であるから、内部構造は省略)、スプロケット13、14がクランク軸とチェーン(又は歯付きベルト)を介して1/2に減速されて駆動される。公知の弁開閉時期制御装置16はハウジング17とローター18とから成り、ハウジング17はスプロケット14とボルトにより結合・一体化され、ローター18は図示しない吸気カム軸とボルトにより結合・一体化されている。ハウジング17及びローター18により進角室19と遅角室20とが形成され、油圧制御弁23からの作動油が供給される。油圧制御弁23は図示しない油圧ポンプからの油圧が供給され、後述する電子制御ユニット(以後、ECU)22からの出力信号により軸方向への移動量が電磁ソレノイドにより駆動制御されるプランジャ24とスプール弁26とバネ27とを有しており、バネ27の反発力とプランジャー24の押圧力とが均衡する位置でスプール弁26が位置決めされる様になっている。ECU22には所定のクランク角毎にクランク角信号を出力するクランク角センサーからの信号、所定のカム角毎にカム角信号を出力するカム角センサーからの信号が入力され、ECU22はカム角センサーから出力される回転角パルスとクランク角センサーから出力される回転角パルスとの間の出力位相差に基づきカム位相角を検出する事ができる。ECU22はローター18の、即ち吸気カム軸のクランク軸に対する位相差が目標値となる様に油圧制御弁23に制御信号を出力する。そしてECUは検出したカム位相角をフィードバック信号として取り込み、その制御上の目標位相角との間の偏差値に応じて油圧制御弁23の駆動デューティ比率をフィードバック制御する。
油圧制御弁23はECU22から指示されるディーティ比率に応じて電磁ソレノイドを駆動し、進角室19、遅角室20に対する油圧の給・排を調整して吸気カム軸を目標位相角まで進角又は遅角、或いは中立に保持する(任意のカム位相角に固定)。ECU22はROM、RAM、CPU、入力ポート、出力ポート等から成るマイクロコンピューターを中心として構成され、これらは双方向性バスによって相互に接続されている。ECU22にはエンジンの運動状態の把握に必要なパラメーター用の各種センサー、例えばクランク角センサー、カム角センサー、アクセル開度を検出するアクセルセンサー、エンジンに吸入される空気の空気流量センサー、エンジン冷却水温を検出する水温センサー、大気圧センサー、Oセンサー、ノックセンサー等からの各信号が対応するA/Dコンバーターを介して入力ポートに送信される。尚、エンジン回転速度はクランク角センサーからの出力信号により知る事ができる。又、出力ポートは燃料噴射弁12、点火プラグ21、アクチュエーター11、油圧制御弁23等と各々対応する駆動回路を介して接続され、各々の制御信号を送信する。ROMには燃料噴射弁12の噴射量や噴射時期を決定する為の制御ルーチン、点火プラグ21への通電を制御する為の制御ルーチン等のエンジンを制御する為の制御ルーチンやそれらに用いられる制御値を含むマップが記憶されている。RAMに記憶されている各種データーはエンジン回転速度センサーが信号を出力する度に最新のデータに書き換えられる。CPUはROMに記憶されたアプリケーションプログラムに従って動作し、燃料の噴射制御や点火時期制御等を実行する。
FIG. 1 shows an ultra-high efficiency four-cycle internal combustion engine according to the present invention. An intake valve 8 driven by a cam provided on an intake cam shaft (not shown) and an exhaust valve driven by a cam 5 provided on the exhaust cam shaft 4. 2 is provided. The exhaust valve 2 is driven by the cam 5 through the rocker arm 3, and the intake valve 8 is also driven in the same manner, although not shown. In this four-cycle internal combustion engine, each stroke of intake, compression, expansion, and exhaust is performed by two rotations of the crankshaft. In the present invention, the conventional three to eight cylinders are reduced to a small number of two to four cylinders. In FIG. 1 (a), the ignition plug 21, the fuel injection valve 12 and the like as viewed from above the combustion chamber 1 as a two-cylinder engine. The layout is shown in FIG.
7 is a catalyst for purifying exhaust gas, 10 is an intake throttle valve driven by an actuator (electric motor) 11, 22 is an electronic control unit, and 24 is a hydraulic control valve. The exhaust camshaft 4 is provided with a valve opening / closing timing control device 15 integrally with a sprocket (or pulley) 13, and the intake camshaft (not shown) is similarly provided with a valve opening / closing timing control device 16 (valve opening / closing timing). Since the timing control device 15 has the same structure as the valve opening / closing timing control device 16, the internal structure is omitted), and the sprockets 13 and 14 are driven by being decelerated to 1/2 through a crankshaft and a chain (or a toothed belt). Is done. A known valve timing control device 16 includes a housing 17 and a rotor 18. The housing 17 is coupled and integrated with a sprocket 14 and a bolt, and the rotor 18 is coupled and integrated with an intake camshaft and a bolt (not shown). . The advance chamber 19 and the retard chamber 20 are formed by the housing 17 and the rotor 18, and hydraulic oil is supplied from the hydraulic control valve 23. The hydraulic control valve 23 is supplied with hydraulic pressure from a hydraulic pump (not shown), and a plunger 24 and a spool whose axial movement is controlled by an electromagnetic solenoid according to an output signal from an electronic control unit (hereinafter referred to as ECU) 22, which will be described later. A valve 26 and a spring 27 are provided, and the spool valve 26 is positioned at a position where the repulsive force of the spring 27 and the pressing force of the plunger 24 are balanced. The ECU 22 receives a signal from a crank angle sensor that outputs a crank angle signal for each predetermined crank angle, and a signal from a cam angle sensor that outputs a cam angle signal for each predetermined cam angle. The ECU 22 receives signals from the cam angle sensor. The cam phase angle can be detected based on the output phase difference between the output rotation angle pulse and the rotation angle pulse output from the crank angle sensor. The ECU 22 outputs a control signal to the hydraulic control valve 23 so that the phase difference of the rotor 18, that is, the intake camshaft with respect to the crankshaft becomes a target value. The ECU captures the detected cam phase angle as a feedback signal, and feedback-controls the drive duty ratio of the hydraulic control valve 23 according to a deviation value from the target phase angle in the control.
The hydraulic control valve 23 drives an electromagnetic solenoid according to the duty ratio instructed from the ECU 22, adjusts the supply / discharge of hydraulic pressure to the advance chamber 19 and the retard chamber 20, and advances the intake camshaft to the target phase angle. Alternatively, the angle is retarded or neutral (fixed to an arbitrary cam phase angle). The ECU 22 is mainly composed of a microcomputer including a ROM, a RAM, a CPU, an input port, an output port, and the like, and these are mutually connected by a bidirectional bus. The ECU 22 includes various sensors for parameters necessary for grasping the motion state of the engine, such as a crank angle sensor, a cam angle sensor, an accelerator sensor for detecting an accelerator opening degree, an air flow rate sensor for air sucked into the engine, and an engine cooling water temperature. Each signal from a water temperature sensor, an atmospheric pressure sensor, an O 2 sensor, a knock sensor, or the like for detecting the signal is transmitted to the input port via the corresponding A / D converter. The engine speed can be known from the output signal from the crank angle sensor. The output port is connected to the fuel injection valve 12, the spark plug 21, the actuator 11, the hydraulic control valve 23, and the like via corresponding drive circuits, and transmits respective control signals. The ROM has a control routine for controlling the engine, such as a control routine for determining the injection amount and injection timing of the fuel injection valve 12, a control routine for controlling the energization of the spark plug 21, and controls used for them. A map containing the values is stored. Various data stored in the RAM are rewritten to the latest data every time the engine speed sensor outputs a signal. The CPU operates in accordance with an application program stored in the ROM, and executes fuel injection control, ignition timing control, and the like.

本発明では燃料噴射弁12により燃料は燃焼室1内にのみ留まる様に噴射され(図1(ハ)の如く斜め上方向に噴射)、シリンダー内壁やピストン頂面、更にはスキッシュ部Sには付着しない。そして燃料は吸気弁閉後の圧縮行程中に噴射される。従って圧縮行程ではシリンダー内の空気が燃焼室1内へ勢い良く流入する事もあって混合気は燃焼室1内にのみ存在し、燃焼室1の燃焼完結を以って全体の燃焼完結として良い(スキッシュ部Sの燃焼はない)。燃焼室1には排気弁2、吸気弁8が備えられ、燃焼室1の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップ(0.7mm位)を有するスキッシュ部Sを形成して、集中型燃焼室としている。
燃焼室1には2点以上の火花ギャップを臨ませ(ここでは図1(ロ)の如く4個の点火プラグ21から成る4点の火花ギャップが臨んでいる)、この火花ギヤップの着火時期を上死点又はそれ以降となる様に制御している。
図1(ロ)は図1(イ)の燃焼室1を上方から見たものであるが、これを図2(ロ)に簡略化して示す。燃焼室1には4点の火花ギャップG、G、G、Gが臨んでおり、燃焼室の長軸方向の火炎伝播距離はa/2であり、a≒0.8r位であるから、結局0.8r/2=0.4rである。一方、図2(イ)の中心1点火花ギャップの場合の火炎伝播距離はrであるから、図2(イ)に比し本発明では火炎伝播距離が0.4・r/r=1/2.5と大幅に短縮されるが、実際は火花ギャップG(G)は燃焼室壁面より5mm位は突出した位置にあるから、火炎伝播距離は1/2.8位に短縮される。燃焼室の短軸方向の火炎伝播距離はbであり、これは短かいから燃焼は素早く、従って火花ギャップG、Gから燃え拡がった火炎が中央で衝突して火炎面を長軸方向に楕円形に押し拡げるので、長軸方向の火炎伝播速度が高まり、火炎伝播距離は実質的に1/2.8以下の1/3位にはなると考えられる(強力なスキッシュ効果もある。)従って図2(イ)の中心1点火花ギャップの場合に比し、従来、燃焼期間がクランク角で40°〜50°であったものを1/3の15°位に大幅に短縮する事ができる。この結果、着火時期を上死点又はそれ以降に設定しても超急速燃焼が可能であるから熱効率の悪化はなく、むしろ最高燃焼温度・圧力の低下によって冷却損失、摩擦損失が大幅に減少して熱効率が向上する。大排気量エンジンの場合は図2(ハ)の様に燃焼室1に6点の火花ギャップを臨ませる事で達成する事ができる。
極く小排気量のエンジンの場合は火炎伝播距離の絶対値が小さい為、図2(ニ)の如く3点(又は2点)の火花ギャップでも良い。本発明では燃焼室に2点以上の火花ギャップを臨ませる事を特徴としている。尚、本発明では火花ギャップとして点火プラグを使用しているが、図2(ヘ)の如く火花ギャップ29(4〜6点)を有するセラミックなどの電気不導体板28を図2(ホ)の如く燃焼室に備えても良い。
In the present invention, fuel is injected by the fuel injection valve 12 so as to remain only in the combustion chamber 1 (injected obliquely upward as shown in FIG. 1 (C)), and is applied to the cylinder inner wall, piston top surface, and squish portion S. Does not adhere. The fuel is injected during the compression stroke after the intake valve is closed. Therefore, in the compression stroke, air in the cylinder may flow into the combustion chamber 1 vigorously, so that the air-fuel mixture exists only in the combustion chamber 1 and the combustion in the combustion chamber 1 is completed to complete the combustion. (There is no combustion of the squish portion S). The combustion chamber 1 is provided with an exhaust valve 2 and an intake valve 8, and a squish portion having a minute gap (about 0.7 mm) between the piston top surface and the cylinder head wall surface at the top dead center position around the combustion chamber 1. S is formed as a concentrated combustion chamber.
Combustion chamber 1 is exposed to two or more spark gaps (here, four spark gaps consisting of four spark plugs 21 as shown in FIG. 1 (b)), and the ignition timing of this spark gap is determined. It is controlled to be at the top dead center or later.
FIG. 1 (b) is a view of the combustion chamber 1 of FIG. 1 (b) as viewed from above, and this is shown in a simplified manner in FIG. 2 (b). The combustion chamber 1 has four spark gaps G 1 , G 2 , G 3 , and G 4 , and the flame propagation distance in the longitudinal direction of the combustion chamber is a / 2, where a≈0.8r Therefore, after all, 0.8r / 2 = 0.4r. On the other hand, since the flame propagation distance in the case of the center 1 ignition flower gap in FIG. 2 (a) is r, in the present invention, compared with FIG. 2 (a), the flame propagation distance is 0.4 · r / r = 1 / Although it is greatly shortened to 2.5, the spark gap G 1 (G 3 ) is in a position protruding about 5 mm from the wall surface of the combustion chamber, so that the flame propagation distance is shortened to 1 / 2.8. The flame propagation distance in the short axis direction of the combustion chamber is b, and since this is short, the combustion is quick, so that the flame spread from the spark gaps G 2 and G 4 collides in the center and the flame surface is moved in the long axis direction. Since it spreads in an elliptical shape, the flame propagation speed in the long axis direction is increased, and the flame propagation distance is considered to be substantially 1/3 of 1 / 2.8 or less (there is also a strong squish effect). Compared to the case of the center 1 spark gap in FIG. 2 (a), the conventional combustion period of 40 to 50 degrees in crank angle can be greatly shortened to about 1/3 of 15 degrees. . As a result, even if the ignition timing is set to top dead center or later, ultra-rapid combustion is possible, so there is no deterioration in thermal efficiency. Rather, cooling loss and friction loss are greatly reduced by lowering the maximum combustion temperature and pressure. Heat efficiency. In the case of a large displacement engine, this can be achieved by making the combustion chamber 1 have six spark gaps as shown in FIG.
In the case of an engine with a very small displacement, since the absolute value of the flame propagation distance is small, a spark gap of 3 points (or 2 points) as shown in FIG. The present invention is characterized by having two or more spark gaps facing the combustion chamber. In the present invention, a spark plug is used as the spark gap. However, as shown in FIG. 2 (f), an electrically non-conductive plate 28 such as ceramic having a spark gap 29 (4 to 6 points) is used as shown in FIG. As such, it may be provided in the combustion chamber.

次に本発明による4サイクル内燃機関の各運転状態について説明する。
本発明では弁開閉時期制御装置15、16を備えているので、排気弁2、吸気弁8の開閉時期を自在に制御する事ができる(但し、図1で採用した弁開閉時期制御装置15、16は開閉期間は一定のまま開閉時期のみを変えるものである)。例えば低負荷域ではHCCI燃焼を行なうが、この時の弁開閉時期は図3(イ)の如く吸気弁閉時期をクランク角で下死点後30°とし(この時の圧縮比はほぼ18)、排気弁開時期をクランク角で下死点後10°とする様に(この時の膨張比は18)制御する。中・高負荷域では火花点火燃焼に切り換え、図3(ロ)の如く吸気弁閉時期をクランク角で下死点後70°(圧縮比はこの時14)、排気弁開時期をクランク角で下死点前40°(この時の膨張比はほぼ18)となる様に制御するものである。エンジンの始動は点火プラグ21による火花点火燃焼により行なうが、始動時及び暖機時(冷態時)は図3(ハ)の如く吸気弁閉時期を下死点後30°、排気弁開時期を下死点前40°として、圧縮比をほぼ18、膨張比をほぼ18としている。従って高圧縮比となるから圧縮端温度が上昇し良好な燃焼が得られる(エンジン冷態時であるから、自着火は起らない)。又、本発明では多点着火方式を採用しているから、超急速燃焼が可能であり(前述の如く燃焼期間をクランク角で従来の1/3の15°位に短縮)、従ってエンジン暖機中は着火時期を大幅に遅らせて排気温度を高め、触媒の早期活性化を促がす事ができる。尚、本発明では点火プラグ21の着火時期を上死点又はそれ以降とするのが基本であるが、エンジン始動時は始動性向上の為、上死点前とするのが良い。エンジン暖機完了後の低負荷域ではPCCI燃焼法、即ち予混合圧縮着火燃焼(その中でも均質な混合気を用いるHCCI燃焼法がNOx発生を殆ど0に抑える事ができるので、以後HCCI燃焼法を採用する)に切り換えるが、図3(イ)の如く吸気弁閉時期を下死点後30°(開時期は自ずと上死点前40°となる)、排気弁閉時期を上死点後70°(開時期は自ずと下死点後10°となる)としている。この時、圧縮比はほぼ18、膨張比もほぼ18となる。従って弁オーバーラップ期間が110°もあり、排気通路6から高温・多量の排ガスがシリンダー内に再吸入され、圧縮端温度を高め、18位の高圧縮比の効果と相まって圧縮端温度を大幅に上昇させる事ができ、かくしてHCCI燃焼を容易に引き起す事ができる。圧縮始めの温度・圧縮端温度を更に高めるには排気通路6から排ガスを再吸入する際、触媒7内の、更にはその下流側の昇温した排ガスを再吸入するのが良い(排気通路6にポートライナーを備えるなど断熱構造とすれば更に効果がある)。従って排気弁2と触媒7との距離が短かい方が良く、この点2気筒エンジンは有利である。本発明では高負荷域でも排ガス温度が低いので、排気通路6を断熱構造としても触媒に熱的ストレスを与えることはない。又、ピストン頂面を断熱構造とすると、これにより燃焼室1内の混合気は加熱作用を受けるから、より一層HCCI燃焼を引き起し易くなり、高負荷域での充填効率低下が懸念される場合は、図4(イ)の如く燃焼室直下に相当するピストン頂面の部分30を断熱構造としても良い。例えば断熱部30に断熱剤をコーティングする、空気層を挟んで断熱材をボルトで結合させるなどの方法がある。HCCI燃焼法は燃焼としては低温の燃焼であり、希薄燃焼でもあるので、冷却損失が少なく高効率運転が可能で、NOxの発生をほぼ0に抑える事ができる。又、圧縮比も膨張比も18位と高いので、熱効率は更に高くなる。尚、スキッシュ部Sには混合気は存在せず空気のみであるから、未燃のHC、COは排出されない(これは火花点火燃焼領域でも同様である)。HCCI燃焼はエンジン負荷が増すと燃焼圧力上昇率が高くなってノッキングに近い状態になるが、本発明ではノックセンサーによってこの様な状態を検出して吸気弁閉時期を遅らせ、圧縮比を18から14までの範囲内で低下させ、ノッキングを未然に防ぐ事ができる。即ち、HCCI燃焼が起る時期を制御する事ができるのである。本エンジンは4サイクル機関であるから、アイドル状態の様な極低負域でのHCCI燃焼が困難な場合は火花点火燃焼に切り換えて運転する事ができる。
エンジンの中・高負荷域ではHCCI燃焼法では燃焼圧力上昇率が過大となるので、これを避け、エンジン負荷、回転速度などの運転条件によりECU22は火花点火燃焼に切り換える。この運転領域では図3(ロ)の様に吸気弁閉時期を下死点後70°(開時期は自ずと上死点になる)、排気弁開時期を下死点前40°(閉時期は自ずと上死点後20°になる)に制御される。この時、圧縮比は14、膨張比はほぼ18であり、膨張比の方が大となり、排気損失を減少させて熱効率を大幅に高める。この領域では従来はクランク角で40°〜50°あった燃焼期間を多点着火方式により(超急速燃焼により)1/3の15°位に短縮できるから、着火時期を上死点又はそれ以降に制御する事ができる(14位の高圧縮比ながらノッキングの心配はない)。従って最高燃焼温度・圧力が低く、結果として冷却損失、摩擦損失が減少し、かつ上死点前燃焼がない為、この期間に相当する冷却損失、摩擦損失も少なく、上記と合わせて熱効率の向上幅は大きい。ここで特に冷却損失について一言付け加えると、膨張行程では火炎が図4(ロ)の如くスキッシュ部Sに逆スキッシュとなって侵入するが、スキッシュ部Sは空気のみであり(火炎は存在しない)、従って空気による良好な断熱層が存在し、冷却損失は大幅に減少するのである。更には燃焼は上死点後の膨張行程で行なわれる為、NOxの発生を殆ど0に抑える事ができる。又、本発明では従来は3〜8気筒であったものを2〜4気筒の少数気筒化しているから、冷却損失・摩擦損失は自ずと小さく、以上を総合すると熱効率は飛躍的に高まる。
加えて本発明では圧縮比14に対して膨張比は18あるから、この分熱効率に余裕があり、従って着火時期を若干遅らせればNOxの発生を完全に0に抑える事ができる。結局、HCCI燃焼法もNOxの発生をほぼ0に抑える事ができるから、高価なリーンNOx浄化触媒を不要ととする事ができる(酸化触媒のみで良い)。尚、燃焼室1は図4(ハ)の様にピストン頂面に形成する事もできる。
Next, each operation state of the four-cycle internal combustion engine according to the present invention will be described.
In the present invention, since the valve opening / closing timing control devices 15 and 16 are provided, the opening / closing timing of the exhaust valve 2 and the intake valve 8 can be freely controlled (however, the valve opening / closing timing control device 15 employed in FIG. 16 is for changing only the opening / closing timing while the opening / closing period is constant). For example, HCCI combustion is performed in a low load range. At this time, the valve opening / closing timing is 30 ° after bottom dead center with the crank angle as shown in FIG. 3 (a) (the compression ratio at this time is approximately 18). The exhaust valve opening timing is controlled so that the crank angle is 10 ° after the bottom dead center (the expansion ratio at this time is 18). Switch to spark ignition combustion in the middle / high load range, as shown in Fig. 3 (b), the intake valve closing timing is 70 ° after bottom dead center (compression ratio is 14), and the exhaust valve opening timing is crank angle. It is controlled so as to be 40 ° before the bottom dead center (the expansion ratio at this time is approximately 18). The engine is started by spark ignition combustion by the spark plug 21. At the time of starting and warming up (in the cold state), the intake valve closing timing is 30 ° after bottom dead center and the exhaust valve opening timing is as shown in FIG. Is 40 ° before bottom dead center, the compression ratio is approximately 18, and the expansion ratio is approximately 18. Accordingly, since the compression ratio becomes high, the compression end temperature rises and good combustion is obtained (because the engine is cold, self-ignition does not occur). In addition, since the present invention employs a multi-point ignition system, ultra-rapid combustion is possible (as described above, the combustion period is shortened to about 15 ° of 1/3 of the conventional crank angle). Inside, the ignition timing can be greatly delayed to raise the exhaust temperature and promote early activation of the catalyst. In the present invention, the ignition timing of the spark plug 21 is basically at or above the top dead center. However, it is preferable to set the ignition plug 21 before the top dead center in order to improve startability. In the low load range after completion of engine warm-up, the PCCI combustion method, that is, the premixed compression ignition combustion (among others, the HCCI combustion method using a homogeneous air-fuel mixture can suppress NOx generation to almost zero. 3), the intake valve closing timing is 30 ° after bottom dead center (the opening timing is naturally 40 ° before top dead center), and the exhaust valve closing timing is 70 after top dead center as shown in FIG. (The opening time is naturally 10 ° after bottom dead center). At this time, the compression ratio is approximately 18, and the expansion ratio is approximately 18. Therefore, the valve overlap period is 110 °, and high temperature and large amount of exhaust gas is re-inhaled into the cylinder from the exhaust passage 6 to increase the compression end temperature, and the compression end temperature is greatly increased in combination with the effect of the 18th high compression ratio. Can be raised and thus can easily cause HCCI combustion. To further increase the temperature at the start of compression and the compression end temperature, when exhaust gas is re-inhaled from the exhaust passage 6, it is preferable to re-inhale the exhaust gas whose temperature has risen in the catalyst 7 and further downstream thereof (exhaust passage 6). If it has a heat insulating structure such as a port liner, it is more effective). Therefore, it is better that the distance between the exhaust valve 2 and the catalyst 7 is short, and this point is advantageous in the two-cylinder engine. In the present invention, since the exhaust gas temperature is low even in a high load region, thermal stress is not applied to the catalyst even if the exhaust passage 6 has a heat insulating structure. Further, when the piston top surface has a heat insulating structure, the air-fuel mixture in the combustion chamber 1 is subjected to a heating action, so that it becomes easier to cause HCCI combustion and there is a concern about a decrease in charging efficiency in a high load region. In this case, as shown in FIG. 4 (a), the piston top surface portion 30 corresponding to the portion immediately below the combustion chamber may have a heat insulating structure. For example, there are methods such as coating the heat insulating portion 30 with a heat insulating agent, and bonding the heat insulating material with bolts across an air layer. The HCCI combustion method is a low-temperature combustion as a combustion, and is also a lean combustion, so that a highly efficient operation is possible with little cooling loss, and the generation of NOx can be suppressed to almost zero. Moreover, since the compression ratio and the expansion ratio are as high as 18th, the thermal efficiency is further increased. In addition, since there is no air-fuel mixture in the squish portion S and only air, unburned HC and CO are not discharged (this is the same in the spark ignition combustion region). In HCCI combustion, when the engine load increases, the rate of increase in combustion pressure becomes higher and it becomes a state close to knocking. In the present invention, such a state is detected by a knock sensor, the intake valve closing timing is delayed, and the compression ratio is increased from 18. It can be reduced within the range up to 14, and knocking can be prevented in advance. That is, the timing at which HCCI combustion occurs can be controlled. Since this engine is a four-cycle engine, when HCCI combustion in an extremely low negative region such as an idle state is difficult, the engine can be switched to spark ignition combustion.
In the middle / high load range of the engine, the rate of increase in combustion pressure is excessive in the HCCI combustion method, and this is avoided, and the ECU 22 switches to spark ignition combustion depending on the operating conditions such as engine load and rotation speed. In this operating range, as shown in FIG. 3B, the intake valve closing timing is 70 ° after bottom dead center (the opening timing is naturally top dead center), and the exhaust valve opening timing is 40 ° before bottom dead center (the closing timing is Naturally, it becomes 20 ° after top dead center). At this time, the compression ratio is 14 and the expansion ratio is approximately 18. The expansion ratio is larger, and exhaust loss is reduced to greatly increase the thermal efficiency. In this region, the conventional combustion period of 40 ° to 50 ° in crank angle can be shortened to about 1/3 of 15 ° by the multi-point ignition method (by ultra-rapid combustion). (There is no worry of knocking despite the high compression ratio of 14th place). Therefore, the maximum combustion temperature and pressure are low, resulting in reduced cooling loss and friction loss, and no combustion before top dead center. The width is large. Now add a word especially for the cooling loss, although flame at the expansion stroke enters becomes reverse squish to squish portion S 1 as shown in FIG. 4 (b), squish portion S 2 is only air (flame present Not), therefore there is a good thermal insulation layer with air and the cooling loss is greatly reduced. Furthermore, since combustion is performed in the expansion stroke after top dead center, the generation of NOx can be suppressed to almost zero. Further, in the present invention, since the conventional number of 3 to 8 cylinders is changed to a small number of 2 to 4 cylinders, the cooling loss and the friction loss are naturally small, and the above combined increases the thermal efficiency.
In addition, in the present invention, since the expansion ratio is 18 with respect to the compression ratio 14, there is a margin in the heat efficiency. Therefore, if the ignition timing is slightly delayed, the generation of NOx can be completely suppressed to zero. After all, since the HCCI combustion method can also suppress the generation of NOx to almost zero, an expensive lean NOx purification catalyst can be made unnecessary (only an oxidation catalyst is sufficient). The combustion chamber 1 can also be formed on the top surface of the piston as shown in FIG.

ところで図1(ロ)において燃焼室1には吸気弁8が備えられ、これは大径であるから(排気弁2よりも大径)燃焼室の幅が増し、高さが低くなって偏平となり、コンパクト性に欠け火災伝播上不利になる。この解決策として図4(ニ)の如くスキッシュ部Sに臨む様に第2の吸気弁31を備える事が考えられる(1〜2個備える)。従ってこの分、吸気弁8は排気弁2と同じか又は小径とする事ができるから、燃焼室1の幅が減少して(長さも減少)高さが増し、コンパクトになる。この場合、第2の吸気弁31は開閉時期が固定されており(例えば上死点で開、下死点後30°で閉)、独立したカムによって駆動する事が望ましいが、吸気弁8を駆動する吸気カム軸にカムを新設して、これによって駆動する事もできる。但し、この吸気カム軸は弁開閉時期制御装置16を備えているので、ピストンと衝突しない様に第2の吸気弁31の開閉時期を定める必要がある。その一例を図4(ホ)に示す。即ち、HCCI燃焼領域では上死点で弁開、下死点後30°で弁閉、火花点火燃焼領域では上死点後40°で弁開、下死点後70°で弁閉である(上死点後40°までは第2の吸気弁31は閉じているが、吸気弁8は開いているので、これにより吸入が行なわれる)。
又は、第2の吸気弁31の開閉時期を図4(ヘ)の如く火花点火燃焼領域では上死点で開、下死点後70°で閉とし、HCCI燃焼領域ではロッカーアームに公知の機構を備えて、第2の吸気弁31の作動を停止させる様にしても良い。
尚、第2の吸気弁31を備えたのと同じ理由により図4(チ)の如く第2の排気弁2′を備えても良く、これは独立したカムによって駆動する方法、排気カム軸4にカムを新設して駆動する方法などがある。後者の場合は第2の排気弁2′は火花点火燃焼領域では上死点で弁閉、下死点前40°で弁開、HCCI燃焼領域では下死点後10°で弁開、上死点後50°で弁閉などとする。ところで本発明では吸気弁8、排気弁2の開閉時期を変化させて圧縮比(有効圧縮比)や膨張比(有効膨張比)を可変化しているが、図1に示したもの他に多くの弁開閉時期制御装置を用いる事ができる。例えばヘリカルスプラインを軸方向に移動させて弁開閉時期を変えるもの、電磁式又は電動式に弁開閉時期を変えるもの、更には立体カムを軸方向にスライドさせて弁開閉時期を変えるものなどである。
図4(ト)は電磁式弁開閉時期制御装置を示すもので、ハウジング32にはリング状に形成された電磁石34、35が弁軸と一体となったプランジャー33を挟んで対向した状態で配置されている。電磁石34、35の中空部にはバネ37、36がプランジャー33を挟む様に取り付けられ、この為、排気弁2(吸気弁8)はバネ37、36の力のバランスによって弁リフトの中間位置で静止する。電磁石34が磁励されるとプランジャー33が上方へ引き付けられて排気弁2(吸気弁8)は閉弁し、電磁石35が磁励されるとプランジャー33が下方へ引き付けられて開弁する。ドライバー38は排気弁2(吸気弁8)の開閉時期(弁リフトの情報も含めても良い)を指定するECU22からの制御信号に応じて電磁石34、35に交互に励磁電流を供給する。これによると排気弁2(吸気弁8)の開弁時期や閉弁時期を任意に設定でき、自由度が増す。
By the way, in FIG. 1 (b), the combustion chamber 1 is provided with an intake valve 8, which has a large diameter (larger diameter than the exhaust valve 2), so that the width of the combustion chamber increases and the height decreases and becomes flat. It lacks compactness and is disadvantageous for fire propagation. As a solution to this, it is conceivable to provide the second intake valve 31 so as to face the squish portion S as shown in FIG. Accordingly, since the intake valve 8 can be the same as or smaller in diameter than the exhaust valve 2, the width of the combustion chamber 1 is reduced (and the length is reduced), and the height is increased, resulting in a compact size. In this case, the opening and closing timing of the second intake valve 31 is fixed (for example, it opens at the top dead center and closes at 30 ° after the bottom dead center), and it is desirable to drive the intake valve 8 by an independent cam. It is also possible to drive by installing a new cam on the intake camshaft to be driven. However, since the intake camshaft includes the valve opening / closing timing control device 16, it is necessary to determine the opening / closing timing of the second intake valve 31 so as not to collide with the piston. An example is shown in FIG. That is, in the HCCI combustion region, the valve is opened at the top dead center, the valve is closed at 30 ° after the bottom dead center, and in the spark ignition combustion region, the valve is opened at 40 ° after the top dead center, and the valve is closed at 70 ° after the bottom dead center ( The second intake valve 31 is closed until 40 ° after the top dead center, but the intake valve 8 is open, so that suction is performed.
Alternatively, the opening / closing timing of the second intake valve 31 is opened at the top dead center in the spark ignition combustion region and closed at 70 ° after the bottom dead center as shown in FIG. 4 (f), and a known mechanism for the rocker arm in the HCCI combustion region. The operation of the second intake valve 31 may be stopped.
For the same reason as the second intake valve 31, a second exhaust valve 2 ′ may be provided as shown in FIG. 4 (h), which is a method of driving by an independent cam, the exhaust camshaft 4. In addition, there is a method of driving by installing a new cam. In the latter case, the second exhaust valve 2 'is closed at the top dead center in the spark ignition combustion region, opened at 40 ° before the bottom dead center, and opened at 10 ° after the bottom dead center in the HCCI combustion region. The valve is closed at 50 ° after the point. In the present invention, the compression ratio (effective compression ratio) and the expansion ratio (effective expansion ratio) are made variable by changing the opening and closing timing of the intake valve 8 and the exhaust valve 2, but many other than those shown in FIG. The valve opening / closing timing control device can be used. For example, the valve opening / closing timing is changed by moving the helical spline in the axial direction, the valve opening / closing timing is changed electromagnetically or electrically, and the valve opening / closing timing is changed by sliding the solid cam in the axial direction. .
FIG. 4 (G) shows an electromagnetic valve opening / closing timing control device. In the housing 32, ring-shaped electromagnets 34 and 35 are opposed to each other with a plunger 33 integrated with a valve shaft interposed therebetween. Has been placed. The springs 37 and 36 are attached to the hollow portions of the electromagnets 34 and 35 so as to sandwich the plunger 33, so that the exhaust valve 2 (intake valve 8) is located at the intermediate position of the valve lift by the balance of the forces of the springs 37 and 36. At rest. When the electromagnet 34 is magnetized, the plunger 33 is attracted upward and the exhaust valve 2 (intake valve 8) is closed. When the electromagnet 35 is magnetized, the plunger 33 is attracted downward and opens. . The driver 38 alternately supplies an excitation current to the electromagnets 34 and 35 in accordance with a control signal from the ECU 22 that designates the opening / closing timing (including valve lift information) of the exhaust valve 2 (intake valve 8). According to this, the valve opening timing and valve closing timing of the exhaust valve 2 (intake valve 8) can be arbitrarily set, and the degree of freedom increases.

図1において吸気弁8の開閉時期は可変化されているが、弁開閉時期制御装置16を除去して固定タイミングとしても良く(例えば上死点前20°開、下死点後70°閉)、これを図5(イ)に示す。この場合、図4(ニ)と同じ理由によりスキッシュ部Sに臨む様に第2の吸気弁39を備えても良い(弁開閉時期は上死点で開、下死点後70°で閉)。こうするとHCCI燃焼領域では圧縮比を図1の様に18まで高くできないので(14で固定)、結果としてHCCI燃焼領域が狭くなるが、本エンジンをハイブリッド車用として用いれば問題を生じない。即ち、HCCI燃焼が起らない領域ではエンジン効率の高い領域で発電してバッテリーに蓄えた電力をモーターに供給して、このモーターにより走行する様にすれば良い。
この事は図1においても同じであり、HCCI燃焼をアイドルに近い極低負荷域で引き起したとしても熱効率が低いので、この領域は使わない様にするのが良い。
In FIG. 1, the opening / closing timing of the intake valve 8 is variable, but the valve opening / closing timing control device 16 may be removed and fixed timing (for example, 20 ° opened before top dead center and 70 ° closed after bottom dead center). This is shown in FIG. In this case, the second intake valve 39 may be provided so as to face the squish portion S for the same reason as in FIG. 4 (d) (the valve opening / closing timing is opened at the top dead center and closed at 70 ° after the bottom dead center). . If this is done, the compression ratio cannot be increased to 18 in the HCCI combustion region as shown in FIG. 1 (fixed at 14). As a result, the HCCI combustion region is narrowed, but there is no problem if this engine is used for a hybrid vehicle. That is, in an area where HCCI combustion does not occur, electric power generated in an area where engine efficiency is high and electric power stored in the battery may be supplied to the motor and run by this motor.
This is the same in FIG. 1, and even if HCCI combustion is caused in an extremely low load region close to idling, the thermal efficiency is low, so this region should not be used.

図1において、排気弁2を燃焼室1に備え、吸気弁8をスキッシュ部Sに臨ませる如く備えたものに相当する本発明の4サイクル内燃機関を図6(イ)に示す。即ち、図6(イ)において排気弁40は燃焼室41に備えられ、吸気弁42はスキッシュ部Sに臨む如く備えられており、21は点火プラグ、12は燃料噴射弁を示す(A方向から見た断面を図6(ロ)に示す)。排気弁40は図1の弁開閉時期制御装置15と同じもので弁開閉時期が可変化されるが、排気弁42はスキッシュ部Sに臨む如く備えられており、ピストンとの衝突を避ける為、開閉時期は固定されている。即ち、HCCI燃焼領域では図6(ハ)の如く吸気弁42は上死点で開、下死点後70°で閉、排気弁40は下死点後10°で開、下死点後70°で閉であり、火花点火燃焼領域では図6(ニ)の如く排気弁40だけが可変化されて下死点前40°で開、上死点後20°で閉となる様に制御される。従ってHCCI燃焼領域では多量の排ガス再吸入により圧縮端温度が高くなり、HCCI燃焼を引き起し易くなる。この時の圧縮比は14である。又、圧縮比が14であるのに対し膨張比はほぼ18と高いので、熱効率の大幅向上が可能である。燃焼室41は排気弁40のみを考慮すれば良いので、コンパクトになり、火炎伝播上有利である。尚、吸気弁42も弁開閉時期制御装置により開閉時期を若干可変化すれば、HCCI燃焼領域では図6(ホ)の如く吸気弁42の閉時期を例えば下死点後50°閉として圧縮比を高める事ができる(16位)。
但し、ピストンとの衝突を避ける為、若干の逃げ(バルブリセス)を作る必要がある。上死点又はそれ以降の着火であること、膨張比が高いこと等の理由により排気温度は低く、プレイグニッションの心配はない。
FIG. 6 (a) shows a four-cycle internal combustion engine of the present invention corresponding to the exhaust valve 2 provided in the combustion chamber 1 and the intake valve 8 provided to face the squish portion S in FIG. That is, in FIG. 6A, the exhaust valve 40 is provided in the combustion chamber 41, the intake valve 42 is provided so as to face the squish portion S, 21 is a spark plug, and 12 is a fuel injection valve (from the direction A). The cross section seen is shown in FIG. The exhaust valve 40 is the same as the valve opening / closing timing control device 15 of FIG. 1, and the valve opening / closing timing is varied. However, the exhaust valve 42 is provided so as to face the squish portion S, and in order to avoid collision with the piston, The opening and closing time is fixed. That is, in the HCCI combustion region, as shown in FIG. 6C, the intake valve 42 opens at the top dead center, closes at 70 ° after the bottom dead center, the exhaust valve 40 opens at 10 ° after the bottom dead center, and 70 after the bottom dead center. In the spark ignition combustion region, as shown in FIG. 6 (d), only the exhaust valve 40 is varied and controlled to open at 40 ° before bottom dead center and to close at 20 ° after top dead center. The Therefore, in the HCCI combustion region, the compression end temperature becomes high due to a large amount of exhaust gas re-intake, and HCCI combustion is likely to occur. The compression ratio at this time is 14. Further, since the compression ratio is 14 and the expansion ratio is as high as 18, the thermal efficiency can be greatly improved. Since only the exhaust valve 40 needs to be considered in the combustion chamber 41, the combustion chamber 41 is compact and advantageous in terms of flame propagation. If the opening / closing timing of the intake valve 42 is slightly varied by the valve opening / closing timing control device, the compression ratio is set such that the closing timing of the intake valve 42 is closed, for example, 50 ° after bottom dead center as shown in FIG. (16th place).
However, in order to avoid collision with the piston, it is necessary to make a slight relief (valve recess). The exhaust temperature is low for reasons such as ignition at or above the top dead center and high expansion ratio, and there is no concern about pre-ignition.

次に本発明の特徴の1つは着火時期を上死点又はそれ以降とする事にあるが、これを従来と同様に上死点前とした場合について考えて見る(点火プラグの個数は問わない)。即ち、上死点前着火方式を採用すると最高燃焼圧力・温度が上昇する事により冷却損失、摩擦損失が増加して熱効率が低下すると共に、火花点火燃焼領域ではNOxが発生することになる。
しかしながら欠点はこれ位で、低負荷域では熱効率の高いHCCI燃焼法を可能としていること、圧縮比より膨張比が高いこと、図4(ロ)で述べた如く冷却損失が非常に少ないこと、などの理由により従来よりは遙かに高い熱効率を有するものである。火花点火燃焼領域で発生するNOxは理論混合比を用いて三元触媒により0に抑える事が可能である。以上の如く本発明より若干の後退になるが、従来よりは遙かに高い熱効率を有するものである。
Next, one of the features of the present invention is that the ignition timing is at or above the top dead center. Consider the case where the ignition timing is before the top dead center as in the prior art (the number of spark plugs is not limited). Absent). That is, if the pre-top dead center ignition method is employed, the maximum combustion pressure / temperature rises, so that cooling loss and friction loss increase and thermal efficiency decreases, and NOx is generated in the spark ignition combustion region.
However, this is the shortcoming, enabling the HCCI combustion method with high thermal efficiency in the low load range, the expansion ratio being higher than the compression ratio, and the extremely low cooling loss as described in FIG. For this reason, it has much higher thermal efficiency than before. NOx generated in the spark ignition combustion region can be suppressed to 0 by the three-way catalyst using the theoretical mixing ratio. As described above, although it is slightly backward than the present invention, it has a much higher thermal efficiency than the prior art.

本発明による超高効率4サイクル内燃機関を示す図。The figure which shows the super high efficiency 4 cycle internal combustion engine by this invention. 燃焼室における点火プラグ、燃料噴射弁などのレイアウトを示す図。The figure which shows layouts, such as a spark plug and a fuel injection valve, in a combustion chamber. 吸気弁、排気弁の開閉時期を示す図。The figure which shows the opening / closing timing of an intake valve and an exhaust valve. 本発明の各種実施例を示す図。The figure which shows the various Example of this invention. 本発明による超高効率4サイクル内燃機関を示す図。The figure which shows the super high efficiency 4 cycle internal combustion engine by this invention. 本発明による超高効率4サイクル内燃機関を示す図。The figure which shows the super high efficiency 4 cycle internal combustion engine by this invention.

1は燃焼室、2は排気弁、4は排気カム軸、5はカム、3はロッカーアーム、6は排気通路、7は触媒、8は吸気弁、9は吸気通路、10は吸気絞り弁、11はアクチュエーター、12は燃料噴射弁、13・14はスプロケット、15・16・32は弁開閉時期制御装置、17はハウジング、18はローター、19は進角室、20は遅角室、21は点火プラグ、22はECU、23は油圧制御弁、24はプランジャー、25は電磁石、26はスプール弁、27はバネ、28は電気不導体板、29は火花ギャップ、G・G・G・Gは火花ギャップ、30は断熱部、31は第2の吸気弁、32は弁開閉時期制御装置、33はプランジャー、34・35は電磁石、36・37はバネ、38はドライバー、39は第2の吸気弁、40は排気弁、41は燃焼室、42は吸気弁、Sはスキッシュ部である。2′は第2の排気弁である。1 is a combustion chamber, 2 is an exhaust valve, 4 is an exhaust camshaft, 5 is a cam, 3 is a rocker arm, 6 is an exhaust passage, 7 is a catalyst, 8 is an intake valve, 9 is an intake passage, 10 is an intake throttle valve, 11 is an actuator, 12 is a fuel injection valve, 13 and 14 are sprockets, 15, 16 and 32 are valve opening / closing timing control devices, 17 is a housing, 18 is a rotor, 19 is an advance chamber, 20 is a retard chamber, and 21 is spark plugs, 22 ECU, 23 is the hydraulic control valve, 24 is a plunger, 25 is an electromagnet, 26 spool valve, 27 a spring, 28 is electrically nonconductive plate, the spark gap 29, G 1 · G 2 · G 3-G 4 is the spark gap, 30 is a heat insulating portion, the second intake valve 31, 32 is a valve timing control apparatus, 33 a plunger, 34, 35 is an electromagnet, 36-37 spring, 38 the driver, 39 is the second intake valve, 40 is the exhaust A valve, 41 is a combustion chamber, 42 is an intake valve, and S is a squish section. Reference numeral 2 'denotes a second exhaust valve.

Claims (5)

吸気カム軸に備えられたカムにより駆動される吸気弁及び排気カム軸に備えられたカムにより駆動される排気弁を有する4サイクル内燃機関において、前記排気弁を燃焼室に備え、前記燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップを臨ませ、かつ前記火花ギャップの着火時期を圧縮上死点又はそれ以降となる様に制御せしめ、更に前記排気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では前記排気弁の閉時期を上死点より遅らせて排ガスをシリンダー内に再吸入し、エンジン負荷に対応して前記排気弁の開時期を制御して有効膨張比を有効圧縮比よりも大きくなる様に制御し、かつ前記吸気弁を前記燃焼室に備え、前記吸気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では前記吸気弁の閉時期を早めて有効圧縮比を高める様に制御し、かくしてエンジン負荷、回転速度などの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える事を特徴とする4サイクル内燃機関。In a 4-cycle internal combustion engine having an intake valve driven by a cam provided on an intake cam shaft and an exhaust valve driven by a cam provided on an exhaust cam shaft, the exhaust valve is provided in a combustion chamber, A squish part having a minute gap is formed between the piston top surface and the cylinder head wall surface at the top dead center position in the periphery to make the combustion chamber a concentrated combustion chamber, and two or more spark gaps are made to face this combustion chamber. In addition, the exhaust valve is controlled in the premixed compression ignition combustion region by a valve opening / closing timing control device that controls the ignition timing of the spark gap to be at or above the compression top dead center and further varies the opening / closing timing of the exhaust valve. The closing timing of the engine is delayed from the top dead center, the exhaust gas is re-inhaled into the cylinder, and the opening timing of the exhaust valve is controlled in accordance with the engine load to make the effective expansion ratio larger than the effective compression ratio. The intake valve is provided in the combustion chamber, and the valve opening / closing timing control device that varies the opening / closing timing of the intake valve is effective by accelerating the closing timing of the intake valve in the premixed compression ignition combustion region. A four-cycle internal combustion engine which is controlled to increase the compression ratio and thus switches between premixed compression ignition combustion and spark ignition combustion according to operating conditions such as engine load and rotation speed. 第2の吸気弁をスキッシュ部に臨む如く備えた請求項1記載の4サイクル内燃機関。The four-stroke internal combustion engine according to claim 1, further comprising a second intake valve facing the squish portion. 第2の排気弁をスキッシュ部に臨む如く備えた請求項1又は2記載の4サイクル内燃機関。The 4-cycle internal combustion engine according to claim 1 or 2, further comprising a second exhaust valve facing the squish portion. 吸気カム軸に備えられたカムにより駆動される吸気弁及び排気カム軸に備えられたカムにより駆動される排気弁を有する4サイクル内燃機関において、前記排気弁を燃焼室に備え、前記燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップを臨ませ、かつ前記火花ギャップの着火時期を圧縮上死点又はそれ以降となる様に制御せしめ、更に前記排気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では前気排気弁の閉時期を上死点より遅らせて排ガスをシリンダー内に再吸入し、エンジン負荷に対応して前記排気弁の開時期を制御して有効膨張比を有効圧縮比よりも大きくなる様に制御し、かつ前記吸気弁を前記燃焼室に備えると共に吸気弁の開閉時期を固定化して固定タイミングとし、かくしてエンジンの負荷、回転速度などの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える事を特徴とする4サイクル内燃機関。In a 4-cycle internal combustion engine having an intake valve driven by a cam provided on an intake cam shaft and an exhaust valve driven by a cam provided on an exhaust cam shaft, the exhaust valve is provided in a combustion chamber, A squish part having a minute gap is formed between the piston top surface and the cylinder head wall surface at the top dead center position in the periphery to make the combustion chamber a concentrated combustion chamber, and two or more spark gaps are made to face this combustion chamber. In addition, the ignition timing of the spark gap is controlled to be at or above the compression top dead center, and further, the valve opening / closing timing control device that varies the opening / closing timing of the exhaust valve, The valve closing timing is delayed from the top dead center, the exhaust gas is re-inhaled into the cylinder, the opening timing of the exhaust valve is controlled according to the engine load, and the effective expansion ratio is larger than the effective compression ratio. The intake valve is provided in the combustion chamber and the opening and closing timing of the intake valve is fixed to obtain a fixed timing. Thus, premixed compression ignition combustion and spark ignition are performed according to operating conditions such as engine load and rotation speed. A four-cycle internal combustion engine characterized by switching between combustion. 吸気カム軸に備えられたカムにより駆動される吸気弁及び排気カム軸に備えられたカムにより駆動される排気弁を有する4サイクル内燃機関において、前記排気弁を燃焼室に備え、前記燃焼室の周囲に上死点位置におけるピストン頂面とシリンダーヘッド壁面との間に微小ギャップを有するスキッシュ部を形成して燃焼室を集中型燃焼室とし、この燃焼室に2点以上の火花ギャップを臨ませ、かつ前記火花ギャップの着火時期を圧縮上死点又はそれ以降となる様に制御せしめ、更に前記排気弁の開閉時期を可変化する弁開閉時期制御装置により予混合圧縮着火燃焼領域では前記排気弁の閉時期を上死点より遅らせて排ガスをシリンダー内に再吸入し、エンジン負荷に対応して前記排気弁の開時期を制御して有効膨張比を有効圧縮比よりも大きくなる様に制御し、かつ前記吸気弁を前記スキッシュ部に臨む様に備え、かくしてエンジンの負荷、回転速度などの運転条件により予混合圧縮着火燃焼と火花点火燃焼とを切り換える事を特徴とする4サイクル内燃機関。In a 4-cycle internal combustion engine having an intake valve driven by a cam provided on an intake cam shaft and an exhaust valve driven by a cam provided on an exhaust cam shaft, the exhaust valve is provided in a combustion chamber, A squish part having a minute gap is formed between the piston top surface and the cylinder head wall surface at the top dead center position in the periphery to make the combustion chamber a concentrated combustion chamber, and two or more spark gaps are made to face this combustion chamber. In addition, the exhaust valve is controlled in the premixed compression ignition combustion region by a valve opening / closing timing control device that controls the ignition timing of the spark gap to be at or above the compression top dead center and further varies the opening / closing timing of the exhaust valve. The closing timing of the engine is delayed from the top dead center, the exhaust gas is re-inhaled into the cylinder, and the opening timing of the exhaust valve is controlled in accordance with the engine load to make the effective expansion ratio larger than the effective compression ratio. And the intake valve faces the squish section, thus switching between premixed compression ignition combustion and spark ignition combustion according to operating conditions such as engine load and rotational speed. Cycle internal combustion engine.
JP2012101821A 2012-03-20 2012-03-20 Super-high efficiency four-cycle internal combustion engine Pending JP2013194730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101821A JP2013194730A (en) 2012-03-20 2012-03-20 Super-high efficiency four-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101821A JP2013194730A (en) 2012-03-20 2012-03-20 Super-high efficiency four-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013194730A true JP2013194730A (en) 2013-09-30

Family

ID=49393981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101821A Pending JP2013194730A (en) 2012-03-20 2012-03-20 Super-high efficiency four-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013194730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110002A (en) * 2014-11-01 2017-08-29 菲利普·克里斯坦尼 It is equipped with the quartastroke engine for shortening intake process
JP2019078264A (en) * 2017-09-29 2019-05-23 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Elliptically shaped combustion chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110002A (en) * 2014-11-01 2017-08-29 菲利普·克里斯坦尼 It is equipped with the quartastroke engine for shortening intake process
JP2019078264A (en) * 2017-09-29 2019-05-23 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Elliptically shaped combustion chamber
JP7189717B2 (en) 2017-09-29 2022-12-14 イエフペ エネルジ ヌヴェル elliptical combustion chamber

Similar Documents

Publication Publication Date Title
JP4086602B2 (en) Control device and control method for multi-cylinder engine
JP4525517B2 (en) Internal combustion engine
US7992541B2 (en) System and method for controlling auto-ignition
JP4172340B2 (en) Control device for spark ignition engine
US20140216396A1 (en) Direct injection gasoline engine and method of controlling the direct injection gasoline engine
JP2007113485A (en) Method and device for controlling internal combustion engine
CN107524536B (en) Internal combustion engine and control method for internal combustion engine
JP2002256911A (en) Combustion control device of engine
JP2004218522A (en) Control device for internal combustion engine equipped with variable compression ratio mechanism
US9863350B2 (en) Start control device of homogeneous-charge compression ignition engine
EP1925802A1 (en) Quick restart HCCI internal combustion engine
JP2007132319A (en) Controller for four-cycle premixed compression self-igniting internal combustion engine
JP6131840B2 (en) Control device for compression ignition engine
US7063068B2 (en) Variable valve timing controller for an engine
JP4335663B2 (en) 4-cycle reciprocating internal combustion engine
US10337427B2 (en) Control device of compression self-ignition engine
JP2004308618A (en) Internal combustion engine equipped with compression ratio change mechanism and method for controlling internal combustion engine
JP2009180220A (en) High pressure oxygen injection type internal combustion engine
JP2013194730A (en) Super-high efficiency four-cycle internal combustion engine
JP2014234821A (en) Ultra-high-efficiency internal combustion engine with centralized combustion chamber
JP4419800B2 (en) Engine starter
JPH1130135A (en) Controller of diesel engine
US20170298841A1 (en) Diesel engine and method for operating a diesel engine
JP2008309145A (en) Oxygen injection type two-cycle diesel engine
JP4647112B2 (en) 4-cycle gasoline engine