JP4647112B2 - 4-cycle gasoline engine - Google Patents

4-cycle gasoline engine Download PDF

Info

Publication number
JP4647112B2
JP4647112B2 JP2001040728A JP2001040728A JP4647112B2 JP 4647112 B2 JP4647112 B2 JP 4647112B2 JP 2001040728 A JP2001040728 A JP 2001040728A JP 2001040728 A JP2001040728 A JP 2001040728A JP 4647112 B2 JP4647112 B2 JP 4647112B2
Authority
JP
Japan
Prior art keywords
valve
compression ignition
intake
region
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040728A
Other languages
Japanese (ja)
Other versions
JP2002242715A (en
Inventor
誠 金子
弘二 森川
仁 伊藤
陽平 最首
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2001040728A priority Critical patent/JP4647112B2/en
Publication of JP2002242715A publication Critical patent/JP2002242715A/en
Application granted granted Critical
Publication of JP4647112B2 publication Critical patent/JP4647112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室内の混合気を断熱圧縮により多点着火させる圧縮着火領域を有する4サイクルガソリンエンジンに関する。
【0002】
【従来の技術】
4サイクルエンジンの熱効率を向上させる手段として、混合気をリーン化させることで作動ガスの比熱比を大きくして理論熱効率を向上させることが知られている。又、混合気をリーン化することにより、同じトルクで運転する場合でも、より多くの空気をエンジンに吸入させるので、ポンピング損失を低減させることができる。
【0003】
しかし、混合気のリーン化は燃焼期間の長期化や燃焼の不安定化を伴い限界がある。そこで、筒内噴射によって、混合気を成層化した状態のまま点火プラグの周囲に集め着火性を確保する成層燃焼により、この限界を拡げるようにしているが、成層燃焼では、点火プラグ周りにリッチ混合気を集中させるので、燃焼温度が高くなり、NOxが増大し易いという問題がある。
【0004】
一方、ディーゼルエンジンは、圧縮比が高く、空燃比の大幅なリーン化によりポンプ損失を殆どなくすことができるので熱効率は高いが、拡散燃焼であるため、空気利用率が低く低出力で、煤の排出を生じることがあり、排気ガス特性に劣る。
【0005】
そこで、このような問題を解決する手段として、ガソリン混合気を点火プラグを用いず、断熱圧縮により多点着火させる圧縮着火式エンジンが提案されている。圧縮着火燃焼を実現するためには、高温の残留ガス熱を利用して新気を活性化させる必要があり、その1つの方法として、排気弁の閉弁時期を早め、吸気弁の開弁時期を遅らせることで、排気上死点前後で両弁が閉弁する負のオーバラップ期間を形成し、排気行程後半から吸気行程前半にかけて残留ガスを燃焼室内に閉じ込めるようにした技術が知られている。
【0006】
例えば特開2000−64863号公報には、排気上死点前後で排気弁と吸気弁との双方を閉じる負のバルブオーバラップ期間を設け、燃焼室に閉じ込めた残留ガスの予圧昇温により、圧縮着火を促進させる技術が開示されている。
【0007】
この先行技術では、低負荷運転時は排気弁の閉弁時期を進角させることで残留ガス量を増加させると共に、吸気弁の開弁時期を遅角させることで、残留ガスを圧縮するために要した仕事を回収し、熱効率の低下を防止している。
【0008】
【発明が解決しようとする課題】
ところで、上述した先行技術では、排気上死点前後にかけての負のバルブオーバラップ期間を制御することで、熱効率の向上を図るようにしているが、残留ガスの熱エネルギは、エンジン負荷に応じて変動する。すなわち、低負荷運転時の残留ガス温度は低く、中負荷運転へ移行するに従い次第に高くなる。
【0009】
上述した先行技術では、負のバルブオーバラップ期間に燃焼室内に閉じ込めた残留ガスの熱エネルギを利用して圧縮行程時に発火させるようにしているため、運転領域によっては、燃焼室内の混合気が発火温度に達せず着火不良を起こしたり、逆に早期着火を起こしたりし易くなり、安定した圧縮着火性能を得ることが困難になる場合がある。その結果、圧縮着火領域が狭くなってしまう問題がある。
【0010】
本発明は、上記事情に鑑み、圧縮着火領域においては、負荷変動に影響されることなく、広い領域で安定した圧縮着火性能を得ることのできる4サイクルガソリンエンジンを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため本発明は、排気上死点前後にかけて排気弁と吸気弁とを共に閉弁する負のバルブオーバラップ期間を形成することの可能な可変動弁機構を備え、運転領域の一部に圧縮着火領域を有する4サイクルガソリンエンジンにおいて、前記圧縮着火領域では、エンジン負荷が増大するに従い上記負のバルブオーバラップ期間を狭くすると共に体積効率が小さくなるように上記吸気弁の閉弁時期を進角させることを特徴とする。
【0012】
このような構成では、負のバルブオーバラップ期間中に閉じ込められた残留ガスの熱エネルギは、低負荷運転時は低く、中負荷運転へ移行するに従い、次第に高くなるため、エンジン負荷が増大するに従い、吸気弁の閉弁時期を進角させて体積効率を低下させると共に負のバルブオーバラップ期間を狭くして吸気加熱を小さくすることで自着火を抑制し、空燃比のより濃い領域での圧縮着火を可能とする。
【0013】
この場合、好ましくは、中負荷運転時の上記吸気弁の閉弁時期は吸気下死点付近に設定されることを特徴とする。
【0014】
2)低負荷運転時の上記吸気弁の閉弁時期は吸気下死点を越えた位置に遅角されることを特徴とする。
【0015】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施の形態を説明する。図1に圧縮着火領域を有する4サイクルガソリンエンジンの全体構成図を示す。
【0016】
同図の符号1はエンジン本体、2はピストン、3は燃焼室、4は吸気ポート、5は排気ポート、6は吸気弁、7は排気弁であり、吸気ポート4に連通する吸気通路8にスロットル弁9が介装されている。このスロットル弁9はスロットル開度を電子的に制御する電子制御スロットル装置(図示せず)に連設されている。
【0017】
又、燃焼室3の頂面中央に燃料噴射手段としての筒内噴射用インジェクタ11の噴孔が臨まされており、この筒内噴射用インジェクタ11の噴射方向に対設するピストン2の頂面に湾曲凹面状のピストンキャビティ2aが形成されている。
更に、燃焼室3の一側(本実施の形態ではスキッシュエリア)に点火プラグ12の発火部が臨まされている。
【0018】
又、吸気弁6と排気弁7とが、可変動弁機構13a,13bに各々連設されている。この各可変動弁機構13a,13bは、本実施の形態では、火花点火用吸気カム及び圧縮着火用吸気カムと、火花点火用排気カム及び圧縮着火用排気カムとの2連カムを各々備えており、この各カムは運転領域に応じて切換えられる。
【0019】
更に、圧縮着火用吸気カム、及び圧縮着火用排気カムが可変バルブタイミング(VVT)機構に連設されている。このVVT機構は、油圧ソレノイド(或いは電磁ソレノイド)等のアクチュエータにより、圧縮着火用吸気カム及び圧縮着火用排気カムの回転位相を変えることで、バルブタイミングをエンジン負荷Loに応じて可変設定するものである。尚、符号16はノックセンサ、17は水温センサ、18はO2センサである。
【0020】
これら各センサで検出した信号は電子制御ユニット(ECU)20に入力される。電子制御ユニット(ECU)20は、CPU21、ROM22、RAM23、入力ポート24、出力ポート25等からなるマイクロコンピュータを中心として構成され、これらが双方向性バス26によって相互に接続されている。
【0021】
入力ポート24には、上記各センサ以外に、設定クランク角度毎にクランクパルスを発生するクランク角センサ31が接続されていると共に、アクセルペダル32の踏込み量に比例した出力電圧を発生する負荷センサ33がA/D変換器34を介して接続されている。又、出力ポート25が吸気弁駆動回路36a、排気弁駆動回路36bを介して、各可変動弁機構13a,13bに個別に接続されている。更に、この出力ポート25には、筒内噴射用インジェクタ11、及び点火プラグ12が駆動回路(図示せず)を介して接続されている。
【0022】
電子制御ユニット(ECU)20は、クランク角センサ31からの信号に基づいて算出したエンジン回転数Neと、負荷センサ33からの信号に基づいて検出したエンジン負荷Loとに基づき運転領域が圧縮着火領域にあるか、火花点火領域にあるかを調べ、圧縮着火領域にあるときは、スロットル弁9を全開とし(図5(d)参照)、最適な圧縮着火燃焼を得ることのできる燃料噴射量、噴射タイミング、及び吸排気弁6,7のバルブタイミングを設定する。又、運転領域が火花点火領域にあるときは、通常の火花点火制御を実行する。
【0023】
圧縮着火領域において、最適な圧縮着火燃焼を得るためには、残留ガスの熱エネルギにより吸気行程において吸入される新気を加熱昇温させると共に、この残留ガスと新気とを圧縮行程での断熱圧縮により、圧縮着火可能な温度まで昇温させる必要がある。しかし、残留ガスの熱エネルギは、エンジン負荷に応じて変動し、低負荷運転時は低く、中負荷運転へ移行するに従い高くなる。
【0024】
そのため、圧縮着火制御を行なうに際しては、エンジン負荷に応じてバルブタイミングを連続的に変化させ、図4(a),(b)、図5(c)に示すように、エンジン負荷が低負荷運転から中負荷運転方向へ移行するに従い、排気弁7の閉弁時期EVCを次第に遅角すると共に、吸気弁5の開弁時期IVOを次第に進角させることで、負のバルブオーバラップ期間を低負荷側では広く、中負荷方向へ移行するに従い狭くなるように制御する。
【0025】
その結果、燃焼室3内に閉じ込められる残留ガス量が低負荷運転側で多くなり、中負荷運転方向へ移行するに従い、減少される。低負荷運転側での残留ガス量を増大させることで、残留ガスの熱エネルギにより混合気温度が高められ、よりリーンな空燃比での圧縮着火が可能となる。一方、中負荷運転方向へ移行するに従い、残留ガス量を減少させることで、自着火を抑制し、ノッキングの発生を回避する。
【0026】
この場合、吸気弁6の閉弁時期が一定であると、圧縮着火可能な領域は狭くなる。例えば、図4(a)に示すように、吸気弁6の閉弁時期IVCを、吸気下死点(BDC)を越えた位置に固定した場合、図3に示すハッチングで囲んだ低負荷領域の狭い範囲でのみ圧縮着火燃焼が可能となる。これは、負のバルブオーバラップ期間を制御し、残留ガスの熱エネルギを利用して圧縮着火燃焼を行なわせようとした場合、中負荷方向へ移行するに従い、残留ガスの熱エネルギが高くなり、ノッキング等が発生し易くなるからである。
【0027】
そのため、本実施の形態では、圧縮着火領域においては、エンジン負荷Loに応じて負のバルブオーバラップ期間を可変設定して、混合気温度を制御するばかりでなく、吸気弁6の閉弁時期IVCをも可変設定することで体積効率を制御して、適正な圧縮着火燃焼を得るようにしている。
【0028】
この吸気弁6の閉弁時期は、具体的には、図2に示す燃焼制御ルーチンにおいて設定される。このルーチンでは、先ず、ステップS1で、エンジン回転数Neとエンジン負荷Loとに基づき、図3に示す運転領域マップを参照して、運転領域が圧縮着火領域にあるか、火花点火領域にあるかを調べる。尚、本実施の形態における圧縮着火領域は、同図のハッチング領域を含む実線で囲んだ領域、すなわち、低中回転、低中負荷領域に設定されている。更に、この圧縮着火領域をエンジン負荷Loに応じて、低負荷領域は成層圧縮着火領域、中負荷領域は均一圧縮着火領域に区分し、成層圧縮着火領域では燃料噴射時期を圧縮行程後半の比較的遅い時期に設定する。又、均一圧縮着火領域では燃料噴射時期を負のバルブオーバラップ期間開始後から吸気行程中の比較的早い時期の間で設定する(図6参照)。
【0029】
そして、運転領域が圧縮着火領域にあるときは、ステップS2へ進み、火花点火領域にあるときはステップS6へ進む。
【0030】
ステップS2へ進むと、スロットル弁9を全開動作させ、その後、ステップS3へ進み、可変動弁機構13a,13bに対して圧縮着火用吸気カム、及び圧縮着火用排気カムを選択する信号を出力し、吸気弁6及び排気弁7を圧縮着火時のバルブタイミングで動作させる。
【0031】
次いで、ステップS4へ進み、負のバルブオーバラップ期間を設定する。この負のバルブオーバラップ期間は、図4(a),(b)に示すように、低負荷運転時を最大とし、中負荷運転時を最小とし、その範囲でエンジン負荷Loに応じて可変設定される。
【0032】
具体的には、エンジン負荷Loに基づき、図5(c)に示すバルブオーバラップ期間設定テーブルを、エンジン負荷Loをパラメータとして補間計算付で参照し、各可変動弁機構13a,13bに対し駆動信号を出力する。すると、この各可変動弁機構13a,13bに設けられているVVT機構が、圧縮着火用吸気カムと圧縮着火用排気カムとの回転位相をそれぞれ変え、低負荷運転時は、吸気弁6の開弁時期IVOを遅角させ、排気弁7の閉弁時期EVCを進角させて、負のバルブオーバラップ期間を広げる。一方、中負荷運転時は、吸気弁6の開弁時期IVOを進角させ、排気弁7の閉弁時期EVCを遅角させて、負のバルブオーバラップ期間を狭める。
【0033】
又、図4(b)に示すように、圧縮着火用吸気カム及び圧縮着火用排気カムのカムプロフィルは、中負荷運転時の吸気弁6の閉弁時期IVCが吸気下死点(BDC)付近となり、又排気弁7の開弁時期EVOが膨張下死点(BDC)となるように設定されていると共に、排気弁7の閉弁時期EVCと吸気弁6の開弁時期IVOとで形成される負のバルブオーバラップ期間が、排気上死点(TDC)を挟んで対称となる位置に設定されている。そして、エンジン負荷が中負荷運転から、同図(a)に示す低負荷運転へ移行するに従い、圧縮着火用吸気カム及び圧縮着火用排気カムは回転位相を対称に変化させる。
【0034】
その結果、図6に示すように、エンジン負荷が中負荷運転から低負荷運転へ移行するに従い、排気弁7のバルブタイミングが進角され、一方、吸気弁6のバルブタイミングが、排気弁7とは対称方向へ遅角される。
【0035】
このように、残留ガスの熱エネルギが最も低い、低負荷運転時において、吸気弁6の閉弁時期を遅角させることで、慣性過給により、体積効率が向上し、より多くの新気を吸入することができる。又、このときの負のバルブオーバラップ期間は広く設定されているため(図5(c)参照)、燃焼室3内に閉じ込められる残留ガス量も多く、この残留ガスの熱エネルギによる吸気加熱が促進され、より希薄な空燃比であっても良好な圧縮着火性能を得ることが可能となる。
【0036】
一方、燃焼室3に閉じ込められた残留ガスの熱エネルギが比較的高い、中負荷運転時は、負のバルブオーバラップ期間が狭いため、残留ガスの熱エネルギによる吸気加熱が抑制され、又吸気弁6の閉弁時期が吸気下死点(BDC)付近に設定されるため、体積効率が小さくなり、圧縮圧が低くなるため、自着火が抑制され、ノッキングの発生を回避しつつ、リッチな混合気で安定した圧縮着火燃焼を得ることができる。その結果、図3に示すように、均一圧縮着火領域を、ハッチングで示す従来の領域から高負荷側へ拡大させることが可能となる。
【0037】
次いで、ステップS5へ進み、圧縮着火燃料噴射制御を実行して、ルーチンを抜ける。この圧縮着火燃料噴射制御は、燃料噴射量と燃料噴射タイミングとを可変設定する処理が行なわれる。
【0038】
燃料噴射量は、図5(a)に示すように、エンジン負荷Loが低下するに従い空燃比を次第にリーン化する制御が行なわれる。尚、同図の符号λ0は理論空燃比を示す。又、燃料噴射タイミングは、エンジン回転数Neとエンジン負荷Loとに基づいて設定され、例えば運転領域が低負荷領域では、吸気下死点(BDC)より遅い時期、すなわち圧縮行程開始後に設定し、一方中負荷且つ低中回転では排気弁7が閉弁したとき(負のバルブオーバラップ期間開始時)から吸気下死点(BDC)にかけての、比較的早い時期に設定する。
【0039】
吸気下死点(BDC)よりも遅い時期に筒内噴射用インジェクタ11から燃焼室3に燃料を噴射することで、圧縮着火燃焼可能なガス温度に到達しつつある燃焼室3内に成層化された混合気が局所的に生成され、極めて希薄な混合気での成層圧縮着火燃焼が可能となる。一方、燃料噴射タイミングを排気弁7が閉弁後の比較的早期に設定することで、燃焼室3のガス温度が自発火可能温度に達する前に均一混合気を生成させることができ、混合気温度が発火温度に達したとき、この混合気が一斉に発火して火炎が伝播しない燃焼、いわば無限数の点火プラグを配したような多点発火燃焼(均一圧縮着火燃焼)が実現される。
【0040】
又、ステップS1で運転領域が火花点火領域にあると判定されてステップS6へ進むと、通常の火花点火による燃焼制御を実行してルーチンを抜ける。火花点火燃焼制御へ移行すると、可変動弁機構13a,13bに対し、火花点火用吸気カム及び火花点火用排気カムに切換える信号を出力する。その結果、吸気弁6及び排気弁7が通常の火花点火時のバルブタイミング、すなわち排気行程終期から吸気行程初期にかけて共に開弁する正のバルブオーバラップ期間(図4(c)、図5(c)参照)で動作される。尚、火花点火用吸気カム及び火花点火用排気カムのカムプロフィールは体積効率が最大となる形状に設定されている。
【0041】
同時に、スロットル弁9をアクセルペダル32に連動させた動作とし(図5(d)参照)、更に、燃料噴射量、燃料噴射時期、及び点火時期等を通常の火花点火制御に戻す。尚、これらの制御は公知であるため、ここでの説明は省略する。
【0042】
【発明の効果】
以上、説明したように本発明によれば、圧縮着火運転時は、エンジン負荷が増大するに従い、負のバルブオーバラップ期間を狭くして吸気加熱を小さくし、更に、吸気弁の閉弁時期を進角させて体積効率を低下させることで、自着火が抑制され、空燃比のより濃い領域で安定した圧縮着火性能を得ることができ、その結果、圧縮着火領域を高負荷側へ拡大させることが可能となる。
【図面の簡単な説明】
【図1】圧縮着火領域を有する4サイクルガソリンエンジンの全体構成図
【図2】燃焼制御ルーチンを示すフローチャート
【図3】運転領域マップを示す説明図
【図4】吸気弁と排気弁のバルブタイミングとを示す説明図で(a)は低負荷運転、(b)は中負荷運転、(c)は高負荷運転を示す
【図5】エンジン負荷と各制御特性との関係を示す説明図
【図6】バルブタイミングと筒内圧特性との関係を示す説明図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a four-cycle gasoline engine having a compression ignition region in which an air-fuel mixture in a combustion chamber is ignited at multiple points by adiabatic compression.
[0002]
[Prior art]
As means for improving the thermal efficiency of a four-cycle engine, it is known to increase the specific heat ratio of the working gas by leaning the air-fuel mixture to improve the theoretical thermal efficiency. Further, by making the air-fuel mixture lean, even when the engine is operated with the same torque, more air is sucked into the engine, so that the pumping loss can be reduced.
[0003]
However, leaning of the air-fuel mixture has limitations due to prolonged combustion period and unstable combustion. Therefore, this limit is expanded by stratified combustion that collects the mixture around the spark plug while maintaining a stratified state by in-cylinder injection to ensure ignitability. Since the air-fuel mixture is concentrated, there is a problem that the combustion temperature increases and NOx tends to increase.
[0004]
On the other hand, a diesel engine has a high compression ratio and can substantially eliminate pump loss by making the air / fuel ratio lean, so it has high thermal efficiency, but because of diffusion combustion, the air utilization rate is low and the output is low. Emission may occur, and the exhaust gas characteristics are poor.
[0005]
Accordingly, as a means for solving such a problem, a compression ignition type engine has been proposed in which a gasoline mixture is ignited at multiple points by adiabatic compression without using an ignition plug. In order to realize compression ignition combustion, it is necessary to activate fresh air using high-temperature residual gas heat. One method is to advance the closing timing of the exhaust valve and open the intake valve. Is known to form a negative overlap period in which both valves close before and after exhaust top dead center, and trap residual gas in the combustion chamber from the second half of the exhaust stroke to the first half of the intake stroke. .
[0006]
For example, Japanese Patent Laid-Open No. 2000-64863 discloses a negative valve overlap period in which both the exhaust valve and the intake valve are closed before and after exhaust top dead center, and compression is performed by preloading the residual gas confined in the combustion chamber. A technique for promoting ignition is disclosed.
[0007]
In this prior art, during low load operation, the residual gas amount is increased by advancing the closing timing of the exhaust valve, and the residual gas is compressed by retarding the opening timing of the intake valve. The necessary work is collected to prevent a decrease in thermal efficiency.
[0008]
[Problems to be solved by the invention]
By the way, in the prior art described above, the negative valve overlap period before and after exhaust top dead center is controlled to improve the thermal efficiency. However, the thermal energy of the residual gas depends on the engine load. fluctuate. That is, the residual gas temperature during low-load operation is low and gradually increases as the operation shifts to medium-load operation.
[0009]
In the prior art described above, ignition is performed during the compression stroke using the thermal energy of the residual gas confined in the combustion chamber during the negative valve overlap period. It may become difficult to cause ignition failure without reaching the temperature, or conversely to cause early ignition, and it may be difficult to obtain stable compression ignition performance. As a result, there is a problem that the compression ignition region becomes narrow.
[0010]
In view of the above circumstances, an object of the present invention is to provide a four-cycle gasoline engine that can obtain a stable compression ignition performance in a wide region without being affected by load fluctuations in the compression ignition region .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a variable valve mechanism capable of forming a negative valve overlap period in which both the exhaust valve and the intake valve are closed before and after exhaust top dead center. In a four-cycle gasoline engine partially having a compression ignition region, in the compression ignition region, the intake valve is closed so that the negative valve overlap period is narrowed and the volumetric efficiency is reduced as the engine load increases. It is characterized by advancing the time.
[0012]
In such a configuration, the thermal energy of the residual gas trapped during the negative valve overlap period is low during low-load operation and gradually increases as the engine shifts to medium-load operation, so that the engine load increases. , Advance the closing timing of the intake valve to reduce volumetric efficiency and reduce the negative valve overlap period to reduce intake air heating, thereby suppressing self-ignition and compression in a region where the air-fuel ratio is deeper Ignition is possible.
[0013]
In this case, preferably, the closing timing of the intake valve during the medium load operation is set in the vicinity of the intake bottom dead center.
[0014]
2) The closing timing of the intake valve during low load operation is retarded to a position beyond the intake bottom dead center.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration diagram of a four-cycle gasoline engine having a compression ignition region .
[0016]
In the figure, reference numeral 1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is an intake port, 5 is an exhaust port, 6 is an intake valve, 7 is an exhaust valve, and is connected to an intake passage 8 communicating with the intake port 4. A throttle valve 9 is interposed. The throttle valve 9 is connected to an electronically controlled throttle device (not shown) that electronically controls the throttle opening.
[0017]
In addition, an injection hole of an in-cylinder injector 11 as a fuel injection means faces the center of the top surface of the combustion chamber 3, and the top surface of the piston 2 facing the injection direction of the in-cylinder injector 11. A curved concave piston cavity 2a is formed.
Further, the ignition portion of the spark plug 12 is exposed to one side of the combustion chamber 3 (squish area in the present embodiment).
[0018]
An intake valve 6 and an exhaust valve 7 are connected to the variable valve mechanisms 13a and 13b, respectively. In the present embodiment, each of the variable valve mechanisms 13a and 13b includes two cams, a spark ignition intake cam and a compression ignition intake cam, and a spark ignition exhaust cam and a compression ignition exhaust cam. The cams are switched according to the operation region.
[0019]
Further, an intake cam for compression ignition and an exhaust cam for compression ignition are connected to a variable valve timing (VVT) mechanism. This VVT mechanism variably sets the valve timing in accordance with the engine load Lo by changing the rotation phase of the compression ignition intake cam and the compression ignition exhaust cam by an actuator such as a hydraulic solenoid (or electromagnetic solenoid). is there. Reference numeral 16 is a knock sensor, 17 is a water temperature sensor, and 18 is an O2 sensor.
[0020]
Signals detected by these sensors are input to an electronic control unit (ECU) 20. The electronic control unit (ECU) 20 is mainly composed of a microcomputer including a CPU 21, ROM 22, RAM 23, input port 24, output port 25, etc., which are connected to each other by a bidirectional bus 26.
[0021]
In addition to the above sensors, a crank angle sensor 31 that generates a crank pulse for each set crank angle is connected to the input port 24, and a load sensor 33 that generates an output voltage proportional to the amount of depression of the accelerator pedal 32. Are connected via an A / D converter 34. The output port 25 is individually connected to each variable valve mechanism 13a, 13b via an intake valve drive circuit 36a and an exhaust valve drive circuit 36b. Further, the in-cylinder injector 11 and the spark plug 12 are connected to the output port 25 via a drive circuit (not shown).
[0022]
The electronic control unit (ECU) 20 has a compression ignition region based on the engine speed Ne calculated based on the signal from the crank angle sensor 31 and the engine load Lo detected based on the signal from the load sensor 33. Or in the spark ignition region. When in the compression ignition region, the throttle valve 9 is fully opened (see FIG. 5 (d)), and the fuel injection amount that can obtain the optimal compression ignition combustion, The injection timing and the valve timing of the intake / exhaust valves 6 and 7 are set. When the operation area is in the spark ignition area, normal spark ignition control is executed.
[0023]
In order to obtain the optimum compression ignition combustion in the compression ignition region, the temperature of the fresh air sucked in the intake stroke is heated by the heat energy of the residual gas, and the residual gas and the fresh air are insulated in the compression stroke. It is necessary to raise the temperature to a temperature at which compression ignition is possible by compression. However, the thermal energy of the residual gas varies depending on the engine load, is low during low-load operation, and increases as the operation shifts to medium-load operation.
[0024]
Therefore, when performing the compression ignition control, the valve timing is continuously changed according to the engine load, and the engine load is operated at a low load as shown in FIGS. 4 (a), 4 (b), and 5 (c). The valve closing timing EVC of the exhaust valve 7 is gradually retarded and the valve opening timing IVO of the intake valve 5 is gradually advanced as the shift from the medium to the medium load operation direction, thereby reducing the negative valve overlap period. It is controlled so that it is wide on the side and narrows as it moves in the middle load direction.
[0025]
As a result, the amount of residual gas confined in the combustion chamber 3 increases on the low load operation side and decreases as the vehicle moves in the medium load operation direction. By increasing the amount of residual gas on the low load operation side, the temperature of the air-fuel mixture is increased by the heat energy of the residual gas, and compression ignition at a leaner air-fuel ratio becomes possible. On the other hand, by reducing the amount of residual gas as the vehicle moves in the medium load operation direction, self-ignition is suppressed and occurrence of knocking is avoided.
[0026]
In this case, if the closing timing of the intake valve 6 is constant, the region where compression ignition is possible becomes narrow. For example, as shown in FIG. 4A, when the valve closing timing IVC of the intake valve 6 is fixed at a position exceeding the intake bottom dead center (BDC), the low load region surrounded by the hatching shown in FIG. Compression ignition combustion is possible only in a narrow range. This is because when the negative valve overlap period is controlled and compression ignition combustion is performed using the thermal energy of the residual gas, the thermal energy of the residual gas increases as it moves toward the middle load direction. This is because knocking or the like easily occurs.
[0027]
Therefore, in the present embodiment, in the compression ignition region, not only the negative valve overlap period is variably set according to the engine load Lo to control the mixture temperature but also the closing timing IVC of the intake valve 6. Is also variably set to control volumetric efficiency so as to obtain appropriate compression ignition combustion.
[0028]
Specifically, the closing timing of the intake valve 6 is set in the combustion control routine shown in FIG. In this routine, first, in step S1, based on the engine speed Ne and the engine load Lo, referring to the operation region map shown in FIG. 3, whether the operation region is in the compression ignition region or the spark ignition region. Check out. Note that the compression ignition region in the present embodiment is set to a region surrounded by a solid line including the hatched region in FIG. Further, the compression ignition region is divided into a stratified compression ignition region and a middle load region according to the engine load Lo, and the middle load region is divided into a uniform compression ignition region. In the stratified compression ignition region, the fuel injection timing is relatively low in the latter half of the compression stroke. Set it later. In the uniform compression ignition region, the fuel injection timing is set between a relatively early time during the intake stroke after the start of the negative valve overlap period (see FIG. 6).
[0029]
When the operation region is in the compression ignition region, the process proceeds to step S2, and when it is in the spark ignition region, the process proceeds to step S6.
[0030]
In step S2, the throttle valve 9 is fully opened, and then in step S3, a signal for selecting a compression ignition intake cam and a compression ignition exhaust cam is output to the variable valve mechanisms 13a and 13b. The intake valve 6 and the exhaust valve 7 are operated at the valve timing at the time of compression ignition.
[0031]
Next, the process proceeds to step S4, and a negative valve overlap period is set. As shown in FIGS. 4A and 4B, the negative valve overlap period is maximized during low load operation, minimized during medium load operation, and variably set in accordance with the engine load Lo within that range. Is done.
[0032]
Specifically, based on the engine load Lo, the valve overlap period setting table shown in FIG. 5C is referred to with interpolation calculation using the engine load Lo as a parameter, and the variable valve mechanisms 13a and 13b are driven. Output a signal. Then, the VVT mechanisms provided in the variable valve mechanisms 13a and 13b change the rotational phases of the compression ignition intake cam and the compression ignition exhaust cam, respectively, and the intake valve 6 is opened during low load operation. The valve timing IVO is retarded and the valve closing timing EVC of the exhaust valve 7 is advanced to widen the negative valve overlap period. On the other hand, during the medium load operation, the valve opening timing IVO of the intake valve 6 is advanced, and the valve closing timing EVC of the exhaust valve 7 is retarded, thereby narrowing the negative valve overlap period.
[0033]
As shown in FIG. 4B, the cam profiles of the compression ignition intake cam and the compression ignition exhaust cam indicate that the closing timing IVC of the intake valve 6 during the middle load operation is near the intake bottom dead center (BDC). Further, the valve opening timing EVO of the exhaust valve 7 is set to be the expansion bottom dead center (BDC), and is formed by the valve closing timing EVC of the exhaust valve 7 and the valve opening timing IVO of the intake valve 6. The negative valve overlap period is set to a symmetrical position with respect to the exhaust top dead center (TDC). Then, as the engine load shifts from the medium load operation to the low load operation shown in FIG. 5A, the compression ignition intake cam and the compression ignition exhaust cam change their rotational phases symmetrically.
[0034]
As a result, as shown in FIG. 6, as the engine load shifts from the medium load operation to the low load operation, the valve timing of the exhaust valve 7 is advanced, while the valve timing of the intake valve 6 is Is retarded in the direction of symmetry.
[0035]
In this way, by delaying the closing timing of the intake valve 6 at the time of low load operation where the thermal energy of the residual gas is the lowest, volume efficiency is improved by inertia supercharging, and more fresh air is obtained. Can be inhaled. In addition, since the negative valve overlap period at this time is set wide (see FIG. 5 (c)), the amount of residual gas confined in the combustion chamber 3 is large, and intake air heating by the thermal energy of this residual gas is reduced. As a result, good compression ignition performance can be obtained even at a leaner air-fuel ratio.
[0036]
On the other hand, when the residual gas confined in the combustion chamber 3 has a relatively high thermal energy, the negative valve overlap period is narrow during medium load operation, so that intake air heating due to the residual gas thermal energy is suppressed, and the intake valve Since the valve closing timing of 6 is set in the vicinity of the intake bottom dead center (BDC), the volumetric efficiency is reduced and the compression pressure is lowered, so that the self-ignition is suppressed and the occurrence of knocking is avoided and rich mixing is performed. A stable compression ignition combustion can be obtained. As a result, as shown in FIG. 3, the uniform compression ignition region can be expanded from the conventional region indicated by hatching to the high load side.
[0037]
Next, the process proceeds to step S5, the compression ignition fuel injection control is executed, and the routine is exited. In the compression ignition fuel injection control, processing for variably setting the fuel injection amount and the fuel injection timing is performed.
[0038]
As shown in FIG. 5A, the fuel injection amount is controlled so that the air-fuel ratio gradually becomes leaner as the engine load Lo decreases. In the figure, symbol λ0 indicates the stoichiometric air-fuel ratio. The fuel injection timing is set based on the engine speed Ne and the engine load Lo. For example, when the operation region is a low load region, the fuel injection timing is set later than the intake bottom dead center (BDC), that is, after the compression stroke starts. On the other hand, at medium load and low / medium speed, it is set at a relatively early time from when the exhaust valve 7 is closed (at the start of the negative valve overlap period) to the intake bottom dead center (BDC).
[0039]
By injecting fuel from the in-cylinder injector 11 into the combustion chamber 3 at a time later than the intake bottom dead center (BDC), the fuel is stratified in the combustion chamber 3 that is reaching a gas temperature at which compression ignition combustion is possible. The air-fuel mixture is generated locally, and stratified compression ignition combustion with an extremely lean air-fuel mixture becomes possible. On the other hand, by setting the fuel injection timing relatively early after the exhaust valve 7 is closed, a uniform air-fuel mixture can be generated before the gas temperature in the combustion chamber 3 reaches a temperature at which self-ignition is possible. When the temperature reaches the ignition temperature, combustion in which the air-fuel mixture ignites all at once and the flame does not propagate is realized, that is, multipoint ignition combustion (uniform compression ignition combustion) in which an infinite number of ignition plugs are arranged.
[0040]
If it is determined in step S1 that the operation region is in the spark ignition region and the process proceeds to step S6, combustion control by normal spark ignition is executed and the routine is exited. When the process shifts to the spark ignition combustion control, a signal for switching to the spark ignition intake cam and the spark ignition exhaust cam is output to the variable valve mechanisms 13a and 13b. As a result, the valve timing at the time of normal spark ignition of the intake valve 6 and the exhaust valve 7, that is, a positive valve overlap period in which both the valve opens from the end of the exhaust stroke to the beginning of the intake stroke (FIG. 4 (c), FIG. 5 (c) ))). The cam profile of the spark ignition intake cam and the spark ignition exhaust cam is set to a shape that maximizes volumetric efficiency.
[0041]
At the same time, the throttle valve 9 is operated in conjunction with the accelerator pedal 32 (see FIG. 5 (d)), and the fuel injection amount, fuel injection timing, ignition timing, and the like are returned to normal spark ignition control. Since these controls are well-known, explanation here is omitted.
[0042]
【The invention's effect】
As described above, according to the present invention, during the compression ignition operation, as the engine load increases, the negative valve overlap period is narrowed to reduce the intake air heating, and further, the intake valve closing timing is set. By reducing the volumetric efficiency by advancing, self-ignition can be suppressed, and stable compression ignition performance can be obtained in a region where the air-fuel ratio is deeper. As a result, the compression ignition region can be expanded to the high load side. Is possible.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a four-cycle gasoline engine having a compression ignition region . FIG. 2 is a flowchart showing a combustion control routine. FIG. 3 is an explanatory diagram showing an operation region map. (A) is a low load operation, (b) is a medium load operation, (c) is a high load operation. FIG. 5 is an explanatory diagram showing the relationship between the engine load and each control characteristic. 6] Explanatory diagram showing the relationship between valve timing and in-cylinder pressure characteristics

Claims (3)

排気上死点前後にかけて排気弁と吸気弁とを共に閉弁する負のバルブオーバラップ期間を形成することの可能な可変動弁機構を備え、運転領域の一部に圧縮着火領域を有する4サイクルガソリンエンジンにおいて、
前記圧縮着火領域では、エンジン負荷が増大するに従い上記負のバルブオーバラップ期間を狭くすると共に体積効率が小さくなるように上記吸気弁の閉弁時期を進角させることを特徴とする4サイクルガソリンエンジン。
4 cycles having a variable valve mechanism capable of forming a negative valve overlap period for closing both the exhaust valve and the intake valve before and after exhaust top dead center, and having a compression ignition region in a part of the operation region In gasoline engines,
In the compression ignition region, as the engine load increases, the negative valve overlap period is narrowed and the closing timing of the intake valve is advanced so that the volumetric efficiency is reduced. .
前記圧縮着火領域において、中負荷運転時の上記吸気弁の閉弁時期は吸気下死点付近に設定されることを特徴とする請求項1記載の4サイクルガソリンエンジン。  2. The four-stroke gasoline engine according to claim 1, wherein in the compression ignition region, the closing timing of the intake valve during medium load operation is set near the intake bottom dead center. 前記圧縮着火領域において、低負荷運転時の上記吸気弁の閉弁時期は吸気下死点を越えた位置に遅角されることを特徴とする請求項1或いは2記載の4サイクルガソリンエンジン。  3. The four-cycle gasoline engine according to claim 1, wherein in the compression ignition region, the closing timing of the intake valve during low-load operation is retarded to a position exceeding the intake bottom dead center.
JP2001040728A 2001-02-16 2001-02-16 4-cycle gasoline engine Expired - Fee Related JP4647112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040728A JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040728A JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Publications (2)

Publication Number Publication Date
JP2002242715A JP2002242715A (en) 2002-08-28
JP4647112B2 true JP4647112B2 (en) 2011-03-09

Family

ID=18903279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040728A Expired - Fee Related JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Country Status (1)

Country Link
JP (1) JP4647112B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100401B2 (en) 2005-02-24 2008-06-11 トヨタ自動車株式会社 Internal combustion engine
JP2007224908A (en) * 2006-02-20 2007-09-06 Robert Bosch Gmbh Method of operating internal combustion engine
JP2008151098A (en) * 2006-12-20 2008-07-03 Honda Motor Co Ltd Valve opening characteristic variable type internal combustion engine
JP4729588B2 (en) * 2008-01-30 2011-07-20 本田技研工業株式会社 Control device for internal combustion engine
JP5428473B2 (en) * 2009-03-31 2014-02-26 マツダ株式会社 Method and apparatus for controlling an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287528A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287528A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile

Also Published As

Publication number Publication date
JP2002242715A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
EP1566528B1 (en) Internal combustion engine
JP4326044B2 (en) 4-cycle internal combustion engine
JP3945152B2 (en) Combustion control device for internal combustion engine
US7370616B2 (en) Method for transition between controlled auto-ignition and spark ignition modes in direct fuel injection engines
US7370633B2 (en) Load transient control methods for direct-injection engines with controlled auto-ignition combustion
JP4122630B2 (en) Compression self-ignition gasoline engine
JP2002256911A (en) Combustion control device of engine
JP4172340B2 (en) Control device for spark ignition engine
JP2001152919A (en) Compressed self-ignition gasoline engine
US20120118267A1 (en) Combustion phasing control in spark-assisted hcci combustion mode
JP4062870B2 (en) Combustion control device for internal combustion engine
WO2006016937A1 (en) Method for mid load operation of auto-ignition combustion
JP3616320B2 (en) Ignition timing control device for internal combustion engine
JP4311604B2 (en) Control device for self-ignition engine
JP2009085199A (en) Control device for gasoline engine
JP2004183513A (en) High compression ratio cycle engine
JP2000073803A (en) Cylinder injection gasoline engine
US20130054115A1 (en) Indirect hcci combustion control
JP4647112B2 (en) 4-cycle gasoline engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP2002227680A (en) Compression ignition type engine
JP2004183510A (en) High expansion ratio cycle engine
JP2004183511A (en) High expansion ratio cycle engine
JP2004183512A (en) High expansion ratio cycle engine
JP2002322928A (en) Combustion control device for compression ignition type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees