JP2002322928A - Combustion control device for compression ignition type engine - Google Patents

Combustion control device for compression ignition type engine

Info

Publication number
JP2002322928A
JP2002322928A JP2001118644A JP2001118644A JP2002322928A JP 2002322928 A JP2002322928 A JP 2002322928A JP 2001118644 A JP2001118644 A JP 2001118644A JP 2001118644 A JP2001118644 A JP 2001118644A JP 2002322928 A JP2002322928 A JP 2002322928A
Authority
JP
Japan
Prior art keywords
compression
fuel
combustion
stroke
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001118644A
Other languages
Japanese (ja)
Inventor
Makoto Kaneko
誠 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2001118644A priority Critical patent/JP2002322928A/en
Publication of JP2002322928A publication Critical patent/JP2002322928A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3058Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used the engine working with a variable number of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode

Abstract

PROBLEM TO BE SOLVED: To enable combustion by compression ignition without extremely enhancing a compression ratio. SOLUTION: When an operating range is within a compression ignition range, an operating cycle is changed from a four cycle operation to a six cycle operation, in which compression and expansion processes are successively carried out twice. In the first compression process, fuel is injected inside the combustion chamber by the first injection, wherein stratified combustion of fuel-air mixture is made by spark ignition. Thereby, next compression process start temperature is increased, which leads to compression ignition combustion of fuel supplied by the second injection. As a result, even if the compression ration is 12 or less, the gas temperature inside the cylinder is reliably increased up to the compression ignition temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮比を極端に高
めることなく、安定した圧縮着火燃焼を得ることの可能
な圧縮着火式エンジンの燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control system for a compression ignition engine capable of obtaining stable compression ignition combustion without extremely increasing a compression ratio.

【0002】[0002]

【従来の技術】4サイクルエンジンの熱効率を向上させ
る手段として、混合気をリーン化させることで作動ガス
の比熱比を大きくして理論熱効率を向上させることが知
られている。又、混合気をリーン化することにより、同
じトルクで運転する場合でも、より多くの空気をエンジ
ンに吸入させるので、ポンピング損失を低減させること
ができる。
2. Description of the Related Art As means for improving the thermal efficiency of a four-cycle engine, it is known to increase the specific heat ratio of the working gas to thereby increase the theoretical thermal efficiency by making the air-fuel mixture lean. Further, by making the air-fuel mixture lean, even when the engine is operated with the same torque, more air is sucked into the engine, so that the pumping loss can be reduced.

【0003】しかし、混合気のリーン化は燃焼期間の長
期化や燃焼の不安定化を伴い限界がある。そこで、筒内
噴射によって、混合気を成層化した状態のまま点火プラ
グの周囲に集め着火性を確保する成層燃焼により、この
限界を拡げるようにしているが、成層燃焼では、点火プ
ラグ周りにリッチ混合気を集中させるので、燃焼温度が
高くなり、NOxが増大し易いという問題がある。
[0003] However, leaning of the air-fuel mixture is limited due to prolonged combustion period and unstable combustion. To overcome this problem, in-cylinder injection is used to increase the limit by stratified charge combustion, in which the mixture is stratified around the spark plug while maintaining a stratified state, to ensure ignitability. Since the air-fuel mixture is concentrated, there is a problem that the combustion temperature becomes high and NOx tends to increase.

【0004】一方、ディーゼルエンジンは、圧縮着火に
より燃焼させるため熱効率が高く、空燃比の大幅なリー
ン化は可能であるが、高負荷時の空気利用率が悪いた
め、出力が低く、煤の排出を生じることがあり、排気ガ
ス対策上問題となる。
[0004] On the other hand, a diesel engine burns by compression ignition, so that it has high thermal efficiency and can make the air-fuel ratio significantly lean. However, since the air utilization rate under a high load is poor, the output is low and soot emission is low. May occur, which is a problem in exhaust gas measures.

【0005】そこで、このような問題を解決する手段と
して、ガソリン混合気を点火プラグを用いず、断熱圧縮
により多点着火させる圧縮着火式エンジンが提案されて
いる。圧縮着火式エンジンでは、火花点火によらず、多
点着火により火炎伝播の短い急速燃焼を実現しているた
め、燃焼室に局所的な高温部が形成され難く、NOx排
出量を大幅に削減することができる。
Therefore, as a means for solving such a problem, there has been proposed a compression ignition type engine in which a gasoline mixture is ignited at multiple points by adiabatic compression without using a spark plug. In the compression ignition type engine, rapid combustion with short flame propagation is realized by multipoint ignition without using spark ignition, so that a local high-temperature portion is hardly formed in the combustion chamber, and NOx emission is greatly reduced. be able to.

【0006】[0006]

【発明が解決しようとする課題】しかし、圧縮着火燃焼
を得るために圧縮比を15〜18程度の高い値に設定す
ると、高負荷運転時においては、燃料噴射量の増加によ
り燃焼圧力が急速に高くなるため、ノッキングが発生し
易くなってしまう。
However, if the compression ratio is set to a high value of about 15 to 18 in order to obtain compression ignition combustion, the combustion pressure increases rapidly during high load operation due to an increase in the fuel injection amount. As a result, knocking is likely to occur.

【0007】これに対処するに、例えば特開平9−28
7528号公報には、外部EGRにより燃焼室内の混合
気温度を低下させたり、EGR通路に設けた冷却装置に
より吸気温度を制御する技術が提案されている。
To cope with this, for example, Japanese Patent Application Laid-Open No. 9-28
Japanese Patent No. 7528 proposes a technique for reducing the temperature of air-fuel mixture in a combustion chamber by external EGR or controlling the temperature of intake air by a cooling device provided in an EGR passage.

【0008】しかし、外部EGRや吸気温度による燃焼
制御は、応答性が遅く、走行中のトルク変化に対して良
好な追従性を得ることができない問題がある。
However, the combustion control based on the external EGR or the intake air temperature has a problem that the response is slow, and it is not possible to obtain a good follow-up property with respect to a torque change during running.

【0009】又、ノッキングの発生を回避するために実
圧縮比を実膨張比よりも小さくなるように設定する、い
わゆるミラーサイクルを採用することも考えられるが、
エンジン負荷の高い状態でミラーサイクル運転を行なう
と燃焼室内に十分な空気量が供給されず、トルクの低下
を招く問題がある。
It is also conceivable to employ a so-called Miller cycle in which the actual compression ratio is set to be smaller than the actual expansion ratio in order to avoid the occurrence of knocking.
When the Miller cycle operation is performed with a high engine load, a sufficient amount of air is not supplied to the combustion chamber, and there is a problem that the torque is reduced.

【0010】本発明は、上記事情に鑑み、ノッキングの
発生を抑制しつつ、広範囲での圧縮着火燃焼を可能と
し、全運転領域において排気エミッションを大幅に低減
することの可能な圧縮着火式エンジンの燃焼制御装置を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a compression ignition engine capable of performing compression ignition combustion over a wide range while suppressing the occurrence of knocking and capable of greatly reducing exhaust emissions in all operation regions. It is an object to provide a combustion control device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明は、燃焼室内に燃料を直接噴射する筒内噴射用イ
ンジェクタと排気弁及び吸気弁のバルブタイミングを可
変可能な可変動弁機構とを備える圧縮着火式エンジンの
燃焼制御装置において、エンジン運転領域が圧縮着火領
域にあるときは運転サイクルを4サイクル運転から、圧
縮行程と膨張行程とを2回連続させる6サイクル運転に
切換える運転サイクル切換え手段と、吸気行程からそれ
に続く圧縮行程の間において燃焼室に第1回目の燃料を
噴射し、最初の膨張行程へ移行した後に第2回目の燃料
を噴射する噴射時期設定手段と、上記第1回目の燃料に
より形成される混合気を最初の圧縮行程において着火さ
せることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an in-cylinder injector for directly injecting fuel into a combustion chamber, a variable valve mechanism capable of varying valve timing of an exhaust valve and an intake valve. In the combustion control device for a compression ignition type engine provided with the above, when the engine operation region is in the compression ignition region, the operation cycle is switched from the four-cycle operation to the six-cycle operation in which the compression stroke and the expansion stroke are continuously performed twice. Means for injecting a first fuel into the combustion chamber during an intake stroke to a subsequent compression stroke, and injecting a second fuel after shifting to an initial expansion stroke; The mixture formed by the second fuel is ignited in the first compression stroke.

【0012】このような構成では、運転領域が圧縮着火
領域にあるときは、運転サイクルを4サイクル運転から
6サイクル運転に切換え、圧縮行程と膨張行程とを2回
連続させ、最初の圧縮行程において第1回目の噴射によ
る燃料を燃焼させることで、次の圧縮行程開始温度を昇
温し、次の圧縮行程時の断熱圧縮により燃焼室内のガス
温度を圧縮着火燃焼可能な温度にまで上昇させる。
In such a configuration, when the operation region is in the compression ignition region, the operation cycle is switched from the four-cycle operation to the six-cycle operation, the compression stroke and the expansion stroke are continuously performed twice, and in the first compression stroke, By burning the fuel from the first injection, the next compression stroke start temperature is raised, and the gas temperature in the combustion chamber is raised to a temperature at which compression ignition combustion is possible by adiabatic compression during the next compression stroke.

【0013】この場合、好ましくは、1)上記第1回目
の燃料により形成された混合気は点火プラグによる火花
点火にて吸入膨張行程において燃焼されることを特徴と
する。
In this case, preferably, 1) the air-fuel mixture formed by the first fuel is burned in a suction expansion stroke by spark ignition by a spark plug.

【0014】2)上記運転サイクル切換え手段では運転
サイクルを6サイクル運転に切換えたとき、排気上死点
の前後で上記吸気弁と上記排気弁とが共に閉弁する負の
バルブオーバラップ期間を形成し、負のバルブオーバラ
ップ期間中に燃焼室に閉じ込めた残留ガスにて吸気行程
時に吸入する新規を加熱昇温することを特徴とする。
2) When the operation cycle is switched to the six-cycle operation, the operation cycle switching means forms a negative valve overlap period in which both the intake valve and the exhaust valve close before and after the exhaust top dead center. In addition, the temperature of the new gas sucked during the intake stroke is raised by the residual gas trapped in the combustion chamber during the negative valve overlap period.

【0015】3)上記第1回目に噴射される燃料量はエ
ンジン負荷の増加に伴い減少されることを特徴とする。
3) The amount of fuel injected at the first time is reduced as the engine load increases.

【0016】[0016]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施の形態を説明する。図1に圧縮着火式エンジンの全
体構成図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram of a compression ignition type engine.

【0017】同図の符号1はエンジン本体、2はピスト
ン、3は燃焼室、4は吸気ポート、5は排気ポート、6
は吸気弁、7は排気弁であり、吸気ポート4に連通する
吸気通路8にスロットル弁9が介装されている。このス
ロットル弁9はスロットル開度を電子的に制御する電子
制御スロットル装置(図示せず)に連設されている。
又、燃焼室3の頂面中央に筒内噴射用インジェクタ11
の噴孔が臨まされており、この筒内噴射用インジェクタ
11の噴射方向に対設するピストン2の頂面に湾曲凹面
状のピストンキャビティ2aが形成されている。更に、
燃焼室3の一側(本実施の形態ではスキッシュエリア)
に点火プラグ12の発火部が臨まされている。尚、符号
16はノックセンサ、17は水温センサである。
1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is an intake port, 5 is an exhaust port, 6
Denotes an intake valve, 7 denotes an exhaust valve, and a throttle valve 9 is interposed in an intake passage 8 communicating with the intake port 4. The throttle valve 9 is connected to an electronic control throttle device (not shown) for electronically controlling the throttle opening.
Further, an in-cylinder injector 11 is provided at the center of the top surface of the combustion chamber 3.
A curved concave piston cavity 2a is formed on the top surface of the piston 2 opposed to the injection direction of the in-cylinder injector 11. Furthermore,
One side of the combustion chamber 3 (a squish area in the present embodiment)
The ignition portion of the ignition plug 12 is exposed. Note that reference numeral 16 denotes a knock sensor, and 17 denotes a water temperature sensor.

【0018】更に、排気ポート5に連通する排気通路2
8に、空燃比検出手段の一例であるO2センサ18が臨
まされ、このO2センサ18の下流に、排気ガス中のC
O,HCの酸化とNOxの還元を行って浄化する三元触
媒29が介装されている。尚、空燃比検出手段は広域空
燃比センサであっても良い。
Further, an exhaust passage 2 communicating with the exhaust port 5 is provided.
8, an O2 sensor 18 as an example of an air-fuel ratio detecting means is provided.
A three-way catalyst 29 for purifying by oxidizing O and HC and reducing NOx is interposed. The air-fuel ratio detecting means may be a wide-range air-fuel ratio sensor.

【0019】又、本実施の形態で採用するエンジンは、
運転領域に応じて燃焼形態を、空燃比の超リーンな圧縮
着火燃焼と、通常の火花点火燃焼とに切換え可能であ
り、圧縮着火燃焼は、NOx生成温度以下で燃焼させる
ことができるため、NOxがほとんど発生せず、しか
も、空気過剰率が高いので、三元触媒29は排気ガス中
のCOとHCとを酸化反応により浄化する、酸化触媒と
して機能させる。
The engine employed in this embodiment is:
The combustion mode can be switched between a super-lean compression ignition combustion having an air-fuel ratio and a normal spark ignition combustion in accordance with the operation range, and the compression ignition combustion can be performed at a NOx generation temperature or lower. Since three-way catalyst 29 rarely occurs and the excess air ratio is high, the three-way catalyst 29 functions as an oxidation catalyst that purifies CO and HC in the exhaust gas by an oxidation reaction.

【0020】更に、本実施の形態で採用するエンジン
は、ノッキング等の異常燃焼を抑制しつつ、通常の火花
点火による高負荷運転が実現できるように、圧縮比が1
2以下に設定されている。
Further, the engine employed in the present embodiment has a compression ratio of 1 so that abnormal combustion such as knocking can be suppressed and high-load operation by ordinary spark ignition can be realized.
It is set to 2 or less.

【0021】又、吸気弁6と排気弁7とが、可変動弁機
構13a,13bに各々連設されている。この各可変動
弁機構13a,13bは、電磁力により吸排気弁の開閉
を任意のバルブタイミングで制御可能な、周知の電磁駆
動弁で構成されている。
An intake valve 6 and an exhaust valve 7 are connected to variable valve mechanisms 13a and 13b, respectively. Each of the variable valve mechanisms 13a and 13b is configured by a known electromagnetically driven valve that can control opening and closing of the intake and exhaust valves at an arbitrary valve timing by an electromagnetic force.

【0022】ところで、本実施の形態によるエンジン
は、燃焼形態が圧縮着火燃焼に設定されると、運転サイ
クルが通常の4サイクル(4ストローク1サイクル)運
転から6サイクル(6ストローク1サイクル)運転に切
換えられる。4サイクル運転は、図5(b)に示すよう
に、排気行程→吸気行程→圧縮行程膨張行程を1サイク
ルとして運転する。
By the way, in the engine according to the present embodiment, when the combustion mode is set to the compression ignition combustion, the operation cycle is changed from the normal four-cycle (one four-stroke cycle) operation to the six-cycle (one six-stroke one cycle) operation. Is switched. In the four-cycle operation, as shown in FIG. 5B, the operation is performed with one cycle of an exhaust stroke → an intake stroke → a compression stroke and an expansion stroke.

【0023】一方、6サイクル運転では、図5(a)に
示すように、通常の4サイクル運転の吸気行程と膨張行
程との間に圧縮行程と膨張行程とを追加し、全体とし
て、吸気行程→圧縮行程→膨張行程→圧縮行程→膨張行
程→排気行程というような、圧縮行程と膨張行程とが2
回連続される6行程を1サイクルとして運転される。従
って、可変動弁機構13bは、排気行程の前後にわたっ
て排気弁7を開弁動作させ、一方、可変動弁機構13a
は吸気行程の前後にわたって吸気弁6を開弁動作させ
る。その結果、吸気弁6と排気弁7とは、エンジン3回
転に1回開弁するバルブタイミングで、6サイクル運転
が行なわれる。
On the other hand, in the six-cycle operation, as shown in FIG. 5A, a compression stroke and an expansion stroke are added between the intake stroke and the expansion stroke in the normal four-cycle operation, and the intake stroke as a whole is increased. → Compression stroke → expansion stroke → compression stroke → expansion stroke → exhaust stroke, the compression stroke and the expansion stroke are 2
The operation is performed with six consecutive strokes as one cycle. Therefore, the variable valve mechanism 13b opens the exhaust valve 7 before and after the exhaust stroke, while the variable valve mechanism 13a
Opens the intake valve 6 before and after the intake stroke. As a result, the intake valve 6 and the exhaust valve 7 perform a six-cycle operation at a valve timing that opens once every three engine revolutions.

【0024】上述した各センサで検出した信号は電子制
御ユニット(ECU)20に入力される。電子制御ユニ
ット(ECU)20は、CPU21、ROM22、RA
M23、入力ポート24、出力ポート25等からなるマ
イクロコンピュータを中心として構成され、これらが双
方向性バス26によって相互に接続されている。
The signals detected by the above-described sensors are input to an electronic control unit (ECU) 20. An electronic control unit (ECU) 20 includes a CPU 21, a ROM 22,
M23, an input port 24, an output port 25, etc., are constituted mainly by a microcomputer, which are mutually connected by a bidirectional bus 26.

【0025】入力ポート24には、上述した各センサ以
外に、設定クランク角度毎にクランクパルスを発生する
クランク角センサ31が接続されていると共に、アクセ
ルペダル32の踏込み量に比例した出力電圧を発生する
負荷センサ33がA/D変換器34を介して接続されて
いる。又、出力ポート25が吸気弁駆動回路36a、排
気弁駆動回路36bを介して、各可変動弁機構13a,
13bに個別に接続され、点火駆動回路36cを介して
点火プラグ12に接続され、更に、インジェクタ駆動回
路36dを介して筒内噴射用インジェクタ11に接続さ
れている。
The input port 24 is connected to a crank angle sensor 31 for generating a crank pulse for each set crank angle, in addition to the sensors described above, and generates an output voltage proportional to the amount of depression of an accelerator pedal 32. The load sensor 33 is connected via an A / D converter 34. The output port 25 is connected to each of the variable valve mechanisms 13a, 13a, via an intake valve drive circuit 36a and an exhaust valve drive circuit 36b.
13b, is connected to the ignition plug 12 via an ignition drive circuit 36c, and is further connected to the in-cylinder injector 11 via an injector drive circuit 36d.

【0026】電子制御ユニット(ECU)20は、クラ
ンク角センサ31からの信号に基づいて算出したエンジ
ン回転数Neと、負荷センサ33からの信号に基づいて
検出したエンジン負荷Loとに基づき運転領域が圧縮着
火領域にあるか、火花点火領域にあるかを調べ、圧縮着
火領域にあるときは、スロットル弁9を全開とし、最適
な圧縮着火燃焼を得ることのできる燃料噴射量を算出し
て、圧縮着火燃焼制御を行なう。又、運転領域が火花点
火領域にあるときは、通常の火花点火燃焼制御を実行す
る。
The electronic control unit (ECU) 20 determines the operating range based on the engine speed Ne calculated based on the signal from the crank angle sensor 31 and the engine load Lo detected based on the signal from the load sensor 33. It is checked whether it is in the compression ignition region or the spark ignition region. If it is in the compression ignition region, the throttle valve 9 is fully opened, and the fuel injection amount that can obtain the optimal compression ignition combustion is calculated. Perform ignition combustion control. When the operation region is in the spark ignition region, normal spark ignition combustion control is executed.

【0027】ところで、本実施の形態で採用するエンジ
ンの圧縮比は12以下に設定されているため、圧縮行程
時の断熱圧縮にて筒内ガスを圧縮着火可能温度まで昇温
させることは困難である。そのため、本実施の形態で
は、圧縮行程後半に、燃焼制御用燃料を噴射(以下、こ
れを「第1噴射」と称する)して成層混合気を形成さ
せ、この成層混合気を火花点火により燃焼させること
で、圧縮行程開始温度を昇温させる。そして、膨張行程
後半から圧縮行程前半の間に主なトルク発生用燃料を噴
射(以下、これを「第2噴射」と称する)し、圧縮行程
時の断熱圧縮により、筒内ガス温度を圧縮着火温度まで
昇温させる。このとき、第1噴射による燃焼(以下、こ
れを「第1燃焼」と称する)は、第2噴射による燃焼
(以下、これを「第2燃焼」と称する)を考慮してリー
ンとする。第2燃焼は残された酸素に対してリーンから
ストイキオまでの条件で燃焼する。具体的なそれぞれの
濃度は運転条件で適宜調整する。
Since the compression ratio of the engine employed in the present embodiment is set to 12 or less, it is difficult to raise the temperature of the gas in the cylinder to the compression ignition temperature by adiabatic compression during the compression stroke. is there. Therefore, in the present embodiment, in the latter half of the compression stroke, the fuel for combustion control is injected (hereinafter, referred to as “first injection”) to form a stratified mixture, and this stratified mixture is burned by spark ignition. By doing so, the compression stroke start temperature is raised. The main fuel for torque generation is injected between the latter half of the expansion stroke and the first half of the compression stroke (hereinafter referred to as “second injection”), and the adiabatic compression during the compression stroke lowers the temperature of the in-cylinder gas to compression ignition. Raise the temperature to the temperature. At this time, combustion by the first injection (hereinafter, referred to as “first combustion”) is made lean in consideration of combustion by the second injection (hereinafter, referred to as “second combustion”). The second combustion burns the remaining oxygen under conditions from lean to stoichiometric. Each specific concentration is appropriately adjusted depending on operating conditions.

【0028】電子制御ユニット(ECU)20で処理さ
れる燃料噴射制御、点火時期制御等の燃焼制御は、具体
的には、図2に示す燃焼制御ルーチンに従って実行され
る。
The combustion control, such as fuel injection control and ignition timing control, which is performed by the electronic control unit (ECU) 20 is specifically executed according to a combustion control routine shown in FIG.

【0029】このルーチンでは、先ず、ステップS1
で、エンジン回転数Neとエンジン負荷Loとに基づ
き、図4に示す運転領域マップを参照して、運転領域が
圧縮着火領域にあるか、火花点火領域にあるかを調べ、
圧縮着火領域にあるときは、ステップS2へ進み、火花
点火領域にあるときはステップS5へ進む。尚、本実施
の形態における圧縮着火領域は、図4に示すように、低
中回転且つ低中負荷領域に設定され、火花点火領域は、
それ以外の領域である高回転領域、或いは高負荷領域に
設定されている。
In this routine, first, in step S1
Then, based on the engine speed Ne and the engine load Lo, referring to the operation region map shown in FIG. 4, it is determined whether the operation region is in the compression ignition region or the spark ignition region.
When it is in the compression ignition region, the process proceeds to step S2, and when it is in the spark ignition region, the process proceeds to step S5. Note that the compression ignition region in the present embodiment is set to a low-medium rotation and low-medium load region as shown in FIG.
It is set in a high rotation region or a high load region, which is the other region.

【0030】ステップS2へ進むと、スロットル弁9を
全開動作させ、その後、ステップS3へ進み、可変動弁
機構13a,13bに対して、吸気弁6と排気弁7とが
6サイクル運転となるバルブタイミングの駆動信号を設
定し出力する。すると、図5(a)に示すように、吸気
弁6はエンジン回転が3回転に1回、吸気行程において
開弁し、又、排気弁7が、同様にエンジン3回転に1
回、排気行程において開弁される。
In step S2, the throttle valve 9 is fully opened, and then in step S3, the intake valve 6 and the exhaust valve 7 are operated for six cycles with respect to the variable valve mechanisms 13a and 13b. Set and output timing drive signals. Then, as shown in FIG. 5 (a), the intake valve 6 opens once in every three revolutions of the engine during the intake stroke, and the exhaust valve 7 also opens once every three revolutions of the engine.
The valve is opened in the exhaust stroke.

【0031】次いで、ステップS4へ進み、圧縮着火燃
焼制御を実行してルーチンを抜ける。この圧縮着火燃焼
制御は、図3に示す圧縮着火燃焼制御サブルーチンに従
って実行される。
Next, the routine proceeds to step S4, in which compression ignition combustion control is executed, and the routine exits. This compression ignition combustion control is executed according to a compression ignition combustion control subroutine shown in FIG.

【0032】このルーチンでは、先ず、ステップS11
で、エンジン負荷Loとエンジン回転数Neとに基づき
マップ検索、或いは演算により、筒内噴射用インジェク
タ11から噴射する総燃料量を算出する。次いで、ステ
ップS12へ進み、エンジン負荷Loに応じて第1噴射
時の燃料量(以下「第1噴射時燃料量」と略称)と第2
噴射時の燃料量(以下「第2噴射時燃料量」と略称)と
の割合を示す噴射比率を算出する。この噴射比率は、第
1噴射時燃料量の比率を、例えば最大10%とし、エン
ジン負荷Loが増加するに従い0%に達するまで減少さ
せる。従って、第2噴射時燃料量の比率はエンジン負荷
Loが増加するに従い、90〜100%の範囲で増加す
る。
In this routine, first, at step S11
Then, the total fuel amount injected from the in-cylinder injector 11 is calculated by a map search or calculation based on the engine load Lo and the engine speed Ne. Next, the process proceeds to step S12, in which the fuel amount at the time of the first injection (hereinafter abbreviated as “the fuel amount at the time of the first injection”) and the second fuel amount according to the engine load Lo.
An injection ratio indicating a ratio with the fuel amount at the time of injection (hereinafter abbreviated as "second injection fuel amount") is calculated. The injection ratio is set to, for example, a maximum of 10% at the time of the first injection-time fuel amount, and is reduced until it reaches 0% as the engine load Lo increases. Therefore, the ratio of the second injection fuel amount increases in the range of 90 to 100% as the engine load Lo increases.

【0033】エンジン負荷Loの増加に伴い、第1噴射
時燃料量を減少させて、第1燃焼による熱エネルギを制
御するようにしたので、エンジン負荷Loの増加に伴い
空燃比を次第にリッチ化させた場合であっても、ノッキ
ング等の異常燃焼を回避しつつ、安定した圧縮着火燃焼
を得ることができ、高出力化が可能となる。
With the increase in the engine load Lo, the fuel amount during the first injection is reduced to control the thermal energy by the first combustion. Therefore, the air-fuel ratio is gradually enriched with the increase in the engine load Lo. Even in such a case, stable compression ignition combustion can be obtained while avoiding abnormal combustion such as knocking, and high output can be achieved.

【0034】次いで、ステップS13へ進み、このステ
ップS13、及び次のステップS14で、ステップS1
1で算出した総燃料量とステップS12で算出した噴射
比率とに基づき、第1噴射時燃料量と第2噴射時燃料量
とをそれぞれ算出する。
Next, the process proceeds to step S13, and in this step S13 and the next step S14, step S1 is executed.
Based on the total fuel amount calculated in step 1 and the injection ratio calculated in step S12, the first injection fuel amount and the second injection fuel amount are calculated.

【0035】その後、ステップS15へ進み、第1噴射
時期に達するまで待機する。この第1噴射時期は、吸気
弁6が閉弁した後の圧縮行程であって、後述する成層火
花点火時期の際に点火プラグ12の発火部周囲に濃い混
合気を成層状態のまま形成させるためには何時噴射を開
始したらよいかを示す値であり、固定値或いは点火時期
からエンジン回転数Neに基づき逆算した可変値であっ
ても良い。
Thereafter, the process proceeds to step S15, and waits until the first injection timing is reached. This first injection timing is a compression stroke after the intake valve 6 is closed, and is used to form a rich mixture around the ignition portion of the ignition plug 12 in a stratified state at the time of a stratified spark ignition timing described later. Is a value indicating when the injection should be started, and may be a fixed value or a variable value calculated back from the ignition timing based on the engine speed Ne.

【0036】そして、第1噴射時期に達したとき、ステ
ップS15からステップS16へ進み、第1噴射時燃料
量に対応するパルス幅の第1噴射信号をインジェクタ駆
動回路36dへ出力する。すると、筒内噴射用インジェ
クタ11から、ステップS13で算出した第1噴射時燃
料量が燃焼室3内に噴射される(図5(a)参照)。
When the first injection timing has been reached, the process proceeds from step S15 to step S16, where a first injection signal having a pulse width corresponding to the first injection fuel amount is output to the injector drive circuit 36d. Then, the first injection fuel amount calculated in step S13 is injected into the combustion chamber 3 from the in-cylinder injector 11 (see FIG. 5A).

【0037】次いで、ステップS17へ進み、成層火花
点火時期に達するまで待機する。この成層火花点火時期
は固定値であり、燃焼時の筒内圧が圧縮上死点(TD
C)を僅かに過ぎた辺りで最大となるようなタイミング
に設定されている。
Next, the routine proceeds to step S17, and waits until the stratified spark ignition timing is reached. This stratified spark ignition timing is a fixed value, and the in-cylinder pressure during combustion is determined by the compression top dead center (TD).
The timing is set such that the maximum is obtained just after C).

【0038】そして、成層火花点火時期に達したとき、
ステップS17からステップS18へ進み、点火駆動回
路36cに対して点火信号を出力する。すると、点火プ
ラグ12の発火部周囲に形成された、成層状態の混合気
が強制着火され、火炎伝播燃焼される(第1燃焼)。
尚、この第1燃焼も正の仕事であるため、熱効率が低下
することはない。
When the stratified spark ignition timing is reached,
The process proceeds from step S17 to step S18 to output an ignition signal to the ignition drive circuit 36c. Then, the stratified air-fuel mixture formed around the ignition portion of the ignition plug 12 is forcibly ignited, and is subjected to flame propagation combustion (first combustion).
Since the first combustion is also a positive work, the thermal efficiency does not decrease.

【0039】その後、ステップS19へ進み、第2噴射
時期に達するまで待機する。この第2噴射時期は、膨張
行程中の適正な時期に設定されている。第2噴射時期を
膨張行程中に設定することで、圧縮行程において燃焼室
3内のガス温度が圧縮着火可能温度に達する前に均一混
合気を生成させることができる。
Thereafter, the process proceeds to step S19, and waits until the second injection timing is reached. This second injection timing is set to an appropriate timing during the expansion stroke. By setting the second injection timing during the expansion stroke, a uniform mixture can be generated before the gas temperature in the combustion chamber 3 reaches the compression ignition enabling temperature in the compression stroke.

【0040】そして、第2噴射時期に達したとき、ステ
ップS19からステップS20へ進み、インジェクタ駆
動回路36dへ第2噴射時燃料量に対応するパルス幅の
第2噴射信号を出力し、ルーチンを抜ける。すると、筒
内噴射用インジェクタ11から、ステップS14で算出
した第2噴射時燃料量が燃焼室3内に噴射される(図5
(a)参照)。
When the second injection timing has been reached, the process proceeds from step S19 to step S20, in which a second injection signal having a pulse width corresponding to the second injection fuel amount is output to the injector drive circuit 36d, and the routine exits. . Then, the in-cylinder injector 11 injects the second-injection fuel amount calculated in step S14 into the combustion chamber 3 (FIG. 5).
(a)).

【0041】このとき、燃焼室3内には第1燃焼により
燃焼された比較的高温の未燃ガスが充満しており、この
未燃ガスと第2噴射による燃料とが均一に混合されなが
ら次の圧縮行程へ移行する。
At this time, the combustion chamber 3 is filled with the relatively high-temperature unburned gas burned by the first combustion, and the unburned gas and the fuel from the second injection are mixed while being uniformly mixed. To the compression stroke.

【0042】圧縮行程においては、圧縮行程開始時のガ
ス温度が未燃ガスの熱エネルギにより高められているた
め、圧縮比が12以下の断熱圧縮であっても、燃焼室3
内のガス温度を圧縮着火温度まで確実に上昇させること
ができる。そして、圧縮着火温度に達したとき、燃焼室
3内の混合気が一斉に着火して火炎が伝播しない燃焼、
いわば無限数の点火プラグを配したような多点発火燃焼
(均一圧縮着火燃焼)が実現される。
In the compression stroke, the gas temperature at the start of the compression stroke is increased by the heat energy of the unburned gas. Therefore, even if the compression ratio is 12 or less, the combustion chamber 3
The temperature of the gas inside can be reliably increased to the compression ignition temperature. Then, when the compression ignition temperature is reached, the air-fuel mixture in the combustion chamber 3 is ignited all at once and combustion in which the flame does not propagate,
Multipoint ignition combustion (homogeneous compression ignition combustion) in which an infinite number of spark plugs are arranged is realized.

【0043】一方、図2に示す燃焼制御ルーチンのステ
ップS1で運転領域が火花点火領域にあると判定されて
ステップS5へ進むと、可変動弁機構13a,13bに
対して、吸気弁6と排気弁7とが4サイクル運転となる
バルブタイミングの駆動信号を設定し出力する。する
と、図5(b)に示すように、吸気弁6はエンジン回転
が2回転に1回、吸気行程において開弁し、又、排気弁
7が、同様にエンジン2回転に1回、排気行程において
開弁される、通常のバルブタイミングに戻される。
On the other hand, when it is determined in step S1 of the combustion control routine shown in FIG. 2 that the operation region is in the spark ignition region and the process proceeds to step S5, the intake valve 6 and the exhaust valve are provided to the variable valve mechanisms 13a and 13b. A valve timing drive signal for setting the valve 7 and the four-cycle operation to a four-cycle operation is set and output. Then, as shown in FIG. 5 (b), the intake valve 6 opens once in every two revolutions of the engine during the intake stroke, and the exhaust valve 7 similarly opens once every two revolutions of the engine, the exhaust stroke. Is returned to the normal valve timing.

【0044】次いで、ステップS6へ進み、通常の火花
点火による燃焼制御を実行してルーチンを抜ける。通常
火花点火燃焼制御では、スロットル弁9をアクセルペダ
ル32に連動させた動作に戻し、更に、燃料噴射量、燃
料噴射時期、及び点火時期等を通常の火花点火燃焼制御
に戻す。尚、通常火花点火燃焼制御は公知であるため、
ここでの説明は省略する。
Next, the routine proceeds to step S6, in which combustion control by ordinary spark ignition is executed, and the routine exits. In the normal spark ignition combustion control, the operation of the throttle valve 9 is returned to the operation linked to the accelerator pedal 32, and the fuel injection amount, the fuel injection timing, the ignition timing, and the like are returned to the normal spark ignition combustion control. Since the normal spark ignition combustion control is known,
The description here is omitted.

【0045】このように、本実施の形態によれば、圧縮
着火領域では、通常の4サイクル運転の吸気行程と圧縮
行程との間に、圧縮行程と膨張行程とを追加した6サイ
クル運転に切換え、圧縮行程において新気を一度圧縮さ
せ、この新気に燃焼制御用燃料を噴射して、成層火花点
火により燃焼させて、未燃ガスを発生させ、この未燃ガ
スの熱エネルギにより圧縮行程開始温度を昇温するよう
にしたので、エンジンの圧縮比を極端に上げることな
く、圧縮比が12以下であっても安定した圧縮着火燃焼
を得ることができる。更に、第1噴射時燃料量をエンジ
ン負荷Loに応じて可変設定することで、低負荷領域で
の着火性を確保すると共に、中負荷領域でのノッキング
の発生を抑制することができ、結果として広範囲での圧
縮着火燃焼が可能となる。更に、6サイクル中に2回燃
焼させるようにしたので、滑らかなエンジン回転を得る
ことができる。
As described above, according to the present embodiment, in the compression ignition region, the operation is switched to the six-cycle operation in which the compression stroke and the expansion stroke are added between the intake stroke and the compression stroke in the normal four-cycle operation. In the compression stroke, the fresh air is once compressed, fuel for combustion control is injected into the fresh air, burned by stratified spark ignition to generate unburned gas, and the compression stroke is started by the heat energy of the unburned gas. Since the temperature is raised, stable compression ignition combustion can be obtained even if the compression ratio is 12 or less without extremely increasing the compression ratio of the engine. Furthermore, by variably setting the first injection fuel amount in accordance with the engine load Lo, it is possible to ensure ignitability in a low load region and to suppress knocking in a medium load region. Compression ignition combustion can be performed over a wide range. Further, since the combustion is performed twice during six cycles, a smooth engine rotation can be obtained.

【0046】又、この場合、図6に示すように、排気上
死点(TDC)の前後で、排気弁7と吸気弁6との双方
が共に閉弁する負のバルブオーバラップ期間を形成し、
この負のバルブオーバラップ期間に燃焼室3内に閉じ込
めた残留ガスの熱エネルギにより、次の吸気行程におい
て吸入する新気を加熱昇温させることで、第1燃焼をも
圧縮着火燃焼とするようにしても良い。更に、負のバル
ブオーバラップ期間をエンジン負荷が増加するに従い、
次第に狭めることで、残留ガスの熱エネルギを調整し、
第1燃焼時期を制御するようにしても良い。
In this case, as shown in FIG. 6, before and after the top dead center (TDC), a negative valve overlap period is formed in which both the exhaust valve 7 and the intake valve 6 are closed. ,
By heating and raising the temperature of fresh air to be sucked in the next intake stroke by the thermal energy of the residual gas confined in the combustion chamber 3 during the negative valve overlap period, the first combustion is also made to be compression ignition combustion. You may do it. Further, as the engine load increases during the negative valve overlap period,
By gradually narrowing the heat energy of the residual gas,
The first combustion timing may be controlled.

【0047】[0047]

【発明の効果】以上、説明したように本発明によれば、
圧縮着火領域では、運転サイクルを4サイクル運転から
6サイクル運転に切換え、圧縮行程と膨張行程とを2回
連続させ、最初の圧縮膨張行程において一度燃料を噴射
して燃焼させることで、次の圧縮行程開始温度ほ昇温さ
せるようにしたので、圧縮比を極端に上げることなく、
圧縮行程時の断熱圧縮により燃焼室内のガス温度を圧縮
着火燃焼可能な温度にまで確実に上昇させることがで
き、安定した圧縮着火燃焼を得ることができる。その結
果、燃費の向上、及び排気エミッションの大幅な低減を
実現することができる。
As described above, according to the present invention,
In the compression ignition region, the operation cycle is switched from four-cycle operation to six-cycle operation, the compression stroke and the expansion stroke are continued twice, and fuel is injected and burned once in the first compression-expansion stroke to perform the next compression stroke. Since the stroke start temperature was raised, without increasing the compression ratio extremely,
By the adiabatic compression during the compression stroke, the gas temperature in the combustion chamber can be reliably raised to a temperature at which compression ignition combustion is possible, and stable compression ignition combustion can be obtained. As a result, it is possible to achieve an improvement in fuel efficiency and a significant reduction in exhaust emissions.

【0048】この場合、第1回目に噴射される燃料量を
運転領域に応じて可変設定することで、低負荷領域での
着火性を確保すると共に、中負荷領域でのノッキングの
発生を抑制することができ、広範囲での圧縮着火燃焼が
可能となる。その結果、通常火花点火燃焼との組み合わ
せにより、全運転領域において排気エミッションを大幅
に低減することが可能となる。
In this case, the ignitability in the low load region is ensured and the occurrence of knocking in the medium load region is suppressed by variably setting the amount of fuel injected at the first time according to the operation region. Thus, compression ignition combustion can be performed over a wide range. As a result, in combination with the normal spark ignition combustion, it is possible to significantly reduce the exhaust emission in the entire operation range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮着火式エンジンの全体構成図FIG. 1 is an overall configuration diagram of a compression ignition engine.

【図2】燃焼制御ルーチンを示すフローチャートFIG. 2 is a flowchart showing a combustion control routine.

【図3】圧縮着火燃焼制御サブルーチンを示すフローチ
ャート
FIG. 3 is a flowchart showing a compression ignition combustion control subroutine.

【図4】運転領域マップを示す説明図FIG. 4 is an explanatory diagram showing an operation area map.

【図5】運転領域毎の筒内圧の変化を示す説明図で
(a)は圧縮着火による6サイクル運転、(b)は火花
点火による4サイクル運転を示す
5A and 5B are explanatory diagrams showing changes in in-cylinder pressure for each operation region, wherein FIG. 5A shows six-cycle operation by compression ignition, and FIG. 5B shows four-cycle operation by spark ignition.

【図6】他の態様による圧縮着火による6サイクル運転
時の筒内圧の変化を示す説明図
FIG. 6 is an explanatory diagram showing a change in in-cylinder pressure during a six-cycle operation by compression ignition according to another embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン本体 3 燃焼室 6 吸気弁 7 排気弁 11 筒内噴射用インジェクタ 12 点火プラグ 13a,13b 可変動弁機構 DESCRIPTION OF SYMBOLS 1 Engine main body 3 Combustion chamber 6 Intake valve 7 Exhaust valve 11 In-cylinder injector 12 Spark plug 13a, 13b Variable valve mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 13/02 F02D 13/02 H J 41/04 380 41/04 380C 385 385C 41/14 330 41/14 330B 41/40 41/40 D Fターム(参考) 3G023 AA02 AA05 AA06 AB03 AB06 AC05 AD04 AD29 AG00 AG01 AG02 AG05 3G092 AA04 AA06 AA11 AB02 BB02 BB06 DA03 EA11 FA17 GA05 GA06 GA17 GA18 3G301 HA04 HA15 HA19 JA25 KA08 KA09 KA24 KA25 LB04 MA19 NC02 ND03 PA17Z PB05A PE01Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) F02D 13/02 F02D 13/02 H J41 / 04 380 41/04 380C 385 385C 41/14 330 41/14 330B 41/40 41/40 DF term (reference) 3G023 AA02 AA05 AA06 AB03 AB06 AC05 AD04 AD29 AG00 AG01 AG02 AG05 3G092 AA04 AA06 AA11 AB02 BB02 BB06 DA03 EA11 FA17 GA05 GA06 GA17 GA18 3G301 HA04 HA08 KA24 KA24 KA24 KA24 MA19 NC02 ND03 PA17Z PB05A PE01Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃焼室内に燃料を直接噴射する筒内噴射用
インジェクタと排気弁及び吸気弁のバルブタイミングを
可変可能な可変動弁機構とを備える圧縮着火式エンジン
の燃焼制御装置において、 エンジン運転領域が圧縮着火領域にあるときは運転サイ
クルを4サイクル運転から、圧縮行程と膨張行程とを2
回連続させる6サイクル運転に切換える運転サイクル切
換え手段と、 吸気行程からそれに続く圧縮行程の間において燃焼室に
第1回目の燃料を噴射し、最初の膨張行程へ移行した後
に第2回目の燃料を噴射する噴射時期設定手段と、 上記第1回目の燃料により形成される混合気を最初の圧
縮行程において着火させることを特徴とする圧縮着火式
エンジンの燃焼制御装置。
An in-cylinder injector for directly injecting fuel into a combustion chamber and a variable valve mechanism capable of varying valve timings of an exhaust valve and an intake valve. When the region is in the compression ignition region, the operation cycle is changed from the 4-cycle operation to the compression stroke and the expansion stroke of 2 cycles.
Operation cycle switching means for switching to six-cycle operation for consecutive times, and injecting the first fuel into the combustion chamber between the intake stroke and the subsequent compression stroke, and transferring the second fuel after shifting to the first expansion stroke. An injection timing setting means for injecting, and a combustion control device for a compression ignition type engine, wherein an air-fuel mixture formed by the first fuel is ignited in a first compression stroke.
【請求項2】上記第1回目の燃料により形成された混合
気は点火プラグによる火花点火にて吸入膨張行程におい
て燃焼されることを特徴とする請求項1記載の圧縮着火
式エンジンの燃焼制御装置。
2. A combustion control apparatus for a compression ignition type engine according to claim 1, wherein the air-fuel mixture formed by said first fuel is burned in a suction expansion stroke by spark ignition by a spark plug. .
【請求項3】上記運転サイクル切換え手段では運転サイ
クルを6サイクル運転に切換えたとき、排気上死点の前
後で上記吸気弁と上記排気弁とが共に閉弁する負のバル
ブオーバラップ期間を形成し、負のバルブオーバラップ
期間中に燃焼室に閉じ込めた残留ガスにて吸気行程時に
吸入する新規を加熱昇温することを特徴とする請求項1
記載の圧縮着火式エンジンの燃焼制御装置。
3. The operation cycle switching means forms a negative valve overlap period in which the intake valve and the exhaust valve both close before and after the top dead center of the exhaust when the operation cycle is switched to the six cycle operation. And heating the temperature of the new gas sucked during the intake stroke with the residual gas trapped in the combustion chamber during the negative valve overlap period.
A combustion control device for a compression ignition type engine according to the above.
【請求項4】上記第1回目に噴射される燃料量はエンジ
ン負荷の増加に伴い減少されることを特徴とする請求項
1〜3の何れかに記載の圧縮着火式エンジンの燃焼制御
装置。
4. The combustion control system for a compression ignition engine according to claim 1, wherein said first fuel amount is decreased as the engine load increases.
JP2001118644A 2001-02-23 2001-04-17 Combustion control device for compression ignition type engine Pending JP2002322928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118644A JP2002322928A (en) 2001-02-23 2001-04-17 Combustion control device for compression ignition type engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-48874 2001-02-23
JP2001048874 2001-02-23
JP2001118644A JP2002322928A (en) 2001-02-23 2001-04-17 Combustion control device for compression ignition type engine

Publications (1)

Publication Number Publication Date
JP2002322928A true JP2002322928A (en) 2002-11-08

Family

ID=26610019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118644A Pending JP2002322928A (en) 2001-02-23 2001-04-17 Combustion control device for compression ignition type engine

Country Status (1)

Country Link
JP (1) JP2002322928A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431202A (en) * 2005-09-01 2007-04-18 Lotus Car Internal combustion engine which operates repeatedly with a multi-stage combustion process including homogeneous charge compression ignition
JP2008111442A (en) * 2006-10-30 2008-05-15 Ford Global Technologies Llc Method of operating engine
WO2009079347A2 (en) * 2007-12-14 2009-06-25 Gm Global Technology Operations, Inc. Method and apparatus for injecting fuel into a compression-ignition engine
JP2013133765A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Automobile engine controller
CN106930846A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 The control method of many stroke cycle engines, system and vehicle
JP2020041481A (en) * 2018-09-11 2020-03-19 川崎重工業株式会社 Power generation system and propulsion device with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431202A (en) * 2005-09-01 2007-04-18 Lotus Car Internal combustion engine which operates repeatedly with a multi-stage combustion process including homogeneous charge compression ignition
GB2431202B (en) * 2005-09-01 2007-09-05 Lotus Car An engine which operates repeatedly with a multi-stage combustion process
JP2008111442A (en) * 2006-10-30 2008-05-15 Ford Global Technologies Llc Method of operating engine
WO2009079347A2 (en) * 2007-12-14 2009-06-25 Gm Global Technology Operations, Inc. Method and apparatus for injecting fuel into a compression-ignition engine
WO2009079347A3 (en) * 2007-12-14 2009-08-13 Gm Global Tech Operations Inc Method and apparatus for injecting fuel into a compression-ignition engine
US7740000B2 (en) 2007-12-14 2010-06-22 Gm Global Technology Operations, Inc. Method and apparatus for injecting fuel into a compression-ignition engine
JP2013133765A (en) * 2011-12-27 2013-07-08 Mazda Motor Corp Automobile engine controller
CN106930846A (en) * 2015-12-29 2017-07-07 长城汽车股份有限公司 The control method of many stroke cycle engines, system and vehicle
CN106930846B (en) * 2015-12-29 2021-03-19 长城汽车股份有限公司 Control method and system of multi-stroke cycle engine and vehicle
JP2020041481A (en) * 2018-09-11 2020-03-19 川崎重工業株式会社 Power generation system and propulsion device with the same
US11358461B2 (en) 2018-09-11 2022-06-14 Kawasaki Jukogyo Kabushiki Kaisha Electricity generation system and propulsion apparatus including the same

Similar Documents

Publication Publication Date Title
JP2002256911A (en) Combustion control device of engine
JP4134492B2 (en) In-cylinder internal combustion engine
JP3894089B2 (en) Control device for spark ignition engine
US10487720B2 (en) Control system of compression-ignition engine
EP1186759B1 (en) Self-igniting engine
US10895215B2 (en) Control system for pre-mixture compression-ignition engine
US10704524B2 (en) Control system of compression-ignition engine
JP2001152919A (en) Compressed self-ignition gasoline engine
JP2002256872A (en) Control system for engine combustion
JP2010236496A (en) Method and device for controlling internal combustion engine
JP2018123706A (en) Internal combustion engine
JP2001003771A (en) Compression self ignitition gasoline internal combustion engine
JP2018040264A (en) Control device for internal combustion engine
JP2001263067A (en) Compressed self-ignition type gasoline engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP2018193989A (en) Control device for compression ignition type engine
JP2002322928A (en) Combustion control device for compression ignition type engine
JP2002227680A (en) Compression ignition type engine
JP2000314318A (en) Combustion control device for internal combustion engine
JP2004510910A (en) Internal combustion engine operating method, internal combustion engine operating computer program, and internal combustion engine
JPH10212995A (en) Exhaust temperature raising device
JP5593827B2 (en) Control device for spark ignition engine
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP2016109111A (en) Opposite mating piston internal combustion engine of rapid combustion
JP2001336435A (en) Six-cycle internal combustion engine