JP2002227680A - Compression ignition type engine - Google Patents

Compression ignition type engine

Info

Publication number
JP2002227680A
JP2002227680A JP2001025927A JP2001025927A JP2002227680A JP 2002227680 A JP2002227680 A JP 2002227680A JP 2001025927 A JP2001025927 A JP 2001025927A JP 2001025927 A JP2001025927 A JP 2001025927A JP 2002227680 A JP2002227680 A JP 2002227680A
Authority
JP
Japan
Prior art keywords
valve
exhaust
intake
compression ignition
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001025927A
Other languages
Japanese (ja)
Inventor
Makoto Kaneko
誠 金子
Koji Morikawa
弘二 森川
Hitoshi Ito
仁 伊藤
Yohei Saishiyu
陽平 最首
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2001025927A priority Critical patent/JP2002227680A/en
Publication of JP2002227680A publication Critical patent/JP2002227680A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition

Abstract

PROBLEM TO BE SOLVED: To reduce noise by keeping the pressure difference between the pressure inside a combustion chamber when an intake valve is opened and the pressure on an intake port side negligible all the time, and decreasing pulsation caused by blow-back. SOLUTION: At the time of the compressed ignition combustion, a negative valve overlap period when both intake and exhaust valves 6, 7 are closed together around the exhaust top dead point is formed by delaying the angle of the valve opening time of the intake valve 6, while advancing the angle of the valve closing time of the exhaust valve 7. The valve opening time of the intake valve 6 is set on the delayed angle side than the crank angle in a symmetrical position holding the valve closing time and the exhaust top dead point of the exhaust valve 7 in between. The pressure difference between the pressure inside the combustion chamber 3 when the intake valve 6 is opened and the pressure on the intake port 4 side is reduced by setting the valve opening period of the intake valve 6 on the delayed angle side than the valve closing period of the exhaust valve 7, thereby suppressing the blow-back by a residual gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼室内の混合気
を圧縮熱により多点着火させる圧縮着火式エンジンに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression ignition engine in which a mixture in a combustion chamber is ignited at multiple points by heat of compression.

【0002】[0002]

【従来の技術】従来、排出ガス清浄化の一環として、例
えばガソリンエンジンでは、火花点火による運転だけで
なく、運転領域によっては圧縮熱による自着火運転をも
行なわせる技術が種々検討されている。火花点火によら
ず圧縮着火とすることで、いわば無限数の点火プラグを
配設したような多点着火燃焼が実現されるため、燃焼期
間が短く、より希薄な空燃比であっても安定燃焼を得る
ことができる。更に、多点着火させることで低い温度で
の燃焼が可能となり、NOxの排出量を大幅に低減させ
ることができる。
2. Description of the Related Art Conventionally, as a part of purifying exhaust gas, for example, in a gasoline engine, various techniques for performing not only operation by spark ignition but also self-ignition operation by compression heat depending on an operation region have been studied. By using compression ignition instead of spark ignition, so-called multipoint ignition combustion with an infinite number of spark plugs is realized, so that the combustion period is short and stable combustion even at a leaner air-fuel ratio. Can be obtained. Further, by performing multipoint ignition, combustion at a low temperature becomes possible, and the emission amount of NOx can be greatly reduced.

【0003】この圧縮着火燃焼を採用するエンジンとし
て、例えば特開2000−320333号公報には、圧
縮着火運転領域では、排気上死点前後で吸気弁と排気弁
との双方を閉弁させて密閉させる負のバルブオーバラッ
プ期間を形成することで、残留ガスにより混合気温度を
高め、圧縮着火を促進させる技術が開示されている。
[0003] As an engine adopting the compression ignition combustion, for example, in Japanese Patent Application Laid-Open No. 2000-320333, in the compression ignition operation region, both the intake valve and the exhaust valve are closed before and after the top dead center of the exhaust to seal the engine. A technique has been disclosed in which a negative valve overlap period is formed to increase the temperature of the air-fuel mixture with residual gas to promote compression ignition.

【0004】そして、この先行技術では、吸気行程にお
いて、混合気が大気圧近くまで膨張した後、吸気弁を開
弁させて、新気を導入するようにしている。
In this prior art, in the intake stroke, after the air-fuel mixture expands to near atmospheric pressure, the intake valve is opened to introduce fresh air.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した先行
技術に開示されている技術では、燃焼室内の圧力が大気
圧近くまで膨張された後に、吸気弁を開弁することで、
吸気ポート側の圧力と燃焼室内の圧力との差圧を少なく
し、燃焼室内の残留ガスが吸気ポートへ押し戻される
「吹き返し」の発生を抑制するようにしているが、燃焼
室内の圧力は運転状態に応じて変動し易く、吸気弁開弁
時の燃焼室内圧を常に大気圧近くに設定することは極め
て困難である。
However, according to the technology disclosed in the above-mentioned prior art, the intake valve is opened after the pressure in the combustion chamber is expanded to near the atmospheric pressure.
The differential pressure between the pressure on the intake port side and the pressure in the combustion chamber is reduced to suppress the occurrence of "blow-back" in which residual gas in the combustion chamber is pushed back to the intake port. And it is extremely difficult to always set the pressure in the combustion chamber at the time of opening the intake valve close to the atmospheric pressure.

【0006】本発明は上記事情に鑑み、吸気弁開弁時の
燃焼室内圧と吸気ポート側の圧力との差圧を常に僅少に
設定することができ、吹き返しによる脈動を減衰させて
低騒音化を実現すると共に、充填効率の向上を図ること
の可能な圧縮着火式エンジンを提供することを目的とす
る。
In view of the above circumstances, the present invention can always set the pressure difference between the pressure in the combustion chamber when the intake valve is opened and the pressure on the intake port side to be very small, attenuate the pulsation caused by the blowback and reduce the noise. And to provide a compression ignition engine capable of improving the charging efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、排気上死点前後にかけて排気弁と吸気弁とを
共に閉弁する負のバルブオーバラップ期間を形成するこ
との可能な圧縮着火式エンジンにおいて、上記排気上死
点後の上記吸気弁の開弁時期を上記排気上死点前の上記
排気弁の閉弁時期と上記排気上死点を挟んで対称な位置
のクランク角よりも遅角側に設定することを特徴とす
る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a compression system capable of forming a negative valve overlap period for closing both an exhaust valve and an intake valve before and after a top dead center of the exhaust gas. In the ignition type engine, the opening timing of the intake valve after the exhaust top dead center is determined by the closing timing of the exhaust valve before the exhaust top dead center and the crank angle at a position symmetrical with respect to the exhaust top dead center. Is also set to the retard side.

【0008】このような構成では、負のバルブオーバラ
ップ期間経過時の吸気弁の開弁時期を、排気弁の閉弁時
期と排気上死点を挟んで対称な位置のクランク角よりも
遅角側に設定したので、吸気弁が開弁する際の燃焼室内
圧と吸気ポート側の圧力との差圧が小さくなり、残留ガ
スの吹き返しが抑制される。
In such a configuration, the opening timing of the intake valve when the negative valve overlap period has elapsed is retarded from the crank angle at a position symmetrical with respect to the closing timing of the exhaust valve and the exhaust top dead center. , The pressure difference between the pressure in the combustion chamber when the intake valve is opened and the pressure on the intake port side is reduced, and the blowback of the residual gas is suppressed.

【0009】この場合、好ましくは、1)燃焼室に燃料
を直接噴射する筒内噴射手段を備え、低負荷運転時は燃
料噴射時期を遅らせて成層圧縮着火させることを特徴と
する。
In this case, preferably, 1) an in-cylinder injection means for directly injecting fuel into the combustion chamber is provided, and during low load operation, stratified charge ignition is delayed by delaying the fuel injection timing.

【0010】2)少なくとも上記吸気弁は開閉時期を可
変設定自在な動弁機構に連設されていることを特徴とす
る。
2) At least the intake valve is connected to a valve mechanism capable of variably setting the opening and closing timing.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施の形態を説明する。図1に圧縮着火式エンジンの全
体構成図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram of a compression ignition type engine.

【0012】同図の符号1はエンジン本体、2はピスト
ン、3は燃焼室、4は吸気ポート、5は排気ポート、6
は吸気弁、7は排気弁であり、吸気ポート4に連通する
吸気通路8にスロットル弁9が介装されている。
1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is an intake port, 5 is an exhaust port, 6
Denotes an intake valve, 7 denotes an exhaust valve, and a throttle valve 9 is interposed in an intake passage 8 communicating with the intake port 4.

【0013】又、燃焼室3の頂面中央に燃料噴射手段と
しての筒内噴射用インジェクタ11の噴孔が臨まされて
おり、この筒内噴射用インジェクタ11の噴射方向に対
設するピストン2の頂面に湾曲凹面状のピストンキャビ
ティ2aが形成されている。更に、燃焼室3の一側に点
火プラグ12の発火部が臨まされている。又、吸気弁6
と排気弁7とが、可変動弁機構13a,13bに各々連
設されている。
An injection hole of an in-cylinder injector 11 as a fuel injection means is provided at the center of the top surface of the combustion chamber 3, and a piston 2 which is opposed to the injection direction of the in-cylinder injector 11 is provided. A curved concave-shaped piston cavity 2a is formed on the top surface. Further, an ignition portion of the ignition plug 12 faces one side of the combustion chamber 3. Also, the intake valve 6
And the exhaust valve 7 are connected to the variable valve mechanisms 13a and 13b, respectively.

【0014】この各可変動弁機構13a,13bには、
プロフィールの異なる複数のカム山を切り換える有段カ
ム機構や、電磁動弁等を用いた連続可変動弁機構等が採
用されている。尚、符号16はノックセンサ、17は水
温センサ、18はO2センサである。
Each of the variable valve mechanisms 13a and 13b has
A stepped cam mechanism for switching between a plurality of cam ridges having different profiles, a continuously variable valve mechanism using an electromagnetic valve or the like is employed. Reference numeral 16 denotes a knock sensor, 17 denotes a water temperature sensor, and 18 denotes an O2 sensor.

【0015】これら各センサで検出した信号は電子制御
ユニット(ECU)20に入力される。電子制御ユニッ
ト(ECU)20は、CPU21、ROM22、RAM
23、入力ポート24、出力ポート25等からなるマイ
クロコンピュータを中心として構成され、これらが双方
向性バス26によって相互に接続されている。
Signals detected by these sensors are input to an electronic control unit (ECU) 20. An electronic control unit (ECU) 20 includes a CPU 21, a ROM 22, a RAM
23, an input port 24, an output port 25, etc., and are connected to each other by a bidirectional bus 26.

【0016】入力ポート24には、上記各センサ以外
に、設定クランク角度毎にクランクパルスを発生するク
ランク角センサ31が接続されていると共に、アクセル
ペダル32の踏込み量に比例した出力電圧を発生する負
荷センサ33がA/D変換器34を介して接続されてい
る。又、出力ポート25が駆動回路36a,36bを介
して、各可変動弁機構13a,13bに個別に接続され
ている。
The input port 24 is connected to a crank angle sensor 31 for generating a crank pulse for each set crank angle in addition to the above sensors, and generates an output voltage proportional to the amount of depression of an accelerator pedal 32. A load sensor 33 is connected via an A / D converter 34. The output port 25 is individually connected to each of the variable valve mechanisms 13a and 13b via drive circuits 36a and 36b.

【0017】電子制御ユニット(ECU)20は、クラ
ンク角センサ31からの信号に基づいて算出したエンジ
ン回転数Neと、負荷センサ33で検出したエンジン負
荷Loとに基づき運転領域を判定し、この運転領域に対
応する燃焼形態を選択する。図4に示すように、本実施
の形態では運転領域を、アイドリング運転を含む低中回
転、低負荷領域の成層圧縮着火領域I、低中回転、中負
荷領域の均一混合圧縮着火領域II、それ以外の高回転或
いは高負荷領域の火花点火領域IIIの3領域に区分し、
各運転領域毎に燃料噴射時期、及び吸気弁6、排気弁7
のバルブタイミングを可変制御する。
An electronic control unit (ECU) 20 determines an operation range based on an engine speed Ne calculated based on a signal from a crank angle sensor 31 and an engine load Lo detected by a load sensor 33, and determines the operation range. The combustion mode corresponding to the region is selected. As shown in FIG. 4, in the present embodiment, the operation region is a stratified compression ignition region I in a low-medium rotation and low load region including idling operation, a homogeneous mixed compression ignition region II in a low-medium rotation region and a medium load region, Other than high-speed or high-load region spark ignition region III,
Fuel injection timing, intake valve 6, exhaust valve 7 for each operation area
Is variably controlled.

【0018】そして、図3(a)及び図5に示すよう
に、成層圧縮着火領域Iでは、バルブタイミングを排気
上死点(TDC)前後で、両弁6,7が共に閉弁する負
のバルブオーバラップ期間が形成されるように可変動弁
機構13a,13bの可変動作を制御すると共に、燃料
噴射時期を圧縮行程後半の比較的遅い時期に設定する。
又、均一混合圧縮着火領域IIでは、バルブタイミングを
成層圧縮着火領域Iと同様、排気上死点(TDC)前後
で負のバルブオーバラップ期間が形成されるように制御
すると共に、燃料噴射時期を負のバルブオーバラップ期
間開始後から吸気行程中の比較的早い時期の間で設定す
る。
As shown in FIGS. 3A and 5, in the stratified compression ignition region I, the valve timing is set to a negative value at which both the valves 6 and 7 close before and after the exhaust top dead center (TDC). The variable operation of the variable valve mechanisms 13a and 13b is controlled so that a valve overlap period is formed, and the fuel injection timing is set to a relatively late timing in the latter half of the compression stroke.
Further, in the homogeneously-mixed compression ignition region II, the valve timing is controlled so that a negative valve overlap period is formed before and after the exhaust top dead center (TDC), as in the stratified compression ignition region I, and the fuel injection timing is adjusted. It is set from a time after the start of the negative valve overlap period to a relatively early time during the intake stroke.

【0019】又、火花点火領域IIIでは、図3(b)に
示すように、バルブタイミングを排気上死点(TDC)
の前後で、吸気弁6と排気弁7とが共に開弁する正のバ
ルブオーバラップ期間を形成する通常制御に切換えると
共に、燃料噴射制御では、通常の火花点火制御における
燃焼形態(成層燃焼、或いは均一燃焼)に対応した噴射
タイミングに切換える。
In the spark ignition region III, as shown in FIG. 3B, the valve timing is set at the top dead center (TDC) of the exhaust gas.
Before and after, the control is switched to the normal control that forms a positive valve overlap period in which the intake valve 6 and the exhaust valve 7 are both opened, and in the fuel injection control, the combustion mode (stratified combustion or It switches to the injection timing corresponding to (uniform combustion).

【0020】この運転領域毎の制御を、図2に示す領域
別制御ルーチンに従って説明する。このルーチンでは、
先ず、ステップS1で、運転領域をエンジン回転数Ne
とエンジン負荷Loとに基づき、図4に示す運転領域マ
ップを参照して調べる。
The control for each operation region will be described with reference to a region-specific control routine shown in FIG. In this routine,
First, in step S1, the operating range is set to the engine speed Ne.
Based on the engine load Lo and the engine load Lo, a check is made with reference to an operation region map shown in FIG.

【0021】そして、運転領域が、成層圧縮着火領域I
にあるときはステップS2へ進み、均一混合圧縮着火領
域IIにあるときはステップS3へ進み、火花点火領域II
IにあるときはステップS4へ進む。
The operating region is a stratified compression ignition region I.
If it is, the process proceeds to step S2, and if it is in the uniform mixed compression ignition region II, the process proceeds to step S3, where the spark ignition region II
If it is, the process proceeds to step S4.

【0022】運転領域が成層圧縮着火領域Iにあると判
定されてステップS2へ進むと、可変動弁機構13a,
13bに対し、吸気弁6の開弁時期を遅角させると共
に、排気弁7の閉弁時期を進角させる駆動信号を出力
し、排気上死点(TDC)の前後で、両弁6,7が閉弁
する負のバルブオーバラップ(図3(a)参照)を形成さ
せる。
When it is determined that the operation region is in the stratified compression ignition region I and the process proceeds to step S2, the variable valve mechanism 13a,
13b, a drive signal for delaying the opening timing of the intake valve 6 and advancing the closing timing of the exhaust valve 7 is output, and before and after the exhaust top dead center (TDC), the valves 6 and 7 are driven. Forms a negative valve overlap (see FIG. 3A) in which the valve closes.

【0023】すなわち、可変動弁機構13a,13bが
有段カム機構の場合は、負のバルブオーバラップを形成
するカム山を選択する信号を出力し、又、連続可変動弁
機構の場合は負のバルブオーバラップを形成するタイミ
ングでバルブ開閉信号を出力する。その際、成層圧縮着
火燃焼させるのに最も効率の良い負のバルブオーバラッ
プ期間を、マップ参照などにより求め、有段カム機構の
カム山、或いは連続可変動弁機構のバルブタイミングを
設定する。
That is, when the variable valve mechanisms 13a and 13b are stepped cam mechanisms, a signal for selecting a cam ridge forming a negative valve overlap is output. A valve opening / closing signal is output at the timing when the valve overlap is formed. At this time, the most effective negative valve overlap period for stratified charge compression combustion is obtained by referring to a map or the like, and the cam ridge of the stepped cam mechanism or the valve timing of the continuously variable valve mechanism is set.

【0024】又、運転領域が均一混合圧縮着火領域IIに
あると判定されてステップS3へ進むと、ステップS2
と同様、可変動弁機構13a,13bに対し、負のバル
ブオーバラップ期間を形成するような駆動信号を出力す
る。その際、均一混合圧縮着火燃焼させるのに最も効率
の良い負のバルブオーバラップ期間を、マップ参照など
により求め、有段カム機構のカム山、或いは連続可変動
弁機構のバルブタイミングを設定する。
If it is determined that the operating region is in the homogeneously-mixed compression ignition region II and the process proceeds to step S3, the process proceeds to step S2.
In the same manner as described above, a drive signal for forming a negative valve overlap period is output to the variable valve mechanisms 13a and 13b. At this time, a negative valve overlap period which is the most efficient for uniform mixed compression ignition combustion is obtained by referring to a map or the like, and the cam ridge of the stepped cam mechanism or the valve timing of the continuously variable valve mechanism is set.

【0025】図3(a)に示すように、本実施の形態で
は、運転領域が成層圧縮着火領域I、或いは均一混合圧
縮着火領域IIにあるときの吸気弁6の開弁時期IVO
を、排気弁7の閉弁時期EVCを基準とし、この排気弁
7の開弁時期EVCに対し、排気上死点(TDC)を挟
んで対称な角度SEVCよりも角度θTだけ遅角させた
角度に設定されている。
As shown in FIG. 3A, in this embodiment, the valve opening timing IVO of the intake valve 6 when the operation region is in the stratified compression ignition region I or the homogeneously mixed compression ignition region II.
With respect to the valve closing timing EVC of the exhaust valve 7, an angle obtained by delaying the valve opening timing EVC by an angle θT from an angle SEVC symmetrical with respect to the exhaust top dead center (TDC). Is set to

【0026】吸気弁6の開弁角度IVOを、排気上死点
(TDC)を挟んで対称な角度であるSevcよりも遅
角させたことで、吸気弁6が開弁する際の燃焼室3の内
圧と吸気ポート4の圧力との差圧を小さくすることがで
き、吸気弁6が開弁する際の吹き返しを抑制させること
ができる。
The opening angle IVO of the intake valve 6 is retarded from Sevc, which is an angle symmetrical with respect to the exhaust top dead center (TDC), so that the combustion chamber 3 when the intake valve 6 is opened is opened. And the pressure difference between the internal pressure and the pressure of the intake port 4 can be reduced, and the blowback when the intake valve 6 is opened can be suppressed.

【0027】この状態を、図6の燃焼室3内の圧力変化
の推移を概略的に示すP−V線図に基づいて説明する。
排気行程において排気弁7が開弁すると、筒内圧は排気
抵抗により大気圧Poよりも若干高い圧力で推移する。
そして、排気行程の中途で排気弁7が閉弁することによ
り(このとき吸気弁6も閉弁されているため)、燃焼室
3内に大気圧Poよりも若干高い圧力の残留ガスが閉じ
込められ、ピストン2の上昇に伴い予圧昇温される。
This state will be described with reference to a PV diagram schematically showing a change in pressure in the combustion chamber 3 shown in FIG.
When the exhaust valve 7 is opened during the exhaust stroke, the in-cylinder pressure changes at a pressure slightly higher than the atmospheric pressure Po due to exhaust resistance.
By closing the exhaust valve 7 in the middle of the exhaust stroke (since the intake valve 6 is also closed at this time), the residual gas having a pressure slightly higher than the atmospheric pressure Po is trapped in the combustion chamber 3. As the piston 2 rises, the preload temperature is raised.

【0028】そして、ピストン2が排気上死点(TD
C)を通過して吸気行程へ移行し、開弁時期IVOにお
いて吸気弁6が開弁されると、燃焼室3に新気が導入さ
れる。この新気は残留ガスにより加熱昇温されると共
に、その後の圧縮行程によっても昇温される。
Then, the piston 2 is moved to the exhaust top dead center (TD).
C), the process proceeds to the intake stroke, and when the intake valve 6 is opened at the valve opening timing IVO, fresh air is introduced into the combustion chamber 3. This fresh air is heated and heated by the residual gas, and is also heated by the subsequent compression stroke.

【0029】ところで、吸気弁6の開弁時期IVOが排
気弁7の閉弁時期EVCに対し、排気上死点TDCを挟
んで対称な角度Sevcよりも角度θTだけ遅角されて
いるため、吸気弁6が開弁したときの筒内圧P1は、排
気弁7が閉弁したときの筒内圧力P2よりも低く、従っ
て、大気圧Poと筒内圧P1との差圧ΔP1は、排気弁
7が閉弁時の差圧ΔP2よりも小さい値を示す。一方、
吸気ポート4はほぼ大気圧Poに近い圧力を示している
ため、吸気弁6が開弁しても、残留ガスが吸気ポート4
側へ押し戻される「吹き返し」が発生せず、吹き返しに
起因する騒音、及び充填効率の低下を有効に回避するこ
とができる。
Since the valve opening timing IVO of the intake valve 6 is delayed from the valve closing timing EVC of the exhaust valve 7 by an angle θT with respect to an angle Sevc symmetrical with respect to the exhaust top dead center TDC, the intake valve The in-cylinder pressure P1 when the valve 6 is opened is lower than the in-cylinder pressure P2 when the exhaust valve 7 is closed. Therefore, the differential pressure ΔP1 between the atmospheric pressure Po and the in-cylinder pressure P1 is determined by the exhaust valve 7 It shows a value smaller than the differential pressure ΔP2 when the valve is closed. on the other hand,
Since the intake port 4 indicates a pressure almost equal to the atmospheric pressure Po, even if the intake valve 6 is opened, residual gas is not removed from the intake port 4.
"Blowback" pushed back to the side does not occur, and noise caused by the blowback and reduction in filling efficiency can be effectively avoided.

【0030】これに対し、例えば、吸気弁6を、排気弁
7の閉弁時期EVCに対して排気上死点(TDC)を挟
んで対称な角度Sevcで開弁させた場合、筒内圧P2
は大気圧Poよりも高いため、その差圧ΔP2により吹
き返しが発生してしまう。
On the other hand, for example, when the intake valve 6 is opened at an angle Sevc symmetrical with respect to the closing timing EVC of the exhaust valve 7 with respect to the exhaust top dead center (TDC), the in-cylinder pressure P2
Is higher than the atmospheric pressure Po, the blowback occurs due to the pressure difference ΔP2.

【0031】尚、遅角量θTが大き過ぎると筒内圧力P
が基準圧P0よりも低くなり、ポンピング損失が発生し
てしまうため、最適な遅角量θTを実験等から求め、こ
の遅角量θTに基づき吸気弁6の開弁時期を設定する。
この場合、可変動弁機構13a,13bとして連続可変
動弁機構を採用する場合は、遅角量θTを運転状態に応
じて可変設定するようにしても良い。
If the retard amount θT is too large, the in-cylinder pressure P
Is lower than the reference pressure P0, and a pumping loss occurs. Therefore, the optimal retard amount θT is obtained from an experiment or the like, and the opening timing of the intake valve 6 is set based on the retard amount θT.
In this case, when a continuous variable valve mechanism is employed as the variable valve mechanisms 13a and 13b, the retard amount θT may be variably set according to the operating state.

【0032】そして、ステップS2からステップS5へ
進むと、成層圧縮着火燃焼可能な燃料噴射時期を設定し
てルーチンを抜ける。又、ステップS3からステップS
6へ進むと、均一混合圧縮着火燃焼可能な燃料噴射時期
を設定してルーチンを抜ける。
When the process proceeds from step S2 to step S5, a fuel injection timing at which stratified charge ignition combustion can be performed is set, and the routine exits. Also, from step S3 to step S
In step 6, the fuel injection timing at which homogeneous charge compression ignition combustion is possible is set, and the routine exits.

【0033】図5に示すように、成層圧縮着火燃焼時の
燃料噴射時期は、圧縮行程後半の比較的遅い時期に設定
されている。又、均一混合圧縮着火燃焼時の燃料噴射時
期は、排気弁7が閉弁(負のバルブオーバラップ期間開
始)した後から吸気行程終わりにかけて、適宜設定する
ことができる。
As shown in FIG. 5, the fuel injection timing during stratified charge compression ignition combustion is set to a relatively late time in the latter half of the compression stroke. Further, the fuel injection timing at the time of the homogeneous charge compression ignition combustion can be set as appropriate from the time when the exhaust valve 7 is closed (the negative valve overlap period starts) to the end of the intake stroke.

【0034】成層圧縮着火領域Iにおいては、圧縮行程
時に筒内噴射用インジェクタ11から燃料を噴射するこ
とで、圧縮着火燃焼可能なガス温度に到達しつつある燃
焼室3内に燃料濃度の高い成層化された混合気が局所的
に生成されるため、極めて希薄な空燃比での圧縮着火燃
焼が可能となる。
In the stratified compression ignition region I, by injecting fuel from the in-cylinder injector 11 during the compression stroke, a stratified fuel with a high fuel concentration enters the combustion chamber 3 which is reaching a gas temperature at which compression ignition combustion is possible. Since the liquefied mixture is locally generated, compression ignition combustion at an extremely lean air-fuel ratio becomes possible.

【0035】又、均一混合圧縮着火領域IIでは、排気弁
7が閉弁後の比較的早期に筒内噴射用インジェクタ11
から燃料を噴射することで、燃焼室3のガス温度が自着
火可能温度に達する前に均一混合気を生成させることが
でき、自着火温度に達したとき、燃焼室3内の混合気が
一斉に着火して火炎が伝播しない燃焼、いわば無限数の
点火プラグを配したような多点着火燃焼が実現される。
In the homogeneous charge compression ignition region II, the in-cylinder injector 11 is operated relatively early after the exhaust valve 7 is closed.
By injecting fuel from the combustion chamber, a uniform mixture can be generated before the gas temperature in the combustion chamber 3 reaches the self-ignition possible temperature, and when the self-ignition temperature is reached, the mixture in the combustion chamber 3 is simultaneously blown. Ignited and the flame does not propagate, that is, multipoint ignition combustion in which an infinite number of spark plugs are arranged.

【0036】この場合、自着火燃焼による混合気の燃焼
温度は1800℃程度で、通常の点火による燃焼に比し
200℃程度低く、又、混合気が一斉に着火するため急
速低温燃焼が可能となる。その結果、NOxの排出量が
低減され、しかも一斉に着火するため熱効率が良く、直
噴ディーゼルエンジン並の燃費を確保しながら、排気ガ
スを本質的にクリーンな状態とすることができる。
In this case, the combustion temperature of the air-fuel mixture by the self-ignition combustion is about 1800 ° C., which is lower by about 200 ° C. than that of the combustion by the normal ignition. Become. As a result, the amount of NOx emission is reduced, and the ignition is performed all at once. Thus, the thermal efficiency is good, and the exhaust gas can be made essentially clean while maintaining the fuel efficiency of a direct injection diesel engine.

【0037】尚、燃料としては、セタン価の低いガソリ
ンやメタノールを採用する。このようなセタン価の低い
燃料であっても、例えばガソリンでは、燃焼室3内のガ
ス温度が約900℃を越えると燃料が自着火することが
知られており、本実施の形態では、残留ガスを予圧した
際の昇温と、通常の圧縮比とを昇温手段とし、これらの
関数でガス温度が自着火可能温度に達するように設定し
ている。
Incidentally, gasoline or methanol having a low cetane number is employed as the fuel. Even with such a low cetane number fuel, for example, in the case of gasoline, it is known that when the gas temperature in the combustion chamber 3 exceeds about 900 ° C., the fuel self-ignites. The temperature rise at the time of pre-pressurizing the gas and the normal compression ratio are used as temperature rise means, and the function is set so that the gas temperature reaches the self-ignition possible temperature by these functions.

【0038】すなわち、理論熱効率ηthは、定容サイク
ルの場合、下式に示す通りとなる。 ηth=1−(1/εκ−1) ここで、ε:圧縮比、κ:比熱比である。
That is, the theoretical thermal efficiency ηth is as shown in the following equation in the case of a constant volume cycle. ηth = 1− (1 / εκ−1) Here, ε: compression ratio, κ: specific heat ratio.

【0039】従って、残留ガスの予圧昇温により、圧縮
比εを大幅に高めることなく実用範囲内で、ガス温度を
自着火可能温度まで高めることができる。その結果、圧
縮比εをε=12〜15に設定しても、十分な圧縮着火
燃焼を得ることができ、火花点火制御へ移行した場合で
あっても、ノッキング限界に起因するトルク低下が生じ
難くなる。
Therefore, the gas temperature can be raised to a self-ignition possible temperature within a practical range without significantly increasing the compression ratio ε by increasing the preload temperature of the residual gas. As a result, even if the compression ratio ε is set to ε = 12 to 15, sufficient compression ignition combustion can be obtained, and even if the control shifts to spark ignition control, torque reduction due to the knocking limit occurs. It becomes difficult.

【0040】一方、ステップS1で火花点火領域IIIと
判定されて、ステップS4へ進むと、可変動弁機構13
a,13bに対し、バルブタイミングが、吸気弁6、排
気弁7が排気行程終期から吸気行程初期にかけて共に開
弁する正のバルブオーバラップ期間(図3(b)参照)と
なる駆動信号を出力する。すなわち、可変動弁機構13
a,13bが有段カム機構の場合は、正のバルブオーバ
ラップを形成するカム山を選択する信号を出力し、又、
連続可変動弁機構の場合は正のバルブオーバラップ期間
を形成するタイミングのバルブ開閉信号を出力する。
On the other hand, if it is determined in step S1 that the ignition region is the spark ignition region III and the process proceeds to step S4, the variable valve mechanism 13
In response to a and 13b, a drive signal is output in which the valve timing is a positive valve overlap period (see FIG. 3B) in which the intake valve 6 and the exhaust valve 7 are both opened from the end of the exhaust stroke to the beginning of the intake stroke. I do. That is, the variable valve mechanism 13
When a and 13b are stepped cam mechanisms, a signal for selecting a cam ridge forming a positive valve overlap is output.
In the case of a continuously variable valve operating mechanism, a valve opening / closing signal at a timing for forming a positive valve overlap period is output.

【0041】次いで、ステップS7へ進み、火花点火制
御を実行してルーチンを抜ける。火花点火制御時の燃料
噴射制御、及び点火時期制御は公知であるため、ここで
の説明は省略する。尚、この場合、運転領域を成層燃焼
領域と均一燃焼領域とに細分し、各領域毎に燃料噴射時
期を可変設定するようにしても良い。
Next, the routine proceeds to step S7, in which spark ignition control is executed, and the routine is exited. Since the fuel injection control and the ignition timing control at the time of the spark ignition control are known, their description is omitted here. In this case, the operation region may be subdivided into a stratified combustion region and a uniform combustion region, and the fuel injection timing may be variably set for each region.

【0042】このように、本実施の形態によれば、圧縮
着火燃焼時の吸気弁6の開弁時期IVOを、排気弁7の
閉弁時期EVCに対して、排気上死点(TDC)を挟ん
で対称な角度Sevcよりも遅角量θTだけ遅角させた
ので、吸気弁6が開弁する際の、燃焼室3内の圧力と吸
気ポート4側の圧力との差圧が小さくなり、吹き返しを
有効に防止することができる。
As described above, according to the present embodiment, the top dead center (TDC) of the exhaust valve 7 is set with respect to the valve opening timing IVO of the intake valve 6 and the valve closing timing EVC of the exhaust valve 7 during the compression ignition combustion. Since the retardation is retarded by the retard amount θT from the symmetrical angle Sevc, the differential pressure between the pressure in the combustion chamber 3 and the pressure on the intake port 4 side when the intake valve 6 opens is reduced. Blowback can be effectively prevented.

【0043】又、吸気弁の開弁時期を、排気弁の閉弁時
期を基準に設定しているので、吸気弁開弁時の差圧を常
に僅少とすることができる。
Further, since the opening timing of the intake valve is set based on the closing timing of the exhaust valve, the differential pressure when the intake valve is opened can always be made small.

【0044】[0044]

【発明の効果】以上、説明したように本発明によれば、
圧縮着火燃焼時の吸気弁の開弁時期を排気弁の閉弁時期
と排気上死点を挟んで対称な位置のクランク角よりも遅
角側に設定したので、吸気弁が開弁する際の燃焼室内の
圧力と吸気ポート側の圧力との差圧が小さくなり、吹き
返しによる脈動が減衰され、低騒音化が実現されると共
に、充填効率が向上する。
As described above, according to the present invention,
The opening timing of the intake valve during compression ignition combustion is set to be more retarded than the crank angle at a position symmetrical with respect to the closing timing of the exhaust valve and the exhaust top dead center. The differential pressure between the pressure in the combustion chamber and the pressure on the intake port side is reduced, the pulsation due to the blowback is attenuated, the noise is reduced, and the charging efficiency is improved.

【0045】又、吸気弁の開弁時期を排気弁の閉弁時期
を基準として設定したので、吸気弁開弁時の差圧を常に
僅少とすることが可能となる。
Further, since the opening timing of the intake valve is set based on the closing timing of the exhaust valve, the differential pressure when the intake valve is opened can always be made small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮着火式エンジンの全体構成図FIG. 1 is an overall configuration diagram of a compression ignition engine.

【図2】領域別制御ルーチンを示すフローチャートFIG. 2 is a flowchart showing an area-specific control routine;

【図3】(a)圧縮着火燃焼時のバルブタイミングを示
す説明図(b)火花点火時のバルブタイミングを示す説
明図
3A is an explanatory diagram showing valve timing during compression ignition combustion, and FIG. 3B is an explanatory diagram showing valve timing during spark ignition.

【図4】運転領域マップの説明図FIG. 4 is an explanatory diagram of an operation area map.

【図5】バルブタイミングと燃料噴射時期との関係を示
す説明図
FIG. 5 is an explanatory diagram showing a relationship between valve timing and fuel injection timing.

【図6】燃焼室内の圧力変化の推移を示すP−V線図FIG. 6 is a PV diagram showing a change in pressure in the combustion chamber.

【符号の説明】[Explanation of symbols]

1 エンジン本体 3 燃焼室 6 吸気弁 7 排気弁 13a 可変動弁機構 EVC (排気弁の)閉弁角度 IVO (吸気弁の)開弁角度 θT 遅角量 TDC 排気上死点 DESCRIPTION OF SYMBOLS 1 Engine main body 3 Combustion chamber 6 Intake valve 7 Exhaust valve 13a Variable valve mechanism EVC Closed angle of exhaust valve IVO Open angle of intake valve θT Delay angle TDC Exhaust top dead center

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 仁 東京都三鷹市大沢3丁目9番6号 株式会 社スバル研究所内 (72)発明者 最首 陽平 東京都三鷹市大沢3丁目9番6号 株式会 社スバル研究所内 Fターム(参考) 3G018 EA02 EA03 EA04 EA13 EA14 FA02 FA08 FA09 GA06 GA32 3G092 AA01 AA06 AA09 AA11 BA08 BB06 DA01 DA02 DA04 DA07 DA12 DE03S EA04 EC09 FA14 FA17 GA04 GA05 GA06 GA17 GA18 HE01Z HE03Z HF08Z 3G301 HA00 HA01 HA04 HA16 HA19 JA25 JA37 KA07 KA08 KA09 KA24 KA25 LA07 LB04 MA19 NC02 NE12 PE01Z PE03Z PF03Z  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Ito 3-9-6 Osawa, Mitaka City, Tokyo Inside Subaru Research Institute Co., Ltd. (72) Inventor Yohei 3-9-6 Osawa, Mitaka City, Tokyo F-term in Subaru Research Laboratories (reference) HA04 HA16 HA19 JA25 JA37 KA07 KA08 KA09 KA24 KA25 LA07 LB04 MA19 NC02 NE12 PE01Z PE03Z PF03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排気上死点前後にかけて排気弁と吸気弁と
を共に閉弁する負のバルブオーバラップ期間を形成する
ことの可能な圧縮着火式エンジンにおいて、 上記排気上死点後の上記吸気弁の開弁時期を上記排気上
死点前の上記排気弁の閉弁時期と上記排気上死点を挟ん
で対称な位置のクランク角よりも遅角側に設定すること
を特徴とする圧縮着火式エンジン。
1. A compression ignition engine capable of forming a negative valve overlap period in which both an exhaust valve and an intake valve are closed before and after an exhaust top dead center, wherein the intake air after the exhaust top dead center is provided. Compression ignition, wherein a valve opening timing of the valve is set to a more retarded side than a crank angle at a position symmetrical with respect to a closing timing of the exhaust valve before the exhaust top dead center and the exhaust top dead center. Expression engine.
【請求項2】燃焼室に燃料を直接噴射する筒内噴射手段
を備え、低負荷運転時は燃料噴射時期を遅らせて成層圧
縮着火させることを特徴とする請求項1記載の圧縮着火
式エンジン。
2. A compression ignition type engine according to claim 1, further comprising in-cylinder injection means for directly injecting fuel into the combustion chamber, and stratifying compression ignition by delaying fuel injection timing during low load operation.
【請求項3】少なくとも上記吸気弁は開閉時期を可変設
定自在な動弁機構に連設されていることを特徴とする請
求項1或いは2記載の圧縮着火式エンジン。
3. A compression ignition type engine according to claim 1, wherein at least the intake valve is connected to a valve operating mechanism capable of variably setting an opening / closing timing.
JP2001025927A 2001-02-01 2001-02-01 Compression ignition type engine Pending JP2002227680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025927A JP2002227680A (en) 2001-02-01 2001-02-01 Compression ignition type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025927A JP2002227680A (en) 2001-02-01 2001-02-01 Compression ignition type engine

Publications (1)

Publication Number Publication Date
JP2002227680A true JP2002227680A (en) 2002-08-14

Family

ID=18890834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025927A Pending JP2002227680A (en) 2001-02-01 2001-02-01 Compression ignition type engine

Country Status (1)

Country Link
JP (1) JP2002227680A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144564A (en) * 2004-11-16 2006-06-08 Toyota Motor Corp Controller for internal combustion engine
JP2007514013A (en) * 2004-05-14 2007-05-31 エクソンモービル・リサーチ・アンド・エンジニアリング・カンパニー Method for limiting exhaust concentration from a direct injection premixed compression self-ignition engine
JP2007224908A (en) * 2006-02-20 2007-09-06 Robert Bosch Gmbh Method of operating internal combustion engine
WO2008063854A1 (en) * 2006-11-16 2008-05-29 Gm Global Technology Operations, Inc. Low-load operation extension of a homogeneous charge compression ignition engine
WO2008142565A2 (en) * 2007-05-21 2008-11-27 Toyota Jidosha Kabushiki Kaisha Variable valve timing mechanism control apparatus and control method
JP2009085198A (en) * 2007-10-03 2009-04-23 Mazda Motor Corp Control device for gasoline engine
JP2010236466A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Direct-injection engine
WO2011158326A1 (en) 2010-06-15 2011-12-22 トヨタ自動車株式会社 Control device for an internal combustion engine
JP2012072737A (en) * 2010-09-29 2012-04-12 Nissan Motor Co Ltd Noise reduction control device of internal combustion engine
JP2014062466A (en) * 2012-09-19 2014-04-10 Honda Motor Co Ltd Combustion control device and combustion method of homogeneous lean mixture gas for internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514013A (en) * 2004-05-14 2007-05-31 エクソンモービル・リサーチ・アンド・エンジニアリング・カンパニー Method for limiting exhaust concentration from a direct injection premixed compression self-ignition engine
JP2011163350A (en) * 2004-05-14 2011-08-25 Exxonmobil Research & Engineering Co Method for controlling exhaust emissions from direct injection homogeneous charge compression ignition engines
JP4492304B2 (en) * 2004-11-16 2010-06-30 トヨタ自動車株式会社 Control device for internal combustion engine
JP2006144564A (en) * 2004-11-16 2006-06-08 Toyota Motor Corp Controller for internal combustion engine
JP2007224908A (en) * 2006-02-20 2007-09-06 Robert Bosch Gmbh Method of operating internal combustion engine
CN101558220B (en) * 2006-11-16 2012-06-13 通用汽车环球科技运作公司 Low-load operation extension of a homogeneous charge compression ignition engine
WO2008063854A1 (en) * 2006-11-16 2008-05-29 Gm Global Technology Operations, Inc. Low-load operation extension of a homogeneous charge compression ignition engine
US7832370B2 (en) 2006-11-16 2010-11-16 Gm Global Technology Operations, Inc. Low-load operation extension of a homogeneous charge compression ignition engine
WO2008142565A2 (en) * 2007-05-21 2008-11-27 Toyota Jidosha Kabushiki Kaisha Variable valve timing mechanism control apparatus and control method
WO2008142565A3 (en) * 2007-05-21 2009-03-19 Toyota Motor Co Ltd Variable valve timing mechanism control apparatus and control method
JP2009085198A (en) * 2007-10-03 2009-04-23 Mazda Motor Corp Control device for gasoline engine
JP2010236466A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Direct-injection engine
WO2011158326A1 (en) 2010-06-15 2011-12-22 トヨタ自動車株式会社 Control device for an internal combustion engine
JP2012072737A (en) * 2010-09-29 2012-04-12 Nissan Motor Co Ltd Noise reduction control device of internal combustion engine
JP2014062466A (en) * 2012-09-19 2014-04-10 Honda Motor Co Ltd Combustion control device and combustion method of homogeneous lean mixture gas for internal combustion engine
US9273661B2 (en) 2012-09-19 2016-03-01 Honda Motor Co., Ltd. Combustion control device for internal combustion engine and combustion method for homogeneous lean air/fuel mixture

Similar Documents

Publication Publication Date Title
US6234123B1 (en) Four-cycle internal combustion engine and valve timing control method thereof
JP3945152B2 (en) Combustion control device for internal combustion engine
EP1186759B1 (en) Self-igniting engine
EP2058499B1 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
EP1234960B1 (en) Combustion control apparatus for engine
US9512814B2 (en) Control method of spark ignition engine and spark ignition engine
JP4122630B2 (en) Compression self-ignition gasoline engine
US7810463B2 (en) Quick restart HCCI internal combustion engine
US7089912B2 (en) Method, an arrangement, and a computer readable storage device for controlling homogeneous charge compression ignition combustion
JP2023020230A (en) engine system
JP2023020227A (en) engine system
JP2023020229A (en) engine system
JP2002227680A (en) Compression ignition type engine
JP2001263067A (en) Compressed self-ignition type gasoline engine
JP3945174B2 (en) Combustion control device for internal combustion engine
JP2023020226A (en) engine system
JP3835130B2 (en) Compression self-ignition internal combustion engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP2005061323A (en) Control device for compression ignition internal combustion engine
JP4647112B2 (en) 4-cycle gasoline engine
JP2004346854A (en) Controller of compression ignition operation of internal combustion engine
JP2002322928A (en) Combustion control device for compression ignition type engine
JP3921976B2 (en) Compression self-ignition internal combustion engine
JP4583626B2 (en) Engine combustion control device
JP2002332887A (en) Combustion controller of compression ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302