JP2002242715A - Compression ignition type engine - Google Patents

Compression ignition type engine

Info

Publication number
JP2002242715A
JP2002242715A JP2001040728A JP2001040728A JP2002242715A JP 2002242715 A JP2002242715 A JP 2002242715A JP 2001040728 A JP2001040728 A JP 2001040728A JP 2001040728 A JP2001040728 A JP 2001040728A JP 2002242715 A JP2002242715 A JP 2002242715A
Authority
JP
Japan
Prior art keywords
valve
intake
compression ignition
ignition
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001040728A
Other languages
Japanese (ja)
Other versions
JP4647112B2 (en
Inventor
Makoto Kaneko
誠 金子
Koji Morikawa
弘二 森川
Hitoshi Ito
仁 伊藤
Yohei Saishiyu
陽平 最首
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2001040728A priority Critical patent/JP4647112B2/en
Publication of JP2002242715A publication Critical patent/JP2002242715A/en
Application granted granted Critical
Publication of JP4647112B2 publication Critical patent/JP4647112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To enlarge a compression ignition range toward its high-load side. SOLUTION: During a medium-load operation, the phase of rotation of an intake cam and an exhaust cam is varied by a variable valve timing mechanism in the direction to reduce the period of a negative valve overlap and to set the closing timing IVC of the intake valve in the vicinity of an intake bottom dead center(BDC) (b). By reducing the period of the negative valve overlap at a medium load, the amount of residual gas confined in a combustion chamber is reduced and intake heating is also reduced. By setting the closing timing IVC of the intake valve in the vicinity of the intake bottom dead center(BDC), volumetric efficiency is decreased and thus self-ignition is restrained whereby stable compression ignition performance can be achieved even if the operating region of the engine is in a region (high-load side) where a air-fuel mixture is richer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼室内の混合気
を断熱圧縮により多点着火させる圧縮着火式エンジンに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression ignition type engine for igniting a mixture in a combustion chamber at multiple points by adiabatic compression.

【0002】[0002]

【従来の技術】4サイクルエンジンの熱効率を向上させ
る手段として、混合気をリーン化させることで作動ガス
の比熱比を大きくして理論熱効率を向上させることが知
られている。又、混合気をリーン化することにより、同
じトルクで運転する場合でも、より多くの空気をエンジ
ンに吸入させるので、ポンピング損失を低減させること
ができる。
2. Description of the Related Art As means for improving the thermal efficiency of a four-cycle engine, it is known to increase the specific heat ratio of the working gas to thereby increase the theoretical thermal efficiency by making the air-fuel mixture lean. Further, by making the air-fuel mixture lean, even when the engine is operated with the same torque, more air is sucked into the engine, so that the pumping loss can be reduced.

【0003】しかし、混合気のリーン化は燃焼期間の長
期化や燃焼の不安定化を伴い限界がある。そこで、筒内
噴射によって、混合気を成層化した状態のまま点火プラ
グの周囲に集め着火性を確保する成層燃焼により、この
限界を拡げるようにしているが、成層燃焼では、点火プ
ラグ周りにリッチ混合気を集中させるので、燃焼温度が
高くなり、NOxが増大し易いという問題がある。
[0003] However, leaning of the air-fuel mixture is limited due to prolonged combustion period and unstable combustion. To overcome this problem, in-cylinder injection is used to increase the limit by stratified charge combustion, in which the mixture is stratified around the spark plug while maintaining a stratified state, to ensure ignitability. Since the air-fuel mixture is concentrated, there is a problem that the combustion temperature becomes high and NOx tends to increase.

【0004】一方、ディーゼルエンジンは、圧縮比が高
く、空燃比の大幅なリーン化によりポンプ損失を殆どな
くすことができるので熱効率は高いが、拡散燃焼である
ため、空気利用率が低く低出力で、煤の排出を生じるこ
とがあり、排気ガス特性に劣る。
On the other hand, a diesel engine has a high compression ratio and a substantially lean air-fuel ratio, thereby making it possible to almost eliminate a pump loss. Therefore, the diesel engine has a high thermal efficiency. , Soot may be emitted, and the exhaust gas characteristics are inferior.

【0005】そこで、このような問題を解決する手段と
して、ガソリン混合気を点火プラグを用いず、断熱圧縮
により多点着火させる圧縮着火式エンジンが提案されて
いる。圧縮着火燃焼を実現するためには、高温の残留ガ
ス熱を利用して新気を活性化させる必要があり、その1
つの方法として、排気弁の閉弁時期を早め、吸気弁の開
弁時期を遅らせることで、排気上死点前後で両弁が閉弁
する負のオーバラップ期間を形成し、排気行程後半から
吸気行程前半にかけて残留ガスを燃焼室内に閉じ込める
ようにした技術が知られている。
Therefore, as a means for solving such a problem, there has been proposed a compression ignition type engine in which a gasoline mixture is ignited at multiple points by adiabatic compression without using a spark plug. In order to realize compression ignition combustion, it is necessary to activate fresh air using high-temperature residual gas heat.
One method is to advance the closing timing of the exhaust valve and delay the opening timing of the intake valve to form a negative overlap period in which both valves close before and after the exhaust top dead center. There is known a technique for trapping residual gas in a combustion chamber in the first half of the stroke.

【0006】例えば特開2000−64863号公報に
は、排気上死点前後で排気弁と吸気弁との双方を閉じる
負のバルブオーバラップ期間を設け、燃焼室に閉じ込め
た残留ガスの予圧昇温により、圧縮着火を促進させる技
術が開示されている。
[0006] For example, Japanese Patent Application Laid-Open No. 2000-64863 provides a negative valve overlap period in which both the exhaust valve and the intake valve are closed before and after the top dead center of the exhaust gas, and the pre-heating of the residual gas trapped in the combustion chamber is increased. Discloses a technique for promoting compression ignition.

【0007】この先行技術では、低負荷運転時は排気弁
の閉弁時期を進角させることで残留ガス量を増加させる
と共に、吸気弁の開弁時期を遅角させることで、残留ガ
スを圧縮するために要した仕事を回収し、熱効率の低下
を防止している。
In this prior art, during low-load operation, the residual gas amount is increased by advancing the closing timing of the exhaust valve, and the residual gas is compressed by retarding the opening timing of the intake valve. The work required to do so is recovered to prevent a drop in thermal efficiency.

【0008】[0008]

【発明が解決しようとする課題】ところで、上述した先
行技術では、排気上死点前後にかけての負のバルブオー
バラップ期間を制御することで、熱効率の向上を図るよ
うにしているが、残留ガスの熱エネルギは、エンジン負
荷に応じて変動する。すなわち、低負荷運転時の残留ガ
ス温度は低く、中負荷運転へ移行するに従い次第に高く
なる。
By the way, in the above-mentioned prior art, the thermal efficiency is improved by controlling the negative valve overlap period before and after the top dead center of the exhaust gas. Thermal energy fluctuates according to the engine load. That is, the residual gas temperature during the low-load operation is low, and gradually increases as the operation shifts to the medium-load operation.

【0009】上述した先行技術では、負のバルブオーバ
ラップ期間に燃焼室内に閉じ込めた残留ガスの熱エネル
ギを利用して圧縮行程時に発火させるようにしているた
め、運転領域によっては、燃焼室内の混合気が発火温度
に達せず着火不良を起こしたり、逆に早期着火を起こし
たりし易くなり、安定した圧縮着火性能を得ることが困
難になる場合がある。その結果、圧縮着火領域が狭くな
ってしまう問題がある。
In the prior art described above, the ignition is performed during the compression stroke by utilizing the heat energy of the residual gas confined in the combustion chamber during the negative valve overlap period. In some cases, the gas does not reach the ignition temperature, causing poor ignition, or, conversely, early ignition, which makes it difficult to obtain stable compression ignition performance. As a result, there is a problem that the compression ignition region becomes narrow.

【0010】本発明は、上記事情に鑑み、負荷変動に影
響されることなく、広い領域で安定した圧縮着火性能を
得ることのできる圧縮着火式エンジンを提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a compression ignition engine capable of obtaining a stable compression ignition performance over a wide range without being affected by load fluctuations.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明は、排気上死点前後にかけて排気弁と吸気弁とを
共に閉弁する負のバルブオーバラップ期間を形成するこ
との可能な可変動弁機構を備える圧縮着火式エンジンに
おいて、エンジン負荷が増大するに従い上記負のバルブ
オーバラップ期間を狭くすると共に上記吸気弁の閉弁時
期を進角させることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention makes it possible to form a negative valve overlap period in which both the exhaust valve and the intake valve are closed before and after the top dead center of the exhaust gas. In a compression ignition type engine provided with a variable valve mechanism, the negative valve overlap period is narrowed and the closing timing of the intake valve is advanced as the engine load increases.

【0012】このような構成では、負のバルブオーバラ
ップ期間中に閉じ込められた残留ガスの熱エネルギは、
低負荷運転時は低く、中負荷運転へ移行するに従い、次
第に高くなるため、エンジン負荷が増大するに従い、吸
気弁の閉弁時期を進角させて体積効率を低下させると共
に負のバルブオーバラップ期間を狭くして吸気加熱を小
さくすることで自着火を抑制し、空燃比のより濃い領域
での圧縮着火を可能とする。
In such a configuration, the thermal energy of the residual gas trapped during the negative valve overlap period is
During low load operation, it is low, and gradually increases as it shifts to medium load operation. As the engine load increases, the valve closing timing of the intake valve is advanced to reduce the volumetric efficiency and negative valve overlap period , The auto-ignition is suppressed by reducing the intake air heating, and compression ignition can be performed in a region where the air-fuel ratio is deeper.

【0013】この場合、好ましくは、中負荷運転時の上
記吸気弁の閉弁時期は吸気下死点付近に設定されること
を特徴とする。
In this case, preferably, the closing timing of the intake valve at the time of medium load operation is set near the intake bottom dead center.

【0014】2)低負荷運転時の上記吸気弁の閉弁時期
は吸気下死点を越えた位置に遅角されることを特徴とす
る。
2) The valve closing timing of the intake valve during low load operation is retarded to a position beyond the intake bottom dead center.

【0015】[0015]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施の形態を説明する。図1に圧縮着火式エンジンの全
体構成図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram of a compression ignition type engine.

【0016】同図の符号1はエンジン本体、2はピスト
ン、3は燃焼室、4は吸気ポート、5は排気ポート、6
は吸気弁、7は排気弁であり、吸気ポート4に連通する
吸気通路8にスロットル弁9が介装されている。このス
ロットル弁9はスロットル開度を電子的に制御する電子
制御スロットル装置(図示せず)に連設されている。
1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is an intake port, 5 is an exhaust port, 6
Denotes an intake valve, 7 denotes an exhaust valve, and a throttle valve 9 is interposed in an intake passage 8 communicating with the intake port 4. The throttle valve 9 is connected to an electronic control throttle device (not shown) for electronically controlling the throttle opening.

【0017】又、燃焼室3の頂面中央に燃料噴射手段と
しての筒内噴射用インジェクタ11の噴孔が臨まされて
おり、この筒内噴射用インジェクタ11の噴射方向に対
設するピストン2の頂面に湾曲凹面状のピストンキャビ
ティ2aが形成されている。更に、燃焼室3の一側(本
実施の形態ではスキッシュエリア)に点火プラグ12の
発火部が臨まされている。
An injection hole of an in-cylinder injector 11 as a fuel injection means faces the center of the top surface of the combustion chamber 3, and a piston 2 provided in the injection direction of the in-cylinder injector 11 is provided. A curved concave-shaped piston cavity 2a is formed on the top surface. Further, the ignition portion of the ignition plug 12 faces one side of the combustion chamber 3 (a squish area in the present embodiment).

【0018】又、吸気弁6と排気弁7とが、可変動弁機
構13a,13bに各々連設されている。この各可変動
弁機構13a,13bは、本実施の形態では、火花点火
用吸気カム及び圧縮着火用吸気カムと、火花点火用排気
カム及び圧縮着火用排気カムとの2連カムを各々備えて
おり、この各カムは運転領域に応じて切換えられる。
The intake valve 6 and the exhaust valve 7 are connected to the variable valve mechanisms 13a and 13b, respectively. In the present embodiment, each of the variable valve mechanisms 13a and 13b includes a dual cam including a spark ignition intake cam and a compression ignition intake cam, and a spark ignition exhaust cam and a compression ignition exhaust cam. These cams are switched according to the operation area.

【0019】更に、圧縮着火用吸気カム、及び圧縮着火
用排気カムが可変バルブタイミング(VVT)機構に連
設されている。このVVT機構は、油圧ソレノイド(或
いは電磁ソレノイド)等のアクチュエータにより、圧縮
着火用吸気カム及び圧縮着火用排気カムの回転位相を変
えることで、バルブタイミングをエンジン負荷Loに応
じて可変設定するものである。尚、符号16はノックセ
ンサ、17は水温センサ、18はO2センサである。
Further, a compression ignition intake cam and a compression ignition exhaust cam are connected to a variable valve timing (VVT) mechanism. This VVT mechanism variably sets the valve timing according to the engine load Lo by changing the rotation phase of a compression ignition intake cam and a compression ignition exhaust cam by an actuator such as a hydraulic solenoid (or an electromagnetic solenoid). is there. Reference numeral 16 denotes a knock sensor, 17 denotes a water temperature sensor, and 18 denotes an O2 sensor.

【0020】これら各センサで検出した信号は電子制御
ユニット(ECU)20に入力される。電子制御ユニッ
ト(ECU)20は、CPU21、ROM22、RAM
23、入力ポート24、出力ポート25等からなるマイ
クロコンピュータを中心として構成され、これらが双方
向性バス26によって相互に接続されている。
The signals detected by these sensors are input to an electronic control unit (ECU) 20. An electronic control unit (ECU) 20 includes a CPU 21, a ROM 22, a RAM
23, an input port 24, an output port 25, etc., and are connected to each other by a bidirectional bus 26.

【0021】入力ポート24には、上記各センサ以外
に、設定クランク角度毎にクランクパルスを発生するク
ランク角センサ31が接続されていると共に、アクセル
ペダル32の踏込み量に比例した出力電圧を発生する負
荷センサ33がA/D変換器34を介して接続されてい
る。又、出力ポート25が吸気弁駆動回路36a、排気
弁駆動回路36bを介して、各可変動弁機構13a,1
3bに個別に接続されている。更に、この出力ポート2
5には、筒内噴射用インジェクタ11、及び点火プラグ
12が駆動回路(図示せず)を介して接続されている。
The input port 24 is connected to a crank angle sensor 31 for generating a crank pulse for each set crank angle, in addition to the above sensors, and generates an output voltage proportional to the amount of depression of an accelerator pedal 32. A load sensor 33 is connected via an A / D converter 34. The output port 25 is connected to each of the variable valve mechanisms 13a, 13a via an intake valve drive circuit 36a and an exhaust valve drive circuit 36b.
3b. Furthermore, this output port 2
5, an in-cylinder injector 11 and a spark plug 12 are connected via a drive circuit (not shown).

【0022】電子制御ユニット(ECU)20は、クラ
ンク角センサ31からの信号に基づいて算出したエンジ
ン回転数Neと、負荷センサ33からの信号に基づいて
検出したエンジン負荷Loとに基づき運転領域が圧縮着
火領域にあるか、火花点火領域にあるかを調べ、圧縮着
火領域にあるときは、スロットル弁9を全開とし(図5
(d)参照)、最適な圧縮着火燃焼を得ることのできる燃
料噴射量、噴射タイミング、及び吸排気弁6,7のバル
ブタイミングを設定する。又、運転領域が火花点火領域
にあるときは、通常の火花点火制御を実行する。
The electronic control unit (ECU) 20 determines the operating range based on the engine speed Ne calculated based on the signal from the crank angle sensor 31 and the engine load Lo detected based on the signal from the load sensor 33. It is checked whether the engine is in the compression ignition region or the spark ignition region. When the engine is in the compression ignition region, the throttle valve 9 is fully opened (FIG. 5).
(Refer to (d)), the fuel injection amount, the injection timing, and the valve timings of the intake and exhaust valves 6 and 7 that can obtain the optimal compression ignition combustion are set. When the operation region is in the spark ignition region, normal spark ignition control is executed.

【0023】圧縮着火領域において、最適な圧縮着火燃
焼を得るためには、残留ガスの熱エネルギにより吸気行
程において吸入される新気を加熱昇温させると共に、こ
の残留ガスと新気とを圧縮行程での断熱圧縮により、圧
縮着火可能な温度まで昇温させる必要がある。しかし、
残留ガスの熱エネルギは、エンジン負荷に応じて変動
し、低負荷運転時は低く、中負荷運転へ移行するに従い
高くなる。
In order to obtain the optimum compression ignition combustion in the compression ignition region, the temperature of the fresh air sucked in the intake stroke is increased by the heat energy of the residual gas, and the residual gas and the fresh air are combined with each other in the compression stroke. It is necessary to raise the temperature to a temperature at which compression ignition is possible by adiabatic compression in the above. But,
The thermal energy of the residual gas fluctuates according to the engine load, is low during low load operation, and increases as the operation shifts to medium load operation.

【0024】そのため、圧縮着火制御を行なうに際して
は、エンジン負荷に応じてバルブタイミングを連続的に
変化させ、図4(a),(b)、図5(c)に示すよう
に、エンジン負荷が低負荷運転から中負荷運転方向へ移
行するに従い、排気弁7の閉弁時期EVCを次第に遅角
すると共に、吸気弁5の開弁時期IVOを次第に進角さ
せることで、負のバルブオーバラップ期間を低負荷側で
は広く、中負荷方向へ移行するに従い狭くなるように制
御する。
Therefore, when performing the compression ignition control, the valve timing is continuously changed in accordance with the engine load, and as shown in FIGS. 4 (a), (b) and 5 (c), the engine load is reduced. As the vehicle shifts from the low load operation to the medium load operation, the valve closing timing EVC of the exhaust valve 7 is gradually retarded and the valve opening timing IVO of the intake valve 5 is gradually advanced, so that the negative valve overlap period Is controlled to be wider on the low load side and narrower as it shifts toward the middle load direction.

【0025】その結果、燃焼室3内に閉じ込められる残
留ガス量が低負荷運転側で多くなり、中負荷運転方向へ
移行するに従い、減少される。低負荷運転側での残留ガ
ス量を増大させることで、残留ガスの熱エネルギにより
混合気温度が高められ、よりリーンな空燃比での圧縮着
火が可能となる。一方、中負荷運転方向へ移行するに従
い、残留ガス量を減少させることで、自着火を抑制し、
ノッキングの発生を回避する。
As a result, the amount of residual gas confined in the combustion chamber 3 increases on the low-load operation side and decreases as the engine shifts to the medium-load operation direction. By increasing the amount of residual gas on the low load operation side, the temperature of the air-fuel mixture is increased by the heat energy of the residual gas, and compression ignition at a leaner air-fuel ratio becomes possible. On the other hand, as the vehicle shifts to the medium load operation direction, the self-ignition is suppressed by reducing the residual gas amount,
Avoid knocking.

【0026】この場合、吸気弁6の閉弁時期が一定であ
ると、圧縮着火可能な領域は狭くなる。例えば、図4
(a)に示すように、吸気弁6の閉弁時期IVCを、吸
気下死点(BDC)を越えた位置に固定した場合、図3
に示すハッチングで囲んだ低負荷領域の狭い範囲でのみ
圧縮着火燃焼が可能となる。これは、負のバルブオーバ
ラップ期間を制御し、残留ガスの熱エネルギを利用して
圧縮着火燃焼を行なわせようとした場合、中負荷方向へ
移行するに従い、残留ガスの熱エネルギが高くなり、ノ
ッキング等が発生し易くなるからである。
In this case, if the closing timing of the intake valve 6 is constant, the region where compression ignition is possible becomes narrow. For example, FIG.
As shown in FIG. 3A, when the valve closing timing IVC of the intake valve 6 is fixed at a position beyond the intake bottom dead center (BDC), FIG.
Compression ignition combustion is possible only in a narrow range of a low load region surrounded by hatching shown in FIG. This is because when controlling the negative valve overlap period and performing compression ignition combustion using the heat energy of the residual gas, the thermal energy of the residual gas increases as the shift to the medium load direction occurs, This is because knocking and the like easily occur.

【0027】そのため、本実施の形態では、圧縮着火領
域においては、エンジン負荷Loに応じて負のバルブオ
ーバラップ期間を可変設定して、混合気温度を制御する
ばかりでなく、吸気弁6の閉弁時期IVCをも可変設定
することで体積効率を制御して、適正な圧縮着火燃焼を
得るようにしている。
Therefore, in the present embodiment, in the compression ignition region, the negative valve overlap period is variably set according to the engine load Lo to control not only the air-fuel mixture temperature but also the closing of the intake valve 6. The volume efficiency is controlled by variably setting the valve timing IVC so as to obtain appropriate compression ignition combustion.

【0028】この吸気弁6の閉弁時期は、具体的には、
図2に示す燃焼制御ルーチンにおいて設定される。この
ルーチンでは、先ず、ステップS1で、エンジン回転数
Neとエンジン負荷Loとに基づき、図3に示す運転領
域マップを参照して、運転領域が圧縮着火領域にある
か、火花点火領域にあるかを調べる。尚、本実施の形態
における圧縮着火領域は、同図のハッチング領域を含む
実線で囲んだ領域、すなわち、低中回転、低中負荷領域
に設定されている。更に、この圧縮着火領域をエンジン
負荷Loに応じて、低負荷領域は成層圧縮着火領域、中
負荷領域は均一圧縮着火領域に区分し、成層圧縮着火領
域では燃料噴射時期を圧縮行程後半の比較的遅い時期に
設定する。又、均一圧縮着火領域では燃料噴射時期を負
のバルブオーバラップ期間開始後から吸気行程中の比較
的早い時期の間で設定する(図6参照)。
The closing timing of the intake valve 6 is, specifically,
It is set in the combustion control routine shown in FIG. In this routine, first, in step S1, based on the engine speed Ne and the engine load Lo, with reference to the operation region map shown in FIG. 3, it is determined whether the operation region is in the compression ignition region or the spark ignition region. Find out. Note that the compression ignition region in the present embodiment is set to a region surrounded by a solid line including a hatched region in the figure, that is, a low-medium rotation, low-medium load region. Further, the compression ignition region is divided into a stratified compression ignition region, a medium load region is divided into a uniform compression ignition region, and a fuel injection timing is relatively reduced in the latter half of the compression stroke in the stratified compression ignition region according to the engine load Lo. Set later. Further, in the uniform compression ignition region, the fuel injection timing is set from a time after the start of the negative valve overlap period to a relatively early time during the intake stroke (see FIG. 6).

【0029】そして、運転領域が圧縮着火領域にあると
きは、ステップS2へ進み、火花点火領域にあるときは
ステップS6へ進む。
When the operating region is in the compression ignition region, the process proceeds to step S2, and when it is in the spark ignition region, the process proceeds to step S6.

【0030】ステップS2へ進むと、スロットル弁9を
全開動作させ、その後、ステップS3へ進み、可変動弁
機構13a,13bに対して圧縮着火用吸気カム、及び
圧縮着火用排気カムを選択する信号を出力し、吸気弁6
及び排気弁7を圧縮着火時のバルブタイミングで動作さ
せる。
In step S2, the throttle valve 9 is fully opened, and then in step S3, a signal for selecting the compression ignition intake cam and the compression ignition exhaust cam for the variable valve mechanisms 13a and 13b. And the intake valve 6
And the exhaust valve 7 is operated at the valve timing at the time of compression ignition.

【0031】次いで、ステップS4へ進み、負のバルブ
オーバラップ期間を設定する。この負のバルブオーバラ
ップ期間は、図4(a),(b)に示すように、低負荷
運転時を最大とし、中負荷運転時を最小とし、その範囲
でエンジン負荷Loに応じて可変設定される。
Then, the process proceeds to a step S4, wherein a negative valve overlap period is set. As shown in FIGS. 4A and 4B, the negative valve overlap period is maximized during low load operation, minimized during medium load operation, and variably set in that range according to the engine load Lo. Is done.

【0032】具体的には、エンジン負荷Loに基づき、
図5(c)に示すバルブオーバラップ期間設定テーブル
を、エンジン負荷Loをパラメータとして補間計算付で
参照し、各可変動弁機構13a,13bに対し駆動信号
を出力する。すると、この各可変動弁機構13a,13
bに設けられているVVT機構が、圧縮着火用吸気カム
と圧縮着火用排気カムとの回転位相をそれぞれ変え、低
負荷運転時は、吸気弁6の開弁時期IVOを遅角させ、
排気弁7の閉弁時期EVCを進角させて、負のバルブオ
ーバラップ期間を広げる。一方、中負荷運転時は、吸気
弁6の開弁時期IVOを進角させ、排気弁7の閉弁時期
EVCを遅角させて、負のバルブオーバラップ期間を狭
める。
Specifically, based on the engine load Lo,
The valve overlap period setting table shown in FIG. 5C is referenced with interpolation calculation using the engine load Lo as a parameter, and a drive signal is output to each of the variable valve mechanisms 13a and 13b. Then, each of the variable valve mechanisms 13a, 13
b, the VVT mechanism changes the rotation phase of the compression ignition intake cam and the compression ignition exhaust cam, respectively, and delays the valve opening timing IVO of the intake valve 6 during low load operation;
The valve closing timing EVC of the exhaust valve 7 is advanced to extend the negative valve overlap period. On the other hand, during the medium load operation, the valve opening timing IVO of the intake valve 6 is advanced and the valve closing timing EVC of the exhaust valve 7 is retarded to narrow the negative valve overlap period.

【0033】又、図4(b)に示すように、圧縮着火用
吸気カム及び圧縮着火用排気カムのカムプロフィルは、
中負荷運転時の吸気弁6の閉弁時期IVCが吸気下死点
(BDC)付近となり、又排気弁7の開弁時期EVOが
膨張下死点(BDC)となるように設定されていると共
に、排気弁7の閉弁時期EVCと吸気弁6の開弁時期I
VOとで形成される負のバルブオーバラップ期間が、排
気上死点(TDC)を挟んで対称となる位置に設定され
ている。そして、エンジン負荷が中負荷運転から、同図
(a)に示す低負荷運転へ移行するに従い、圧縮着火用
吸気カム及び圧縮着火用排気カムは回転位相を対称に変
化させる。
As shown in FIG. 4B, the cam profiles of the intake cam for compression ignition and the exhaust cam for compression ignition are:
The valve closing timing IVC of the intake valve 6 during medium load operation is set to be near the intake bottom dead center (BDC), and the valve opening timing EVO of the exhaust valve 7 is set to the expansion bottom dead center (BDC). , The closing timing EVC of the exhaust valve 7 and the opening timing I of the intake valve 6
The negative valve overlap period formed with VO is set at a position symmetrical with respect to the exhaust top dead center (TDC). Then, as the engine load shifts from the medium load operation to the low load operation shown in FIG. 7A, the compression ignition intake cam and the compression ignition exhaust cam change the rotational phase symmetrically.

【0034】その結果、図6に示すように、エンジン負
荷が中負荷運転から低負荷運転へ移行するに従い、排気
弁7のバルブタイミングが進角され、一方、吸気弁6の
バルブタイミングが、排気弁7とは対称方向へ遅角され
る。
As a result, as shown in FIG. 6, as the engine load shifts from the medium load operation to the low load operation, the valve timing of the exhaust valve 7 is advanced, while the valve timing of the intake valve 6 is changed to the exhaust timing. The valve 7 is retarded in a symmetrical direction.

【0035】このように、残留ガスの熱エネルギが最も
低い、低負荷運転時において、吸気弁6の閉弁時期を遅
角させることで、慣性過給により、体積効率が向上し、
より多くの新気を吸入することができる。又、このとき
の負のバルブオーバラップ期間は広く設定されているた
め(図5(c)参照)、燃焼室3内に閉じ込められる残留
ガス量も多く、この残留ガスの熱エネルギによる吸気加
熱が促進され、より希薄な空燃比であっても良好な圧縮
着火性能を得ることが可能となる。
As described above, at the time of low load operation in which the heat energy of the residual gas is the lowest, the valve closing timing of the intake valve 6 is retarded, so that the volumetric efficiency is improved by inertial supercharging,
More fresh air can be inhaled. In addition, since the negative valve overlap period at this time is set to be wide (see FIG. 5C), the amount of the residual gas confined in the combustion chamber 3 is large, and the heating of the intake air by the heat energy of the residual gas is difficult. As a result, good compression ignition performance can be obtained even with a leaner air-fuel ratio.

【0036】一方、燃焼室3に閉じ込められた残留ガス
の熱エネルギが比較的高い、中負荷運転時は、負のバル
ブオーバラップ期間が狭いため、残留ガスの熱エネルギ
による吸気加熱が抑制され、又吸気弁6の閉弁時期が吸
気下死点(BDC)付近に設定されるため、体積効率が
小さくなり、圧縮圧が低くなるため、自着火が抑制さ
れ、ノッキングの発生を回避しつつ、リッチな混合気で
安定した圧縮着火燃焼を得ることができる。その結果、
図3に示すように、均一圧縮着火領域を、ハッチングで
示す従来の領域から高負荷側へ拡大させることが可能と
なる。
On the other hand, during a medium load operation in which the residual gas confined in the combustion chamber 3 has relatively high thermal energy, the negative valve overlap period is short, so that intake air heating by the residual gas thermal energy is suppressed. Further, since the closing timing of the intake valve 6 is set near the intake bottom dead center (BDC), the volume efficiency is reduced, and the compression pressure is reduced, so that self-ignition is suppressed, and the occurrence of knocking is avoided. Stable compression ignition combustion can be obtained with a rich air-fuel mixture. as a result,
As shown in FIG. 3, the uniform compression ignition region can be expanded from the conventional region indicated by hatching to the high load side.

【0037】次いで、ステップS5へ進み、圧縮着火燃
料噴射制御を実行して、ルーチンを抜ける。この圧縮着
火燃料噴射制御は、燃料噴射量と燃料噴射タイミングと
を可変設定する処理が行なわれる。
Next, the routine proceeds to step S5, in which compression ignition fuel injection control is executed, and the routine exits. In the compression ignition fuel injection control, processing for variably setting the fuel injection amount and the fuel injection timing is performed.

【0038】燃料噴射量は、図5(a)に示すように、
エンジン負荷Loが低下するに従い空燃比を次第にリー
ン化する制御が行なわれる。尚、同図の符号λ0は理論
空燃比を示す。又、燃料噴射タイミングは、エンジン回
転数Neとエンジン負荷Loとに基づいて設定され、例
えば運転領域が低負荷領域では、吸気下死点(BDC)
より遅い時期、すなわち圧縮行程開始後に設定し、一方
中負荷且つ低中回転では排気弁7が閉弁したとき(負の
バルブオーバラップ期間開始時)から吸気下死点(BD
C)にかけての、比較的早い時期に設定する。
The fuel injection amount is, as shown in FIG.
Control is performed to gradually increase the air-fuel ratio as the engine load Lo decreases. Note that reference numeral λ0 in the figure indicates a stoichiometric air-fuel ratio. The fuel injection timing is set based on the engine speed Ne and the engine load Lo. For example, when the operating region is in a low load region, the intake bottom dead center (BDC)
At a later time, that is, after the start of the compression stroke, the intake bottom dead center (BD) is set when the exhaust valve 7 is closed (at the start of the negative valve overlap period) at medium load and low / medium rotation.
Set relatively early, until C).

【0039】吸気下死点(BDC)よりも遅い時期に筒
内噴射用インジェクタ11から燃焼室3に燃料を噴射す
ることで、圧縮着火燃焼可能なガス温度に到達しつつあ
る燃焼室3内に成層化された混合気が局所的に生成さ
れ、極めて希薄な混合気での成層圧縮着火燃焼が可能と
なる。一方、燃料噴射タイミングを排気弁7が閉弁後の
比較的早期に設定することで、燃焼室3のガス温度が自
発火可能温度に達する前に均一混合気を生成させること
ができ、混合気温度が発火温度に達したとき、この混合
気が一斉に発火して火炎が伝播しない燃焼、いわば無限
数の点火プラグを配したような多点発火燃焼(均一圧縮
着火燃焼)が実現される。
By injecting fuel from the in-cylinder injector 11 into the combustion chamber 3 at a time later than the intake bottom dead center (BDC), the combustion chamber 3 is reaching the gas temperature at which compression ignition combustion is possible. A stratified mixture is locally generated, and stratified compression ignition combustion can be performed with an extremely lean mixture. On the other hand, by setting the fuel injection timing relatively early after the exhaust valve 7 closes, a uniform mixture can be generated before the gas temperature in the combustion chamber 3 reaches the self-ignition possible temperature. When the temperature reaches the ignition temperature, this air-fuel mixture ignites all at once and combustion in which the flame does not propagate, that is, multipoint ignition combustion (uniform compression ignition combustion) in which an infinite number of spark plugs are arranged, is realized.

【0040】又、ステップS1で運転領域が火花点火領
域にあると判定されてステップS6へ進むと、通常の火
花点火による燃焼制御を実行してルーチンを抜ける。火
花点火燃焼制御へ移行すると、可変動弁機構13a,1
3bに対し、火花点火用吸気カム及び火花点火用排気カ
ムに切換える信号を出力する。その結果、吸気弁6及び
排気弁7が通常の火花点火時のバルブタイミング、すな
わち排気行程終期から吸気行程初期にかけて共に開弁す
る正のバルブオーバラップ期間(図4(c)、図5(c)参
照)で動作される。尚、火花点火用吸気カム及び火花点
火用排気カムのカムプロフィールは体積効率が最大とな
る形状に設定されている。
When it is determined in step S1 that the operation region is in the spark ignition region and the process proceeds to step S6, the normal combustion control by spark ignition is executed, and the routine exits. When shifting to spark ignition combustion control, the variable valve mechanism 13a, 1
A signal for switching to the spark ignition intake cam and the spark ignition exhaust cam is output to 3b. As a result, a positive valve overlap period in which the intake valve 6 and the exhaust valve 7 open together during normal spark ignition, that is, from the end of the exhaust stroke to the beginning of the intake stroke (FIGS. 4 (c) and 5 (c)) ))). The cam profiles of the spark-ignition intake cam and the spark-ignition exhaust cam are set so as to maximize the volumetric efficiency.

【0041】同時に、スロットル弁9をアクセルペダル
32に連動させた動作とし(図5(d)参照)、更に、燃
料噴射量、燃料噴射時期、及び点火時期等を通常の火花
点火制御に戻す。尚、これらの制御は公知であるため、
ここでの説明は省略する。
At the same time, the throttle valve 9 is operated in conjunction with the accelerator pedal 32 (see FIG. 5 (d)), and the fuel injection amount, fuel injection timing, ignition timing, etc. are returned to normal spark ignition control. Since these controls are known,
The description here is omitted.

【0042】[0042]

【発明の効果】以上、説明したように本発明によれば、
圧縮着火運転時は、エンジン負荷が増大するに従い、負
のバルブオーバラップ期間を狭くして吸気加熱を小さく
し、更に、吸気弁の閉弁時期を進角させて体積効率を低
下させることで、自着火が抑制され、空燃比のより濃い
領域で安定した圧縮着火性能を得ることができ、その結
果、圧縮着火領域を高負荷側へ拡大させることが可能と
なる。
As described above, according to the present invention,
During compression ignition operation, as the engine load increases, the intake valve heating period is reduced by narrowing the negative valve overlap period, and the valve closing timing of the intake valve is advanced to reduce the volumetric efficiency. Self-ignition is suppressed, and stable compression ignition performance can be obtained in a region where the air-fuel ratio is deeper. As a result, the compression ignition region can be expanded to a higher load side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮着火式エンジンの全体構成図FIG. 1 is an overall configuration diagram of a compression ignition engine.

【図2】燃焼制御ルーチンを示すフローチャートFIG. 2 is a flowchart showing a combustion control routine.

【図3】運転領域マップを示す説明図FIG. 3 is an explanatory diagram showing an operation area map.

【図4】吸気弁と排気弁のバルブタイミングとを示す説
明図で(a)は低負荷運転、(b)は中負荷運転、
(c)は高負荷運転を示す
4A and 4B are explanatory diagrams showing valve timings of an intake valve and an exhaust valve. FIG. 4A is a low-load operation, FIG.
(C) shows high load operation

【図5】エンジン負荷と各制御特性との関係を示す説明
FIG. 5 is an explanatory diagram showing a relationship between an engine load and each control characteristic.

【図6】バルブタイミングと筒内圧特性との関係を示す
説明図
FIG. 6 is an explanatory diagram showing a relationship between valve timing and in-cylinder pressure characteristics.

【符号の説明】[Explanation of symbols]

1 エンジン本体 6 吸気弁 7 排気弁 BDC 吸気下死点 IVC 閉弁時期 Lo エンジン負荷 TDC 排気上死点 DESCRIPTION OF SYMBOLS 1 Engine main body 6 Intake valve 7 Exhaust valve BDC Intake bottom dead center IVC Closing timing Lo Engine load TDC Exhaust top dead center

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 仁 東京都三鷹市大沢3丁目9番6号 株式会 社スバル研究所内 (72)発明者 最首 陽平 東京都三鷹市大沢3丁目9番6号 株式会 社スバル研究所内 Fターム(参考) 3G023 AA02 AA04 AA06 AB01 AB05 AB06 AC04 AD02 AG01 AG03 3G092 AA01 AA06 AA09 AA11 AB02 BA08 DA01 DA02 DA07 DA12 EA03 EA04 EA22 EC09 FA16 FA21 GA05 GA06 HE03Z HE08Z HF08Z 3G301 HA00 HA01 HA15 HA19 JA22 JA23 KA08 KA09 LA07 LB04 MA11 MA18 NA08 NC02 NE11 NE12 NE15 PC08Z PE03Z PE08Z PF03Z  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Ito 3-9-6 Osawa, Mitaka City, Tokyo Inside Subaru Research Institute, Inc. (72) Inventor Yohei Saiku 3-9-6 Osawa, Mitaka City, Tokyo F-term in Subaru Research Institute (reference) JA23 KA08 KA09 LA07 LB04 MA11 MA18 NA08 NC02 NE11 NE12 NE15 PC08Z PE03Z PE08Z PF03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排気上死点前後にかけて排気弁と吸気弁と
を共に閉弁する負のバルブオーバラップ期間を形成する
ことの可能な可変動弁機構を備える圧縮着火式エンジン
において、 エンジン負荷が増大するに従い上記負のバルブオーバラ
ップ期間を狭くすると共に上記吸気弁の閉弁時期を進角
させることを特徴とする圧縮着火式エンジン。
1. A compression ignition type engine having a variable valve operating mechanism capable of forming a negative valve overlap period in which both an exhaust valve and an intake valve are closed before and after a top dead center of an exhaust gas. A compression ignition type engine characterized in that the negative valve overlap period is narrowed and the intake valve closing timing is advanced as the pressure increases.
【請求項2】中負荷運転時の上記吸気弁の閉弁時期は吸
気下死点付近に設定されることを特徴とする請求項1記
載の圧縮着火式エンジン。
2. The compression ignition engine according to claim 1, wherein the closing timing of the intake valve during the middle load operation is set near the intake bottom dead center.
【請求項3】低負荷運転時の上記吸気弁の閉弁時期は吸
気下死点を越えた位置に遅角されることを特徴とする請
求項1或いは2記載の圧縮着火式エンジン。
3. The compression ignition engine according to claim 1, wherein the closing timing of the intake valve during low load operation is retarded to a position beyond the intake bottom dead center.
JP2001040728A 2001-02-16 2001-02-16 4-cycle gasoline engine Expired - Fee Related JP4647112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040728A JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040728A JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Publications (2)

Publication Number Publication Date
JP2002242715A true JP2002242715A (en) 2002-08-28
JP4647112B2 JP4647112B2 (en) 2011-03-09

Family

ID=18903279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040728A Expired - Fee Related JP4647112B2 (en) 2001-02-16 2001-02-16 4-cycle gasoline engine

Country Status (1)

Country Link
JP (1) JP4647112B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090884A1 (en) * 2005-02-24 2006-08-31 Toyota Jidosha Kabushiki Kaisha Inernal combustion engine
JP2007224908A (en) * 2006-02-20 2007-09-06 Robert Bosch Gmbh Method of operating internal combustion engine
JP2008151098A (en) * 2006-12-20 2008-07-03 Honda Motor Co Ltd Valve opening characteristic variable type internal combustion engine
JP2009180115A (en) * 2008-01-30 2009-08-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2010236497A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Method and device for controlling internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287528A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09287528A (en) * 1996-04-23 1997-11-04 Toyota Motor Corp Cylinder injection type internal combustion engine
JPH10266878A (en) * 1997-03-26 1998-10-06 Toyota Motor Corp Control device of four-stroke engine
JP2002242714A (en) * 2001-02-14 2002-08-28 Mazda Motor Corp 4-cycle engine for automobile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090884A1 (en) * 2005-02-24 2006-08-31 Toyota Jidosha Kabushiki Kaisha Inernal combustion engine
JP2006233839A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Internal combustion engine
CN100564828C (en) * 2005-02-24 2009-12-02 丰田自动车株式会社 Internal-combustion engine
US7681550B2 (en) 2005-02-24 2010-03-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2007224908A (en) * 2006-02-20 2007-09-06 Robert Bosch Gmbh Method of operating internal combustion engine
JP2008151098A (en) * 2006-12-20 2008-07-03 Honda Motor Co Ltd Valve opening characteristic variable type internal combustion engine
JP2009180115A (en) * 2008-01-30 2009-08-13 Honda Motor Co Ltd Control device for internal combustion engine
JP4729588B2 (en) * 2008-01-30 2011-07-20 本田技研工業株式会社 Control device for internal combustion engine
US8707936B2 (en) 2008-01-30 2014-04-29 Honda Motor Co., Ltd. Control system for internal combustion engine
JP2010236497A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Method and device for controlling internal combustion engine

Also Published As

Publication number Publication date
JP4647112B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
EP1566528B1 (en) Internal combustion engine
US7370616B2 (en) Method for transition between controlled auto-ignition and spark ignition modes in direct fuel injection engines
JP4326044B2 (en) 4-cycle internal combustion engine
US7370633B2 (en) Load transient control methods for direct-injection engines with controlled auto-ignition combustion
JP4253426B2 (en) Compression self-ignition gasoline engine
US8347860B2 (en) Control strategy for a homogeneous-charge compression-ignition engine
JP3945152B2 (en) Combustion control device for internal combustion engine
JP4122630B2 (en) Compression self-ignition gasoline engine
US8469002B2 (en) Combustion phasing control in spark-assisted HCCI combustion mode
JP2002256911A (en) Combustion control device of engine
JP4062870B2 (en) Combustion control device for internal combustion engine
JP7167831B2 (en) Compression ignition engine controller
JP4311604B2 (en) Control device for self-ignition engine
JP2010236497A (en) Method and device for controlling internal combustion engine
JP2009085199A (en) Control device for gasoline engine
JP2009085175A (en) Control device for gasoline engine
JP2002256924A (en) Combustion control device of compression ignition engine
JP2002227680A (en) Compression ignition type engine
JP4647112B2 (en) 4-cycle gasoline engine
JP4193535B2 (en) Gasoline engine combustion control device
JP2011058372A (en) Control method for engine, and control device for the same
JP2002322928A (en) Combustion control device for compression ignition type engine
JP4583626B2 (en) Engine combustion control device
JP6225699B2 (en) Control unit for direct injection engine
JP7251287B2 (en) Homogeneous mixture compression ignition engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees