JP2004077870A - 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ - Google Patents

有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ Download PDF

Info

Publication number
JP2004077870A
JP2004077870A JP2002239070A JP2002239070A JP2004077870A JP 2004077870 A JP2004077870 A JP 2004077870A JP 2002239070 A JP2002239070 A JP 2002239070A JP 2002239070 A JP2002239070 A JP 2002239070A JP 2004077870 A JP2004077870 A JP 2004077870A
Authority
JP
Japan
Prior art keywords
toner
image
organic photoreceptor
image forming
generation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239070A
Other languages
English (en)
Other versions
JP3979222B2 (ja
Inventor
Akihiko Itami
伊丹 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002239070A priority Critical patent/JP3979222B2/ja
Publication of JP2004077870A publication Critical patent/JP2004077870A/ja
Application granted granted Critical
Publication of JP3979222B2 publication Critical patent/JP3979222B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】本発明の目的は、像露光に対し、ボケが小さい正確な静電潜像を形成し、該静電潜像を忠実にトナー像として顕像化でき、且つトナーの転写性、残留トナーのクリーニング性、耐傷性を改善した有機感光体を提供することであり、該感光体を用いた画像形成方法、画像形成装置、及び該画像形成装置に用いられるプロセスカートリッジを提供する事である。
【解決手段】ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする有機感光体。
【選択図】    なし

Description

【0001】
【発明の属する技術分野】
本発明は、複写機やプリンターの分野において用いられる有機感光体、及び該有機感光体を用いた画像形成方法、画像形成装置、プロセスカートリッジに関するものである。
【0002】
【従来の技術】
近年、電子写真感光体には有機感光体が広く用いられている。有機感光体は可視光から赤外光まで各種露光光源に対応した材料が開発しやすいこと、環境汚染のない材料を選択できること、製造コストが安い事など他の感光体に対して有利な点があるが、欠点としては機械的強度、化学的な耐久性が弱く、多数枚のプリント時に感光体の静電特性の劣化や、表面の傷の発生等がある。
【0003】
即ち、有機感光体(以下単に感光体とも云う)の表面には帯電手段、現像手段、転写手段およびクリーニング手段などにより電気的、機械的な外力が直接加えられるため、それらに対する耐久性が要求される。
【0004】
具体的には摩擦による感光体表面の摩耗や傷の発生、コロナ帯電時に発生するオゾン等の活性酸素、チッソ酸化物などによる表面の劣化などに対する耐久性が要求される。
【0005】
上記のような機械的、化学的耐久性の問題を解決するために、有機感光体はその層構成を電荷発生層と、電荷輸送層の積層構成にし、表面層の電荷輸送層を高強度且つ活性ガスが透過しにくい均一層にし、電荷輸送層の膜厚を20μmより厚くする構成が多く採用されている。
【0006】
又、他のアプローチとして、感光体の表面に高強度の保護層を設置するなどの技術が検討されてきた。例えば特開平6−118681号公報では感光体の保護層として、硬化性シリコーン樹脂を用いることが報告されている。しかしながら上記のような電荷輸送層を厚膜化する方法や高強度の保護層を設ける方法は電荷発生層で発生したキャリアが表面に達するまでに、横方向に拡散する問題があり、鮮鋭性等に問題が生じる。デジタル複写機の分野ではより高画質への要求が高まり高解像度の画像形成が検討されているが、このようにキャリアの拡散を招きやすい層構成や保護層では良好な静電潜像を得ることができない。
【0007】
画像情報を静電潜像として忠実に再現するためには露光/未露光部の電位コントラストが十分確保されている必要があるが、これは発生キャリアが表面電荷に到達するまでのキャリアの拡散を押さえることが重要である。日本画像学会誌第38巻第4号296頁には高密度画像の潜像劣化は、電荷輸送層の拡散定数(D)とドリフト移動度(μ)との比D/μが大きくなると静電潜像への拡散の効果が無視できず、電荷輸送層の膜厚が大きくなると潜像劣化は大きくなると記述されている。特に、高感度の電荷発生物質、例えば、特開平11−119450号等で公開されているガリウムフタロシアニン顔料等を用いた電荷発生層と20μmを超える電荷輸送層で構成された有機感光体等では電荷発生層で多量に発生したキャリアが厚膜の電荷輸送層で拡散し、画像の鮮鋭性の劣化を顕著に増加させる傾向にある。
【0008】
しかしながら、これまで実用化されてきた有機感光体はクリーニングブレード等の擦過による膜厚減耗が大きく、電荷輸送層等の感光層膜厚を20μm以下に設計することは感光体の耐久性を更に小さくすることになり、好ましくなかった。
【0009】
又、電荷輸送層を薄膜化し、静電潜像の拡散を防止する有機感光体は既に特開平5−119503号等で提案されている。しかしながら、これらの提案された有機感光体は、感光体の耐久性、及び高画質化の要求に対して、尚十分な解決とはなり得ていない。
【0010】
即ち、デジタル画像の高解像度の画像形成のためには、感光体表面に形成された静電潜像に正確にトナーが付着し、デジタルのドット潜像を正確に顕像化することが必要であるが、有機感光体の表面にトナーを飛散させないで、静電潜像を忠実に再現するトナー像を形成するには、有機感光体の表面に異物が付着しにくい特性を有すること、及び繰り返し使用しても表面に傷が付きにくく、荒れにくい特性を有することが必要であるが、これまで開発された有機感光体はこのような特性をまだ十分に満足しえていない。
【0011】
従来、デジタル画像の高画質化では、小粒径化したり、粒度分布をシャープにしたトナーを用いることが、多く提案されているが、本発明者等の検討結果では、これらのトナーを用いても、有機感光体が前記したトナーを飛散させないで、静電潜像を忠実に再現できるような表面特性を持たないと、トナーの小粒径化や粒度分布の改良効果が十分に生かされないことが見いだされた。
【0012】
一方、有機感光体の耐摩耗特性を改良する方法としては、前記した硬化性シリコーン樹脂を用いる保護層等の他に、特開昭56−117245号、同63−91666号及び特開平1−205171号の各公報等で、感光体の最表面層にシリカ粒子を含有せしめ、感光体表面の機械的強度を大とし、耐久性を向上せしめることができることが記載されている。更に又特開昭57−176057号、同61−117558号又は特開平3−155558号等の各公報には前記シリカ粒子をシランカップリング剤等で処理して成る疎水性シリカ粒子を感光体の最表面層に含有せしめ、感光体の機械的強度を大ならしめると共に潤滑性を付与してより高耐久性の感光体が得られることが記載されている。
【0013】
しかしながら、これらの耐摩耗性改良技術は、繰り返し画像形成を行い、多数枚の複写画像を形成すると、画像品質、特に鮮鋭性が低下する傾向が見られる。
【0014】
【発明が解決しようとする課題】
本発明の目的は、上記の問題点を解決することにあり、像露光に対し、ボケが小さい正確な静電潜像を形成し、且つ該静電潜像を忠実にトナー像として顕像化でき、且つトナーの転写性、残留トナーのクリーニング性、耐傷性を改善した有機感光体を提供することであり、該感光体を用いた画像形成方法、画像形成装置、及び該画像形成装置に用いられるプロセスカートリッジを提供する事である。
【0015】
【課題を解決するための手段】
我々は上記問題点について検討を重ねた結果、多数枚の繰り返し複写やプリントを行う有機感光体の鮮鋭性と耐摩耗特性を改良するには、有機感光体を電荷発生層及び電荷輸送層の機能分離構成とし、表面層を形成する電荷輸送層の膜厚を薄くし、キャリアの拡散を防ぐと同時に、表面層の粘弾性特性を異物が付着しにくく、且つ繰り返し使用しても表面が荒れにくく、且つ耐摩耗特性を備えている特性にし、電荷発生層には、感光体単位面積当たりの帯電量を増加しても、十分に静電潜像の電位コントラストを形成できる高感度の電荷発生物質を用いることが必要であることを見いだし本発明を完成した。
【0016】
更に、このような有機感光体と形状係数や粒度分布がそろったトナーを併用して、電子写真方式の画像を形成すると、より鮮鋭性に優れた高画質の電子写真画像を得ることができる。
【0017】
即ち、本発明の目的は、以下の構成を持つことにより達成される。
1.ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする有機感光体。
【0018】
2.前記ガリウムフタロシアニン顔料が、Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも7.4°、16.6°、25.5°、28.3°の位置に回折ピークを有するクロルガリウムフタロシアニン顔料、又は少なくとも7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.1°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン顔料であることを特徴とする前記1に記載の有機感光体。
【0019】
3.前記電荷輸送層が数平均粒径10nm以上、100nm未満の微粒子を含有することを特徴とする前記1又は2に記載の有機感光体。
【0020】
4.前記電荷輸送層が表面層であることを特徴とする前記1〜3のいずれか1項に記載の有機感光体。
【0021】
5.導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナー粒子の形状係数の変動係数が16%以下、個数粒度分布における個数変動係数が27%以下であり、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
【0022】
6.導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナーが、形状係数1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有し、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
【0023】
7.導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおける最頻階級に含まれるトナー粒子の相対度数(m)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m)との和(M)が70%以上であり、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
【0024】
8.導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナーが、角がないトナー粒子を60個数%以上含有し、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
【0025】
9.前記現像工程のトナー粒子の個数平均粒径が3〜8μmであることを特徴とする前記5〜8のいずれか1項に記載の画像形成方法。
【0026】
10.前記静電潜像の形成は、露光スポット面積が2×10−9(m)以下の露光ビームの露光により行われることを特徴とする前記5〜9のいずれか1項に記載の画像形成方法。
【0027】
11.前記5〜10のいずれか1項に記載の画像形成方法を用いて電子写真画像を形成することを特徴とする画像形成装置。
【0028】
12.前記1〜4のいずれか1項に記載の有機感光体を用い、帯電手段、像露光手段、現像手段、クリーニング手段のいずれか1つとが一体に組み合わされており、画像形成装置に出し入れ自由に設計されていることを特徴とするプロセスカートリッジ。
【0029】
即ち、本発明の有機感光体は、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする。
【0030】
本発明の有機感光体が上記の構成を有することにより、表面層にトナーや紙粉等の付着によるフィルミングが防止され、且つ繰り返し使用されても文字チリやトナー飛散が発生しない、均質な表面特性を有し、良好な鮮鋭性を有する画像を作製することができる。
【0031】
又、本発明の画像形成方法は、上記の構成を有する有機感光体上の静電潜像を形状係数や粒度分布が均一なトナーを用いて現像することにより、良好な鮮鋭性を有する高画質の電子写真画像を長時間に亘り提供することができる。
【0032】
以下本発明について詳細に説明する。
本発明の有機感光体は、表面の電荷輸送層が、表面から加重される一定加重の圧子(荷重20mN)に対し、一定の塑性変形(1%以上、3.5%未満)特性を有機感光体に持つことを特徴とする。
【0033】
このような粘弾性特性を備えた電荷輸送層を表面層として構成することにより、前記したようなトナーの転写性、残留トナークリーニング性を改善すると同時に、耐傷性を改善し、常に安定した表面を形成し、現像によるトナー画像に乱れが発生せず鮮鋭性等に優れた電子写真画像を形成することができる。
【0034】
前記のような粘弾性特性を有する表面層は、高弾性のポリカーボネートをバインダー樹脂として用いると同時に、比較的高分子量の電荷輸送物質を用いて、バインダーの高弾性を維持した電荷輸送層を表面層とすることにより、実現する事が出来る。又、このような電荷輸送層は、電荷輸送層を2層以上とし、最上層の電荷輸送層を前記した構成にすることが好ましい。
【0035】
本発明に好ましく用いられる高弾性のポリカーボネートとしては、下記に示すようなポリカーボネートが挙げられる。
【0036】
【化1】
Figure 2004077870
【0037】
又、本発明に用いる電荷輸送物質としては、分子量が500〜1500が好ましく、更に600〜1000がより好ましい。本発明に好ましく用いられる電荷輸送物質としては下記のような化学構造を有する電荷輸送物質が挙げられる。
【0038】
【化2】
Figure 2004077870
【0039】
上記中、Mwは分子量を示す。
前記した高分子量の電荷輸送物質とポリカーボネートの混合比は質量比で電荷輸送層1に対し、ポリカーボネート0.5〜3.0の比率が好ましく、更に0.8〜2.0の比率が好ましいが、この比率は電荷輸送物質或いはポリカーボネートの種類によって、或いはその他の添加剤の存在により変化し、絶対的なものではない。
【0040】
本発明のクリープ率は1%以上、3.5%未満であるが、2.0%以上、3.2%以下がより好ましい。
【0041】
又、数平均一次粒径が10nm以上、100nm未満の疎水性無機粒子を混在させることがより好ましい。疎水性無機粒子のより好ましい数平均粒径は10nm以上、90nm以下、最も好ましくは10nm以上、50nm未満である。表面層に含有される無機粒子の数平均一次粒子径が10nm未満でも、100nm以上でも、前記粘弾性特性が得られにくく、上記のような改善効果が得られにくい。
【0042】
本発明に用いられる10nm以上、100nm未満の無機粒子としては、シリカ、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズ、酸化ジルコニウム等の微粒子を好ましく用いることができが、これらの中でもコスト、粒径の調整や表面処理の容易さ等からシリカ、特に表面を疎水化した疎水性シリカが好ましい。
【0043】
本発明の無機粒子の数平均一次粒径は、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに300個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定値を算出する。
【0044】
上記疎水性シリカの疎水化度は、メタノールに対する濡れ性の尺度(メタノールウェッタビリティ)で示される疎水化度で50%以上のものが好ましい。疎水化度が50%未満であると、シリカ表面に多量に残在する水酸基がバインダー樹脂と結合し、クリープ率が小さくなり、且つ感光体表面に湿気を帯びやすく、残留電位が上昇したり、クリーニング不良も発生しやすくなる。より好ましい疎水化度は65%以上、最も好ましくは70%以上である。
【0045】
疎水化度を表すメタノールウェッタビリティとは、メタノールに対するシリカ微粉末の濡れ性を評価するものである。濡れ性の測定は以下の方法で行う。内容量250mlのビーカーに入れた蒸留水50mlに、測定対象のシリカ微粉末を0.2g添加して撹拌する。次にメタノールを先端が液体中に浸漬されているビュレットからゆっくり撹拌した状態でシリカ微粉末の全体が濡れるまでゆっくり滴下する。このシリカ微粉末を完全に濡らすために必要なメタノールの量をa(ml)とした時、下記式(1)により疎水化度を算出する。
【0046】
式(1)   疎水化度=a/(a+50)×100
上記疎水性シリカは、公知の湿式法もしくは乾式法で生成されたシリカ粉末をを疎水化することにより得られる。特に乾式法(ケイ素化ハロゲン化合物の蒸気相酸化)により生成されたいわゆるヒュームドシリカと称されるものを疎水化剤で処理したものが、水分吸着サイトが少なく好ましい。これは従来公知の技術によって製造されるものである。例えば四塩化ケイ素ガスの酸水素焔中における熱分解酸化反応を利用するもので、基礎となる反応式は次のようなものである。
【0047】
SiCl+2H+O→SiO+4HCl
又、この製造工程において例えば、塩化アルミニウム又は、塩化チタンなど他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによってシリカと他の金属酸化物の複合微粉体を得ることも可能である。
【0048】
シリカ粉末の疎水化処理は、シリカ微粉末を撹拌等によりクラウド状に分散させたものに、アルコール等で溶解した疎水化処理剤溶液を噴霧するか或いは気化した疎水化処理剤を接触させて付着させる乾式処理、又は、シリカ粉末を溶液中に分散させ、その中に疎水化処理剤を滴下して付着させる湿式処理等の従来公知の方法で行うことが出来る。
【0049】
疎水化処理剤としては、公知の化合物を用いることが出来、具体例を下記に挙げる。又、これらの化合物は組み合わせて使用しても良い。
【0050】
チタンカップリング剤としてはテトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート及びビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等が挙げられる。
【0051】
シランカップリング剤としてはγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−ビニルベンジルアミノエチル−N−γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン及びp−メチルフェニルトリメトキシシラン等が挙げられる。
【0052】
シリコーンオイルとしてはジメチルシリコーンオイル、メチルフェニルシリコーンオイル及びアミノ変性シリコーンオイル等が挙げられる。
【0053】
これらの疎水化処理剤は、シリカ粉末に対して1〜40質量%添加して被覆することが好ましく、3〜30質量%がより好ましい。
【0054】
又、上記表面疎水化剤としてハイドロジェンポリシロキサン化合物を用いてもよい。該ハイドロジェンポリシロキサン化合物の分子量は1000〜20000のものが一般に入手しやすく、又、黒ポチ発生防止機能も良好である。特にメチルハイドロジェンポリシロキサンを最後の表面処理に用いると良好な効果が得られる。
【0055】
本発明では上記疎水化処理された疎水性シリカを有機感光体の表面層にバインダーと共に含有させるが表面層のシリカ粒子の割合はバインダーに対して1〜20質量%、好ましくは2〜15質量%、最も好ましくは2〜10質量%で使用されるのがよい。20質量%を超えると、残留電位が上昇し、画像濃度が低下したり、トナーの転写性を低下させやすい。一方、1質量%未満だとクリーニング不良や、耐摩耗性の低下を起こしやすい。
【0056】
又、表面層となる電荷輸送層には、上記高弾性のポリカーボネートのバインダー樹脂と高分子量の電荷輸送物質が含有されるが、その他にも該電荷輸送層には酸化防止剤をバインダー樹脂に対して1〜10質量%存在させることが好ましい。
【0057】
以上のような構成を選択採用することにより、前記した膜物性の電荷輸送層を実現させることができ、このような電荷輸送層を表面層を有する有機感光体は残留トナークリーニング性を改善すると同時に、耐傷性、耐摩耗性を改善し、長期に亘り鮮鋭性が良好な電子写真画像を提供することができる。
【0058】
以下、表面層以外の本発明に適用される有機感光体の構成について記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
【0059】
本発明の電荷輸送層とは、光露光により電荷発生層で発生した電荷キャリアを有機感光体の表面に輸送する機能を有する層を意味し、該電荷輸送機能の具体的な検出は、電荷発生層と電荷輸送層を導電性支持体上に積層し、光導伝性を検知することにより確認することができる。
【0060】
本発明の有機感光体の層構成は、基本的には導電性支持体上に電荷発生層及び電荷輸送層の感光層から構成される。最も好ましい構成としては、感光層を電荷発生層と複数の電荷輸送層で構成し、最上層を電荷輸送物質を含有し、且つクリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満の特性を有する電荷輸送層の構成にすることである。
【0061】
以下に本発明に用いられる具体的な感光体の構成について記載する。
導電性支持体
本発明の感光体に用いられる導電性支持体としてはシート状或いは円筒状の導電性支持体が用いられる。
【0062】
本発明の円筒状の導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。
【0063】
導電性支持体の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗10Ωcm以下が好ましい。
【0064】
本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/l、アルミニウムイオン濃度は1〜10g/l、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。
【0065】
中間層
本発明においては導電性支持体と感光層の間に、バリヤー機能を備えた前記した中間層を設けることが好ましい。
【0066】
本発明の中間層には前記した吸水率が小さいバインダー樹脂中に酸化チタンを含有させることが好ましい。該酸化チタン粒子の平均粒径は、数平均一次粒径で10nm以上400nm以下の範囲が良く、15nm〜200nmが好ましい。
10nm未満では中間層によるモアレ発生の防止効果が小さい。一方、400nmより大きいと、中間層塗布液の酸化チタン粒子の沈降が発生しやすく、その結果中間層中の酸化チタン粒子の均一分散性が悪く、又黒ポチも増加しやすい。数平均一次粒径が前記範囲の酸化チタン粒子を用いた中間層塗布液は分散安定性が良好で、且つこのような塗布液から形成された中間層は黒ポチ発生防止機能の他、環境特性が良好で、且つ耐クラッキング性を有する。
【0067】
本発明に用いられる酸化チタン粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状の酸化チタン粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型で且つ粒状のものが最も良い。
【0068】
本発明の酸化チタン粒子は表面処理されていることが好ましく、表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物を用いた表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理を行い、最後に反応性有機ケイ素化合物を用いた表面処理を行うことが好ましい。
【0069】
尚、アルミナ処理、シリカ処理、ジルコニア処理とは酸化チタン粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。
【0070】
この様に、酸化チタン粒子の様な酸化チタン粒子の表面処理を少なくとも2回以上行うことにより、酸化チタン粒子表面が均一に表面被覆(処理)され、該表面処理された酸化チタン粒子を中間層に用いると、中間層内における酸化チタン粒子等の酸化チタン粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。
【0071】
上記反応性有機ケイ素化合物としては下記一般式(1)で表される化合物が挙げられるが、酸化チタン表面の水酸基等の反応性基と縮合反応をする化合物であれば、下記化合物に限定されない。
【0072】
一般式(1)
(R)−Si−(X)4−n
(式中、Siはケイ素原子、Rは該ケイ素原子に炭素が直接結合した形の有機基を表し、Xは加水分解性基を表し、nは0〜3の整数を表す。)
一般式(1)で表される有機ケイ素化合物において、Rで示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ−グリシドキシプロピル、β−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル、γ−メタアクリロキシプロピルの含(メタ)アクリロイル基、γ−ヒドロキシプロピル、2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ−メルカプトプロピル等の含メルカプト基、γ−アミノプロピル、N−β(アミノエチル)−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他ニトロ、シアノ置換アルキル基を挙げられる。また、Xの加水分解性基としてはメトキシ、エトキシ等のアルコキシ基、ハロゲン基、アシルオキシ基が挙げられる。
【0073】
また、一般式(1)で表される有機ケイ素化合物は、単独でも良いし、2種以上組み合わせて使用しても良い。
【0074】
また、一般式(1)で表される有機ケイ素化合物の具体的化合物で、nが2以上の場合、複数のRは同一でも異なっていても良い。同様に、nが2以下の場合、複数のXは同一でも異なっていても良い。又、一般式(1)で表される有機ケイ素化合物を2種以上を用いるとき、R及びXはそれぞれの化合物間で同一でも良く、異なっていても良い。
【0075】
又、表面処理に用いる好ましい反応性有機ケイ素化合物としてはポリシロキサン化合物が挙げられる。該ポリシロキサン化合物の分子量は1000〜20000のものが一般に入手しやすく、又、黒ポチ発生防止機能も良好である。
【0076】
特にメチルハイドロジェンポリシロキサンを最後の表面処理に用いると良好な効果が得られる。
【0077】
感光層
電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
【0078】
本発明の有機感光体には、電荷発生物質として、例えば、他のフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを単独で或いは併用して用いることができる。
【0079】
電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.1μm〜2μmが好ましい。
【0080】
電荷輸送層
本発明の電荷輸送層は複数の電荷輸送層で構成することが好ましい。最上層の電荷輸送層については前記したが、最上層以外の電荷輸送層は公知の電荷輸送層の構成を採用することもできる。
【0081】
電荷輸送層には電荷輸送物質(CTM)及びCTMを分散し製膜するバインダー樹脂を含有する。その他の物質としては必要により酸化防止剤等の添加剤を含有しても良い。
【0082】
電荷輸送物質(CTM)としては公知の電荷輸送物質(CTM)を用いることができる。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCTMは高移動度で、且つ組み合わされるCGMとのイオン化ポテンシャル差が0.5(eV)以下の特性を有するものであり、好ましくは0.30(eV)以下である。
【0083】
CGM、CTMのイオン化ポテンシャルは表面分析装置AC−1(理研計器社製)で測定される。
【0084】
電荷輸送層(CTL)に用いられるバインダー樹脂としては熱可塑性樹脂、熱硬化性樹脂いずれの樹脂かを問わない。例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。これらの中で吸水率が小さく、CTMの分散性、電子写真特性が良好なポリカーボネート樹脂が最も好ましい。
【0085】
バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し50〜200質量部が好ましい。
【0086】
又、電荷輸送層(1層以上、好ましくは2〜3層、最も好ましくは2層)の膜厚の合計は5〜15μmが好ましい。膜厚が5μm未満だと帯電電位が不十分になりやすく、15μmを超えると、鮮鋭性が劣化しやすい。
【0087】
中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。
【0088】
次に有機感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。
【0089】
又、本発明は前記有機感光体と以下に記すような均一な形状係数やシャープな粒度分布を有するトナーを併用した画像形成方法を採用することにより、階調性の高い且つ鮮鋭な電子写真画像を形成することが出来る。
【0090】
(1)形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有するトナー
形状係数が1.2より小さいとトナーの形状が真球に近くなり、トナーの感光体との接着強度が増大し、クリーニング不良が発生しやすい。一方、1.6より大きくなるとトナーが破砕され、微粉化されやすく、このこともクリーニング不良の原因となる。即ち、形状係数が1.2〜1.6の範囲にあるトナー粒子を65個数%以上、さらに好ましくは70個数%以上含有するトナーはクリーニング性が良好で、且つ微粉化されにくいトナーを多量に含んだトナーであり、本発明の感光体と併用することにより、長期に亘り、良好なクリーニング性と、良好な画像形成を可能にする。
【0091】
(2)角がないトナー粒子を50個数%以上含有するトナー
角がないトナー粒子とは、電荷の集中するような突部またはストレスにより破砕しやすいような突部を実質的に有しないトナー粒子を言い、角がないトナー粒子の割合が50個数%以上、更に好ましくは70個数%以上であることにより、現像剤搬送部材などとのストレスにより微細な粒子の発生などがおこりにくくなり、微細なトナーの発生によるクリーニング不良を防止でき、本発明の感光体と併用することにより、長期に亘り、良好なクリーニング性と、良好な画像形成を可能にする。そのためには角がないトナー粒子の割合が50個数%以上であることが好ましく、更に、好ましくは70個数%以上である
(3)トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m)との和(M)が70%以上含有するトナー
相対度数(m)と、相対度数(m)の和(M)が70%以上のトナーであることにより、該トナーを構成するトナー粒子の粒度分布がシャープとなり、安定したトナー画像の形成が可能となり、その結果、本発明の感光体と併用することにより、長期に亘り、良好なクリーニング性と、良好な画像形成を可能にする。
【0092】
(4)トナー粒子の個数粒度分布における個数変動係数が27%以下且つトナー粒子の形状係数の変動係数が16%以下であるトナー
トナーの形状係数の変動係数が16%以下であり、且つトナーの個数粒度分布における個数変動係数が27%以下であるトナーを使用することにより、クリーニング性、細線再現性に優れ、高品位な画質を長期にわたって形成することができる。
【0093】
トナーの個数変動係数は27%以下であるが、好ましくは25%以下である。
トナー粒子の形状係数の変動係数が16%以下、より好ましくは14%以下である。このことにより、トナーを構成するトナー粒子の形状分布がシャープとなり、安定したトナー画像の形成が可能となり、その結果、本発明の感光体と併用することにより、長期に亘り、良好なクリーニング性と、良好な画像形成を可能にする。
【0094】
又、トナーは形状係数が1.2〜1.6の範囲にあるトナー粒子が65個数%以上であり、形状係数の変動係数が16%以下であるトナーを使用することが好ましい。このようなトナーは感光体との付着力が小さく、クリーニング性が良好である。
【0095】
また、角がないトナー粒子を50個数%以上とし、個数粒度分布における個数変動係数を27%以下に制御することによっても、クリーニング性、細線再現性に優れ、高品位な画質を長期にわたって形成することができる。
【0096】
トナーの粒径は、個数平均一次粒径で3〜8μmのものが好ましい。この粒径は、重合法によりトナー粒子を形成させる場合には、凝集剤の濃度や有機溶媒の添加量、または融着時間、さらには重合体自体の組成によって制御することができる。
【0097】
個数平均粒径が3〜8μmであることにより、定着工程において、現像剤搬送部材に対する付着性の過度なトナーや付着力の低いトナー等の存在を少なくすることができ、現像性を長期に亘って安定化することができるとともに、転写効率が高くなってハーフトーンの画質が向上し、細線やドット等の画質が向上する。
【0098】
トナーの形状係数は、下記式により示されるものであり、トナー粒子の丸さの度合いを示す。
【0099】
形状係数=((最大径/2)×π)/投影面積
ここに、最大径とは、トナー粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅をいう。また、投影面積とは、トナー粒子の平面上への投影像の面積をいう。
【0100】
この形状係数は、走査型電子顕微鏡により2000倍にトナー粒子を拡大した写真を撮影し、ついでこの写真に基づいて「SCANNING IMAGE ANALYZER」(日本電子社製)を使用して写真画像の解析を行うことにより測定した。この際、100個のトナー粒子を使用して本発明の形状係数を上記算出式にて測定したものである。
【0101】
本発明のトナーは、この形状係数が1.2〜1.6の範囲にあるトナー粒子が65個数%以上、好ましくは70個数%以上である。
【0102】
この形状係数を制御する方法は特に限定されるものではない。例えばトナー粒子を熱気流中に噴霧する方法、またはトナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、あるいはトナーを溶解しない溶媒中に添加し旋回流を付与する方法等があるが、本発明では重合法により作製した重合トナーを用いて形状係数等を本発明の範囲内に作製することが好ましい。
【0103】
トナーの形状係数の変動係数は下記式から算出される。
変動係数=〔S/K〕×100(%)
〔式中、Sは100個のトナー粒子の形状係数の標準偏差を示し、Kは形状係数の平均値を示す。〕
この形状係数の変動係数は16%以下が好ましく、更に好ましくは14%以下である。形状係数の変動係数が16%以下であることにより、転写されたトナー層の空隙が減少して定着性が向上し、オフセットが発生しにくくなる。また、帯電量分布がシャープとなり、画質が向上する。
【0104】
このトナーの形状係数および形状係数の変動係数を、極めてロットのバラツキなく均一に制御するために、重合トナーの製造過程、即ち樹脂粒子(重合体粒子)を重合、融着、形状制御させる工程において、形成されつつあるトナー粒子(着色粒子)の特性をモニタリングしながら適正な工程終了時期を決めてもよい。
【0105】
モニタリングするとは、インラインに測定装置を組み込みその測定結果に基づいて、工程条件の制御をするという意味である。すなわち、形状などの測定をインラインに組み込んで、例えば樹脂粒子を水系媒体中で会合あるいは融着させることで形成する重合法トナーでは、融着などの工程で逐次サンプリングを実施しながら形状や粒径を測定し、所望の形状になった時点で反応を停止する。
【0106】
モニタリング方法としては、特に限定されるものではないが、フロー式粒子像分析装置FPIA−2000(東亜医用電子社製)を使用することができる。本装置は試料液を通過させつつリアルタイムで画像処理を行うことで形状をモニタリングできるため好適である。すなわち、反応場よりポンプなどを使用し、常時モニターし、形状などを測定することを行い、所望の形状などになった時点で反応を停止するものである。
【0107】
トナーの個数粒度分布および個数変動係数はコールターカウンターTA−IIあるいはコールターマルチサイザー(コールター社製)で測定されるものである。
本発明においてはコールターマルチサイザーを用い、粒度分布を出力するインターフェース(日科機製)、パーソナルコンピューターを接続して使用した。前記コールターマルチサイザーにおいて使用するアパーチャーとしては100μmのものを用いて、2μm以上のトナーの体積、個数を測定して粒度分布および平均粒径を算出した。個数粒度分布とは、粒子径に対するトナー粒子の相対度数を表すものであり、個数平均粒径とは、個数粒度分布におけるメジアン径を表すものである。
【0108】
トナーの個数粒度分布における個数変動係数は下記式から算出される。
個数変動係数=〔S/Dn〕×100(%)
〔式中、Sは個数粒度分布における標準偏差を示し、Dnは個数平均粒径(μm)を示す。〕
個数変動係数を制御する方法は特に限定されるものではない。例えば、トナー粒子を風力により分級する方法も使用できるが、個数変動係数をより小さくするためには液中での分級が効果的である。この液中で分級する方法としては、遠心分離機を用い、回転数を制御してトナー粒子径の違いにより生じる沈降速度差に応じてトナー粒子を分別回収し調製する方法がある。
【0109】
特に懸濁重合法によりトナーを製造する場合、個数粒度分布における個数変動係数を27%以下とするためには分級操作が必須である。懸濁重合法では、重合前に重合性単量体を水系媒体中にトナーとしての所望の大きさの油滴に分散させることが必要である。すなわち、重合性単量体の大きな油滴に対して、ホモミキサーやホモジナイザーなどによる機械的な剪断を繰り返して、トナー粒子程度の大きさまで油滴を小さくすることとなるが、このような機械的な剪断による方法では、得られる油滴の個数粒度分布は広いものとなり、従って、これを重合してなるトナーの粒度分布も広いものとなる。このために分級操作が必須となる。
【0110】
角がないトナー粒子とは、電荷の集中するような突部またはストレスにより摩耗しやすいような突部を実質的に有しないトナー粒子を言い、すなわち、図5(a)に示すように、トナー粒子Tの長径をLとするときに、半径(L/10)の円Cで、トナー粒子Tの周囲線に対し1点で内側に接しつつ内側をころがした場合に、当該円CがトナーTの外側に実質的にはみださない場合を「角がないトナー粒子」という。「実質的にはみ出さない場合」とは、はみ出す円が存在する突起が1箇所以下である場合をいう。また、「トナー粒子の長径」とは、当該トナー粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最大となる粒子の幅をいう。なお、図5(b)および(c)は、それぞれ角のあるトナー粒子の投影像を示している。
【0111】
角がないトナーの測定は次のようにして行った。先ず、走査型電子顕微鏡によりトナー粒子を拡大した写真を撮影し、さらに拡大して15,000倍の写真像を得る。次いでこの写真像について前記の角の有無を測定する。この測定を100個のトナー粒子について行った。
【0112】
角がないトナーを得る方法は特に限定されるものではない。例えば、形状係数を制御する方法として前述したように、トナー粒子を熱気流中に噴霧する方法、またはトナー粒子を気相中において衝撃力による機械的エネルギーを繰り返して付与する方法、あるいはトナーを溶解しない溶媒中に添加し、旋回流を付与することによって得ることができる。しかしながら、製造コストやエネルギーコストを考慮すると、重合法による重合トナーが好ましい。
【0113】
例えば、樹脂粒子を会合あるいは融着させることで形成する重合法トナーにおいては、融着停止段階では融着粒子表面には多くの凹凸があり、表面は平滑でないが、形状制御工程での温度、攪拌翼の回転数および攪拌時間等の条件を適当なものとすることによって、角がないトナーが得られる。これらの条件は、樹脂粒子の物性により変わるものであるが、例えば、樹脂粒子のガラス転移点温度以上で、より高回転数とすることにより、表面は滑らかとなり、角がないトナーが形成できる。
【0114】
本発明のトナーの粒径は、個数平均粒径で3〜8μmのものが好ましい。この粒径は、重合法によりトナー粒子を形成させる場合には、凝集剤の濃度や有機溶媒の添加量、または融着時間、さらには重合体自体の組成によって制御することができる。
【0115】
本発明に好ましく用いられる重合トナーとしては、トナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおいて、最頻階級に含まれるトナー粒子の相対度数(m)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m)との和(M)が70%以上であるトナーであることが好ましい。
【0116】
相対度数(m)と相対度数(m)との和(M)が70%以上であることにより、トナー粒子の粒度分布の分散が狭くなるので、当該トナーを画像形成工程に用いることにより選択現像の発生を確実に抑制することができる。
【0117】
本発明において、前記の個数基準の粒度分布を示すヒストグラムは、自然対数lnD(D:個々のトナー粒子の粒径)を0.23間隔で複数の階級(0〜0.23:0.23〜0.46:0.46〜0.69:0.69〜0.92:0.92〜1.15:1.15〜1.38:1.38〜1.61:1.61〜1.84:1.84〜2.07:2.07〜2.30:2.30〜2.53:2.53〜2.76・・・)に分けた個数基準の粒度分布を示すヒストグラムであり、このヒストグラムは、下記の条件に従って、コールターマルチサイザーにより測定されたサンプルの粒径データを、I/Oユニットを介してコンピュータに転送し、当該コンピュータにおいて、粒度分布分析プログラムにより作製されたものである。
【0118】
〔測定条件〕
(1)アパーチャー:100μm
(2)サンプル調製法:電解液〔ISOTON R−11(コールターサイエンティフィックジャパン社製)〕50〜100mlに界面活性剤(中性洗剤)を適量加えて攪拌し、これに測定試料10〜20mgを加える。この系を超音波分散機にて1分間分散処理することにより調製する。
【0119】
形状係数を制御する方法の中では重合法トナーが製造方法として簡便である点と、粉砕トナーに比較して表面の均一性に優れる点等で好ましい。
【0120】
重合トナーは、懸濁重合法や、必要な添加剤の乳化液を加えた液中にて単量体を乳化重合し、微粒の重合粒子を製造し、その後に、有機溶媒、凝集剤等を添加して会合する方法で製造することができる。会合の際にトナーの構成に必要な離型剤や着色剤などの分散液と混合して会合させて調製する方法や、単量体中に離型剤や着色剤などのトナー構成成分を分散した上で乳化重合する方法などがあげられる。ここで会合とは樹脂粒子および着色剤粒子が複数個融着することを示す。
【0121】
即ち、重合性単量体中に着色剤や必要に応じて離型剤、荷電制御剤、さらに重合開始剤等の各種構成材料を添加し、ホモジナイザー、サンドミル、サンドグラインダー、超音波分散機などで重合性単量体に各種構成材料を溶解あるいは分散させる。この各種構成材料が溶解あるいは分散された重合性単量体を分散安定剤を含有した水系媒体中にホモミキサーやホモジナイザーなどを使用しトナーとしての所望の大きさの油滴に分散させる。その後、攪拌機構が後述の攪拌翼である反応装置へ移し、加熱することで重合反応を進行させる。反応終了後、分散安定剤を除去し、濾過、洗浄し、さらに乾燥することでトナーを調製する。
【0122】
また、本発明のトナーを製造する方法として樹脂粒子を水系媒体中で会合あるいは融着させて調製する方法も挙げることができる。この方法としては、特に限定されるものではないが、例えば、特開平5−265252号公報や特開平6−329947号公報、特開平9−15904号公報に示す方法を挙げることができる。すなわち、樹脂粒子と着色剤などの構成材料の分散粒子、あるいは樹脂および着色剤等より構成される微粒子を複数以上会合させる方法、特に水中にてこれらを乳化剤を用いて分散した後に、臨界凝集濃度以上の凝集剤を加え塩析させると同時に、形成された重合体自体のガラス転移点温度以上で加熱融着させて融着粒子を形成しつつ徐々に粒径を成長させ、目的の粒径となったところで水を多量に加えて粒径成長を停止し、さらに加熱、攪拌しながら粒子表面を平滑にして形状を制御し、その粒子を含水状態のまま流動状態で加熱乾燥することにより、トナーを形成することができる。なお、ここにおいて凝集剤と同時に水に対して無限溶解する有機溶媒を加えてもよい。
【0123】
なお、本発明で用いられる形状係数等の均一なトナーを作製するための材料や製造方法、重合トナーの反応装置等については特開2000−214629に詳細に記載されている。
《現像剤》
本発明に用いられるトナーは、一成分現像剤でも二成分現像剤でもよいが、好ましくは二成分現像剤である。
【0124】
一成分現像剤として用いる場合は、非磁性一成分現像剤として前記トナーをそのまま用いる方法もあるが、通常はトナー粒子中に0.1〜5μm程度の磁性粒子を含有させ磁性一成分現像剤として用いる。その含有方法としては、着色剤と同様にして非球形粒子中に含有させるのが普通である。
【0125】
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁性粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いる。
特にフェライト粒子が好ましい。上記磁性粒子は、その体積平均粒径としては15〜100μm、より好ましくは25〜60μmのものがよい。
【0126】
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザ回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
【0127】
キャリアは、磁性粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁性粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン/アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレンアクリル樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
【0128】
次に、本発明の有機感光体を用いた画像形成装置について説明する。
図1に示す画像形成装置1は、デジタル方式による画像形成装置であって、画像読取り部A、画像処理部B、画像形成部C、転写紙搬送手段としての転写紙搬送部Dから構成されている。
【0129】
画像読取り部Aの上部には原稿を自動搬送する自動原稿送り手段が設けられていて、原稿載置台11上に載置された原稿は原稿搬送ローラ12によって1枚宛分離搬送され読み取り位置13aにて画像の読み取りが行われる。原稿読み取りが終了した原稿は原稿搬送ローラ12によって原稿排紙皿14上に排出される。
【0130】
一方、プラテンガラス13上に置かれた場合の原稿の画像は走査光学系を構成する照明ランプ及び第1ミラーから成る第1ミラーユニット15の速度vによる読み取り動作と、V字状に位置した第2ミラー及び第3ミラーから成る第2ミラーユニット16の同方向への速度v/2による移動によって読み取られる。
【0131】
読み取られた画像は、投影レンズ17を通してラインセンサである撮像素子CCDの受光面に結像される。撮像素子CCD上に結像されたライン状の光学像は順次電気信号(輝度信号)に光電変換されたのちA/D変換を行い、画像処理部Bにおいて濃度変換、フィルタ処理などの処理が施された後、画像データは一旦メモリに記憶される。
【0132】
画像形成部Cでは、画像形成ユニットとして、像担持体であるドラム状の感光体21と、その外周に、該感光体21を帯電させる帯電手段(帯電工程でもある)22、帯電した感光体の表面電位を検出する電位検出手段220、現像手段(現像工程でもある)23、転写手段(転写工程でもある)である転写搬送ベルト装置45、前記感光体21のクリーニングブレードを有するクリーニング手段(クリーニング工程でもある)26及び光除電手段としてのPCL(プレチャージランプ)27が各々動作順に配置されている。また、現像手段23の下流側には感光体21上に現像されたパッチ像の反射濃度を測定する反射濃度検出手段222が設けられている。感光体21には、本発明の有機感光体を使用し、図示の時計方向に駆動回転される。
【0133】
回転する感光体21へは帯電手段22による一様帯電がなされた後、像露光手段(像露光工程でもある)としての露光光学系30により画像処理部Bのメモリから呼び出された画像信号に基づいた像露光が行われる。書き込み手段である像露光手段としての露光光学系30は図示しないレーザダイオードを発光光源とし、回転するポリゴンミラー31、fθレンズ34、シリンドリカルレンズ35を経て反射ミラー32により光路が曲げられ主走査がなされるもので、感光体21に対してAoの位置において像露光が行われ、感光体21の回転(副走査)によって静電潜像が形成される。本実施の形態の一例では文字部に対して露光を行い静電潜像を形成する。
【0134】
本発明の画像形成方法においては、感光体上に静電潜像を形成するに際し、像露光をスポット面積が2×10−9以下の露光ビームを用いて行うことが好ましい。このような小径のビーム露光を行っても、本発明の有機感光体は、該スポット面積に対応した画像を忠実に形成することができる。より好ましいスポット面積は、0.01×10−9〜1×10−9である。その結果400dpi(dpiとは2.54cm当たりのドット数)以上で、256階調を実現するところのきわめて優れた画像品質を達成することができる。
【0135】
前記ビーム光のスポット面積とは該ビーム光の強度がピーク強度の1/e以上の光強度に対応する面積で表される。
【0136】
用いられる光ビームとしては半導体レーザを用いた走査光学系、及びLEDや液晶シャッター等の固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/eまでの部分をスポット面積とする。
【0137】
感光体21上の静電潜像は現像手段23によって反転現像が行われ、感光体21の表面に可視像のトナー像が形成される。本発明の画像形成方法では、該現像手段に用いられる現像剤には重合トナーを用いることを特徴とする。形状や粒度分布が均一な重合トナーを本発明の有機感光体と併用することにより、より鮮鋭性が良好な電子写真画像を得ることができる。
【0138】
ここで、重合トナーとは、トナー用バインダーの樹脂の生成とトナー形状がバインダー樹脂の原料モノマーの重合、及びその後の化学的処理により形成されるて得られるトナーを意味する。より具体的には懸濁重合、乳化重合等の重合反応と必要により、その後に行われる粒子同士の融着工程を経て得られるトナーを意味する。
【0139】
転写紙搬送部Dでは、画像形成ユニットの下方に異なるサイズの転写紙Pが収納された転写紙収納手段としての給紙ユニット41(A)、41(B)、41(C)が設けられ、また側方には手差し給紙を行う手差し給紙ユニット42が設けられていて、それらの何れかから選択された転写紙Pは案内ローラ43によって搬送路40に沿って給紙され、給紙される転写紙Pの傾きと偏りの修正を行うレジストローラ対44によって転写紙Pは一時停止を行ったのち再給紙が行われ、搬送路40、転写前ローラ43a、給紙経路46及び進入ガイド板47に案内され、感光体21上のトナー画像が転写位置Boにおいて転写極24及び分離極25によって転写搬送ベルト装置45の転写搬送ベルト454に載置搬送されながら転写紙Pに転写され、該転写紙Pは感光体21面より分離し、転写搬送ベルト装置45により定着手段50に搬送される。
【0140】
定着手段(定着工程でもある)50は定着ローラ51と加圧ローラ52とを有しており、転写紙Pを定着ローラ51と加圧ローラ52との間を通過させることにより、加熱、加圧によってトナーを定着させる。トナー画像の定着を終えた転写紙Pは排紙トレイ64上に排出される。
【0141】
以上は転写紙の片側への画像形成を行う状態を説明したものであるが、両面複写の場合は排紙切換部材170が切り替わり、転写紙案内部177が開放され、転写紙Pは破線矢印の方向に搬送される。
【0142】
更に、搬送機構178により転写紙Pは下方に搬送され、転写紙反転部179によりスイッチバックさせられ、転写紙Pの後端部は先端部となって両面複写用給紙ユニット130内に搬送される。
【0143】
転写紙Pは両面複写用給紙ユニット130に設けられた搬送ガイド131を給紙方向に移動し、給紙ローラ132で転写紙Pを再給紙し、転写紙Pを搬送路40に案内する。
【0144】
再び、上述したように感光体21方向に転写紙Pを搬送し、転写紙Pの裏面にトナー画像を転写し、定着手段50で定着した後、排紙トレイ64に排紙する。
【0145】
図2は分離爪ユニットの平面図、その側面図である図3、更には図4の分離爪の側面図に示すように、有機感光体上への分離爪252の当接荷重を切り換えることで、コピー初期の爪傷を低減し、黒スジ発生を防止するようにした。
【0146】
しかし、爪傷低減のために分離爪252の当接荷重を低くしすぎると転写紙Pを有機感光体21から分離できなくなってJAMが発生するので、当接荷重は好適な範囲に設定する必要がある。
【0147】
次に、分離爪252の有機感光体21に対する当接荷重を適切に切り換える当接荷重切換手段260について説明する。
【0148】
当接荷重切換手段260は分離爪252と、それを付勢するトルクバネ255と、分離爪252を有機感光体21に当接してその当接荷重を調節したり解除したりする当接解除板261と、それを取り付けたシャフト262に直結したロータリ式の直流ソレノイド265から構成されている。
【0149】
そして、分離爪252はその回動軸253を軸受254に枢支されてトルクバネ255で付勢されており、ロータリ式の直流ソレノイド265の通電が切られ、該直流ソレノイド265に直結して軸受264に回転可能に枢支されているシャフト262がバネ力によって戻されて回動すると、該シャフト262に取り付けられた当接解除板261が下がって分離爪252が有機感光体21の表面に当接し、シャフト262が通電されて元の位置に戻ると当接解除板261が上がって分離爪252の当接を離し当接は解除される。
【0150】
また、直流ソレノイド265に印加する電圧を切り換えて当接解除板261と分離爪252との間の接触圧を変更することで、分離爪252と有機感光体21との間の当接荷重を減殺して切り換えることができる。
【0151】
前述のように、当接荷重切換手段260における分離爪252の有機感光体21への当接荷重の切り換え動作は、直流ソレノイド265に印加する電圧を切り換えて行われる。即ち、直流ソレノイド265の印加電圧値により、当接解除板261が分離爪252に当てる位置で該分離爪252に掛ける接触圧が、トルクバネ255による分離爪252の付勢力を減殺させ、有機感光体21に対する分離爪252の当接荷重を適正な所定値に調節して切り換え可能になる。
【0152】
尚、前記分離爪252と前記有機感光体21の表面との間の当接荷重は、0.98〜7.84mNの範囲の中から選定されて適正な調節値に設定されるのが好ましい。
【0153】
一方、固定基板271に取り付けられたステッピングモータ272が同じく前記固定基板271に取り付けられた歯車273,274,275,276を介して分離爪ユニット250の基板251に取り付けられたラック歯車267に噛み合い、基板251は固定基板271のガイド271Aに沿って左右5mm程度の範囲内で任意の設定位置に移動して停止できるようにしてある。このようにして分離爪252と有機感光体21との当接位置は幅方向に変えられるようにし、長期間幅方向が同じ状態で当接することを避けることが好ましい。
【0154】
本発明の有機感光体は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
【0155】
【実施例】
以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、下記文中「部」とは「質量部」を表す。
【0156】
感光体1の作製
下記の様に感光体1を作製した。
【0157】
直径100mmφ、長さ346mmの円筒形アルミニウム支持体の表面を切削加工し、表面粗さRz=1.5(μm)の導電性支持体を用意した。
〈中間層〉
下記組成の分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュ5μmフィルター)し、中間層塗布液を作製した。
【0158】
ポリアミド樹脂CM8000(東レ社製)             1部
酸化チタンSMT500SAS(テイカ社製)           3部
メタノール                          10部
分散機としてサンドミルを用いて、バッチ式で10時間の分散を行った。
【0159】
上記塗布液を用いて前記支持体上に、乾燥膜厚2μmとなるよう塗布した。
〈電荷発生層〉
Figure 2004077870
を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。
この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥膜厚0.3μmの電荷発生層を形成した。
【0160】
〈第一電荷輸送層〉
Figure 2004077870
を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で乾燥膜厚6μmの第一電荷輸送層を形成した。
【0161】
〈第二電荷輸送層〉
電荷輸送物質(T−1)                   225部
バインダー:ポリカーボネート(PC−1)          300部
疎水性シリカ(表1記載の疎水性シリカ:平均粒径12nm)   40部
酸化防止剤(LS2626:三共社製)              6部
1,3−ジオキソラン                   2000部
シリコンオイル(KF−54:信越化学社製)           1部
を混合し、超音波を照射できる循環分散装置にて循環分散を行い、表面層塗布液を調製した。この塗布液を前記第一電荷輸送層の上に円型量規制型塗布法により乾燥膜厚4μmになるように第二電荷輸送層を塗布し、110℃で70分間の乾燥を行い、感光体1を作製した。
【0162】
感光体2〜14の作製
感光体1の作製において、電荷発生物質及び第二電荷輸送層のバインダー、電荷輸送物質及び疎水性シリカを表1のように変化させ、電荷輸送層の合計膜厚を第一電荷輸送層の膜厚を変えて変化させた以外は感光体1と同様にして感光体2〜14を作製した(但し、感光体11では第一電荷輸送層は塗布せず)。
【0163】
【表1】
Figure 2004077870
【0164】
表中、G1は少なくとも7.4°、16.6°、25.5°、28.3°の位置に回折ピークを有するクロルガリウムフタロシアニン顔料
G2は少なくとも7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.1°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン顔料
Aは最大回折ピークが26.3°、且つ9.3°、10.6°、13.2°、15.1°及び20.8°に強い回折ピークを有するチタニルフタロシアニン顔料
Bは7.5°、10.3°、12.3°、16.3°、18.4°、22.6°、24.5°、25.3°及び28.7°に強い回折ピークを有するチタニルフタロシアニン顔料
又、PC−4は下記構造のポリカーボネート、T−4は下記の電荷輸送物質を示す(Mwは分子量)。
【0165】
【化3】
Figure 2004077870
【0166】
本発明に用いるトナー及び該トナーを用いた現像剤を作製した。
(トナー製造例1:乳化重合会合法の例)
n−ドデシル硫酸ナトリウム0.90kgと純水10.0リットルを入れ攪拌溶解した。この溶液に、リーガル330R(キャボット社製カーボンブラック)1.20kgを徐々に加え、1時間よく攪拌した後に、サンドグラインダー(媒体型分散機)を用いて、20時間連続分散した。このものを「着色剤分散液1」とする。
【0167】
また、ドデシルベンゼンスルホン酸ナトリウム0.055kgとイオン交換水4.0リットルとからなる溶液を「アニオン界面活性剤溶液A」とする。
【0168】
ノニルフェノールポリエチレンオキサイド10モル付加物0.014kgとイオン交換水4.0リットルとからなる溶液を「ノニオン界面活性剤溶液B」とする。
【0169】
過硫酸カリウム223.8gをイオン交換水12.0リットルに溶解した溶液を「開始剤溶液C」とする。
【0170】
温度センサー、冷却管、窒素導入装置を付けた容積100リットルのGL(グラスライニング)反応釜に、WAXエマルジョン(数平均分子量3000のポリプロピレンエマルジョン:数平均一次粒子径=120nm/固形分濃度=29.9%)3.41kgと「アニオン界面活性剤溶液A」全量と「ノニオン界面活性剤溶液B」全量とを入れ、攪拌を開始した。次いで、イオン交換水44.0リットルを加えた。
【0171】
加熱を開始し、液温度が75℃になったところで、「開始剤溶液C」全量を滴下して加えた。その後、液温度を75℃±1℃に制御しながら、スチレン12.1kgとアクリル酸n−ブチル2.88kgとメタクリル酸1.04kgとt−ドデシルメルカプタン548gとを滴下しながら投入した。滴下終了後、液温度を80℃±1℃に上げて、6時間加熱攪拌を行った。ついで、液温度を40℃以下に冷却し攪拌を停止し、ポールフィルターで濾過してラテックスを得た。これを「ラテックス−A」とする。
【0172】
なお、ラテックス−A中の樹脂粒子のガラス転移温度は57℃、軟化点は121℃、分子量分布は、重量平均分子量=1.27万、重量平均粒径は120nmであった。
【0173】
ドデシルベンゼンスルホン酸ナトリウム0.055kgをイオン交換純水4.0リットルに溶解した溶液を「アニオン界面活性剤溶液D」とする。
【0174】
また、ノニルフェノールポリエチレンオキサイド10モル付加物0.014kgをイオン交換水4.0リットルに溶解した溶液を「ノニオン界面活性剤溶液E」とする。
【0175】
過硫酸カリウム(関東化学社製)200.7gをイオン交換水12.0リットルに溶解した溶液を「開始剤溶液F」とする。
【0176】
温度センサー、冷却管、窒素導入装置、櫛形バッフルを付けた100リットルのGL反応釜に、WAXエマルジョン(数平均分子量3000のポリプロピレンエマルジョン:数平均一次粒子径=120nm/固形分濃度 29.9%)3.41kgと「アニオン界面活性剤溶液D」全量と「ノニオン界面活性剤溶液E」全量とを入れ、攪拌を開始した。
【0177】
次いで、イオン交換水44.0リットルを投入した。加熱を開始し、液温度が70℃になったところで、「開始剤溶液F」を添加した。ついで、スチレン11.0kgとアクリル酸n−ブチル4.00kgとメタクリル酸1.04kgとt−ドデシルメルカプタン9.02gとをあらかじめ混合した溶液を滴下した。滴下終了後、液温度を72℃±2℃に制御して、6時間加熱攪拌を行った。さらに、液温度を80℃±2℃に上げて、12時間加熱攪拌を行った。液温度を40℃以下に冷却し攪拌を停止した。ポールフィルターで濾過し、この濾液を「ラテックス−B」とする。
【0178】
なお、ラテックス−B中の樹脂粒子のガラス転移温度は58℃、軟化点は132℃、分子量分布は、重量平均分子量=24.5万、重量平均粒径は110nmであった。
【0179】
塩析剤としての塩化ナトリウム5.36kgをイオン交換水20.0リットルに溶解した溶液を「塩化ナトリウム溶液G」とする。
【0180】
フッ素系ノニオン界面活性剤1.00gをイオン交換水1.00リットルに溶解した溶液を「ノニオン界面活性剤溶液H」とする。
【0181】
温度センサー、冷却管、窒素導入装置、粒径および形状のモニタリング装置を付けた100リットルのSUS反応釜に、上記で作製したラテックス−A=20.0kgとラテックス−B=5.2kgと着色剤分散液1=0.4kgとイオン交換水20.0kgとを入れ攪拌した。ついで、40℃に加温し、塩化ナトリウム溶液G、イソプロパノール(関東化学社製)6.00kg、ノニオン界面活性剤溶液Hをこの順に添加した。その後、10分間放置した後に、昇温を開始し、液温度85℃まで60分で昇温し、85±2℃にて0.5〜3時間加熱攪拌して塩析/融着させながら粒径成長させた。次に純水2.1リットルを添加して粒径成長を停止させ、融着粒子分散液を作製した。
【0182】
温度センサー、冷却管、粒径および形状のモニタリング装置を付けた5リットルの反応容器に、上記で作製した融着粒子分散液5.0kgを入れ、液温度85℃±2℃にて、0.5〜15時間加熱攪拌して形状制御した。その後、40℃以下に冷却し攪拌を停止した。次に遠心分離機を用いて、遠心沈降法により液中にて分級を行い、目開き45μmの篩いで濾過し、この濾液を会合液とする。ついで、ヌッチェを用いて、会合液よりウェットケーキ状の非球形状粒子を濾取した。その後、イオン交換水により洗浄した。この非球形状粒子をフラッシュジェットドライヤーを用いて吸気温度60℃にて乾燥させ、ついで流動層乾燥機を用いて60℃の温度で乾燥させた。得られた着色粒子の100質量部に、シリカ微粒子1質量部をヘンシェルミキサーにて外添混合して乳化重合会合法によるトナーを得た。
【0183】
前記塩析/融着段階および形状制御工程のモニタリングにおいて、攪拌回転数、および加熱時間を制御することにより、形状および形状係数の変動係数を制御し、さらに液中分級により、粒径および粒度分布の変動係数を任意に調整して、表2に示す形状特性および粒度分布特性を有するトナー粒子からなるトナー1〜16を得た。
【0184】
【表2】
Figure 2004077870
【0185】
〔現像剤の製造〕
トナー1〜16の各々10質量部と、スチレン−メタクリレート共重合体で被覆した45μmフェライトキャリア100質量部とを混合することにより、評価用の現像剤1〜16を製造した。
【0186】
評価1(感光体の評価)
1.画像評価
評価機としてコニカ社製デジタル複写機Konica7075(コロナ帯電、レーザ露光、反転現像、静電転写、爪分離、ブレードクリーニング、クリーニング補助ブラシローラー採用プロセスを有する)をベースとした評価機を用い、該複写機に感光体1〜14及び現像剤1を搭載し評価した。クリーニング性及び画像評価は、画素率が7%の文字画像、人物顔写真、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にあるオリジナル画像をA4中性紙に複写して行った。複写条件は最も厳しいと思われる高温高湿環境(30℃、80%RH)にて連続20万コピーを行いハーフトーン、ベタ白画像、ベタ黒画像を評価した。
【0187】
評価項目及び評価基準
画像濃度(マクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した)
◎:1.2以上:良好
○:0.8以上:実用上問題ないレベル
×:0.8未満:実用上問題となるレベル
解像度(各20万枚コピー終了後に文字画像で解像度を評価)
◎:4ポイント以下の文字が明瞭であり、容易に判読可能
○:6ポイント以下の文字が明瞭であり、容易に判読可能
△:8ポイント以下の文字が明瞭であり、容易に判読可能
×:8ポイントの文字の一部又は全部が判読不能
トナーの転写性(20万枚コピー終了後、感光体上に60mg/cmの画像を形成し、転写紙に転写された単位面積当たりの付着量(fmg/cm)を測定し、以下の計算により転写率を算定した。)
トナーの転写率=(f/60)×100
◎:トナーの転写率85%以上:良好
○:トナーの転写率65〜84%以上:実用上問題ないレベル
×:トナーの転写率64%以下:実用上問題となるレベル
クリーニング性(10万及び20万コピー終了後にA3紙に連続10枚複写を行い、ベタ白部でのクリーニング不良の発生の有無で判定)
◎:20万枚ですり抜け発生なし
○:10万枚まですり抜け発生なし
×:10万枚未満ですり抜け発生
耐傷性(20万枚のコピー画像を全数検査し、分離爪による画像傷の発生の有無の確認、及び感光体表面の分離爪による傷の発生の有無をコピー1万枚毎に検査した。)
◎:感光体表面にもコピー画像にも分離爪による傷の発生なし
○:感光体表面には弱い傷発生があるが、コピー画像には分離爪による傷の発生なし
×:感光体表面にははっきりした傷発生があり、コピー画像にも分離爪による傷の発生あり
その他評価条件
尚、上記konica7075をベースとした評価機の評価条件は下記の条件に設定した。
【0188】
帯電条件
帯電器;スコロトロン帯電器、初期帯電電位を−500V
露光条件
露光部電位を−50Vにする露光量に設定。
【0189】
露光ビーム:ドット密度400dpiの像露光を行った。レーザビームスポット面積:0.8×10−9
現像条件
DCバイアス;−400V
現像剤は、前記現像剤1を用いた。
【0190】
転写条件
転写極;コロナ帯電方式
分離条件
図2〜図4で説明した分離爪ユニットの分離手段を用いた。
【0191】
分離爪の材質:ベースの材質がポリアミドイミド(PAI)であり、それにポリテトラフルオロエチレン(PTFE)をコートしたもの
感光体への当接荷重:5.6mN
クリーニング条件
クリーニング部に硬度70°、反発弾性65%、厚さ2(mm)、自由長9mmのクリーニングブレードをカウンター方向に線圧18(g/cm)となるように重り荷重方式で当接した。
【0192】
2.クリープ率の測定
使用機器:フィッシャースコープH100V(微小硬さ測定装置)(株)フィッシャー・インストルメンツ社製
使用圧子:ダイアモンド ビッカース圧子
負荷条件:4mN/secの速度で有機感光体の表面からビッカース圧子を押し込む
負荷時間:5sec
保持時間:5sec
除荷条件:負荷と同し速度で負荷を除く
測定試料
アルミ平板上に前記した感光体と同様に中間層、電荷発生層、第一電荷輸送層、第二電荷輸送層を設け、同じ条件で乾燥させた試料を作製した試料をH100V機に固定し、試料に対して垂直にビッカース圧子を押し込み測定。
【0193】
測定は圧子負荷(5sec)、荷重保持(5sec:この間の変形量の割合がクリープ率)、除荷の手順で行う。
【0194】
クリープ率の求め方
CHU(クリープ率)={(h2−h1)/h1}×100(%)
h1:負荷荷重(20mN)に達した時(負荷開始から5秒後)の押し込み深さ
h2:保持(5sec)後の押し込み深さ
評価結果を表3に示した。
【0195】
【表3】
Figure 2004077870
【0196】
電荷発生層にガリウムフタロシアニン顔料を有し、電荷輸送層の膜厚及びクリープ率が本発明の範囲にある感光体1〜4及び7〜10は画像濃度、トナーの転写性、解像度、クリーニング性、耐傷性の各評価項目において、良好な特性を示しているが、本発明外の感光体5(クリープ率:3.62)ではクリーニング性、耐傷性が劣り、感光体6(クリープ率:0.82)では、画像濃度、クリーニング性が低下し、その結果解像度が劣化している。又、感光体11(電荷輸送層の膜厚:4μm)は、帯電電位が設定値の−500Vに達せず、画像濃度が低下し、解像度が劣化しており、感光体12(電荷輸送層の膜厚:16μm)でも解像度が劣化している。又、チタニルフタロシアニンを用いた感光体13、14は、電荷輸送層を薄膜化すると、単位膜厚当たりの電界強度が高くなるため(単位面積当たりの表面電荷量が大きくなる)、このタイプのチタニルフタロシアニンでは、感度が十分でなく、そのため画像濃度及びトナーの転写性が低下し、解像度が劣化している。
【0197】
評価2(画像形成方法の評価:感光体と現像剤の組み合わせ評価)
上記で得られた感光体1〜6、11、12と現像剤2〜16を表4のように組み合わせ(組み合わせNo.1〜22)、コニカデジタル複写機7075をベースにした評価機を用いて、評価1で行ったと同様の画像評価を行った。その結果を表4に示す。
【0198】
【表4】
Figure 2004077870
【0199】
表4の結果より、本発明の有機感光体(電荷発生層がガリウムフタロシアニン顔料を含有し、電荷輸送層の膜厚が5〜15μmで且つクリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満である有機感光体:No.1、2、3、4)を用い、トナーの形状係数、形状係数の変動係数等の少なくとも1つが本発明のトナー(No.2〜14)の組み合わせ(組み合わせNo.1〜13、16、17、18)は画像濃度、解像度、トナーの転写性、クリーニング性、耐傷性の評価も良好である。特に、トナー粒子の形状係数の変動係数、個数粒度分布における個数変動係数、形状係数、角のないトナー粒子の個数割合、トナー粒子の粒度分布(M=m+m)の全ての条件が本発明内であるトナーとの組み合わせ(組み合わせNo.1、2、16、17、18)は、最も良好な評価結果を示している。一方、トナーが前記本発明の全ての条件を備えたトナー2を用いても、感光体が本発明外の組み合わせ(組み合わせNo.19〜22)は、クリーニング性、耐傷性が低下したり、画像濃度が低下したりして、その結果解像度が低下している。又、トナーが本発明外の組み合わせ(組み合わせNo.14,15)では、感光体が本発明内のものであってもトナーの転写性、クリーニング性、耐傷性が低下し、解像度が低下している。
【0200】
【発明の効果】
実施例からも明らかなように、本発明の構成を有する有機感光体を用いることにより、高温高湿下で、多数枚のコピーを行ってもトナーの転写性、残留トナークリーニング性を改善すると同時に、耐傷性を改善し、鮮鋭性の良好な電子写真画像を作製することができる。
【図面の簡単な説明】
【図1】本発明の画像形成装置の機能が組み込まれた概略図である。
【図2】分離爪ユニットの平面図である。
【図3】分離爪ユニットの側面図である。
【図4】分離爪の側面図である。
【図5】(a)は、角のないトナー粒子の投影像を示す説明図であり、(b)および(c)は、それぞれ角のあるトナー粒子の投影像を示す説明図である。
【符号の説明】
1 画像形成装置
21 感光体
21A 有機感光体
21B HC有機感光体
22 帯電手段
23 現像手段
24 転写極
25 分離極
26 クリーニング手段
30 露光光学系
45 転写搬送ベルト装置
50 定着手段
250 分離爪ユニット
251 基板
252 分離爪
255 トルクバネ
260 当接荷重切換手段
261 当接解除板
262 シャフト
265 直流ソレノイド
271 固定基板
271A ガイド
272 ステッピングモータ

Claims (12)

  1. ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする有機感光体。
  2. 前記ガリウムフタロシアニン顔料が、Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも7.4°、16.6°、25.5°、28.3°の位置に回折ピークを有するクロルガリウムフタロシアニン顔料、又は少なくとも7.5°、9.9°、12.5°、16.3°、18.6°、25.1°、28.1°の位置に回折ピークを有するヒドロキシガリウムフタロシアニン顔料であることを特徴とする請求項1に記載の有機感光体。
  3. 前記電荷輸送層が数平均粒径10nm以上、100nm未満の微粒子を含有することを特徴とする請求項1又は2に記載の有機感光体。
  4. 前記電荷輸送層が表面層であることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
  5. 導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナー粒子の形状係数の変動係数が16%以下、個数粒度分布における個数変動係数が27%以下であり、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
  6. 導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナーが、形状係数1.2〜1.6の範囲にあるトナー粒子を65個数%以上含有し、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
  7. 導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナー粒子の粒径をD(μm)とするとき、自然対数lnDを横軸にとり、この横軸を0.23間隔で複数の階級に分けた個数基準の粒度分布を示すヒストグラムにおける最頻階級に含まれるトナー粒子の相対度数(m)と、前記最頻階級の次に頻度の高い階級に含まれるトナー粒子の相対度数(m)との和(M)が70%以上であり、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
  8. 導電性支持体上に電荷発生層及び少なくとも一層以上の電荷輸送層をこの順に積層してなる有機感光体上に形成された静電潜像を、現像工程でトナー像とし、該トナー像を転写紙に転写した後、有機感光体上に残留するトナーをクリーニング工程で除去する画像形成方法において、前記現像工程のトナーが、角がないトナー粒子を60個数%以上含有し、前記有機感光体が、ガリウムフタロシアニン顔料を含有する電荷発生層及び該電荷発生層上に、総膜厚が5〜15μmの一層以上の電荷輸送層を有し、クリープ率(ビッカース圧子を荷重20mNで押し込んだ時のクリープ率)が1%以上3.5%未満であることを特徴とする画像形成方法。
  9. 前記現像工程のトナー粒子の個数平均粒径が3〜8μmであることを特徴とする請求項5〜8のいずれか1項に記載の画像形成方法。
  10. 前記静電潜像の形成は、露光スポット面積が2×10−9(m)以下の露光ビームの露光により行われることを特徴とする請求項5〜9のいずれか1項に記載の画像形成方法。
  11. 請求項5〜10のいずれか1項に記載の画像形成方法を用いて電子写真画像を形成することを特徴とする画像形成装置。
  12. 請求項1〜4のいずれか1項に記載の有機感光体を用い、帯電手段、像露光手段、現像手段、クリーニング手段のいずれか1つとが一体に組み合わされており、画像形成装置に出し入れ自由に設計されていることを特徴とするプロセスカートリッジ。
JP2002239070A 2002-08-20 2002-08-20 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ Expired - Fee Related JP3979222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239070A JP3979222B2 (ja) 2002-08-20 2002-08-20 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239070A JP3979222B2 (ja) 2002-08-20 2002-08-20 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2004077870A true JP2004077870A (ja) 2004-03-11
JP3979222B2 JP3979222B2 (ja) 2007-09-19

Family

ID=32022276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239070A Expired - Fee Related JP3979222B2 (ja) 2002-08-20 2002-08-20 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP3979222B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7937983B2 (en) 2007-05-01 2011-05-10 Ricoh Company, Ltd. Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
JP2015169801A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015169859A (ja) * 2014-03-10 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015169800A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015175877A (ja) * 2014-03-13 2015-10-05 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015184546A (ja) * 2014-03-25 2015-10-22 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015210282A (ja) * 2014-04-23 2015-11-24 京セラドキュメントソリューションズ株式会社 電子写真感光体
US9575423B2 (en) 2014-03-07 2017-02-21 Kyocera Document Solutions Inc. Electrophotographic photosensitive member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7937983B2 (en) 2007-05-01 2011-05-10 Ricoh Company, Ltd. Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
JP2015169801A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015169800A (ja) * 2014-03-07 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
US9575423B2 (en) 2014-03-07 2017-02-21 Kyocera Document Solutions Inc. Electrophotographic photosensitive member
JP2015169859A (ja) * 2014-03-10 2015-09-28 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015175877A (ja) * 2014-03-13 2015-10-05 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015184546A (ja) * 2014-03-25 2015-10-22 京セラドキュメントソリューションズ株式会社 電子写真感光体
JP2015210282A (ja) * 2014-04-23 2015-11-24 京セラドキュメントソリューションズ株式会社 電子写真感光体

Also Published As

Publication number Publication date
JP3979222B2 (ja) 2007-09-19

Similar Documents

Publication Publication Date Title
JP2001255685A (ja) 電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP3956797B2 (ja) 画像形成方法及び画像形成装置
JP3979243B2 (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP3979222B2 (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
US7449267B2 (en) Image forming method
JP2001296694A (ja) 画像形成方法、及び画像形成装置
JP4151585B2 (ja) 画像形成装置及び画像形成方法
JP2009009108A (ja) 有機感光体、画像形成装置、及びプロセスカートリッジ
JP3979245B2 (ja) 画像形成方法及び画像形成装置
JP2004077869A (ja) 有機感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP3918662B2 (ja) 有機感光体、画像形成方法及び画像形成装置
JP2004144897A (ja) 有機感光体、画像形成方法及び画像形成装置
JP2004151321A (ja) 画像形成方法及び画像形成装置
JP2004145074A (ja) 有機感光体、画像形成方法及び画像形成装置
JP3975835B2 (ja) 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2004177464A (ja) 有機感光体、画像形成方法及び画像形成装置
JP4292919B2 (ja) 画像形成ユニット、画像形成装置、画像形成方法及び有機感光体
JP2001296683A (ja) 電子写真感光体、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP4241490B2 (ja) 画像形成装置及び画像形成方法
JP3843834B2 (ja) 電子写真感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2006064724A (ja) 有機感光体、画像形成装置、画像形成方法及びプロセスカートリッジ
JP2004144896A (ja) 有機感光体、画像形成方法及び画像形成装置
JP2004177558A (ja) 画像形成方法及び画像形成装置
JP4910639B2 (ja) 画像形成方法及び画像形成装置
JP2004258347A (ja) 有機感光体、画像形成装置、画像形成方法及び画像形成ユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees