JP2004072950A - 複軸多層モータのステータ冷却パイプ支持構造 - Google Patents

複軸多層モータのステータ冷却パイプ支持構造 Download PDF

Info

Publication number
JP2004072950A
JP2004072950A JP2002231683A JP2002231683A JP2004072950A JP 2004072950 A JP2004072950 A JP 2004072950A JP 2002231683 A JP2002231683 A JP 2002231683A JP 2002231683 A JP2002231683 A JP 2002231683A JP 2004072950 A JP2004072950 A JP 2004072950A
Authority
JP
Japan
Prior art keywords
stator
cooling pipe
stator cooling
pipe
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231683A
Other languages
English (en)
Inventor
Hirofumi Shimizu
清水 宏文
Masahiro Kosaka
小坂 昌広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002231683A priority Critical patent/JP2004072950A/ja
Publication of JP2004072950A publication Critical patent/JP2004072950A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】冷媒路をステータ冷却パイプにて確保することにより、流路面積の減少や樹脂への吸水率の上昇を招くことなく、パイプ設定作業効率の向上や品質安定性を確保することができる複軸多層モータのステータ冷却パイプ支持構造を提供すること。
【解決手段】ステータSを挟んで同心円状にインナーロータIRとアウターロータORとを配置し、ステータSはステータピース積層体41とステータ冷却用水路43とを有する複軸多層モータMにおいて、複数のステータピース積層体41を正面側ブラケット70と背面側ブラケット71に対し連結固定し、ステータ冷却用水路43をステータ冷却パイプ72のパイプ内面通路により構成し、ステータ冷却パイプ72の両端部外周に、それぞれO−リング90を取り付け、正面側ブラケット70と背面側ブラケット71に、パイプ支持部91aと開口部91bとを有するパイプ支持穴91を形状し、ステータ冷却パイプ72とステータピース積層体41との間の空間は、型枠内に樹脂を流し込んで固化させた樹脂モールド部46により充填した。
【選択図】    図8

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド駆動ユニット等に適用される複軸多層モータのステータ冷却パイプ支持構造の技術分野に属する。
【0002】
【従来の技術】
従来、複軸多層モータのステータ冷却構造としては、例えば、特開2000−14086号公報に記載のものが知られている。
【0003】
上記従来公報に記載の複軸多層モータは、熱源であるステータの固定方法として、熱伝達効率の良い樹脂をステータ組立体内に充填させる方法を採っている。そして、ステータ間近の樹脂に冷媒を通す通路を設け、その通路に冷却水を循環させることにより、その樹脂を冷却して間接的にステータを冷却し、性能の安定化を図るものが記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の複軸多層モータのステータ冷却構造にあっては、樹脂により冷却通路を成形しようとするものであるため、抜き勾配等の成形条件により流路面積が減少する。また、樹脂成形後、穴加工すると、樹脂の表面層が破壊されて樹脂への吸水率が上がってしまう。
【0005】
本発明は、上記問題点に着目してなされたもので、冷媒路をステータ冷却パイプにて確保することにより、流路面積の減少や樹脂への吸水率の上昇を招くことなく、パイプ設定作業効率の向上や品質安定性を確保することができる複軸多層モータのステータ冷却パイプ支持構造を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明のステータ冷却パイプ支持構造では、ステータを挟んで同心円状にインナーロータとアウターロータとを配置し、前記ステータは、モータ回転軸を中心とする円周に等ピッチで配列した多相コイルを巻き付けたステータピース積層体と、該ステータピース積層体のコイル発熱を冷却する冷媒路と、を有する複軸多層モータにおいて、前記複数のステータピース積層体を、軸方向両側面位置に配置したブラケットに対し連結固定し、前記冷媒路を、周方向に隣接するステータピース積層体の間に、軸方向に配置されたステータ冷却パイプのパイプ内面通路により構成し、前記ステータ冷却パイプの端部外周に、O−リングを取り付け、前記ブラケットに、O−リングを介してステータ冷却パイプを支持するパイプ支持部と、パイプ支持状態でブラケットの両面空間を連通する開口部と、を有するパイプ支持穴を形状し、前記ステータ冷却パイプとステータピース積層体との間の空間は、型枠内に樹脂を流し込んで固化させた樹脂モールド部により充填した。
【0007】
【発明の効果】
よって、本発明のステータ冷却パイプ支持構造にあっては、冷媒路をステータ冷却パイプにて確保する構成としたため、樹脂により冷媒路を成形する場合のような、流路面積の減少や樹脂への吸水率の上昇を招くことなく、電気絶縁性の低下、樹脂材の強度低下、寸法精度の低下を招くことを防止することができる。
【0008】
加えて、樹脂を流し込む前にステータ冷却パイプをO−リングにより保持する構成としたため、ステータ冷却パイプの絶縁が確保され、パイプ設定作業効率の向上や品質安定性を確保することができる。
【0009】
【発明の実施の形態】
以下、本発明の複軸多層モータのステータ冷却パイプ支持構造を実現する実施の形態を図面に基づいて説明する。
【0010】
(第1実施例)
まず、構成を説明する。
【0011】
[ハイブリッド駆動ユニットの全体構成]
図1は第1実施例の複軸多層モータが適用されたハイブリッド駆動ユニットの全体図であり、図1において、Eはエンジン、Mは複軸多層モータ、Gはラビニョウ型複合遊星歯車列、Dは駆動出力機構、1はモータカバー、2はモータケース、3はギヤハウジング、4はフロントカバーである。
【0012】
前記エンジンEは、ハイブリッド駆動ユニットの主動力源であり、エンジン出力軸5とラビニョウ型複合遊星歯車列Gの第2リングギヤR2とは、回転変動吸収ダンパー6及び多板クラッチ7を介して連結されている。
【0013】
前記複軸多層モータMは、外観的には1つのモータであるが2つのモータジェネレータ機能を有する副動力源である。この複軸多層モータMは、前記モータケース2に固定され、コイルを巻いた固定電機子としてのステータSと、前記ステータSの内側に配置し、永久磁石を埋設したインナーロータIRと、前記ステータSの外側に配置し、永久磁石を埋設したアウターロータORと、を同軸上に三層配置することで構成されている。前記インナーロータIRに固定の第1モータ中空軸8は、ラビニョウ型複合遊星歯車列Gの第1サンギヤS1に連結され、前記アウターロータORに固定の第2モータ軸9は、ラビニョウ型複合遊星歯車列Gの第2サンギヤS2に連結されている。
【0014】
前記ラビニョウ型複合遊星歯車列Gは、二つのモータ回転数を制御することにより無段階に変速比を変える無段変速機能を有する遊星歯車機構である。このラビニョウ型複合遊星歯車列Gは、互いに噛み合う第1ピニオンP1と第2ピニオンP2を支持する共通キャリヤCと、第1ピニオンP1に噛み合う第1サンギヤS1と、第2ピニオンP2に噛み合う第2サンギヤS2と、第1ピニオンP1に噛み合う第1リングギヤR1と、第2ピニオンP2に噛み合う第2リングギヤR2との5つの回転要素を有して構成されている。前記第1リングギヤR1とギヤハウジング3との間には多板ブレーキ10が介装されている。前記共通キャリヤCには、出力ギヤ11が連結されている。
【0015】
前記駆動出力機構Dは、出力ギヤ11と、第1カウンターギヤ12と、第2カウンターギヤ13と、ドライブギヤ14と、ディファレンシャル15と、ドライブシャフト16L,16Rにより構成されている。そして、出力ギヤ11からの出力回転及び出力トルクは、第1カウンターギヤ12→第2カウンターギヤ13→ドライブギヤ14→ディファレンシャル15を経過し、ドライブシャフト16L,16Rから図外の駆動輪へ伝達される。
【0016】
すなわち、ハイブリッド駆動ユニットは、前記第2リングギヤR2とエンジン出力軸5を連結し、前記第1サンギヤS1と第1モータ中空軸8とを連結し、前記第2サンギヤS2と第2モータ軸9とを連結し、前記共通キャリヤCに出力ギヤ11を連結することにより構成されている。
【0017】
[複軸多層モータの構成]
図2は第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMを示す縦断側面図、図3は第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMを示す一部縦断正面図、図4は第1実施例のステータを背面側から視た図である。
【0018】
図2において、1はモータカバー、2はモータケースであり、これらに囲まれたモータ室17内にインナーロータIRとステータSとアウターロータORとにより構成された複軸多層モータMが配置されている。
【0019】
前記インナーロータIRは、その内筒面が第1モータ中空軸8の段差軸端部に対して圧入(或いは、焼きばめ)により固定されている。このインナーロータIRには、図3に示すように、ロータベース20に対し磁束形成を考慮した配置によるインナーロータマグネット21(永久磁石)が軸方向に12本埋設されている。但し、2本が対をなしてV字配置されて同じ極性を示し、3極対としてある。
【0020】
前記ステータSは、ステータピース40を積層したステータピース積層体41とコイル42とステータ冷却用水路43とインナー側ボルト・ナット44とアウター側ボルト・ナット45と樹脂モールド部46とを有して構成されている。そして、ステータSの正面側端部が、正面側エンドプレート47とステータシャフト48とを介してモータケース2に固定されている。
【0021】
前記コイル42は、コイル数が18で、図4に示すように、6相コイルを3回繰り返しながら円周上に配置される。
【0022】
そして、前記6相コイルに対しては、図外のインバータから給電接続端子50とバスバー径方向積層体51と給電コネクタ52とバスバー軸方向積層体53を介して複合電流が印加される(図10参照)。この複合電流は、アウターロータORを駆動させるための3相交流と、インナーロータIRを駆動させるための6相交流を複合させたものである。
【0023】
前記アウターロータORは、その外筒面がアウターロータケース62に対してロー付け、或いは、接着により固定されている。そして、アウターロータケース62の正面側には正面側連結ケース63が固定され、背面側には背面側連結ケース64が固定されている。そして、この背面側連結ケース64に第2モータ軸9がスプライン結合されている。このアウターロータORには、図3に示すように、ロータベース60に対し磁束形成を考慮した配置によるアウターロータマグネット61(永久磁石)が、両端位置に空間を介して軸方向に12本埋設されている。このアウターロータマグネット61は、インナーロータマグネット21と異なり、1本ずつ極性が違い、6極対をなしている。
【0024】
図2において、80,81はアウターロータ6をモータケース2及びモータカバー1に支持する一対のアウターロータ支持ベアリングである。82はインナーロータIRをモータケース2に支持するインナーロータ支持ベアリング、83はアウターロータORに対しステータSを支持するステータ支持ベアリング、84は第1モータ中空軸8と第2モータ軸9との間に介装される中間ベアリングである。
【0025】
また、図2において、85はインナーロータIRの回転位置を検出するインナーロータレゾルバ、86はアウターロータORの回転位置を検出するアウターロータレゾルバである。
【0026】
[遊星歯車機構の構成]
図5はハイブリッド駆動ユニットのラビニョウ型複合遊星歯車列Gを示す縦断面図である。図5において、2はモータケース、3はギヤハウジング、4はフロントカバーであり、これらに囲まれたギヤ室30内にラビニョウ型複合遊星歯車列G及び駆動出力機構Dが配置されている。
【0027】
前記ラビニョウ型複合遊星歯車列Gの第2リングギヤR2には、回転変動吸収フライホイールダンパー6と変速機入力軸31とクラッチドラム32とを介し、多板クラッチ7の締結時にエンジンEからの回転駆動トルクが入力される。
【0028】
前記ラビニョウ型複合遊星歯車列Gの第1サンギヤS1には、第1モータ中空軸8がスプライン結合され、決められたモータ動作点にしたがって、複軸多層モータMのインナーロータIRから第1トルクと第1回転数が入力される。
【0029】
前記ラビニョウ型複合遊星歯車列Gの第2サンギヤS2には、第2モータ軸9がスプライン結合され、決められたモータ動作点にしたがって、複軸多層モータMのアウターロータORから第2トルクと第2回転数が入力される。
【0030】
前記ラビニョウ型複合遊星歯車列Gの第1リングギヤR1と、ギヤハウジング3との間には多板ブレーキ10が設けられ、発進時等において多板ブレーキ10が締結された時には、第1リングギヤR1が停止する。
【0031】
前記ラビニョウ型複合遊星歯車列Gの共通キャリヤCには、ステータシャフト48に対しベアリングを介して回転可能に支持された出力ギヤ11がスプライン結合されている。
【0032】
前記駆動出力機構Dは、前記出力ギヤ11と噛み合う第1カウンターギヤ12と、この第1カウンターギヤ12のシャフト部に設けられた第2カウンターギヤ13と、第2カウンターギヤ13と噛み合うドライブギヤ14とを有する。そして、第2カウンターギヤ13とドライブギヤ14の歯数比により、終減速比が決められる。
【0033】
前記多板クラッチ7のクラッチピストン33には、フロントカバー4に形成されたクラッチ圧油路34により締結圧が供給される。また、前記多板ブレーキ10のブレーキピストン35には、フロントカバー4に形成されたブレーキ圧油路36により締結圧が供給される。前記クラッチピストン33と前記ブレーキピストン35は、フロントカバー4の内側で、内周位置にクラッチピストン33が配置され、その外周位置にブレーキピストン35が配置される。
【0034】
また、前記変速機入力軸31には、軸心油路37が形成されていて、この軸心油路37には、フロントカバー4に形成された潤滑油路38を介して潤滑油が供給される。
【0035】
[ステータ構造]
図6は第1実施例の複軸多層モータのステータS及びモータケース部材を示す拡大縦断面図である。
【0036】
前記ステータピース積層体41は、複数のステータピース40が軸方向に積層され、その外周に、平型銅線によるコイル42が軸方向に往復するように巻かれることで構成される。
【0037】
正面側ブラケット70と背面側ブラケット71は、前記コイル42が巻かれた複数のステータピース積層体41を、モータ回転軸を中心とする円周上に等間隔で配列し、その軸方向両端位置に、ステータピース40と位置決めをしながら設置される。
【0038】
正面側エンドプレート47と背面側エンドプレート49は、両ブラケット70,71の外側に配置される。なお、正面側エンドプレート47には、ステータシャフト48が固定されている。
【0039】
前記インナー側ボルト・ナット44とアウター側ボルト・ナット45は、両エンドプレート47,49を挿通し、ナットを回して締め上げ、この締め上げで発生する摩擦力により全体を固定し、ステータSの骨格構造体を構成する。
【0040】
前記ステータ冷却パイプ72は、周方向に隣接するコイル付きステータピース積層体41の間の位置に配置し、両端部が前記正面側ブラケット70と背面側ブラケット71に対し樹脂モールド部46を介して支持される。
【0041】
前記樹脂モールド部46は、ステータ形状に合致する凹凸型を有する型枠内に、ステータ冷却パイプ43を支持した骨格構造体を入れ、溶融樹脂を流し込み、溶融樹脂を空間部分に充填することで成形される。
【0042】
なお、73は入口側或いは出口側の冷却水路、74はモータケース2に形成された冷却水路、75は正面側封鎖蓋、76は背面側封鎖蓋、77はステータSをモータケース2に固定するボルトである。
【0043】
[ステータ冷却パイプ支持構造]
図7は第1実施例のステータ冷却パイプ支持構造を示す図6A−A線拡大断面図、図8は第1実施例のステータ冷却パイプ支持構造を示す図7B−B線拡大断面図、図9は第1実施例のステータ冷却パイプの位置で切断したステータSの周方向断面図である。
【0044】
前記複軸多層モータMは、ステータSを挟んで同心円状にインナーロータIRとアウターロータORとを配置し、ステータを挟んで同心円状にインナーロータとアウターロータとを配置している。
【0045】
前記ステータSは、モータ回転軸を中心とする円周に等ピッチで配列したコイル42(多相コイル)を巻き付けたステータピース積層体41と、該ステータピース積層体41のコイル発熱を冷却するステータ冷却用水路43(冷媒路)と、を有する。
【0046】
前記複数のステータピース積層体41を、軸方向両側面位置に配置した正面側ブラケット70(ブラケット)と背面側ブラケット71(ブラケット)に対し連結固定している。
【0047】
前記ステータ冷却用水路43を、周方向に隣接するステータピース積層体41,41の間に、軸方向に配置された銅を素材とするステータ冷却パイプ72のパイプ内面通路により構成している。
【0048】
前記ステータ冷却パイプ72の両端部外周に、それぞれO−リング90を取り付けている。
【0049】
前記正面側ブラケット70と背面側ブラケット71に、O−リング90を介してステータ冷却パイプ72を支持するパイプ支持部91aと、パイプ支持状態で両ブラケット70,71の両面空間を連通する開口部91bと、を有するパイプ支持穴91を形状している。
【0050】
前記ステータ冷却パイプ72とステータピース積層体41との間の空間は、型枠内に樹脂を流し込んで固化させた樹脂モールド部46により充填している。
【0051】
前記ステータ冷却パイプ72の両端部外周のそれぞれに、図8に示すように、2箇所の外側に凸のリング位置決め溝72a,72bを形成し、該リング位置決め溝72a,72bに、O−リング90を取り付けた。
【0052】
前記両ブラケット70,71に形成したパイプ支持穴91を、図7に示すように、O−リング90を介してステータ冷却パイプ72を3点支持するパイプ支持部91a,91a,91aと、パイプ支持状態で両ブラケット70,71の両面空間を連通する3つの開口部91b,91b,91bと、を有する外接三角形形状とした。
【0053】
前記両ブラケット70,71のパイプ受け側内面に、ステータ冷却パイプ72のパイプ挿入を案内する案内用勾配面92を形成した。
【0054】
次に、作用を説明する。
【0055】
[複軸多層モータの基本機能]
2ロータ・1ステータで、アウターロータ磁力線とインナーロータ磁力線との2つの磁力線が作られる複軸多層モータMを採用したことで、コイル42及び図外のコイルインバータを2つのインナーロータIRとアウターロータORに対し共用できる。そして、インナーロータIRに対する電流とアウターロータORに対する電流を重ね合わせた複合電流を1つのコイル42に印加することにより、2つのロータIR,ORをそれぞれ独立に制御することができる。つまり、外観的には、1つの複軸多層モータMであるが、モータ機能とジェネレータ機能の異種または同種の機能を組み合わせものとして使える。
【0056】
よって、例えば、ロータとステータを持つモータと、ロータとステータを持つジェネレータの2つのものを設ける場合に比べて大幅にコンパクトになり、スペース・コスト・重量の面で有利であると共に、コイル共用化により電流による損失(銅損,スイッチングロス)を防止することができる。
【0057】
また、複合電流制御のみで(モータ+ジェネレータ)の使い方に限らず、(モータ+モータ)や(ジェネレータ+ジェネレータ)の使い方も可能であるというように、高い選択自由度を持ち、例えば、第1実施例のように、ハイブリッド車の駆動源に採用した場合、これら多数の選択肢の中から車両状態に応じて最も効果的或いは効率的な組み合わせを選択することができる。
【0058】
[ステータ製造作用]
前記ステータ構造Sの製造作用を説明すると、まず、複数のステータピース40が軸方向に積層されたステータピース積層体41の外周に、平型銅線によるコイル42が軸方向に往復するように巻き、コイル付きのステータピース積層体41を製造する。
【0059】
次に、このコイル付き複数のステータピース積層体41を、モータ回転軸を中心として円周上に等間隔で配列する。
【0060】
次に、ステータピース積層体41の軸方向両端位置に、ステータピース40と位置決めをしながら正面側ブラケット70と背面側ブラケット71を設置する。
【0061】
次に、両ブラケット70,71の外側に正面側エンドプレート47と背面側エンドプレート49を配置し、インナー側ボルト・ナット44を挿通すると共に、アウター側ボルト・ナット45を挿通し、ナットを回して締め上げる。
【0062】
この両端のブラケット47,49を、インナー側ボルト・ナット44とアウター側ボルト・ナット45により締め上げることで発生する摩擦力により、ステータピース積層体41を複数のステータピース40が軸方向に積層された状態で支持し、ステータSの骨格構造体とする。
【0063】
このようにしてステータSの骨格構造体が完成したら、両端部にO−リング90を取り付けたステータ冷却パイプ72を、正面側ブラケット70と背面側ブラケット71のパイプ支持穴91に挿入し、両端部を支持する。
【0064】
次に、ステータ形状に合致する凹凸型を有する型枠内に、このステータ冷却パイプ72を支持した骨格構造体を入れ、高耐熱性で高強度の溶融樹脂を流し込み、溶融樹脂をコイル付きステータピース積層体41の周りや正面側エンドプレート47及びステータシャフト48の周り部分(ステータ冷却用水路43を除く)に充填することで、樹脂モールド部46を有するステータSが成形される。
【0065】
なお、ステータSの成形後、連通するステータ冷却用水路を形成するために、正面側封鎖蓋75と背面側封鎖蓋76が水密状態で取付られる。
【0066】
[ステータ冷却パイプ支持作用]
複軸多層モータMの駆動時、コイル42に大電流を流すと、コイル42は発熱する。この熱は電気効率や機械効率を悪化させる原因となる。よって、その熱を取り除くために冷却する必要がある。
【0067】
複軸多層モータMでは、発熱体であるコイル42は、モータ回転軸を中心とする円周に等ピッチでステータS内に配列される。そして、樹脂を流し込み、コイル42を固定する。
【0068】
複軸多層モータMの駆動時、コイル42で発した熱は樹脂モールド部46へと伝わることになる。よって、樹脂モールド部46を冷やすことにより、コイル42の冷却をすることができる。
【0069】
そこで、樹脂成形時、水路用貫通穴を成形型で形成しようとすると、型の抜き勾配により穴の断面積に制約を受ける。また、後加工である穴加工により水路用貫通穴を形成しようとすると、樹脂成形時にできる表面層を破壊してしまい、樹脂の吸水率を上げてしまう。
【0070】
そこで、樹脂成形時に熱伝達効率の良い銅パイプ等によるステータ冷却パイプ72を配置した状態で成形することで、冷却水路断面積の確保と樹脂への吸水性を無くす構造にして、ステータ冷却パイプ72に冷却水を流すことによりコイル42を冷却する。
【0071】
しかし、ステータ冷却パイプ72とコイル42とを一緒に固定する場合、導通部品にステータ冷却パイプ72を固定すると、コイル42を金属にて取り囲む構造となるため、渦電流を発生してしまう。すなわち、ステータ冷却パイプ72は樹脂の中で中に浮いた状態で固定する構造にする必要がある。
【0072】
そこで、発生する問題は、
▲1▼樹脂型でステータ冷却パイプ72を保持しなければならないが、宙に浮いている状態を確保するために、ステータ冷却パイプ72が落ちないように成形型に配置し、微調整を施すことになる。このため、非常に手間がかかり、作業効率が悪くなるし、樹脂成形時にワークを加熱させているが、その温度管理のばらつきによる製品品質の不安定さをもたらす。
▲2▼ステータ冷却パイプ72を挿入するとき、コイル42の間近を通過するため、コイル42の絶縁皮膜を傷つけてしまう可能性がある。
【0073】
これに対し、第1実施例のステータ冷却パイプ支持構造では、ステータ冷却パイプ72の両端部にO−リング90を取り付け、コイル42を固定している部品とO−リング90との接触でステータ冷却パイプ72を支持することにより、樹脂型への位置倣いも可能であり、工数を要さない高い作業性と、コイル42の絶縁皮膜を傷つけることもなく、絶縁を確保してステータ冷却パイプ72を保持することができる。
【0074】
また、ステータ冷却パイプ72の両端部外周に形成したリング位置決め溝72a,72bを、外側に凸としたため、パイプ断面積(冷却水路断面積)を確保することができる。
【0075】
また、O−リング90の受け側を、外接三角形形状のパイプ支持穴91とすることで、O−リング90の周りに穴が確保され、ステータ冷却パイプ72の周りを流れる樹脂流れを邪魔しないようにすることができる。
【0076】
また、O−リング90の受け側に、ステータ冷却パイプ72のパイプ挿入を案内する案内用勾配面92を形成したため、ステータ冷却パイプ72のパイプ挿入支持作業を容易に行うことができる。
【0077】
次に、効果を説明する。
第1実施例の複軸多層モータのステータ冷却パイプ支持構造にあっては、下記に列挙する効果を得ることができる。
【0078】
(1) ステータSを挟んで同心円状にインナーロータIRとアウターロータORとを配置し、前記ステータSは、モータ回転軸を中心とする円周に等ピッチで配列したコイル42を巻き付けたステータピース積層体41と、該ステータピース積層体41のコイル発熱を冷却するステータ冷却用水路43と、を有する複軸多層モータMにおいて、前記複数のステータピース積層体41を、軸方向両側面位置に配置した正面側ブラケット70と背面側ブラケット71に対し連結固定し、前記ステータ冷却用水路43を、周方向に隣接するステータピース積層体41,41の間に、軸方向に配置されたステータ冷却パイプ72のパイプ内面通路により構成し、前記ステータ冷却パイプ72の両端部外周に、それぞれO−リング90を取り付け、前記正面側ブラケット70と背面側ブラケット71に、O−リング90を介してステータ冷却パイプ72を支持するパイプ支持部91aと、パイプ支持状態で両ブラケット70,71の両面空間を連通する開口部91bと、を有するパイプ支持穴91を形状し、前記ステータ冷却パイプ72とステータピース積層体41との間の空間は、型枠内に樹脂を流し込んで固化させた樹脂モールド部46により充填したため、冷媒路をステータ冷却パイプ72にて確保することにより、流路面積の減少や樹脂への吸水率の上昇を招くことなく、パイプ設定作業効率の向上や品質安定性を確保することができる。
【0079】
(2) ステータ冷却パイプ72の両端部外周のそれぞれに、2箇所の外側に凸のリング位置決め溝72a,72bを形成し、該リング位置決め溝72a,72bに、O−リング90を取り付けたため、冷却水の流路断面積を狭めることなく、O−リング90の位置決めを行うことができる。
【0080】
(3) 両ブラケット70,71に形成したパイプ支持穴91を、O−リング90を介してステータ冷却パイプ72を3点支持するパイプ支持部91a,91a,91aと、パイプ支持状態で両ブラケット70,71の両面空間を連通する3つの開口部91b,91b,91bと、を有する外接三角形形状としたため、両ブラケット70,71に樹脂の流れ込み用の隙間ができ、ステータ冷却パイプ72周りの樹脂流れを規制することなく、樹脂の充填効率を維持することができる。
【0081】
(4) 両ブラケット70,71のパイプ受け側内面に、ステータ冷却パイプ72のパイプ挿入を案内する案内用勾配面92を形成したため、ステータ冷却パイプ72のステータへの配置作業精度を下げることができ、樹脂成形工程に自由度ができる。すなわち、例えば、樹脂成形時に先にステータ冷却パイプ72を配置し、その後、骨格構造体を型に配置することもできる。
【0082】
以上、本発明の複軸多層モータのステータ冷却パイプ支持構造を第1実施例に基づき説明してきたが、具体的な構成については、この第1実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
【0083】
例えば、第1実施例では、ハイブリッド駆動ユニットに適用される複軸多層モータの例を示したが、単独で設置される複軸多層モータや他のシステムに適用される複軸多層モータに対しても本発明のステータ冷却パイプ支持構造を採用することができる。
【図面の簡単な説明】
【図1】第1実施例のステータ冷却パイプ支持構造を有する複軸多層モータが適用されたハイブリッド駆動ユニットを示す概略全体図である。
【図2】第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMを示す縦断側面図である。
【図3】第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMを示す一部縦断正面図である。
【図4】第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMをステータの背面側から視た図である。
【図5】第1実施例の複軸多層モータが適用されたハイブリッド駆動ユニットのラビニョウ型複合遊星歯車列Gおよび駆動出力機構Dを示す縦断側面図である。
【図6】第1実施例のステータ冷却パイプ支持構造が適用された複軸多層モータMのステータおよびモータケース部材を示す縦断側面図である。
【図7】第1実施例のステータ冷却パイプ支持構造を示す図6A−A線による拡大断面図である。
【図8】第1実施例のステータ冷却パイプ支持構造を示す図7B−B線による拡大断面図である。
【図9】第1実施例のステータ冷却パイプの位置で切断したステータSの周方向断面図である。
【図10】複軸多層モータのステータコイルに印加する複合電流を示す図である。
【符号の説明】
M 複軸多層モータ
S ステータ
IR インナーロータ
OR アウターロータ
41 ステータピース積層体
42 コイル(多相コイル)
43 ステータ冷却用水路(冷媒路)
46 樹脂モールド部
70 正面側ブラケット(ブラケット)
71 背面側ブラケット(ブラケット)
72 ステータ冷却パイプ
72a,72b リング位置決め溝
90 O−リング
91 パイプ支持穴
91a パイプ支持部
91b 開口部
92 案内用勾配面

Claims (4)

  1. ステータを挟んで同心円状にインナーロータとアウターロータとを配置し、
    前記ステータは、モータ回転軸を中心とする円周に等ピッチで配列した多相コイルを巻き付けたステータピース積層体と、該ステータピース積層体のコイル発熱を冷却する冷媒路と、を有する複軸多層モータにおいて、
    前記複数のステータピース積層体を、軸方向両側面位置に配置したブラケットに対し連結固定し、
    前記冷媒路を、周方向に隣接するステータピース積層体の間に、軸方向に配置されたステータ冷却パイプのパイプ内面通路により構成し、
    前記ステータ冷却パイプの両端部外周に、O−リングを取り付け、
    前記ブラケットに、O−リングを介してステータ冷却パイプを支持するパイプ支持部と、パイプ支持状態でブラケットの両面空間を連通する開口部と、を有するパイプ支持穴を形状し、
    前記ステータ冷却パイプとステータピース積層体との間の空間は、型枠内に樹脂を流し込んで固化させた樹脂モールド部により充填したことを特徴とする複軸多層モータのステータ冷却パイプ支持構造。
  2. 請求項1に記載された複軸多層モータのステータ冷却パイプ支持構造において、
    前記ステータ冷却パイプの両端部外周のそれぞれに、2箇所の外側に凸のリング位置決め溝を形成し、該リング位置決め溝に、O−リングを取り付けたことを特徴とする複軸多層モータのステータ冷却パイプ支持構造。
  3. 請求項1または2の何れか1項に記載された複軸多層モータのステータ冷却パイプ支持構造において、
    前記ブラケットに形成したパイプ支持穴を、O−リングを介してステータ冷却パイプを3点支持するパイプ支持部と、パイプ支持状態でブラケットの両面空間を連通する3つの開口部と、を有する外接三角形形状としたことを特徴とする複軸多層モータのステータ冷却パイプ支持構造。
  4. 請求項1ないし3の何れか1項に記載された複軸多層モータのステータ冷却パイプ支持構造において、
    前記ブラケットのパイプ受け側内面に、ステータ冷却パイプのパイプ挿入を案内する案内用勾配面を形成したことを特徴とする複軸多層モータのステータ冷却パイプ支持構造。
JP2002231683A 2002-08-08 2002-08-08 複軸多層モータのステータ冷却パイプ支持構造 Pending JP2004072950A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231683A JP2004072950A (ja) 2002-08-08 2002-08-08 複軸多層モータのステータ冷却パイプ支持構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231683A JP2004072950A (ja) 2002-08-08 2002-08-08 複軸多層モータのステータ冷却パイプ支持構造

Publications (1)

Publication Number Publication Date
JP2004072950A true JP2004072950A (ja) 2004-03-04

Family

ID=32017382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231683A Pending JP2004072950A (ja) 2002-08-08 2002-08-08 複軸多層モータのステータ冷却パイプ支持構造

Country Status (1)

Country Link
JP (1) JP2004072950A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068557A1 (en) * 2009-03-20 2012-03-22 Kaltenbach & Voigt Gmbh Electric Motor Arrangement for a Medical, Especially Dental, Tool Holder
JP2019083633A (ja) * 2017-10-31 2019-05-30 三菱電機株式会社 回転電機
KR20190090668A (ko) 2018-01-25 2019-08-02 현대자동차주식회사 모터
US20210044160A1 (en) * 2018-02-07 2021-02-11 IPGATE Capital Holding AG Internal stator of a rotary field machine having stator tooth groups each consisting of two directly adjacent teeth and a magnetic return

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068557A1 (en) * 2009-03-20 2012-03-22 Kaltenbach & Voigt Gmbh Electric Motor Arrangement for a Medical, Especially Dental, Tool Holder
JP2012521185A (ja) * 2009-03-20 2012-09-10 カルテンバッハ ウント ホイクト ゲゼルシャフト ミット ベシュレンクテル ハフツング 医用、さらに特定的には、歯科医療に用いるハンドピース用の電動機装置
US9318934B2 (en) * 2009-03-20 2016-04-19 Kaltenbach & Voigt Gmbh Electric motor arrangement for a medical, especially dental, tool holder
JP2019083633A (ja) * 2017-10-31 2019-05-30 三菱電機株式会社 回転電機
KR20190090668A (ko) 2018-01-25 2019-08-02 현대자동차주식회사 모터
US20210044160A1 (en) * 2018-02-07 2021-02-11 IPGATE Capital Holding AG Internal stator of a rotary field machine having stator tooth groups each consisting of two directly adjacent teeth and a magnetic return
US11811266B2 (en) * 2018-02-07 2023-11-07 IPGATE Capital Holding AG Internal stator of a rotary field machine having stator tooth groups each consisting of two directly adjacent teeth and a magnetic return

Similar Documents

Publication Publication Date Title
US6864604B2 (en) Cooling structure for multi-shaft, multi-layer electric motor
US6903471B2 (en) Stator cooling structure for multi-shaft, multi-layer electric motor
US6114784A (en) Motor with cooling structure
JP2005057819A (ja) 回転電機
JP2009118712A (ja) 回転電機
JP3812511B2 (ja) ハイブリッド駆動ユニットのモータコイル給電構造
JPH1044789A (ja) ハイブリッド型車両
JP2004072950A (ja) 複軸多層モータのステータ冷却パイプ支持構造
JP4100119B2 (ja) 複軸多層モータのステータ構造
JP4273717B2 (ja) 複軸多層モータのベアリング予圧構造
JP4120558B2 (ja) ステータ冷却構造
JP2004194362A (ja) モータの冷却装置
JP2005137126A (ja) 固定子のコイル構造及び製造方法
JP3815399B2 (ja) 複軸多層モータのステータ冷却構造
JP2004072945A (ja) 複軸多層モータの冷却構造
JP4135647B2 (ja) 複軸多層モータのステータ構造
JP4082126B2 (ja) 複軸多層モータのアウターロータ支持ベアリング取り付け構造
JP2004312800A (ja) 複軸多層モータのステータ構造
JP2009261072A (ja) 車両用電動機
JP2010273504A (ja) ロータ、回転電機および車両
JPH0971139A (ja) ハイブリッド型車両
JP2004067021A (ja) ハイブリッド駆動ユニットの摩擦係合要素配置構造
JP3885755B2 (ja) 複軸多層モータのステータ構造
JP2004297930A (ja) 複軸多層モータのステータ構造
JP2004215393A (ja) 複軸多層モータのロータシール構造

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051116

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060905