JP4120558B2 - ステータ冷却構造 - Google Patents

ステータ冷却構造 Download PDF

Info

Publication number
JP4120558B2
JP4120558B2 JP2003364437A JP2003364437A JP4120558B2 JP 4120558 B2 JP4120558 B2 JP 4120558B2 JP 2003364437 A JP2003364437 A JP 2003364437A JP 2003364437 A JP2003364437 A JP 2003364437A JP 4120558 B2 JP4120558 B2 JP 4120558B2
Authority
JP
Japan
Prior art keywords
stator
core
gap
stator core
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364437A
Other languages
English (en)
Other versions
JP2004320974A (ja
Inventor
崇 加藤
正樹 中野
愛彦 丹
宏文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003364437A priority Critical patent/JP4120558B2/ja
Publication of JP2004320974A publication Critical patent/JP2004320974A/ja
Application granted granted Critical
Publication of JP4120558B2 publication Critical patent/JP4120558B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ハイブリッド駆動ユニット等に適用される複軸多層モータのステータ冷却構造に関するものである。
従来、ステータを挟んで同心円状にインナーロータとアウターロータとが配置され、ロータとステータによって形成されるエアギャップ部が油室によって構成される複軸多層モータでは、ステータ構成部材である放射状に設けられたステータティースに巻かれたコイルが発熱するため、ステータを冷却する必要があった。
このような複軸多層モータのステータ冷却構造として、ステータ構成部材である放射状に設けられたステータティースの間に、内部に冷却水を循環可能なティース冷却通路を配置し、このティース冷却通路に冷却水を流すことによりステータを冷却するステータ冷却構造が知られていた(例えば、特許文献1参照)。
特開2000−14086号公報(請求項1、図1)
しかしながら、上述したステータ冷却構造では、発熱源であるコイルが巻かれたステータティースの冷却手段が、ティース間に配置されるティース冷却通路のみであったため、複軸多層モータの更なる出力向上を行うためには、更なる冷却手段の付加あるいは効率の良い他の冷却手段の検討が必要であった。
また、従来はインナーロータのエアギャップ部の位置と、冷却水路系のシール部が半径方向位置でほぼ同位置に存在するためステータティース以外の部品に、インナーロータのエアギャップ部からアウターロータのエアギャップ部へのバイパス通路を設けるにしても、インナーロータのエアギャップ部の位置よりも内側に配置することになり、インナーロータのエアギャップ部からバイパス通路までの領域に常に油が残留して、フリクション発生の原因となっていた。
本発明の第1発明は、上記課題を有利に解決した複軸多層モータのステータ冷却構造を提供することを目的とするものであり、本発明のステータ冷却構造は、ステータを挟んで同心円状にインナーロータとアウターロータとが配置され、ロータとステータとのエアギャップ部が油室で構成されてなる複軸多層モータのステータ冷却構造において、ステータティースに、インナーロータ側のエアギャップ部とアウターロータ側のエアギャップ部とを貫通する油抜き穴を設け、コイルが巻かれたステータティースを内外から冷却できるよう構成するとともに、ステータティースに設けた油抜き穴は、隣り合う穴が軸方向で等間隔に設けられ、且つ、ステータティースの端部から穴までの距離が、穴と穴とのピッチの半分の位置に設けられ、さらに、ステータティースが、その中央部に配置された前記油抜き穴によって磁束通過面積が減少し、周辺の磁束密度が増加した場合にも、磁束飽和しないティース幅を有するよう構成したことを特徴とするものである。
また、本発明の第2発明は、上記課題を有利に解決した複軸多層モータのステータ冷却構造を提供することを目的とするものであり、本発明のステータ冷却構造は、コイルが施され円状に配置されたステータコアからなるステータと、ステータを挟んで同心円状に配置されたインナーロータとアウターロータとから構成されてなる複軸多層モータのステータ冷却構造において、(1)ステータ軸方向端部で円状に繋がった部分と、その円状の部分の内周と外周とから軸方向に伸び、それぞれステータの内側から外側へと通じる隙間ができるような逃げ部を有する板状の部分と、が一体となったくし型フレームを用い、内周および外周の板状部材から構成されるスロットにステータコアを配置し、内周および外周の板以上の部分を内外周から押さえてかしめることにより、ステータコアをくし型フレームに固定したステータであって、または、(2)ステータ軸方向端部で円状に繋がった部分と、その円状の部分の内周から軸方向に伸びテーパー角を持った、ステータの内側から外側へと繋がる隙間を有する柱状部と、が一体となったくし型フレームを用い、内周の柱状部から構成されるスロットにステータコアを配置し、外周をリング状部材で押さえることにより、ステータコアをくし型フレームに固定したステータであって、ステータコアとコイルとの間に隙間を設け、このステータ内側から外側に連通した隙間に冷却液を導くよう構成したことを特徴とするものである。


本発明のステータ冷却構造の第1発明にあっては、発熱源であるコイルが巻かれたステータティースの冷却手段として、ティースにアウターロータのエアギャップ部とインナーロータのエアギャップ部を貫通する油抜き穴を設け、その穴を油が通過することによって冷却する方法をとることで、冷却性能の向上が可能となり、更なる出力向上が可能となる。
なお、本発明のステータ冷却構造の第1発明に係る好適例においては、ステータティースに設けた油抜き穴を、隣り合う穴が軸方向で等間隔に設け、且つ、ステータティースの端部から穴までの距離が、穴と穴とのピッチの半分の位置に設けてもよい。このように構成すれば、油抜き穴が等間隔に配置され、且つ、ステータティースの端部から穴までの距離が、穴と穴とのピッチの半分の位置に設けられている為、軸方向で均等に冷却油路が存在する事になり、ステータティースの冷却性能のバラツキを低減することができる。
また、本発明のステータ冷却構造の第1発明に係る好適例においては、ステータティースが、中央部に配置された油抜き穴によって磁束通過面積が減少し、周辺の磁束密度が増加した場合にも、磁束飽和しないティース幅を有するよう構成してもよい。このように構成すれば、油抜き穴の設置により磁束通過面積の減少で周辺の磁束密度が増加した場合にも、磁束飽和を起こさないだけの磁束通過面積が確保されるので、油抜き穴設定による出力低下は発生しない。
本発明のステータ冷却構造の第2発明にあっては、発熱体であるステータコアとコイル両方を直接冷却する事ができるので、冷却の効率が上がる。さらに、従来、発熱体が隣り合って存在しているところ、その両発熱体の間に冷却通路を設けているので、発熱体が密集していたために起こっていた局所的な温度上昇を緩和することができる。
なお、本発明のステータ冷却構造の第2発明に係る好適例においては、ステータとして、ステータコアの積層方向端部にコア円周方向幅よりも広い絶縁部材を配置し、その上からコイルを巻装することにより、コア側面部に冷却液を導く隙間を形成したステータを用いても良い。このように構成すれば、上述した第2発明の効果に加えて、ステータコアの積層方向端部に現在使用されている絶縁部材の寸法を変更するだけで、ステータの内側から外側へと繋がる冷却通路が形成できるので、部品点数や工程を増やす事無く冷却効率を上げることができる。
また、本発明のステータ冷却構造の第2発明に係る好適例においては、ステータとして、ステータコアの軸方向側面とコア積層方向端部とに配置した絶縁部材のうち、ステータコアの軸方向側面の絶縁部材とステータコアとの間に冷却液を導く隙間を形成したステータを用いても良い。このように構成すれば、上述した第2発明の効果に加えて、ステータの軸方向側面の絶縁部材とステータコア側面が冷却通路を形成しており、この絶縁部材の形状を変更することにより冷却通路の形状も自在に変えることができるので、層流よりも圧倒的に熱伝達率が高い乱流を発生させる冷却通路を形成でき、効率的に冷却できる。
さらに、本発明のステータ冷却構造の第2発明に係る好適例においては、ステータとして、コア円周方向幅の異なるコアを積層してステータコアを構成することで、ステータコアとコイルとの間に冷却液を導く隙間を形成したステータを用いても良い。このように構成すれば、上述した第2発明の効果に加えて、コア円周方向に寸法を大きくする必要が無く、従来のステータコアよりも円周方向のサイズが小さいコアを従来のステータコアと組み合わせて積層するので、占積率を上げることができ、パワー密度も向上する。
さらにまた、本発明のステータ冷却構造の第2発明に係る好適例においては、ステータとして、コイルのステータコアに対する相対的な半径方向に位置を規制する機構を有したステータを用いても良い。このように構成すれば、上述した第2発明及びその好適例の効果に加えて、ステータコアの積層方向と垂直な断面の形状がT字型の場合、ステータの内側から外側への冷却通路を形成するためにコイルのステータコアに対する相対的な位置を規制でき、組み立て時やモールド時などの工程の際に冷却通路の形状が崩れることなく全てのコアにおいてほぼ均一に保たれるので、冷却液の分配をほぼ均一に近づけることができる。
以下に、この発明の実施の形態を、図面に基づき詳細に説明する。
図1は複軸多層モータが適用されたハイブリッド駆動ユニットの全体図であり、図1において、Eはエンジン、Mは複軸多層モータ、Gはラビニョウ型複合遊星歯車列、Dは駆動出力機構、1はモータカバー、2はモータケース、3はギヤハウジング、4はフロントカバーである。
前記エンジンEは、ハイブリッド駆動ユニットの主動力源であり、エンジン出力軸5とラビニョウ型複合遊星歯車列Gの第2リングギヤR2とは、回転変動吸収ダンパー6及び多板クラッチ7を介して連結されている。
前記複軸多層モータMは、外観的には1つのモータであるが2つのモータジェネレータ機能を有する副動力源である。この複軸多層モータMは、前記モータケース2に固定され、コイルを巻いた固定電機子としてのステータSと、前記ステータSの内側に配置し、永久磁石を埋設したインナーロータIRと、前記ステータSの外側に配置し、永久磁石を埋設したアウターロータORと、を同軸上に三層配置することで構成されている。前記インナーロータIRに固定の第1モータ中空軸8は、ラビニョウ型複合遊星歯車列Gの第1サンギヤS1に連結され、前記アウターロータORに固定の第2モータ軸9は、ラビニョウ型複合遊星歯車列Gの第2サンギヤS2に連結されている。
前記ラビニョウ型複合遊星歯車列Gは、二つのモータ回転数を制御することにより無段階に変速比を変える無段変速機能を有する遊星歯車機構である。このラビニョウ型複合遊星歯車列Gは、互いに噛み合う第1ピニオンP1と第2ピニオンP2を支持する共通キャリヤCと、第1ピニオンP1に噛み合う第1サンギヤS1と、第2ピニオンP2に噛み合う第2サンギヤS2と、第1ピニオンP1に噛み合う第1リングギヤR1と、第2ピニオンP2に噛み合う第2リングギヤR2との5つの回転要素を有して構成されている。前記第1リングギヤR1とギヤハウジング3との間には多板ブレーキ10が介装されている。前記共通キャリヤCには、出力ギヤ11が連結されている。
前記駆動出力機構Dは、出力ギヤ11と、第1カウンターギヤ12と、第2カウンターギヤ13と、ドライブギヤ14と、ディファレンシャル15と、ドライブシャフト16,16により構成されている。そして、出力ギヤ11からの出力回転及び出力トルクは、第1カウンターギヤ12→第2カウンターギヤ13→ドライブギヤ14→ディファレンシャル15を経過し、ドライブシャフト16,16から図外の駆動輪へ伝達される。
すなわち、ハイブリッド駆動ユニットは、前記第2リングギヤR2とエンジン出力軸5を連結し、前記第1サンギヤS1と第1モータ中空軸8とを連結し、前記第2サンギヤS2と第2モータ軸9とを連結し、前記共通キャリヤCに出力ギヤ11を連結することにより構成されている。
図2は、ラビニョオ型遊星歯車列と組み合わされて車両用ハイブリッド変速機を構成する、この発明の対象となる複軸多層モータの一例をより詳細に示す図である。この複軸多層モータに、この発明のステータ冷却構造を適用することができる。図2に示す構成の複軸多層モータは、一個の円環状のステータ101と、その半径方向内方および外方にそれぞれ互いに同軸の所定回転軸線O上にて回転自在に配置したインナーロータ102およびアウターロータ103とよりなる三重構造とし、これらをハウジング104内に収納して構成する。
ここにおけるインナーロータ102およびアウターロータ103はそれぞれ、電磁鋼板などをプレス成形して造った板材のロータ軸線方向への積層になる積層コア124,125を具え、これら積層コア124,125に、ロータ軸線方向に貫通する永久磁石を円周方向等間隔に配置して設けた構成となす。インナーロータ102とアウターロータ103とでは、配置する磁極数を変えることで、両者の極対数を異ならせている。一例を示すと、磁石の個数自体はインナーロータ102とアウターロータ103で同一であり、12個ずつであるが、インナーロータ102は2個の磁石で1極を成しているため、極対数としては3極対となり、アウターロータ103は1個の磁石で1極を成しているため、極対数としては6極対となる。
そしてハウジング104内へのインナーロータ102およびアウターロータ103の収納に当たっては、アウターロータ103は、積層コア125の外周にトルク伝達シェル105を駆動結合して具え、該トルク伝達シェル105の両端をそれぞれベアリング107,108によりハウジング104に回転自在に支持し、トルク伝達シェル105をベアリング107の側でアウターロータシャフト109に結合する。
インナーロータ102は積層コア124の中心に、内部に上記アウターロータシャフト109を回転自在に貫通した中空のインナーロータシャフト110を貫通して具え、これらインナーロータ102の積層コア124およびインナーロータシャフト110間を駆動結合する。そしてインナーロータシャフト110の中間部をベアリング112により、固定のステータブラケット113内に回転自在に支持し、一端部(図1では左端部)をベアリング114によりトルク伝達シェル105の対応端壁に回転自在に支持する。
ステータ101は、電磁鋼板をプレス成形して造ったI字状のステータ鋼板をステータ軸線方向に積層してなる多数のステータピースを具える。個々のステータピースには、アウターロータ側ヨークおよびインナーロータ側ヨーク間におけるティースの箇所において図2に示す如く電磁コイル117を巻線し、これらコイル巻線済のステータピースを同一円周方向等間隔に、つまり円形に配列してステータコアとなし、このステータコアをステータ軸線方向両側のブラケット113,118間にボルト119で挟持すると共に全体的に樹脂120でモールドすることにより一体化してステータ101を構成する。なお、樹脂120内には隣り合うステータピース116間において冷却液通路141を軸線方向に形成し、上記したボルト119はその冷却液通路141の半径方向内方および外方にそれぞれ位置させる。ここで、各ボルト119はそれに螺合したナット119aによって締め上げられる。このボルト・ナットによる締め上げ構造をリベットピンによる締め上げ構造としても良いことはいうまでもない。
なお、このモータの駆動に当たっては、回転センサ148および回転センサ147が検出するインナーロータ102およびアウターロータ103の回転位置、つまりこれらに上記のごとく設けられる永久磁石の位置に応じた両ロータ102,103用の位相の異なる駆動電流を複合して得られる複合電流をステータ101の電磁コイル117に供給し、これにより両ロータ102,103用の回転磁界をステータに個別に発生させることで、回転磁界に同期してロータ102,103を個別に回転駆動させることができる。
図3及び図4はそれぞれ本発明の第1発明に係る複軸多層モータのステータ冷却構造の一例を説明するための図である。図3に示す例において、ステータ101に巻回させたコイル117より発生した熱を抜熱するために、ステータ101内に冷却液通路141をすでに設けている。本発明の第1発明の特徴は、その冷却液通路141に加えて、ステータティース201に、インナーロータ側のエアギャップ部206とアウターロータ側のエアギャップ部205とを半径方向に貫通する油抜き穴207を設け、コイル202が巻かれたステータティース201を内外から冷却できるよう構成した点である。なお、本例では冷却液として例えば水を挿通することで冷却を行う冷却通路141を有するステータに本発明の第1発明に係る冷却構造を適用したが、本発明を冷却通路141を有しないステータに適用しても効果があることはいうまでもない。以下、詳細に説明する。
図3及び図4に示す例において、電磁鋼板を軸方向に積層して構成されるステータティース201にコイル202が巻回され、隣り合うステータティース201間には内部に冷却水路を有する冷却パイプ(冷却液通路)141が配置されている。この冷却パイプ141の内外に配置されるボルト204によって、電磁鋼板を軸方向に積層して構成されるステータティース201を軸方向に固定してステータ101を構成している。そして、ステータティース201の中央部には、アウターロータ103側のエアギャップ部205とインナーロータ102側のエアギャップ部206との間を貫通する油抜き穴207が設けられている。
インナーロータ冷却油路208の油は、シールリング部209から流量を制限された形で流出し、空隙部210及び211を経由してインナーロータ102側のエアギャップ部206に到達する。インナーロータ102側のエアギャップ部206に滞留した油は、インナーロータ102の回転によって遠心力を付与され、油抜き穴207を経由してアウターロータ103側のエアギャップ部205に至る。アウターロータ103側のエアギャップ部205に滞留した油は、アウターロータ103の回転によって遠心力を付与され、アウターロータ103の軸方向両側に設けられた貫通孔212及び213からロータ外部に放出される。
上述した構成の本発明の第1発明に係る複軸多層モータのステータ冷却構造では、コイル117からの発熱を、ステータティース201間に設けた冷却液通路141を循環する冷却水で抑えるだけでなく、それに加えて、インナーロータ102側のエアギャップ部206とアウターロータ103側のエアギャップ部205とを貫通してステータティース201内に設けた油抜き穴207を通過する油でも抑えることができる。その結果、複軸多層モータにおいて、冷却性能の向上が可能となり、更なる出力向上が可能となる。
油抜き穴207を設ける位置については特に限定しないが、図4に示すように、ステータティース201内の全ての箇所に油抜き穴207を設けることが好ましい。また、油抜き穴207は、図4に示すように、隣り合う穴が軸方向で等間隔に設けられ、且つ、ステータティース201の軸方向の端部(図3では左側の端部)から直近の穴までの距離が、他の穴と穴とのピッチの半分の位置に設けられことが好ましい。このように構成することで、軸方向で均等に冷却油路が存在する事になり、ステータティースの冷却性能のバラツキを低減することができる。
また、ステータティース201のティース幅は、中央部に配置された油抜き穴207によって磁束通過面積が減少し、周辺の磁束密度が増加した場合にも磁束飽和しないティース幅とすることが好ましい。ステータ101に設けられた油抜き穴207の断面を示す図4において、ティース幅Aに対する油抜き穴207の幅Bの割合が、ステータティース201を半径方向に通過する磁束密度の増加率に相当するが、増加した状態での磁束密度がステータティース201を構成する積層電磁鋼板の飽和磁束密度以下になるように油抜き穴207の幅を設定することで、油抜き穴207を設けたことによる磁束減少が発生せず、出力低下は伴わない。
なお、図3及び図4に示した例では、本発明のステータ冷却構造に関係のある部材のみに符号を付したが、複軸多層モータを構成する他の部材については、符号が付して無くても図2に示す例と基本的に同じである。また、本発明は上述した例に限定されるものでなく、例えば、油抜き穴207を設ける位置や数は、これらの例に限定されるものでないことは明らかである。
次に、本発明のステータ冷却構造の第2発明について説明する。図5は本発明の第2発明に係るステータ冷却構造の一例を説明するための図である。図5に示す本発明の第2発明において、本発明の第2発明に係るステータ冷却構造が適用される複軸多層モータは、コイル302が施され円状に配置されたステータコア301からなるステータ311と、ステータ311を挟んで同心円状に配置されたインナーロータ303とアウターロータ304とから構成されている。
本発明の第2発明に係るステータ冷却構造の特徴は、ステータコア301とコイル302との間に隙間308を設け、この隙間308を介して、ステータ311の内側から外側に、すなわち、インナエアギャップ305からアウターエアギャップ306に、冷却液を導くよう構成した点である。本例では、インナーロータ303とステータ311との間のインナーギャップ305へと供給された冷却液は、インナーロータ303及びアウターロータ304の遠心力やステータ311の内外周の圧力差などによって、ステータコア301とコイル302の隙間308を通り、発熱体の熱を奪いながらアウターエンドギャップ306へと導かれる。なお、309は固定に使用するボルトである。
図6(a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第1実施例を説明するための図である。ここで、図6(a)はステータコア301のティース端部から見た図を、図6(b)はステータコア301のティース周方向(コア円周方向)の断面図を、図6(c)はステータコア301のティース側面から見た図を、それぞれ示している。図6(a)〜(c)に示す冷却通路の第1実施例では、ステータコア301の側面とコイル302との間に隙間308を作り、それを冷却通路として利用している。すなわち、ステータコア301の積層方向端部にステータコア301のコア円周方向幅301Wよりも広い絶縁部材の枕木307を配置し、その上からコイル302を巻装することにより、ステータコア301の側面部に冷却液を導く隙間308を形成している。
図7(a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第2実施例を説明するための図である。ここで、図7(a)はステータコア301のティース端部から見た図を、図7(b)はステータコア301のティース周方向(コア円周方向)の断面図を、図7(c)はステータコア301のティース側面から見た図を、それぞれ示している。図7(a)〜(c)に示す冷却通路の第2実施例では、ステータコア301のコア積層方向端部とコア軸方向側面とに配置した絶縁部材307(端部の絶縁部材307a、側面の絶縁部材307b)のうち、コア軸方向側面に配置した絶縁部材307bとステータコア301のコア側面との間に隙間308を作り、それを冷却通路として利用している。この時、コア軸方向側面の絶縁部材307bに凹凸を設ける事により、熱伝達効率が良い乱流を発生させる事ができる。
図8(a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第3実施例を説明するための図である。ここで、図8(a)はステータコア301のティース端部から見た図を、図8(b)はステータコア301のティース周方向(コア円周方向)の断面図を、図8(c)はステータコア301のティース側面から見た図を、それぞれ示している。図8(a)〜(c)に示す冷却通路の第3実施例では、周方向(コア円周方向)の幅の異なるコア(ここでは幅の大きいコア301−1と幅の小さいコア301−2)を積層してステータコア301を構成することにより、ステータコア301の側面部に冷却液を導く隙間308を形成している。こうする事により、新たな形状の部品を生じさせる事無く、それぞれのコア(コア301−1またはコア301−2)の積層枚数を変更することによって冷却通路の形状を最適化できるので、コストも低減できる。
上述した実施例においては、コア形状がT字型の時でも冷却通路を確保できるように、コイル302のステータコア301に対する相対的な半径方向の位置を規制する機構を備えることが好ましい。例えば、図9に示すように、ステータコア301とコイル302との間に部分的にスペーサ312を配置し、コイル302のステータコア301に対する矢印方向の位置を固定することが好ましい。
以下、上述したステータコア301をステータとして組み立てるための具体的な実施形態を説明する。
図10はくし型フレームを用いたかしめによるステータコア固定構造の一例を説明するための図である。図10に示す例において、くし型のステータのフレーム401は、ステータ軸方向端部で円状に繋がった部分と、その円状の部分の内周と外周とから軸方向に伸びる板状の部分(内周の板状部402と外周の板状部403)と、が一体物として形成されている。このフレーム401には、搭載すべき分割ステータコア301の数と同数のスロットが設けてある。各スロットにステータコア301を配置し、スロットを形成するステータ軸方向に伸びる板状部402及び403をステータの内外周から押さえてかしめることにより、分割ステータコア301とフレーム401とを固定してステータを形成する。この際、フレーム401の板状部402及び403のそれぞれに、ステータの内側から外側へと通じる隙間ができるよう逃げ部404及び405を形成する。冷却液を、内側の板状部402に設けた逃げ部404、ステータコア301の隙間308、外側の板状部403に設けた逃げ部405の順に流すことにより、ステータの内側から外側への冷却通路を形成できる。
図11はくし型フレームを用いた弾性力によるステータコア固定構造の一例を説明するための図である。図11に示す例において、くし型のステータのフレーム501は、ステータ軸方向端部で円状に繋がった部分と、その円状の部分の円周から軸方向に伸びるテーパー角を持った柱状部502と、が一体物として形成されている。また、ステータコア301の内周側端部の形状を、隣り合う板状部502の間にテーパー角によって形成される空間に係合する形状としている。このフレーム501には、搭載すべき分割ステータコア301の数と同数のスロットが設けてある。各スロットにステータコア301を押し込むようにして配置すると、板状部502の弾性力とテーパー角とによって、ステータコア301を外側へと押し出そうとする力が働く。外側へと広がろうとするところをステータ外周からリング状部材503で押さえることにより、ステータを形成する部材の弾性力をもってステータコア301を固定しステータを形成する。この際、フレーム501の内周の板状部502に、ステータの内側から外側へと繋がる隙間504を形成する。冷却液を、内側の板状部502に設けた隙間504、ステータコア301の隙間308、の順に流すことにより、ステータの内側から外側への冷却通路を形成することができる。
図12に図11で用いるフレーム501の一例を示す簡略図である。図12に示す例において、図11に示す部材と同一の部材には同一の符号を付し、その説明を省略する。図12に示す例において、505はフレーム501を構成するステータ軸方向内端部で円状に繋がった円状連結部である。
本発明のステータ冷却構造は、ステータを挟んで同心円状にインナーロータとアウターロータとが配置される複軸多層モータであって、ステータ、特に、ステータを構成するステータコアとコイルとを冷却する必要がある複軸多層モータに好適に用いることができる。
複軸多層モータが適用されたハイブリッド駆動ユニットを示す概略全体図である。 ラビニョオ型遊星歯車列と組み合わされて車両用ハイブリッド変速機を構成する、本発明のステータ冷却構造を備える複軸多層モータを示す縦断側面図である。 本発明の第1発明に係る複軸多層モータのステータ冷却構造の一例を説明するための縦断側面図である。 図3に示す複軸多層モータのステータ冷却構造の縦断正面図である。 本発明の第2発明に係るステータ冷却構造の一例を説明するための図である。 (a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第1実施例を説明するための図である。 (a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第2実施例を説明するための図である。 (a)〜(c)はそれぞれ本発明の第2発明における冷却通路の第3実施例を説明するための図である。 本発明の第2発明に係るステータ冷却構造におけるコイルの位置規制を説明するための図である。 くし型フレームを用いたかしめによるステータコア固定構造の一例を説明するための図である。 くし型フレームを用いた弾性力によるステータコア固定構造の一例を説明するための図である。 図11で用いるフレームの一例を示す簡略図である。
符号の説明
101 ステータ
102 インナーロータ
103 アウターロータ
201 ステータティース
202 コイル
204 ボルト
205 アウターロータ側のエアギャップ部
206 インナーロータ側のエアギャップ部
207 油抜き穴
208 インナーロータ冷却油路
209 シールリング部
210、211 空隙部
212、213 貫通孔
301 ステータコア
302 コイル
303 インナーロータ
304 アウターロータ
305 インナーエアギャップ
306 アウターエアギャップ
307、307a、307b 枕木
308、504 隙間
309 ボルト
311 ステータ
312 スペーサ
401、501 フレーム
402、402、502 板状部
404、405 逃げ部
503 リング状部材
505 円状連結部

Claims (6)

  1. ステータを挟んで同心円状にインナーロータとアウターロータとが配置され、ロータとステータとのエアギャップ部が油室で構成されてなる複軸多層モータのステータ冷却構造において、ステータティースに、インナーロータ側のエアギャップ部とアウターロータ側のエアギャップ部とを貫通する油抜き穴を設け、コイルが巻かれたステータティースを内外から冷却できるよう構成するとともに、ステータティースに設けた油抜き穴は、隣り合う穴が軸方向で等間隔に設けられ、且つ、ステータティースの端部から穴までの距離が、穴と穴とのピッチの半分の位置に設けられ、さらに、ステータティースが、その中央部に配置された前記油抜き穴によって磁束通過面積が減少し、周辺の磁束密度が増加した場合にも、磁束飽和しないティース幅を有するよう構成したことを特徴とするステータ冷却構造。
  2. コイルが施され円状に配置されたステータコアからなるステータと、ステータを挟んで同心円状に配置されたインナーロータとアウターロータとから構成されてなる複軸多層モータのステータ冷却構造において、ステータ軸方向端部で円状に繋がった部分と、その円状の部分の内周と外周とから軸方向に伸び、それぞれステータの内側から外側へと通じる隙間ができるような逃げ部を有する板状の部分と、が一体となったくし型フレームを用い、内周および外周の板状部材から構成されるスロットにステータコアを配置し、内周および外周の板以上の部分を内外周から押さえてかしめることにより、ステータコアをくし型フレームに固定したステータであって、ステータコアとコイルとの間に隙間を設け、このステータ内側から外側に連通した隙間に冷却液を導くよう構成したことを特徴とするステータ冷却構造。
  3. コイルが施され円状に配置されたステータコアからなるステータと、ステータを挟んで同心円状に配置されたインナーロータとアウターロータとから構成されてなる複軸多層モータのステータ冷却構造において、ステータ軸方向端部で円状に繋がった部分と、その円状の部分の内周から軸方向に伸びテーパー角を持った、ステータの内側から外側へと繋がる隙間を有する柱状部と、が一体となったくし型フレームを用い、内周の柱状部から構成されるスロットにステータコアを配置し、外周をリング状部材で押さえることにより、ステータコアをくし型フレームに固定したステータであって、ステータコアとコイルとの間に隙間を設け、このステータ内側から外側に連通した隙間に冷却液を導くよう構成したことを特徴とするステータ冷却構造。
  4. ステータとして、ステータコアの積層方向端部にコア円周方向幅よりも広い絶縁部材を配置し、その上からコイルを巻装することにより、コア側面部に冷却液を導く隙間を形成したステータを用いる請求項2または3に記載のステータ冷却構造。
  5. ステータとして、ステータコアの軸方向側面とコア積層方向端部とに配置した絶縁部材のうち、ステータコアの軸方向側面の絶縁部材とステータコアとの間に冷却液を導く隙間を形成したステータを用いる請求項2または3に記載のステータ冷却構造。
  6. ステータとして、コア円周方向幅の異なるコアを積層してステータコアを構成することで、ステータコアとコイルとの間に冷却液を導く隙間を形成したステータを用いる請求項2または3に記載のステータ冷却構造。
JP2003364437A 2003-04-04 2003-10-24 ステータ冷却構造 Expired - Fee Related JP4120558B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364437A JP4120558B2 (ja) 2003-04-04 2003-10-24 ステータ冷却構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003101329 2003-04-04
JP2003364437A JP4120558B2 (ja) 2003-04-04 2003-10-24 ステータ冷却構造

Publications (2)

Publication Number Publication Date
JP2004320974A JP2004320974A (ja) 2004-11-11
JP4120558B2 true JP4120558B2 (ja) 2008-07-16

Family

ID=33478892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364437A Expired - Fee Related JP4120558B2 (ja) 2003-04-04 2003-10-24 ステータ冷却構造

Country Status (1)

Country Link
JP (1) JP4120558B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044237B2 (en) 2013-01-31 2018-08-07 Yasa Limited Pole shoe cooling gap for axial motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499052B2 (ja) * 2006-03-20 2010-07-07 本田技研工業株式会社 電動機
JP2008283730A (ja) * 2007-05-08 2008-11-20 Sumitomo Electric Ind Ltd 電動機用分割固定子、この分割固定子を備える電動機用固定子、この電動機用固定子を備える電動機及び電動機用分割固定子の製造方法
WO2020184811A1 (ko) * 2019-03-08 2020-09-17 주식회사 이플로우 축방향 권선형 모터

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044237B2 (en) 2013-01-31 2018-08-07 Yasa Limited Pole shoe cooling gap for axial motor

Also Published As

Publication number Publication date
JP2004320974A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
CN100380787C (zh) 用于旋转电机的磁路结构
JP2005012989A (ja) 回転電機におけるステータの冷却構造
JP2004312845A (ja) モータ用ステータ
JP2005057819A (ja) 回転電機
JP4120558B2 (ja) ステータ冷却構造
JP3627559B2 (ja) 多層モータ
WO2021149720A1 (ja) 磁極片装置、磁気歯車、磁気ギアードモータ並びに磁気ギアード発電機
JP2004068982A (ja) 複軸多層モータのベアリング予圧構造
JP2005218207A (ja) 複軸多層モータのステータ構造
JP4111117B2 (ja) 回転電機の回転センサー配置構造
JP2005137126A (ja) 固定子のコイル構造及び製造方法
JP4135627B2 (ja) 回転電機のステータ構造
JP2004072949A (ja) 複軸多層モータのメカニカルシール構造
JP2004072950A (ja) 複軸多層モータのステータ冷却パイプ支持構造
JP2004312800A (ja) 複軸多層モータのステータ構造
JP2004072945A (ja) 複軸多層モータの冷却構造
JP2005168205A (ja) 回転電機のステータコア構造
JP2005168194A (ja) 回転電機のアウターロータ支持構造
JP2004072948A (ja) 複軸多層モータのアウターロータ支持ベアリング取り付け構造
JP4114621B2 (ja) 回転電機の構造
JP2006014560A (ja) 回転電機のステータコア構造
JP2004072947A (ja) 複軸多層モータのステータ冷却構造
JP2005130587A (ja) 複軸多層モータのステータコア支持構造
JP3885755B2 (ja) 複軸多層モータのステータ構造
JP4135611B2 (ja) 回転電機のステータ構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees