JP2004071308A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2004071308A
JP2004071308A JP2002227886A JP2002227886A JP2004071308A JP 2004071308 A JP2004071308 A JP 2004071308A JP 2002227886 A JP2002227886 A JP 2002227886A JP 2002227886 A JP2002227886 A JP 2002227886A JP 2004071308 A JP2004071308 A JP 2004071308A
Authority
JP
Japan
Prior art keywords
electrode
plate
solid electrolyte
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002227886A
Other languages
English (en)
Other versions
JP4511779B2 (ja
Inventor
Kenji Higashiyama
東山 健二
Masanori Konishi
小西 政則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002227886A priority Critical patent/JP4511779B2/ja
Publication of JP2004071308A publication Critical patent/JP2004071308A/ja
Application granted granted Critical
Publication of JP4511779B2 publication Critical patent/JP4511779B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】従来の矩形平板状の固体電解質基板を積層した内部マニホールド型の燃料電池は、複雑な形状のセパレータや特殊な材料よりなるセパレータが必要であり、直列接続の燃料電池しか構成できず、積層体間の密封を保つために特殊な封止材やガスケット材料が必要であり大容量の業務用燃料電池が中心で高価なものであった。
【解決手段】本発明の燃料電池は、固体電解質基板の両面に形成された異なる極の電極膜が互いの位置が反転した位置に形成されており、2組の挟着電極金属板が固体電解質基板の異なる位置を挟着することにより、一方の挟着電極金属板が一方の電極膜とのみ接触し他方の電極膜とは接触しないように形成され、他方の挟着電極金属板が一方の電極膜の端部と接触せずに他方の電極膜とのみ接触するように形成されて単電池が構成されており、複数の単電池が多孔質体、ガス分離・分配板、セパレータとともに積層された積層構成体において、種類の異なるガスの給排路となる2系統の開口部が形成されている。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、矩形平板状の固体電解質電極板を用いた積層構造を有する内部マニホールド型の燃料電池に関するものである。特に、矩形平板状の固体電解質電極板に形成された酸素電極膜と燃料電極膜のそれぞれに電極を接続して構成された単電池を複数積層した燃料電池に関するものである。
【0002】
【従来の技術】
近年、各種燃料ガスが有している化学エネルギーを電気エネルギーに直接変換できる燃料電池が注目を集めており、特に、環境に優しく効率のよいという特性から種々のタイプが開発され、一部実用化されている。化学エネルギーを電気エネルギーに変換する電解質には各種のものがあるが、開発の焦点は高分子膜の電解質及び固体電解質に集中している。固体電解質を用いた燃料電池には大別すると、円筒型と平板型の2種類がある。この内、平板型燃料電池の酸素ガス及び燃料ガスを導入する方式を大別すると、外部マニホールド型と内部マニホールド型の2種類がある。内部マニホールド型の燃料電池は、ガスの気密性が優れており、コンパクトな燃料電池を作製できる点で優れている。内部マニホールド型の燃料電池としては、種々の構造のものが提案されており、従来の内部マニホールド型の燃料電池の代表的な一例を図面を用いて以下に説明する。
【0003】
図21及び図22は、特許第2966548号により開示された従来の燃料電池である。図21は固体電解質の単電池を示す斜視図であり、図22は図21の単電池を収納した板状体を複数積層した燃料電池の斜視図である。図21において、イットリウムをドープしたジルコニアよりなる固体電解質層342の一方の表面に燃料極343、例えばNiとZrOのサーメット形成し、他方の表面に酸素極341、例えばLaMnOよりなる多孔質電極を形成している。酸素極341側には樋状の凹部を有する形状のセパレータ344、例えばLaCrOの焼結体が接合されている。凹部の内部には柔軟な導電体345、例えばLaMnOのフェルト状体が設けられており、酸化剤ガス、例えば空気が通る複数の流路346が形成されている。このように酸素極341、固体電解質層342、燃料極343及びセパレータ344により単電池340が形成されている。
【0004】
図22は図21に示した単電池340を収納した板状体を複数枚積層した燃料電池の分解斜視図であり、単電池を340a,340bとして示す。図22に示すように、第1板状体351aの略中央部分に形成された大きな開口部には単電池340aが接合されている。第1板状体351aには単電池340aにおいて空気が流れる流路346の両側の位置に空気用給排路となる開口355a,355bが形成されている。第1板状体351aにおいて、それぞれが独立した燃料ガス用給排路となる開口352a,352bは、空気用給排路となる開口355a,355bと単電池340aの中心に対して略90゜回転した位置に形成されている。
【0005】
第2板状体351bは第1板状体351aの下側に接して配設され積層されている。第2板状体351bの略中央部分に形成された大きな開口部には燃料ガス流路となる電気伝導性多孔体358が接合されており、第1板状体351aの燃料ガス用給排路となる開口352a,352bと対応する位置に開口353a,353bが形成されている。電気伝導性多孔体358は、例えばNiのメタルファイバー多孔質材で構成され、第1板状体351aの単電池340aの直下に配置されて単電池340aと電気的に接触するように構成されている。それぞれが独立した空気用給排路となる開口356a,356bは、第2板状体351bの燃料ガス用給排路となる開口353a,353bと電気伝導性多孔体358の中心に対して略90゜回転した位置に形成されている。
【0006】
第2板状体351bの下側には第1板状体351aと同じ構成の第3板状体351cが配設されている。上記のように積層された第1板状体351aから第3板状体351cの積層体と同様に、第3板状体351cの下の第4板状体以降の積層体が構成され、燃料電池が構成されている。このように構成された燃料電池において、酸素極341(図21)に連通する空気用給排路となる開口355a、355bに空気を流す。また、空気流が絶縁された燃料極343に連通する燃料ガス用給排路となる開口352a、352bには燃料ガスを流し、固体電解質層342を約800℃に加熱して電力を取り出すよう構成されている。
【0007】
【発明が解決しようとする課題】
矩形平板状の固体電解質電極板を用いた積層構造の従来の内部マニホールド型の燃料電池においては、下記の課題を有している。
1.セパレータ材料の低コスト化
セパレータ材としては、高温の動作温度に耐え、電気伝導性を有し、その熱膨張係数が使用する固体電解質基板やその他の材料に近似しているという条件を満たす必要がある。従来の燃料電池においてはLaCrO等の酸化物系焼結体やNiをベースとした金属材料が用いられており、これらの材料は高価である。
【0008】
2.燃料電池に用いられている材料の低コスト化
単電池を積層し各単電池を直列に接続して構成された燃料電池から起電力を取り出すためには、各単電池の材料が導電体であることが条件となっている。また、一部の材料はガス体を通す必要がある。さらに、800℃以上の高温雰囲気中において組成変化しない材料であり、且つ各材料において熱膨張係数がある程度整合することも重要な条件となっている。これらの条件を満たす材料は少なく、選択幅が小さくなっており、その選択幅の中にある材料は高価な材料が主である。したがって、これらの材料で構成された従来の燃料電池は、製造コストの上昇につながっていた。
【0009】
3.セパレータ製造の容易化
セパレータ材には酸素或いは燃料ガスを通すための流路を形成する必要があり、複数の溝を有するセパレータが用いられている。LaCrO等の酸化物系焼結体に複数の溝を形成するには高度な加工技能と、高価な設備が必要である。また、金属系材料に溝を形成する場合には切削加工が必要である。このように溝付きのセパレータを形成するためには、いずれの材料を用いた場合でもコストアップにつながっていた。
【0010】
4.セパレータレスの燃料電池の実現
従来の燃料電池の積層構造において、単電池同士を導電体で連結した直列接続構造であるため、酸化剤ガスと燃料ガスとを分離するためのセパレータは必要であり、セパレータのない燃料電池の実現は不可能であった。
【0011】
5.単電池の並列接続の実現
従来の燃料電池においては、単電池の酸素電極と燃料電極とを直接接続する構成であるため、単電池の直列接続でしか燃料電池は構成できなかった。低電圧で容量を大きくすることができる並列接続の燃料電池は実現できていなかった。
【0012】
6.高い気密性
従来の燃料電池において、ガス流路を有するセパレータや前記従来例で示した板状体351a、351b、351cに対して単電池をガスもれすることなく接合することは困難であった。特に、ジルコニア系固体電解質は800℃以上の高温度で動作させる必要があるため、材料間の熱膨張係数の少しの違いが接合部の外れにつながり、気密性を保持することが非常に困難であった。
【0013】
7.ジルコニア系固体電解質の使用による材料限定
ジルコニア系固体電解質は動作温度が高く、通常動作温度は800℃以上であるため、このジルコニア系固体電解質を用いた燃料電池においては使用できる材料が限定されている。
以上のように、従来の内部マニホールド型の燃料電池においては各種の課題を有していた。
【0014】
【課題を解決する手段】
本発明に係る燃料電池は、矩形平板状の固体電解質基板の表裏両面の一方の面に酸素電極膜を形成し、他方の面に燃料電極膜を形成した固体電解質電極板と、前記固体電解質電極板の表裏両面と実質的に同一平面内で、前記酸素電極膜又は前記燃料電極膜に電気的に互いに独立して接続された2組の挟着電極金属板とを有する単電池を具備し、前記単電池を1個或いは複数個の積層で構成されている。このように構成された本発明の燃料電池は、単電池の同一平面内で酸素電極、燃料電極両方に絶縁状態で電極を接続できる構造を提案している。
【0015】
本発明の他の観点による燃料電池は、2組の挟着電極金属板のそれぞれが矩形平板状の固体電解質基板の異なる少なくとも1辺を異なる電極膜に接触するように挟み込み弾性力により挟着する2枚の金属薄板により構成され、
前記固体電解質基板に2組の前記挟着電極金属板が挟着された単電池の一方の面側に多孔質体、燃料ガス分離・分配板及びセパレータを積層し、そして前記単電池の他方の面側に多孔質体、空気ガス分離・分配板及びセパレータを積層して構成された単セルを複数積層した燃料電池であって、
前記挟着電極金属板、前記燃料ガス分離・分配板、前記空気ガス分離・分配板及び前記セパレータのそれぞれの外周部分近傍に燃料ガスが流通するための燃料ガス給排路となる開口及び空気ガスが流通するための空気ガス給排路となる開口がそれぞれ形成されており、当該燃料電池内に前記燃料ガス給排路と前記空気ガス給排路が互いに連通しない2系統のガス給排路となるよう構成されている。このように構成された本発明の燃料電池は、2枚の金属薄板で固体電解質電極板を両側から挟み込み、金属薄板の弾性力で酸素電極膜或いは燃料電極膜に電気的に接続する構造であり、その両面にガス分離・分配板、セパレータを積層し、それらの外周部に2系統の連結しないガス給排路を設けた構成を有し、他の部材を介して隣接する単電池間の導通は挟着電極金属板間で連結する構造を有している。
【0016】
本発明のさらに他の観点による燃料電池は、2系統うちの一方のガス給排路が前記固体電解質電極板の一方の電極膜面にガス流を送り、他方のガス給排路が前記固体電解質電極板の他方の電極膜面にガスを送るよう構成されている。このように構成された本発明の燃料電池は、ガス流路を従来の如く溝形状のセパレータに形成する必要がないので構造が単純となりコストダウンに大きく貢献できる。
【0017】
本発明のさらに他の観点による燃料電池は、2系統のガス給排路において、前記固体電解質電極板の一方の電極膜面に流れるガス流の方向と、前記固体電解質電極板の他方の電極膜面に流れるガス流の方向が実質的に直角方向に流れるよう構成されている。このように構成された本発明の燃料電池は、内部マニホールド型の燃料電池を容易に簡単な構成で実現できる。
【0018】
本発明のさらに他の観点による燃料電池は、単セルが複数個積層された積層構成体の積層方向における両外側部分にガス分離・分配・保温板と、前記ガス分離・分配・保温板のさらに両側最外部分に、ガス給排口を有する剛性のある金属板がそれぞれ積層されている。このように構成された本発明の燃料電池は、絶縁性と耐熱性を有し、且つ熱伝導性の悪い材料を用いてガス分離・分配・保温板が形成されて積層構成体の最外層に用いているので、燃料電池からの熱の放散が抑制され省エネルギー効果を実現でき、更に両外側部分に剛性のある金属板を有し、この金属板をビスで締め付ける構成であるためガス漏れの少ない構造を簡単に実現できる。
【0019】
本発明のさらに他の観点による燃料電池は、複数の固体電解質電極板を有する積層構成体において、他の部材を介して隣接する固体電解質電極板の対向する電極膜が異なる極となるように構成されている。このように構成された本発明の燃料電池は、直列構造の燃料電池を容易に構成することができる。
【0020】
本発明のさらに他の観点による燃料電池は、固体電解質基板の表裏両面の一方の面と他方の面に異なる電極膜が形成されており、一方の電極膜が前記固体電解質基板の一方の端部近傍に偏って配設され、他方の電極膜が前記固体電解質板の他方の端部近傍に偏って配設されている。このように構成された本発明の燃料電池は、固体電解質電極板とほぼ同一平面内で電気的に独立した状態で酸素電極膜及び燃料電極膜に電極板が接続可能となる。
【0021】
本発明のさらに別な観点による燃料電池は、固体電解質電極板の表裏両面の一方の面に酸素電極膜が形成され、他方の面に燃料電極膜が形成された燃料電池において、前記酸素電極膜と前記燃料電極膜のパターン位置が前記固体電解質電極板の中心より異なる方向に変位しており、且つ前記酸素電極膜のパターンと前記燃料電極膜のパターンが反転した位置に形成されており、前記固体電解質電極板を挟着する2組の挟着電極金属板が前記酸素電極膜又は前記燃料電極膜の周辺部のいずれかを圧接するように配設されている。このように構成された本発明の燃料電池は、固体電解質電極板の少なくとも1辺とそれと対抗する他辺を挟着電極金属板で挟み込み、前記挟着電極金属板が前記固体電解質電極板に圧接した構成であり、この圧接部分において電気的に接続する構成であるため、燃料電池が高温に成っても接続材料間の熱膨張率が少し異なっていても接続部分の滑りにより熱膨張係数の違いを吸収するので接触部分に歪み、ストレスが残らない電気的接続構造が実現できる。
【0022】
本発明のさらに別な観点による燃料電池は、固体電解質電極板と当該固体電解質電極板を挟着する挟着電極金属板とを有する単電池において、前記固体電解質電極板の端部を挟着して接合された挟着電極金属板が前記酸素電極膜或いは前記燃料電極膜と電気的に接触し、前記挟着電極金属板の周辺部に1個或いは複数個のガス給排路となる開口部がそれぞれ独立して形成されている。このように構成された本発明の燃料電池は、周辺部に2系統の独立したガス流路となる開口を有しているので、従来の燃料電池のような固体電解質の電極膜面に平行なガス流路となる複数の溝が不要となり、構造が単純化できコストダウンに貢献できる。
【0023】
本発明のさらに他の観点による燃料電池は、挟着電極金属板が固体電解質電極板の端部の表裏両面を挟む少なくとも2枚の金属薄板より構成されており、前記固体電解質電極板の少なくとも2箇所の端部を挟んだ2組の挟着電極金属板において、
一方の組の挟着電極金属板の表面の金属薄板が前記固体電解質電極板の表面の電極膜を圧接し、当該一方の組の挟着電極金属板の裏面の金属薄板が前記固体電解質電極板の裏面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、
他方の組の挟着電極金属板の表面の金属薄板が前記固体電解質電極板の表面の電極膜に接触せずに前記固体電解質電極板を圧接し、当該他方の組の挟着電極金属板の裏面の金属薄板が前記固体電解質電極板の裏面の電極膜を圧接するように構成されている。このように構成された本発明の燃料電池は、固体電解質電極板に形成された表裏両面の電極膜が互いに偏った位置に形成されており、この電極膜の形成されている部分を2組の挟着電極金属板が2枚の弾性を有する金属薄板により挟み込む構造である。一方の組の挟着電極金属板は、2枚の金属薄板の一方が一方の面に形成された電極膜に接触し、他方の金属薄板が他方の電極膜に接触しておらず、他方の組の挟着電極金属板は、2枚の金属薄板の一方が一方の電極膜に接触しておらず、他方の金属薄板が他方の電極膜に接触している構造である。そして、2組の挟着電極金属板は電気的に絶縁状態であるため、本発明の実質的な同一平面内において酸素電極膜及び燃料電極膜に対して独立して電極接続することが実現できた。
【0024】
本発明のさらに別な観点による燃料電池は、単電池、ガス分離・分配板、セパレータ及びガス分離・分配・保温板による積層構成体において、各々の外周部分に連通する開孔を有し、当該開孔に棒状の電気伝導体を挿入して、酸素電極膜又は燃料電極膜に接続した2組の挟着電極金属板の一方の挟着電極金属板の開孔又は他方の挟着電極金属板の開孔に電気的に接続し、複数個の前記電気伝導体の導出部分に外部リード線を接続した構造を有する。このように構成された本発明の燃料電池は、矩形平板状の固体電解質電極板に電気的に独立した挟着電極金属板が形成されており、挟着電極金属板の開孔を設けて電気的に接続する構成であるため、従来の燃料電池のように積層構成体の全ての材料が導電性である必要がなくなり材料選択の幅が広がり絶縁性耐熱性材料が使用でき安価な材料の使用が可能となる。
【0025】
本発明のさらに別な観点による燃料電池は、固体電解質電極板の表裏両面の異なった位置に形成された酸素電極膜又は燃料電極膜を少なくとも2組の挟着電極金属板で挟着した単電池の両側のそれぞれに多孔質体、ガス分離・分配板及びセパレータを積層した単セルを複数積層した積層構成体において、
一つの単電池の表面側を酸素電極膜とした場合、積層された単電池の全ての表面側が酸素電極膜となり、裏面側が燃料電極膜となるように積層され、且つ、積層された各表面側及び裏面側の電極膜の位置が互い違いに異なるように形成されており、前記酸素電極膜が一方の挟着電極金属板に接続されており、燃料電極膜が他方の挟着電極金属板に接続された構成を有し、
前記積層構成体における複数の単セルにおいて、他の部材を介して隣接する単セルの下側の単電池の酸素電極膜が上側の単電池の燃料電極膜に電気的に接続され、当該下側の単電池の燃料電極が更に下側の単電池の酸素電極膜に電気的に接続されることにより、前記積層構成体における複数の単セルの単電池が直列に接続されている。このように構成された本発明の燃料電池は、積層された挟着電極金属板を有する単電池において、挟着電極金属板を接続するという簡単な構成で直列接続の燃料電池を実現できる。本発明においては挟着電極金属板により電気的に接続する構成であるため、多孔質体やセパレータは導電性材料である必要がなく絶縁材料が使用できる。
【0026】
本発明のさらに別な観点による燃料電池は、固体電解質電極板の表裏両面の一方の面に酸素電極膜が形成され、他方の面に燃料電極膜が形成され、少なくとも2組の挟着電極金属板で挟着した単電池の両側のそれぞれに多孔質体、ガス分離・分配板及びセパレータを積層した単セルを複数積層した積層構成体において、一つの単電池の表面側を酸素電極膜とした場合、積層された単電池の全ての表面側が酸素電極膜となり、裏面側が燃料電極膜となるように積層され、且つ、積層された各表面側及び裏面側の電極膜の位置が同一方向に変位して形成されており、前記酸素電極膜が一方の前記挟着電極金属板を介して一方の電気伝導体に接続されており、前記燃料電極膜が他方の前記挟着電極金属板を介して他方の電気伝導体に接続されて、前記単電池を電気的に並列接続をしている。このように構成された本発明の燃料電池は、積層した単電池における挟着電極金属板の開孔で電気的に接続することにより、簡単に積層構成体内での並列接続の燃料電池を実現できる。
【0027】
本発明のさらに別な観点による燃料電池は、固体電解質基板の表裏両面における反転した位置に酸素電極膜又は燃料電極膜が形成され、かつ前記固体電解質基板を前記酸素電極膜又は前記燃料電極膜に電気的に接触するように2枚の金属薄板により挟みその弾性力により圧接した2組の挟着電極金属板を有する単電池と、前記単電池の一方の面側に多孔質体、燃料ガス分離・分配板とを積層し、他方の面側に多孔質体、空気ガス分離・分配板とを積層した単セルをさらに複数積層した積層構成体において、
前記積層構成体の両側最外部分にガス分離・分配・保温板が配置され積層されており、前記電極金属板、燃料ガス分離・分配板、空気ガス分離・分配板及びガス分離・分配・保温板の外周部分の近傍に燃料ガス及び空気ガスが流通するためのガス給排路となる開口部が形成されており、前記燃料ガス給排路と空気ガス給排路が互いに連通しない2系統のガス給排路が形成されている。このように構成された本発明の燃料電池においては、固体電解質電極板をセパレータの機能を持たせているため、セパレータレスの構成が簡単に作製でき、材料削減が可能となり大きくコストダウンを図ることができる。
【0028】
本発明のさらに別な観点による燃料電池は、単セルが複数個積層された積層構成体の積層方向における両最外部にガス給排口を有する剛性のある金属板を積層している。
【0029】
本発明のさらに別な観点による燃料電池は、挟着電極金属板が固体電解質電極板の端部の表裏両面を挟む少なくとも2枚の金属薄板より構成されており、前記固体電解質電極板の端部を前記2枚の金属薄板より挟着する2組の挟着電極金属板において、
一方の組の挟着電極金属板の表面側の金属薄板が前記固体電解質電極板の表面の電極膜に圧接し、当該一方の組の電極金属板の裏面側の金属薄板が前記固体電解質電極板の裏面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、
他方の組の挟着電極金属板の表面側の金属薄板が前記固体電解質電極板の表面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、当該他方の組の電極金属板の裏面側の金属薄板が前記固体電解質電極膜の裏面の電極膜を圧接するように構成されている。このように構成された本発明の燃料電池は、固体電解質電極板を挟着電極板により接続する構成とすることにより、セパレータレスの燃料電池が実現できる。
【0030】
本発明のさらに別な観点による燃料電池は、複数の固体電解質電極板を有する積層構成体において、他の部材を介して隣接する固体電解質電極板の対向する電極が同じ極となるように構成されている。このように構成された本発明の燃料電池においては、固体電解質電極板の表裏の電極面を挟着電極金属板により接続する単電池を用いて、他の部材を介して隣接する単電池の対向する電極膜が同極同士でも挟着電極金属板により電気的に接続できるため、対向する電極面を同極にすることによりセパレータなしの燃料電池を実現している。
【0031】
本発明のさらに別な観点による燃料電池は、複数の固体電解質電極板を有する積層構成体において、隣り合い対向する固体電解質電極板の間の空間には同一のガスが流れ、前記固体電解質電極板における対向しない面には前記ガスと直交する別のガスが流れるように構成されている。このように構成された本発明の燃料電池は、固体電解質電極板の電極膜との接続を挟着電極金属板による構造としたため、単電池の間の接続が任意にできるようになり固体電解質電極板をセパレータとして兼用でき、従来の燃料電池におけるセパレータを省略することが実現できる。
【0032】
本発明のさらに別な観点による燃料電池は、複数の単セルを有する積層構成体の両側最外部分にガス分離・分配・保温板が配置された積層体において、
挟着電極金属板とガス分離・分配板の外周部分に1個或いは複数個のガス給排路となる開口部を有して2系統のガス給排路が形成され、
隣り合い対向する固体電解質電極板において一方の固体電解質電極板の酸素電極膜を挟着した酸素側挟着電極金属板と他方の固体電解質電極板の燃料電極膜を挟着した燃料側挟着電極金属板とを電気伝導体により連結し、
更に前記他方の固体電解質電極板の酸素電極膜を挟着した酸素側挟着電極金属板と当該固体電解質電極板と隣り合い対向する別の固体電解質電極板の燃料電極膜を挟着した燃料側挟着電極金属板とを別の電気伝導体により連結し、
順次交互に各電極膜に接続された酸素側挟着電極金属板と燃料側挟着電極金属板とを異なる電気伝導体により連結して複数の単セルを電気的直列接続で構成している。このように構成された本発明の燃料電池においては、積層された単電池を直列接続して且つセパレータを無くした燃料電池を実現できる。
【0033】
本発明のさらに別な観点による燃料電池は、矩形平板状の固体電解質基板の表裏両面の一方の面に酸素電極膜を形成し、他方の面に燃料電極膜を形成した固体電解質電極板と、前記固体電解質電極板の前記酸素電極膜又は前記燃料電極膜のいずれかに接触するように弾性力により圧接して挟む2枚の金属薄板を有する2組或いは複数組の挟着電極金属板とを有する単電池を具備し、
前記単電池の両面側に多孔質体、ガス分離・分配板及びセパレータをそれぞれ積層した単セルを複数積層した積層構成体において、前記挟着電極金属板、前記ガス分離・分配板及び前記セパレータの外周部分近傍に燃料ガスが流れる燃料ガス給排路となる開口部及び空気ガスが流れる空気ガス給排路となる開口部が複数形成されており、前記燃料ガス給排路と前記空気ガス給排路が互いに連通しない2系統のガス給排路となるよう構成されている。このように構成された本発明の燃料電池は、挟着電極金属板を用いることにより、固体電解質電極板と実質的な同一平面内で単電池を構成することができ、この単電池を複数枚積層することにより、単位容積当たりの発電量の大きな燃料電池を実現することができる。
【0034】
本発明のさらに別な観点による燃料電池は、積層構成体において、各単電池における積層方向の挟着電極金属板を棒状の電気伝導体で電気的に接続している。このように構成された本発明の燃料電池は、各単電池間の電気的接続を挟着電極金属板を剛直な電気導電体により連結する構成を有しているため、各単電池間の電気的接続の信頼性の高い燃料電池となる。
【0035】
本発明のさらに他の観点による燃料電池は、ガス分離・分配板、ガス分離・分配・保温板及びセパレータが緻密質、且つ耐熱性と絶縁性を有する材料で形成してもよい。このように構成された本発明の燃料電池は、積層された単電池間の電気的接続を挟着電極金属板により行うよう構成されているため、従来の燃料電池のように導電性材料である必要がなくコストの安い耐熱性と絶縁性を有する材料が適用でき、選択できる材料範囲が広がり信頼性の向上に貢献できる。
【0036】
本発明のさらに他の観点による燃料電池は、ガス分離・分配板、ガス分離・分配・保温板及び、セパレータの熱膨張係数が、5×10−6〜15×10−6の範囲内にある耐熱性と絶縁性を有する材料で構成してもよい。このように構成された本発明の燃料電池は、所望の熱膨張係数の範囲内であれば導電性材料及び絶縁性材料共に使用できる。
【0037】
本発明のさらに他の観点による燃料電池は、ガス分離・分配板、ガス分離・分配・保温板、及びセパレータが、マイカ、セラミックス素材或いはガラス素材で形成してもよい。このように構成された本発明の燃料電池は、特にマイカ板や各種セラミックスファイバーを成型焼成した板状体等が好適である。
【0038】
本発明のさらに他の観点による燃料電池において、挟着電極金属板は、熱膨張係数が4×10−6〜20×10−6の範囲にある金属材料で構成してもよい。このように構成された本発明の燃料電池は、より好適には8×10−6〜15×10−6の範囲の金属材料が挟着電極金属板には適している。
【0039】
本発明のさらに他の観点による燃料電池において、挟着電極金属板は、鉄合金板、ニッケル合金板、コバルト合金板、ニッケル−コバルト合金或いはステンレス鋼板により形成してもよい。このように構成された本発明の燃料電池は、挟着電極金属板の熱膨張係数が本発明で使用する固体電解質基板の熱膨張係数に近似しており、且つ、耐酸化性に優れ、高温における弾性力を保持するものである。特に、挟着電極金属板としてはニッケルベースの金属材料が高温度においても弾性力が保持され、耐酸化性に優れている。
【0040】
本発明のさらに他の観点による燃料電池は、挟着電極金属板の片面或いは両面の全面或いは一部分に、金、銀、ニッケル或いはアルミニウム皮膜を形成してもよい。このように構成された本発明の燃料電池は、上記のように表面処理を施すことにより高温環境下での材料酸化が少なくなり接続部分の信頼性を向上させることができる。
【0041】
本発明のさらに他の観点による燃料電池において、セパレータは電気伝導性を有し且つ緻密質な材料で構成してもよい。このように構成された本発明の燃料電池は、挟着電極金属板による電気的接続に加えて、セパレータを電気伝導性材料で構成することにより電気的接続はより信頼のおけるものとなる。
【0042】
本発明のさらに他の観点による燃料電池は、単電池の挟着電極金属板を電気的に接合する棒状の電気伝導体がネジを有する金属製のビスよりなり、各挟着電極金属板が前記ビスに貫通されナットにより締め付けて接続する構造を有し、複数の単電池を電気的に直列状態或いは並列状態で接続したビスの導出端部に外部リード線が接続されている。このように構成された本発明の燃料電池は、ネジ部を有する材料で接続すれば、このネジ部で挟着電極金属板をナットで両側から締め付けられるのでより確実な接続を確保することが可能となる。
【0043】
本発明のさらに他の観点による燃料電池は、棒状の電気伝導体が、鉄合金材、ニッケル合金材、コバルト合金材、ニッケル−コバルト合金材或いはステンレス鋼材のいずれかで構成してもよい。このように構成された本発明の燃料電池は、電気伝導体の材料の熱膨張係数が燃料電池構成体の材料と近似しているため、熱歪みが生じ難く、且つ電気伝導体の材料が耐酸化性を有しているので接続部分の信頼性を維持できる。
【0044】
本発明のさらに他の観点による燃料電池は、多孔質体が、矩形形状、複数の角柱形状或いは複数の円柱形状により形成されていてもよい。従来の燃料電池では多孔質体が電気的に接続する機能を有することが必要な条件であったが、本発明ではその必要がなくなり固体電解質電極板の振動、衝撃による破損を防止するのが多孔質体の主目的となる。本発明によれば、そのため多孔質体が部分的に存在すればよく円柱形状や角柱形状でもよく、材料の節約が可能となりコストダウンを図ることが可能となる。
【0045】
本発明のさらに他の観点による燃料電池は、多孔質体が、金属或いは非金属材の多孔質材料により形成してもよい。このように構成された本発明の燃料電池においては、材料の選択範囲が広がりより好適な材料選択ができる。
【0046】
本発明のさらに他の観点による燃料電池は、多孔質体が、無機材料の繊維よりなる不織材或いは発泡材、或いは金属材料の繊維よりなる不織材或いは発泡材により形成してもよい。このように構成された本発明の燃料電池は、特に無機材料の多孔質材を用いれば目的機能が維持でき、且つコストダウンを図ることができる。
【0047】
本発明のさらに他の観点による燃料電池は、燃料電池の最外層のガス給排口を有する金属板が、鉄合金板、ニッケル合金板、コバルト合金板、ニッケル−コバルト合金板或いはステンレス鋼板よりなる剛性を有する材料で形成されており、前記金属板を単セルの積層構成体の最外部両側面に配設し、且つ前記金属板のガス給排口が前記積層構成体のガス給排路に連通するよう配設し、前記金属板を棒状の電気伝導体で締め付け固着している。このように構成された本発明の燃料電池は、剛直な金属板で締め付ける構成であるため、ガスもれの無い燃料電池が簡単に作製できる。
【0048】
本発明のさらに他の観点による燃料電池において、固体電解質基板は、結晶構造がペロブスカイト型のバリウム・セリウム・ガドリニウム系酸化物セラミックス材料、バリウム・セリウム・ガドリニウム・ジルコニウム系酸化物材料、或いはバリウム・セリウム・ガドリニウム・アルミニウム系酸化物で形成してもよい。このように構成された本発明の燃料電池は、従来のイットリウムをドープしたジルコニア系固体電解質材に比べ、固体電解質基板の組成はその動作温度が低く材料選択の幅が広がり民生向けの低価格の燃料電池を提供することができる。特に本発明における挟着電極金属板による接続方式の燃料電池は、上記のような固体電解質材料を使うことにより実現することが可能となった。
【0049】
本発明のさらに他の観点による燃料電池は、固体電解質基板がグリーンシート工法で形成された1枚のシート或いは複数枚のシートを積層・焼成した材料から形成してもよい。このように構成された本発明の燃料電池は、グリーンシート工法により形成した固体電解質基板を用いることにより、均質で薄い固体電解質基板の材料を得ることができる。
【0050】
【発明の実施の形態】
以下、本発明に係る燃料電池の好適な実施例について添付の図面を参照しつつ説明する。
【0051】
《実施例1》
図1から図11は本発明の燃料電池に係る実施例1に関する図である。図1は本発明に係る実施例1の燃料電池の基本構成部を示す分解斜視図である。図2は固体電解質電極板の斜視図である。図3は固体電解質電極板への挟着電極金属板を取り付ける構造の一例を示した分解斜視図である。図4は図3の完成斜視図であり、図5は図4のIII−III線による断面図である。
【0052】
図6は本発明に係る実施例1の別の燃料電池の構成を示す分解斜視図であり、燃料電池の基本構成部に別の形状の多孔質体を用いた場合を示している。図7は本発明に係る実施例1のさらに別の燃料電池の構成を示し、基本構成部にさらに別の形状の多孔質体を用いている。図8は実施例1の単電池を3層積層した燃料電池の基本部分を示す分解斜視図である。図9は図8のIV−IV線による断面図である。図10は図8に分解して示した基本部分を組み立てた斜視図である。図11は燃料電池の完成状態を示す斜視図である。
【0053】
以下、本発明に係る実施例1の燃料電池の構成について図を参照しつつ説明する。
先ず、図1に示した実施例1の燃料電池の基本構成部について説明する。図1は本発明の燃料電池において主要部分となる基本構成部の分解斜視図である。図1に示す基本構成部は、固体電解質電極板13を1枚を用いた最低単位の燃料電池である単セルである。この単セルは、後述する単電池1、この単電池1の両側に配設されたガス分離・分配板4,5、及びセパレータ6,7等により構成されている。
【0054】
固体電解質電極板13は矩形形状の固体電解質基板の両面における一方の面に酸素電極膜が形成されており、他方の面に燃料電極膜が形成されている。矩形形状の固体電解質電極板13における隣接した2辺には、固体電解質電極板13を挟み込み、固体電解質電極板13の裏面に形成された一方の電極膜(例えば酸素電極膜)の端部に接触する2枚の金属薄板よりなる第1挟着電極金属板11が設けられている。また、固体電解質電極板13における隣接した他の2辺には、固体電解質電極板13を挟み込み、固体電解質電極板13の表面に形成された他方の電極膜(例えば燃料電極膜)の端部に接触する2枚の金属薄板よりなる第2挟着電極金属板12が設けられている。このように固体電解質電極板13の端部を挟むように設けられた第1挟着電極金属板11と第2挟着電極金属板12は複数箇所でスポット溶接されて固体電解質電極板13に固定されている。
【0055】
なお、以降の説明において固体電解質電極板13に2組の挟着電極金属板11,12が取り付けられた構成体を単電池と称す。この単電池の構造の詳細については図2、図3及び図4を参照しつつ以下に説明する。
【0056】
第1挟着電極金属板11には1個以上の開口14a,14b,14c,14dが形成されており、それぞれの開口14a,14b,14c,14dは酸素電極膜に通じる酸化剤ガス用給排路又は燃料電極膜に通じる燃料ガス用給排路となり、内部マニホールドのガス流路となる。同様に、第2挟着電極金属板12には1個以上の開口14e,14f,14g,14hが形成されており、それぞれの開口14e,14f,14g,14hは酸素電極膜に通じる酸化剤ガス用給排路又は燃料電極膜に通じる燃料ガス用給排路となり、内部マニホールドのガス流路となる。第1挟着電極金属板11と第2挟着電極金属板12は互いに電気的に絶縁状態が保たれている。
固体電解質電極板13の両側には、各電極膜に接して配置され、酸化剤ガス或いは燃料ガスをそれぞれの電極膜に供給する矩形形状の多孔質体2,3が設けられている。
【0057】
上記のように、単電池1の両側に多孔質体2,3、ガス分離・分配板4,5、及び酸化剤ガス及び燃料ガスを分離するセパレータ6,7がそれぞれ配設されている。多孔質板2の厚みは、セパレータ6−ガス分離・分配板4−単電池1を積層したとき、固体電解質電極板13の電極膜の面とセパレータ6の対向面とで形成される空間の間隔よりわずかに大きく形成されている。すなわち、多孔質板2の厚みは、積層された状態において固体電解質電極板13の表面に接触圧が加わる厚みである。
上側のガス分離・分配板4の外縁部分には、単電池1の第1挟着電極金属板11と第2挟着電極板12に形成されたガス給排路となる開口14a,14b,14c,14dと14e,14f,14g,14hに対応する位置(図1における水平面上において同一位置)にガス給排路となる開口21a,21b,21c,21d,22a,22b,22c,22dが少なくとも各辺で1個以上形成されている。同様に、下側のガス分離・分配板5の外縁部分には、ガス給排路となる開口23a,23b,23c,23d,24a,24b,24c,24dが形成されている。
上側のセパレータ6の外縁部分には、単電池1の第1挟着電極金属板11及び第2挟着電極板12に形成されたガス給排路となる開口14a,14b,14c,14d,14e,14f,14g,14hに対応する位置(図1における水平面上において同一位置)に同一サイズのガス給排路となる開口25a,25b,25c,25d,25e,25f,25g,25hが少なくとも各辺で1個以上形成されている。同様に、下側ののセパレータ7の外縁部分には、ガス給排路となる開口26a,26b,26c,26d,26e,26f,26g,26hが形成されている。
【0058】
図1に示すように、セパレータ6,7のガス給排路となる開口25a,25b,25c,25d,25e,25f,25g,25h及び26a,26b,26c,26d,26e,26f,26g,26hはそれぞれが独立した開口であり、それぞれのガス流が分離されるように形成されている。一方、ガス分離・分配板4,5においては、単電池1の両側(図1における上下両側)で異なった開口形状を有している。
単電池1に対して上側のガス分離・分配板4の開口は、対向する2辺(図1において右手前と左奥の2辺)に形成されたガス給排用開口21a,21b,21c,21dがそれぞれ独立した開口であり、他の対向する2辺(図1において右奥と左手前の2辺)に形成された開口22a,22b,22c,22dが互いに連通した開口である。開口22a,22b,22c,22dはガス分離・分配板4の中央部分に形成された大きな開口部と連通するように形成されている。
【0059】
上記のように構成された単電池1と上側のガス分離・分配板4とセパレータ6が積層された構造において、上側のガス分離・分配板4の開口22a,22b,22c,22dから給排されるガスは中央部で連通しているので単電池1の表面の電極膜に接触しながら流れる構成となっている。また、これらの開口22a,22b,22c,22dと異なる辺近傍に形成された、すなわち90゜回転した位置に形成された開口21a,21b,21c,21dはそれぞれが独立した開口である。このため、開口21a,21b,21c,21dに流れるガスと開口22a,22b,22c,22dを流れるガスとは混合しないように構成されている。
【0060】
一方、単電池1に対して下側のガス分離・分配板5のガス給排路となる開口は、対向する2辺(図1において右奥と左手前の2辺)に形成された開口24a,24b,24c,24dがそれぞれ独立した開口であり、他の対向する2辺(図1において右手前と左奥の2辺)に形成された開口23a,23b,23c,23dが互いに連通した開口である。開口23a,23b,23c,23dはガス分離・分配板5の中央部分に形成された大きな開口部と連通するように形成されている。
上記のように構成された単電池1と下側のガス分離・分配板5とセパレータ7が積層された構造において、下側のガス分離・分配板5の開口23a,23b,23c,23dから給排されるガスは中央部で連通しているので単電池1の裏面の電極膜に接触しながら流れる構成となっている。また、これらの開口23a,23b,23c,23dと異なる辺近傍に形成された、すなわち90゜回転した位置に形成された開口24a,24b,24c,24dはそれぞれが独立した開口である。このため、開口23a,23b,23c,23dに流れるガスと開口24a,24bを流れるガスとは混合しないように構成されている。
【0061】
上記のように、下側のガス分離・分配板5において連通している開口23a,23b,23c,23dは、上側のガス分離・分配板4において連通している開口22a,22b,22c,22dの位置と90°回転した異なった位置に形成されている。したがって、上側のガス分離・分配板4の開口22a,22b,22c,22dから給排され単電池1の表面の電極膜に接触しながら流れるガス流と、下側のガス分離・分配板5の開口23a,23b,23c,23dから給排され単電池1の裏面の電極膜に接触しながら流れるガス流は異なる種類のガスが流れるように構成されている。
【0062】
図1に示した構造は1枚の固体電解質基板を用いた本発明に係る実施例1の燃料電池の最小単位(単セル)である。実際の燃料電池は、図1に示した単セルが複数積層されて構成されている。
実施例1において、セパレータ6,7は燃料ガスと酸化剤ガス、例えば空気と混合しないようにするために配設されている。
【0063】
以下、本発明に係る実施例1の燃料電池において使用するガス分離・分配板4,5及びセパレータ板6,7の材料について説明する。
ガス分離・分配板4,5は、耐熱性を有し、耐酸化性に優れており、熱膨張係数が本発明の実施例1において使用する固体電解質基板に近い材料が好適である。ガス分離・分配板4,5の材料として、具体的には、マイカ板が適している。マイカ板は耐熱性と耐酸化性に優れており、熱分解温度が600〜800℃と高く本発明の燃料電池に十分使える特性を有している。マイカ板の熱膨張係数は10〜13×10−6(常温から300℃)と実施例1に用いた固体電解質基板と非常に近く好適である。また、マイカ板は機械的締め付けに強く破損することがないため、実施例1の燃料電池におけるガス分離・分配板4,5に好適である。
【0064】
実施例1におけるセパレータ板6,7の材料としてもガス分離・分配板4,5と同様に、マイカ板が好適である。
ガス分離・分配板4,5及びセパレータ板6,7の材料として、マイカ板以外に使える材料としては、96%アルミナ基板(熱膨張係数:7.3×10−6)やフォルステライト基板(熱膨張係数:10.2×10−6)或いはステアタイト基板(熱膨張係数:8.7×10−6)等のセラミックス基板やガラスファイバーや結晶状ファイバー材を固めて焼結した材料或いは強化ガラス等が適用できる。即ち、熱膨張係数が5×10−6〜15×10−6の範囲内にある耐熱性を有し、優れた耐酸化性を有し、そして絶縁性材料であればガス分離・分配板4,5及びセパレータ板6,7の材料として適用できる。
【0065】
なお、セパレータ板6,7の材料として前述のようにガス分離・分配板と同じ材料が用いられるが、加えて、電気伝導性材料で耐熱性、耐酸化性に優れ且つ熱膨張係数が前記したように5×10−6〜15×10−6の範囲内の金属材料も利用できる。このような性能を有する材料としては、鉄合金或いはニッケル合金或いはコバルト合金或いはニッケル−コバルト合金或いはステンレス鋼板等が有効である。
【0066】
ガス分離・分配板4,5の板厚は、固体電解質電極板13の表面とセパレータ6,7との間をガス流がスムーズに流れる間隔があれば十分であるため、数十μm以上あればよい。実際には、マイカ板やセラミック板等の材料の強度等の点から1mm以上の厚みが必要であり、具体的には1〜2mm程度の厚みが最適である。セパレータ6,7の板厚もガス分離・分配板4,5の板厚と同様の厚みでよい。但し、セパレータ6,7の材料として金属板を用いる場合には0.2〜0.3mm以上あれば使用可能である。
【0067】
次に、実施例1における単電池1の詳細について説明する。
図2は実施例1の単電池1における固体電解質電極板13を示す斜視図である。図2に示すように、固体電解質電極板13は固体電解質基板31、この固体電解質基板31の一方の面(表面)に形成した電極膜32、及び固体電解質基板31の他方の面(裏面)に形成した異なる電極膜33より構成されている。固体電解質基板31の表面の電極膜32のパターンは、固体電解質基板31の隣接する2辺側(図2において左手前側と左奥側の2辺)の端部とはわずかな隙間を残して形成されており、固体電解質基板31において対向する2辺側(図2において右手前側と右奥側の2辺)の端部とは広い間隔を残した状態で形成されている。
【0068】
一方、固体電解質基板31の他方の面(裏面)の電極膜33のパターンは、表面の電極膜32のパターンと反対に図2の右手前側と右奥側の2辺の端部との間が狭く、左手前側と左奥側の2辺の端部との間が広くなるように形成されている。すなわち、固体電解質基板31の両面に形成された表面の電極膜32と裏面の電極膜33は、図2に示すように、固体電解質基板31の中心に対して左右方向にずれた位置関係になっている。
【0069】
実施例1において用いた固体電解質基板31の材料は、BaCe0.35Zr0.5Gd0.153−αである。
固体電解質基板31の製造方法は、次の通りである。
(1)BaCe0.35Zr0.5Gd0.153−αとなるように各材料を秤量し、有機溶剤を加えてボールミルで24時間混合する。
(2)混合した後、乾燥し、所定形状に成形する。
(3)成形した後、1300℃空気雰囲気中で仮焼する。
(4)仮焼した後、有機溶剤、可塑剤、分散剤をそれぞれ加え、48時間ボールミルで粉砕・混合する。
(5)粉砕・混合した後、シリコーン処理したPETフィルム上にドクターブレード法でシート状に成形し、乾燥する。
(6)乾燥した後、該シートを複数枚重ね加熱しながら加圧し一体化させ、その後必要サイズに切断する。
(7)切断した後、多孔質のセッター上に乗せ500℃の電気炉中空気雰囲気で脱バインダー処理を行う。
(8)最後に電気炉中空気雰囲気で1650℃で10時間焼成し、薄いペロブスカイト型バリウムーセリウムーガドリニウムージルコニウム系酸化物固体電解質基板31を作製した。
【0070】
作製された固体電解質基板31(70.0mm×70.0mm×0.5mm厚)の両面に、図2で示した位置に白金ペースト、例えば、田中貴金属販売(株)製白金ペーストTR−7070を両面にスクリーン印刷法で形成し、空気雰囲気中1300℃60分間焼成して電極膜とした。本発明の電極膜の材料としては上記の白金ペーストに限定するものではなく、酸素や燃料ガスが拡散する電極膜であれば使用できる。前記のように固体電解質基板31の両面に電極膜が形成された固体電解質電極板13の常温〜500℃間での熱膨張係数は、10〜11×10−6であつた。
【0071】
次に、上記のように作製された固体電解質電極板13を用いた単電池1の構成を図3、4を用いて説明する。図3は前記の方法で作製した固体電解質電極板13に挟着電極金属板11,12の金属薄板を取りつける方法、及びその構造を説明する分解斜視図である。図3においては、構造の理解を容易とするため、固体電解質電極板13に取り付けられる2組の挟着電極金属板11,12のうち、一方の挟着電極金属板12だけを示し他方の挟着電極金属板11は同じ構造であるため省略している。
図2を用いて説明したように、固体電解質基板31の表面には電極膜32が形成されており、電極膜32は固体電解質基板31の隣接する2辺の端部近くまで形成されている。図3においては、電極膜32は固体電解質基板31の隣接する上側2辺の端部近傍まで形成されており、対向する下側2辺の電極膜32は固体電解質基板31の端部と広い隙間を有している。この電極膜32が固体電解質基板31の端部近傍まで形成された固体電解質基板31の上側2辺に金属薄板41,42を上下から挟み込むように合わせて、両金属薄板41,42を数カ所においてスポット溶接して接合し、挟着電極金属板12を形成した。
【0072】
上記のように形成される挟着電極金属板12の金属薄板41,42は、L字形形状を有しており、その内側には段差部45a,45b及び46a,46bが形成されている。この段差部45a,45b及び46a,46bは、金属薄板41,42の材料を一度上側に曲げ或いは下側に曲げて、次にその先端部分を下側に曲げ或いは上側に曲げて形成されている。金属薄板41,42が固体電解質電極板13を挟着したとき、段差部45a,45b及び46a,46bの先端部分が固体電解質電極板13の両面を圧接するよう、段差部45a,45b及び46a,46bは成形加工されている。即ち、固体電解質電極板13を挟着するよう両金属薄板41,42を挟み込みスポット溶接することにより、上側の金属薄板41の段差部45a,45bが固体電解質基板31上の電極膜32を圧接する。このように、上側の金属薄板41の段差部45a,45bは、上側の電極膜32と常に接触しており、金属薄板41の段差部45a,45bが元の状態に戻ろうとする力により電極膜32を押し付けている。これにより、段差部45a,45bの先端部分は固体電解基板31の上面に形成された電極膜32に常に圧接接続されており、電気的に良好な接続が維持されている。
【0073】
一方、固体電解質基板31の裏面に形成された電極膜33は、表面に形成された電極膜32と反対に、固体電解質基板31の上側2辺の端部より間隔をあけて形成されている。これにより、下側の金属薄板42の段差部46a,46bが固体電解質基板31を圧接しても、段差部46a,46bと固体電解質基板31の裏面に形成された電極膜33とは接触せず、電気的には不接続状態となる。即ち、上下2枚の金属薄板41,42をスポット溶接して固体電解質電極板13を挟着した挟着電極金属板12は、固体電解質基板31の表面の電極膜32にのみ接続した構造となっている。
【0074】
図3においは図示を省略しているが、固体電解質基板31の手前側の挟着電極金属板11は、上記の奥側の挟着電極金属板12と同様に2枚の金属薄板により固体電解質基板31を挟み込み圧接するよう構成されている。このように構成された手前側の挟着電極金属板11において、上側の金属薄板の段差部は表面の電極膜32に接触せず、下側の金属薄板の段差部が裏面の電極膜33とのみ電気的に接続する構造となっている。
【0075】
以上のように、実施例1の燃料電池の構成においては、実質的に同一平面内で組み立てられ、固体電解質電極板13に取りつけた2組の挟着電極金属板11,12は、お互いが電気的に絶縁状態を保った状態で、表面又は裏面の電極膜に電気的に接続している。
【0076】
挟着電極金属板11,12の金属薄板の材料としては、本発明に係る実施例1で用いるペロブスカイト型バリウム−セリウム−ガドリニウム−ジルコニウム系酸化物固体電解質基板の材料が400〜500℃の温度で駆動する材料であるため、この温度で極端な酸化が起こらず、且つ固体電解質基板の両面に形成した電極膜に接している先端部分が、上記温度で長時間作動してもバネ性が劣化しない材料でないといけない。具体的には、固体電解質基板の熱膨張係数に近い材料で耐酸化性を有し、高温でバネ性を保持している材料が望ましい。そのような材料としては、材料の熱膨張係数(常温〜500℃において)が4×10−6〜20×10−6、より好適には8×10−6〜15×10−6の範囲にある材料で、且つ前記した条件を満たす材料であればよい。具体的には、鉄合金板或いはニッケル合金板或いはコバルト合金板或いはニッケル−コバルト合金板或いはステンレス鋼板である。より具体的な例としては、鉄合金;三菱マテリアル(株)のMA800H(Ni:32.5%、Cr:21%、Al:0.5%、Fe:残部、熱膨張係数:16.6×10−6)、MA155N(Ni:20%、Co:20%、Cr:21%、Mo:3%、W:2.5%、Fe:残部、熱膨張係数:15.6×10−6)、ニッケル合金;三菱マテリアル(株)、ハステロイX(別名インコネル)(Fe:18%、Cr:22%、Mo:9%、Ni:残部、熱膨張係数:14.7×10−6)、MA750(Fe:7%、Cr:15%、Al:0.7%、Ni:残部、熱膨張係数:14×10−6)、MA263(Co:20%、Cr:20%、Mo:5.9%、Al:0.5%、Ni:残部、熱膨張係数:13.3×10−6)、コバルト合金;三菱マテリアル(株)、ヘインズアロイNo.25(Ni:10%、Cr:20%、W:15%、Co:残部、熱膨張係数:13.9×10−6)、ニッケル−コバルト合金;42−インバー(別名アンバー材)〔(Ni+Co):41〜43%、Mo:0.9〜1.3%、Fe:残部、熱膨張係数:4.5〜6×10−6)、ステンレス鋼板;SUS310S(Ni:19〜22%、Cr:24〜26%、Fe:残部、熱膨張係数:16.9×10−6)、等が使用できる。なお、上記含有率の値は重量%、熱膨張係数は常温〜500℃の時の値である。各材料はそれぞれに好適な熱処理条件で熱処理しバネ性を発現させ用いる。上記材料は熱膨張係数が4×10−6〜20×10−6の範囲内にあり、本発明者らは十分に本発明の挟着電極金属板に適用できることを実験で確認した。
【0077】
本発明に係る実施例1の金属薄板の厚みは、挟み込んだ時、電極膜と電気的にほとんど接触抵抗を示さない程度に圧接でき、その上限は薄い固体電解質基板が破壊されない程度以下のバネ力を発現するものがよい。具体的には0.1〜0.3mm程度の厚みが最適であった。
本発明に係る実施例1で用いた挟着電極金属板11,12の金属薄板は、約600℃以下まではバネ性を保持するため、本発明の実施例1で用いた固体電解質基板以外で駆動温度(実用的イオン伝導度)が約600℃以下のものであれば固体電解質材料の種類に関係なく実施例1の接続方法が適用できる。
なお、図3に示した上側の金属薄板41に形成されている複数の開口43a,43b等と下側の金属薄板42に形成されている複数の開口44a,44b等は、スポット溶接接合したとき同じ位置となるように形成されており、これらの開口43a,43b等及び44a,44b等がガス給排路となる。
【0078】
図4は、前記の図3に示した固体電解質電極板13と挟着電極金属板11,12を組み立て完成した単電池1を示す斜視図である。
図4の単電池1において、固体電解質基板31の端部には2枚の金属薄板で挟み込んだ挟着電極金属板11,12が設けられている。固体電解質基板31の表面の電極膜は挟着電極金属板12に電気的に接続している。固体電解質基板31の裏面の電極膜は挟着電極金属板11に電気的に接続している。2つの挟着電極金属板11,12により形成された矩形状の単電池1の4辺には、開口14a,14b,14c,14d,14e,14f,14g,14hが形成されており、独立したガス給排路となる。各挟着電極金属板11,12の角部近傍には開孔51a,51bが形成されており、これらの開孔51a,51bには単電池1を積層したときの単電池間を電気的に接続するため棒状の電気伝導体が挿入される。また、2つの挟着電極金属板11,12の間には、間隔52a,52bが形成されており、両挟着電極金属板11,12の間が短絡しないように最適な間隔に保持されている。
【0079】
図4に示した単電池1において、固体電解質基板31の四隅に細かいハッチングで示した角部53a,53b,53c,53dは、単電池1の表と裏の間を行き来するガス流の発生を防止するために封止材が形成された部分である。この封止材は、耐熱性無機系接着剤を塗布して硬化させて形成されている。この耐熱性無機系接着剤の材料としては、高温(常温〜約500℃)で変化せず、接着力を保持して気密性を保つことができ、且つ、硬化後の材料の熱膨張係数が5〜15×10−6の範囲内の材料であればよい。具体的には、東亜合成化学工業(株)の耐熱性無機系接着剤アロンセラミック(主成分がジルコニア・シリカ系、シリカ系、アルミナ系)、や各種金属アルコキシド(Si、Ti、Zr、Alなど)を用いた耐熱性無機接着剤、例えば品川白煉瓦(株)のSIM#500シリーズ等やニチアス(株)のAl−SiO系、Al−SiO−NaO系の接着剤などが有用である。気密性の保持には本説明のごとく接着剤によるものに制限されるものではなく、柔軟性のある耐熱性材料で密封するなど他の材料、方法でも何等問題はない。
【0080】
図4に示した実施例1の単電池1の構造をより分かりやすくするために、図4のIII−III線による断面図を図5に示した。図5に示すように、固体電解質基板31の両面には一方の電極膜32(表面)と他方の電極膜33(裏面)が形成されている。各挟着電極金属板11,12は固体電解質基板31の対称位置の2辺をそれぞれ挟み込む状態で配設されている。
図4において、挟着電極金属板12の上側の金属薄板の先端部62aは、表面の電極膜32の端部を圧接しているが、下側の金属薄板の先端部62bは裏面の電極膜33と隙間64を有する状態で固体電解質基板31に直接圧接接合されている。他方の挟着電極金属板11の上側の金属薄板の先端部61aは固体電解質基板31に直接圧接され表面の電極膜32とは隙間63を有する状態である。下側の金属薄板の先端部61bは裏面の電極膜33の端部を圧接する状態で接続されている。すなわち、実質的な同一平面内において、固体電解質基板31の両面に形成された電極膜32,33のそれぞれに対して、各挟着電極金属板11,12は互いに電気的短絡することなく一方の電極膜と確実に接合している。
【0081】
大きな温度差が常時発生する固体電解質基板31を用いた燃料電池において、貴金属ペーストなどを用いて接合部分を強固に接続した場合は、わずかな熱膨張係数の違いでも長時間運転すると接合部分にマイクロクラックが発生し、その接合部分が最終的に絶縁状態となるという問題があった。しかし、本発明に係る実施例1における金属薄板の挟み込み方式による電極板接合方法は、上記のような従来の貴金属ペーストなどによる接合部分における問題を克服できる方法である。即ち、本発明に係る実施例1における接続構造は、金属薄板の材料のバネ性を用いて、その弾性力により圧接接続する構造であるため、固体電解質電極板と金属薄板との間に熱膨張率の違いがあったとしても、接続部分が接触したまま摺動し、滑る構造である。この結果、実施例1の燃料電池における接続構造は、熱膨張差を克服できるため、長期間安定した接続状態を保証できる信頼性の高い装置となる。
【0082】
本発明に用いたバリウム−セリウム−ガドリニウム系酸化物或いはバリウム−セリウム−ガドリニウム−ジルコニウム系酸化物或いはバリウム−セリウム−ガドリニウム−アルミニウム系酸化物の固体電解質基板は、駆動する温度が500℃以下であるため、本発明に係る実施例1において用いた接続構造、即ち金属のバネ性を利用する接続方式が適用できる。酸化ジルコニウム系酸化物の固体電解質基板は、800℃以上の温度で駆動されるため、その温度領域でバネ性を示す金属材料を用いることにより本発明に係る実施例1の接続方式が適用できる。
また実施例1において示した接続方式は、前述の特徴以外に挟着電極金属板の圧接部分が移動可能な構造であるため、組立時や使用する材料間での熱膨張係数の違いにより生じる、ねじれや反り、或いは圧縮、或いは引っ張り等のストレスが固体電解質電極板に加わるのを接触部分の滑りにより緩和できる構造である。したがって、本発明の接続方式は、薄い板厚の固体電解質電極板でも破損することなく使用できるという大きな特徴を有している。
【0083】
上記の実施例1の燃料電池においては、固体電解質電極板の隣接する2辺に挟着電極金属板を接続して単電池を構成する電極接続構造について説明した。実施例1の電極接続構造は本発明の一例であり、本発明はこの構造に限定されるものではない。例えば、固体電解質電極板の1辺に挟着電極金属板を接続して単電池を構成する電極接続構造も可能である。
【0084】
次に、実施例1において単電池1とセパレータ6,7の間で、ガス分離・分配板4,5の中央部分に形成された開口内に配置される多孔質体の別の形状について図6及び図7を用いて説明する。図6及び図7は、実施例1の燃料電池における多孔質体を別の形状により構成した単電池の構成を示す分解斜視図である。
【0085】
実施例1においては、前述の図1に示したように、単電池1とセパレータ6,7の間に配置された多孔質体2,3は矩形平板状の形状を有しており単電池1の表面の電極膜にガスを流す機能を有している。図6に示した多孔質体67a,67bは、図1の矩形状の多孔質体2,3とは異なり角柱状の複数個の棒体を適当な間隔を有して取り付けた構造である。単電池1の上下両側に設けた多孔質体67a,67bは、その棒体の長手方向が90゜異なった方向に配置されている。このように多孔質体67a,67bが複数の棒体を適当な間隔を有して取り付けた構造であり、ガスの流れる方向と平行な間隙が形成されているため、ガス流の抵抗を少なくすることができる。複数個の棒体で構成された多孔質体67a,67bの全体の専有部分のサイズは、図1に示した矩形形状の多孔質体2,3と同様に、固体電解質電極板13の挟着電極金属板11,12で囲まれた空間より少し小さい面積を有するサイズが好適である。
図6に示した多孔質体67a,67bが単電池間の導電体の機能を持たせる場合には図1の矩形形状が最適であるが、本発明の燃料電池では固体電解質電極板13の振動や衝撃による破損を防止するのが主目的であるため、固体電解質基板13の電極面全面に配設する必要がない。したがって、本発明においては、図6に示した間隔を有して配置した角柱状の多孔質体67a,67bでも何ら問題なく適用することができる。
【0086】
図7は更に別の形状を有する多孔質体を用いた単電池の構成を示す分解斜視図である。図7の多孔質体68a,68bは、電極面と平行な断面が実質的な円である円柱形状を有しており、このような円柱形状の多孔質体を複数個用いた例である。本発明においては、多孔質体も図6の角柱形状の多孔質体67a,67bと同様に、固体電解質電極板13の振動、衝撃による破壊を防止するのが主たる目的である。したがって、図7に示した円柱形状の多孔質体67a,67bでも十分役目を果たすことが可能である。
【0087】
図6と図7に示した多孔質体67a,67b及び68a,68bの厚みは、燃料電池として積層したときセパレータ6,7と単電池1の固体電解質電極板13との隙間より少し大きなサイズのものを用いている。その材質は、電気伝導体或いは絶縁体でもよく、導電体としては、例えば三菱マテリアル(株)の発泡金属材やニッケルファイバーの不織布等、絶縁体としては三菱マテリアル(株)のジルコニア発泡体や無機セラミックス繊維を用いた多孔質体等が適用できる。その気孔率としては50%以上が好ましい。
【0088】
次に、上記のように構成された一つの単電池を有する基本構成体である単セルを積層した燃料電池の基本構造の一例を図8を用いて説明する。図8は3つの単セル97,98,99を積層した基本構造を示す分解斜視図である。
図8に示す燃料電池は、基本構成体である単セル97,98,99が3層積層されており、各単セル97,98,99が直列に接続されている。基本構成体である各単セル97,98,99において、単電池74a,74b,74cの表裏の電極膜と挟着電極金属板との接続状態は、前述の図4及び図5に示したように電気的に接続されている。各基本構成体における単電池74a,74b,74cの上面の電極膜の位置は、単セル97においては左側の挟着電極金属板92側に変位し、単セル98では反対に右側の挟着電極金属板93側に変位し、単セル99では左側の挟着電極金属板96側に変位している。各単セル97,98,99において、上側の電極膜は変位した側の挟着電極金属板92,93,96に電気的に接続している。
【0089】
一方、基本構成体である単セル97,98,99の単電池74a,74b,74cの下面の電極膜の位置は、前記上面の電極膜の位置とは反対側に変位して形成されている。すなわち、単電池74a,74b,74cの下面の電極膜の位置は、単セル97においては右側の挟着電極金属板91側に変位し、単セル98においては左側の挟着電極金属板94側に変位し、単セル99においては右側の挟着電極金属板95側に変位している。この結果、単電池74a,74b,74cの下面の電極膜は、それぞれ変位した側の挟着電極金属板91,94,95に接続されている。即ち、各単電池74a,74b,74cごとに上面の電極膜と下面の電極膜が各隣接層ごとに反対側に変位している。
【0090】
図8において、符号76,77,78,79は他の部材を介して隣接する単電池74a,74b,74cの挟着電極金属板を電気的に接続するための棒状電気伝導体を示している。単電池74a,74b,74cの上面側の電極膜を酸素電極膜とすると、棒状電気伝導体76の下端部は単電池74aの上面の酸素電極膜に接続されている。単電池74aの下面の燃料電極膜は棒状電気伝導体77の上端部に接続されており、この棒状電気伝導体77の下端部はその下側に配置された単電池74bの酸素電極膜に接続されている。単電池74bの下面の燃料電極膜は棒状電気伝導体78の上端部に接続され、この棒状電気伝導体78の下端部はその下側に配置された単電池74cの酸素電極膜に接続されている。そして単電池74cの下面の燃料電極膜は棒状電気伝導体79の上端部に接続されている。即ち、図8に示した積層構造の各単電池においては、その上面の電極膜が全て酸素電極膜であり、下面の電極膜が燃料電極膜になるように構成されている。
【0091】
上記のように、図8に示した単セル97,98,99の積層構造においては、各単電池が直列に接続される構成である。棒状電気伝導体76,77,78,79は、剛直な剛性の高い金属棒状体であり、且つ全長にわたってネジ部を有するものが好適である。これらの棒状電気伝導体76,77,78,79は各挟着電極金属板の周辺部に形成された開孔部に挿入されて、挟着手段であるナットを締め付けることにより当該挟着電極金属板を締め付け固定して電気的接続するものである。このようなネジ部を有する棒状電気伝導体76,77,78,79の金属材料としては、高温の空気雰囲気中において耐酸化性に優れ、熱膨張係数がガス分離・分配板、セパレータ、及びガス分離・分配・保温板と同等或いは近似した材料が好適である。なお、ガス分離・分配・保温板とは、燃料電池の積層構造における上下端部に積層され、給排気されるガスの導入排出口を有し、燃料電池積層体の保温板として機能している。
【0092】
棒状電気伝導体76,77,78,79の金属材料としては、具体的には熱膨張係数が4×10−6〜20×10−6、より好適には8×10−6〜15×10−6の範囲内の材料である。この範囲内にあれば各単電池の挟着電極金属板を接続して問題なく駆動可能である。このような条件にあう金属材料としては、鉄合金、ニッケル合金、コバルト合金、ニッケル−コバルト合金或いはステンレス鋼等が適用できる。
なお、図8において、符号71a,71b,71c,71dは各燃料電池の最小構成単位間の空気と燃料ガスの分離のためのセパレータである。また、符号73a,73b,73c,73d,73e,73fは各単電池の両側に配設された矩形形状の多孔質体である。
【0093】
図8に示した実施例1の燃料電池においては、他の部材を介して隣接する単電池の対向する電極膜が酸素電極膜と燃料電極膜に配置されている。また、固体電解質電極板における上面の電極膜のパターン位置は、単電池ごとに交互に逆の方向に変位して配設されている。さらに、各固体電解質電極板における上面と下面の電極膜の位置は、それぞれが逆の方向に変位して配設されている。
図8に示したように、複数の単電池を積層した構造において、第1の単電池における一方の極の挟着電極金属板を他の部材を介して隣接する次の第2の単電池における一方の極の挟着電極金属板に接続し、第2の単電池における他方の極の挟着電極金属板をさらに他の部材を介して隣接する次の第3の単電池における一方の極の挟着電極金属板に接続していくことにより、積層された複数の単電池を直列に接続した燃料電池の積層構成体が形成できる。
【0094】
次に、図8を用いて単電池の積層構成体におけるガスの流れについて説明する。
単電池の上面側の電極膜が酸素電極膜とすると、図8では矢印81a(in)と矢印81b(out)が酸化剤ガスである空気の流れを示し、矢印82a(in)と矢印82b(out)が燃料ガスの流れを示している。
図8においては符号72a,75a,72b,75b,72c,75cがガス分離・分配板であり、これらのガス分離・分配板72a,75a,72b,75b,72c,75cは、空気を各単電池74a,74b,74cの上面側の電極膜に流し(矢印83a,83b,83cの方向)、燃料ガスを各単電池の下面側の電極膜に流し(矢印84a,84b,84cの方向)、それぞれが混合されることなく分配されて流れるように構成されている。空気流と燃料ガス流はお互いに90゜異なった方向(直角方向)で各電極膜面に対して接触しながら流入している。また、各単電池74a,74b,74cにおける同じ電極膜においては同じ方向(並列状態)に流入している。このような積層構成体において、空気或いは燃料ガスの流入方向と排出方向は同じ方向でも或いは互いに反対方向でも燃料電池の性能に影響を与えるものではなく、いずれの方向でも選択可能である。
【0095】
図9は図8の積層構成体を組み立てたときの図であり、図8のIV−IV線による断面図である。図9の断面図において、各単電池74a,74b,74cにおける固体電解質電極板の電極膜の配置を明確に示している。積層された単電池74a,74b,74cにおいて、単電池74aの上面の電極膜は左側の挟着電極金属板92に接続されている。その下側に配置された単電池74bの上面の電極膜は右側の挟着電極金属板93に接続されている。さらにその下側に配置された単電池74cの上面の電極膜は左側の挟着電極金属板96に接続されている。上記のように実施例1の燃料電池においては、各々の単電池74a,74b,74cの上面に形成された電極膜の位置が互い違いになるように配設されている。また、各々の単電池74a,74b,74cの下面に形成された電極膜は、上面の電極膜とは逆の方向に変位した位置に形成されており、それぞれが互い違いの異なる位置に形成されて該当する挟着電極金属板に接続されている。このように各々の単電池74a,74b,74cにおいては、固体電解質電極板の上面の電極膜と下面の電極膜に異なる挟着電極金属板が接続されている。
上記のように電極膜と挟着電極金属板とを接続することにより、隣接する単電池74a,74b,74c間で酸素電極膜−燃料電極膜−酸素電極膜−・・・と各電極膜を直列に接続した燃料電池が構成されている。図9においては、第1ライン76−単電池74a−第2ライン77−単電池74b−第3ライン78−単電池74c−第4ライン79の順に接続されている。
また、実施例1の燃料電池において、前述のように、ガス流は固体電解質電極板の上面の電極膜には同じガスが流れ、下面の電極膜には別のガスが流れている。
【0096】
図10は前述の図8に示した積層構成体を組み立てたときの斜視図である。図10において、図8における積層構成体を燃料電池積層体121として示している。この燃料電池積層体121の上下両側にはガス分離・分配・保温板122,123が設けられており、さらにその両側の最外層にガス供給用開孔及びガス排気用開孔を有する金属板124a,124bがそれぞれ積層されている。
ガス分離・分配・保温板122,123は燃料電池積層体121の保温板としても機能している。ガス分離・分配・保温板122にはガスを供給するガス供給用開口125bとそれに対向する反対の位置にガスを排気するガス排気用開口125aを有している。ガス排気用開口125aとガス供給用開口125bは、燃料電池積層体121におけるガス給排用開口部と同じ位置に形成されている。下側に配置されたガス分離・分配・保温板123には、図10には示していないが、上側のガス分離・分配・保温板122のガス排気用開口125aとガス供給用開口125bの位置と90゜回転した位置、すなわち他の対向する2辺の近傍の位置に別のガスが給排気される開口が形成されている。
【0097】
したがって、図10に示すガス流81aは上側の金属板124aのガス供給用開孔より流入し、ガス供給用開口125bを通って下側のガス分離・分配・保温板123によりせき止められて曲がり、反対側のガス分離・分配・保温板122のガス排気用開口125aを通って、上側の金属板124aのガス排気用開孔からガス流81bとして排出される。
一方、別のガス流82aは下側の金属板124bのガス供給用開口より上側に向かって流入し、上側のガス分離・分配・保温板122によりせき止められて曲がり、下向きに流れて排出されている。
図10に示した金属板124a,124bは剛直な剛性の高い金属材料であり、その四隅部分に欠落部126が形成されている。これらの欠落部126は燃料電池積層体121の内部の挟着電極金属板を連結する棒状電気導電体であるビスの端部が突出する部分であり、ビスが金属板124a,124bと電気的に短絡しないように形成されている。
【0098】
図11は図10に示した積層構成体の完成斜視図である。積層構成体の上下両側の最外層には、ガスを個別に供給、排気するガス供給用開口とガス排気用開口を有する金属板124a,124bが設けられている。燃料電池積層体121とその両側のガス分離・分配・保温板122,123とは、複数のビス134により上下両側の金属板124a,124bで上下方向から締め付けて、積層構成体内のガス流路が密封され、燃料電池が形成されている。
上記のように構成された積層構成体において各単電池の挟着電極金属板を電気的に直列に接続した棒状電気導電体は、積層構成体から突設されている。これらの突設された棒状電気導電体131a,131bには端子132a,132bが出力端子としてそれぞれに接続されている。
上記のように、積層構成体は金属製の複数のビス134により両側の金属板124a,124bを締め付けることにより、各層間からのガス漏れを防止することができる。なお、より完璧をきすためには、各層間に耐熱性で柔軟性のあるガスケット用薄板を配置することにより、その積層構成体の各層間からのガス漏れは完全に防止することが可能となる。
【0099】
以上のように、本発明に係る実施例1の燃料電池は、矩形平板状の固体電解質基板の両面に形成した異なる電極膜が異なる位置で、お互いに反転した位置に形成されている。各固体電解質電極板には2組の挟着電極金属板が取り付けられており、各挟着電極金属板は固体電解質電極板を挟む2枚の金属薄板より構成されている。固体電解質電極板に形成された電極膜は、1組の挟着電極金属板である2枚の金属薄板により挟み込まれ、一方の電極膜にのみ金属薄板の先端部が電気的に接続するよう構成されている。他方の電極膜には別の挟着電極金属板の金属薄板の先端部が電気的に接続するよう構成されている。このように、実施例1の燃料電池は、上記のように特殊な構造により固体電解質電極板の電極膜に挟着電極金属板を接続させた構造であり、このような接続構造により固体電解質電極板と実質的に同一平面内で表裏両面の異なる電極膜に電気的に独立して挟着電極金属板が接続されている。
【0100】
また、本発明に係る実施例1の燃料電池においては、積層した単電池の挟着電極金属板を棒状電気伝導体により電気的に接続しているため、従来の燃料電池のようにセパレータに導電性材料を使う必要がない。
さらに、本発明に係る実施例1の燃料電池においては、複数の単セルの積層構成体をその両側から剛直で剛性の高い金属板を用いビスにより締め付けて、積層構成体内のガス流路を気密封止状態としている。実施例1においては、挟着電極金属板を設けた単電池が可能となった結果、ガス分離・分配板やセパレータの材料にマイカ板等の絶縁性材料を用いることができ、ビスによる締め付けにより破損しない材料が使用できる。この結果、本発明の実施例1によれば、機械的締め付けのみの構成で気密が保てる内部マニホールド型の燃料電池を実現することができる。本発明の実施例1において、固体電解質電極板に設けた挟着電極金属板に電気導電体を電気的に接続して電力をとる構成にした結果、従来の燃料電池において導電性多孔質板を用いていたが、本発明の燃料電池では電気的絶縁性材料でも使えるようになり材料の選択範囲が広がり性能の向上とコストダウンを実現することができる。
【0101】
《実施例2》
以下、本発明に係る実施例2の燃料電池について図12及び図13を用いて説明する。図12は3つの単セル161,162,163により構成された燃料電池の基本構成を示す分解斜視図である。図13は図12に示した3つの単セル161,162,163を積層した状態の燃料電池をV−V線により切断した断面図である。実施例2の燃料電池は各単セル161,162,163を並列に接続した構成である。
【0102】
実施例2の燃料電池において、各単セル161,162,163は、前述の図1の実施例1に示した構成と同じであり、単電池141,142,143の両側に多孔質体73a,73b,73c,73d,73e,73f、ガス分離・分配板72a,75a,72b,75b,72c,75c及びセパレータ71a,71b,71c,71dがそれぞれ配設されている。図12及び図13に示すように、実施例2の燃料電池における単セル161の単電池141の両側にガス分離・分配板72a,75aが配設されており、単セル162の単電池142の両側にガス分離・分配板72b,75bが配設されており、単セル163の単電池142の両側にガス分離・分配板72b,75bが配設されている。これらのガス分離・分配板72a,75aと、72b,75bと、72c,75cのそれぞれの形状及び配置状態は、前述の実施例1において示した図8及び図9のガス分離・分配板と同じである。
【0103】
実施例2の燃料電池は、前述の実施例1と同様に、各単電池141,142,143の両面に形成されたそれぞれの固体電解質電極板に異なったガスが直交する方向に流れるよう構成されている。なお、実施例2の燃料電池におけるセパレータ71a,71b,71c,71d及び多孔質体73a,73b,73c,73d,73e,73fは、図8及び図9で説明したものと同じ機能、構成を有するためその詳細な説明は省略する。
実施例2の燃料電池において、前述の実施例1の図8及び図9に示した燃料電池と異なる点は固体電解質電極板の両面に形成した電極膜の位置と、各単電池141,142,143に対する電気的接続方法である。
【0104】
図12及び図13に示すように、各単電池141,142,143の上面の電極膜の位置は、全て左側に偏っており、これらの電極膜は左側の挟着電極金属板145,147,149に電気的に接続されている。一方、図面には示されていないが下面の電極膜は全て右側に偏っており、これらの電極膜は全て右側の挟着電極金属板144,146,148に電気的に接続されている。このように構成された左側の挟着電極金属板145,147,149及び右側の挟着電極金属板144,146,148には、開孔部がそれぞれの四隅近傍に形成されて直線上に配置されている。左側の挟着電極金属板145,147,149の開孔部には垂直方向に延設された電気伝導性材料の棒状電気伝導体156が挿入されそれぞれを電気的に接続している。また、右側の挟着電極金属板144,146,148の開孔部には垂直方向に延設された電気伝導性材料の棒状電気伝導体155が挿入されそれぞれを電気的に接続している。このように棒状電気伝導体155,156により各単電池141,142,143を接続することにより各単電池は並列接続となる。
【0105】
図12に示した実施例2の燃料電池において、各固体電解質電極板の両面に流れるそれぞれのガス流は、前述の図8及び図9に示した燃料電池の場合と同じように直角方向に流れている。したがって、実施例2の燃料電池と実施例1の燃料電池との違いは、各単電池の接続構造が直列か並列かの違いのみである。
上記のように、本発明の燃料電池においては各単電池を挟着電極金属板を用いて電気的に接続する方式を用いているため、固体電解質電極板の両面に形成する電極膜の位置を変更することにより、容易に直列構造の燃料電池と並列構造の燃料電池を実現することができる。
【0106】
なお、実施例2の燃料電池における単セル161,162,163が積層された積層構成体の両側には、前述の実施例1(図10)で説明したように、ガス分離・分配・保温板及びさらにその外側にガス給排用開口を有する金属板が配設されている。金属板により燃料電池の積層構成体をビスにより締め付け固定する構成及び棒状金属導電体により外部リードに接続する構造は、前述の実施例1の構成と同じであるためその説明は省略する。
【0107】
本発明に係る実施例2の燃料電池によれば、簡単な構成により並列接続の燃料電池を構築することが可能である。直列接続は燃料電池全体として高電圧を得るのに適しており、並列接続は低電圧ではあるが容量の大きな燃料電池を構築するのに適している。本発明においては、並列接続と直列接続の2つの接続構造を混成させることも可能であり、一つの燃料電池内に直列接続の部分と並列接続の部分を混在させた燃料電池を構築することも可能である。このような2つの接続構造を混在させることは従来の燃料電池において不可能な構造であった。
【0108】
《実施例3》
以下、本発明に係る実施例3の燃料電池について図14及び図15を用いて説明する。図14は実施例3の燃料電池の基本構成を示す分解斜視図である。図15は図14の燃料電池の各層を積層した状態におけるVI−VI線による断面図である。なお、図14及び図15において、前述の実施例2と同じ機能、構成を有するものには同じ符号を付し、その説明を省略する。
【0109】
実施例1及び実施例2の燃料電池においてはセパレータを用いて各単セルを区分する構成であった。実施例3においてはセパレータを用いない構成の燃料電池を示す。実施例3において、単電池181,182,183の各構成は前述の実施例1において図4に示した単電池1と同じ構成である。
図14及び図15に示すように、各単電池181,182,183における固体電解質電極板の上面に形成された全ての電極膜の位置は、固体電解質電極板に対して同じ方向(図14においては左側)に偏って形成されている。一方、固体電解質電極板の下面に形成された全ての電極膜の位置は、上面の電極膜とは逆の方向(図14においては右側)に偏った位置、即ち上面の電極膜の位置が反転した位置に形成されている。
【0110】
各単電池181,182,183における電極膜と挟着電極金属板との接続状態は、図15に示したように、上面の電極膜は左側の挟着電極金属板185,187,189の上側の金属薄板に接続されており、単電池181,182,183の下面の電極膜は右側の挟着電極金属板184,186,188の下側の金属薄板に接続されている。
上記のように各電極膜と接続されたそれぞれの挟着電極金属板には棒状電気導電体197,198,199,200が順に接続されており、3つの単電池181,182,183は直列状態に接続されている。
【0111】
実施例3において、単電池181の下側の面と単電池182の上側の面には同じ種類の第1のガス(例えば燃料ガス)が流れ、単電池182の下側の面と単電池183の上側の面には前記第1のガスと異なる第2のガス(例えば空気)が流れるよう構成されている。前記第1のガスと前記第2のガスとはその流れ方向が90゜異なる方向、すなわち直交する方向に流れている。実施例3の燃料電池においては、積層した単電池181,182,183における対向した電極膜は同じ極になるように配設されている。
実施例3においては、燃料電池を前記のような積層構成体とすることにより、各単電池181,182,183の固体電解質基板がセパレータの機能を果たすため、セパレータが不要となり、セパレータレスの燃料電池を構築することができる。
なお、実施例3の燃料電池における単電池181,182,183が積層された積層構成体の両側には、前述の実施例1(図10)で説明したように、ガス分離・分配・保温板193,194及びさらにその外側にガス給排用開孔を有する金属板が配設されている。金属板により燃料電池の積層構成体をビスにより締め付け固定する構成及び棒状金属導電体により外部リードに接続する構造は、前述の実施例1の構成と同じであるためその説明は省略する。
【0112】
次に、図14を用いて実施例3の積層構成体におけるガスの流れについて説明する。
単電池181の上面側の電極膜を酸素電極膜とすると、図14では矢印196a(in)と矢印196b(out)が酸化剤ガスである空気の流れを示し、矢印195a(in)と矢印195b(out)が燃料ガスの流れを示している。
図14においては符号72a,75a,72b,75bがガス分離・分配板であり、これらのガス分離・分配板72a,75a,72b,75bは、空気を単電池181,183の上面側の電極膜に流し(矢印192a,192bの方向)、燃料ガスを単電池181,183の下面側の電極膜に流し(矢印191a,191bの方向)、それぞれのガスを分配して流すよう形成されている。空気流と燃料ガス流はお互いに90゜異なった角度で各電極膜面に対して接触しながら流れており、各単電池の同じ電極膜においては同じ方向で流れている。このような積層構成体において、空気或いは燃料ガスの流入方向と排出方向は同じ方向でも或いは互いに反対方向でも燃料電池の性能に影響を与えるものではなく、いずれの方向でも選択可能である。
【0113】
図14及び図15から理解できるように、実施例3において、棒状電気導電体197,198,199,200により各単電池181,182,183を接続することにより、単電池181,182,183は直列状態に接続されている。例えば、単電池181の上面の電極膜を酸素電極膜とすると、単電池181の下面の燃料電極膜に接続された挟着電極金属板184は、単電池182の下側の酸素電極膜に接続された挟着電極金属板186に接続されており、単電池182の上面の燃料電極膜に接続された挟着電極金属板187は、単電池183の上面の酸素電極膜に接続された挟着電極金属板189に接続されている。このように、酸素電極膜と燃料電極膜が順次交互に接続されることにより、実施例3の燃料電池における単電池181,182,183は直列状態に接続された構成となる。
【0114】
本発明に係る実施例3の燃料電池においては、固体電解質電極板の両面に形成された電極膜の位置と、電極膜と挟着電極金属板との接続関係を変更することにより、前述の実施例におけるセパレータの機能を各単電池の固体電解質基板が機能するよう構成されている。したがって、実施例3の構成によれば、セパレータレスの積層構成体を有する燃料電池を実現することができる。実施例3によれば、同じ容量で薄型の燃料電池を作製することが可能となり、材料費の削減を達成することができる。さらに、実施例3によれば、前述の実施例に比べて使用部品としてのセパレータが不要となるため、気密性の確保がさらに容易となり信頼性の高い燃料電池を実現できる。
【0115】
《実施例4》
以下、本発明に係る実施例4の燃料電池について図16から図19を用いて説明する。図16は実施例4の燃料電池における単電池230の構成を示す斜視図である。図17は図16の単電池のX−X線による断面図である。
実施例4の燃料電池の積層構成体は、一つの単電池が複数個の固体電解質電極板を有し、複数の単電池を積層して構成されたものである。
図16に示すように、実施例4の燃料電池における単電池230は、2枚の固体電解質電極板231,232が1組のT字型挟着電極金属板235と2組のL字型挟着電極金属板233,234により構成されている。
図17に示すように、単電池230における右側の固体電解質基板31aの上面の電極膜263は左側に偏って形成されており、左側の固体電解質基板31bの上面の電極膜261は右側に偏って形成されている。2つの電極膜261,263は、T字型挟着電極金属板235における上側の金属薄板238の段差部238a,238b,238c,238d(図16参照)にそれぞれ接続されており同じ極となっている。
【0116】
一方、右側の固体電解質基板31aの下面の電極膜264は、右側に偏って形成されており、L字型挟着電極金属板233における下側の金属薄板268に接続されている。左側の固体電解質基板31bの電極膜262は、左側に偏って形成されており、L字型挟着電極金属板234における下側の金属薄板265に接続されいる。このように、2つの電極膜262,264は同じ極となるよう接続されている。
図16に示すように、L字型挟着電極金属板233,234とT字型挟着電極金属板235は、それぞれの間に隙間244a,244b,245a,245b形成されており、電気的に絶縁されている。
【0117】
なお、図16に示した符号252a,252b,252c,252d,252e,252f,252g,252hの領域は、単電池230における固体電解質電極板231,232のそれぞれにおける上下両面間のガスの気密性を確保するための封止材を形成した部分である。すなわち、これらの部分には、単電池の表と裏の間を行き来するガス流の発生を防止するために耐熱性無機系接着剤を塗布して硬化させている。この耐熱性無機系接着剤の具体例については、前述の実施例1において詳細に説明したのでここでは省略する。
L字型挟着電極金属板233,234及びT字型挟着電極金属板235には独立した複数の細長い開口部が形成されている。単電池230の対向する長辺側部分に形成された開口部242a,242b,243a,243bには同じ種類のガス(例えば空気)が流れるよう構成されている。一方、単電池230の対向する短辺側部分に形成された開口部241a,241bと,単電池230の中央部分に形成された開口部246には別の種類のガス(例えば燃料ガス)がそれぞれ流れるよう構成されている。
【0118】
2つのL字型挟着電極金属板233,234は同じ極となるよう構成されており、L字型挟着電極金属板233,234の隅部に形成した開孔部251a,251bには棒状電気導電体が挿入接続され、積層されている他のL字型挟着電極金属板と電気的に同極となるよう構成されている。T字型挟着電極金属板235に設けられている開孔部247にはL字型挟着電極金属板233,234と別な極となるよう、他の棒状電気導電体が挿入されて接続され、積層されている他のT字型挟着電極金属板と電気的に同極となるよう構成されている。
【0119】
図18は図16及び図17に示した単電池230を用いた最小単位の単セルの構成を示す分解斜視図である。
図18に示すように、単電池230の上下両側には矩形状多孔質体284a、284b,284c,284d、ガス分離・分配板282,283及びセパレータ281a,281bがそれぞれ積層されている。
単電池230の上側に配設された実質的に同一な矩形平板形状を有するガス分離・分配板282には、一方の種類のガスが流れる開口部291a,291b,292が形成されている。開口部291a,291bは外周部分の短辺側の対向する位置に形成されており、開口部292は中央部分に形成されており、それぞれが独立して形成されている。実施例4においては開口部291a,291b,292をそれぞれの位置に1個ずつ形成した例で示したが、燃料電池の形状や機能等に応じて複数形成しても良い。
【0120】
図18に示すように、ガス分離・分配板282の外周部分の長辺側には4つの開口部287a,287b,287c,287dが形成されている。なお、図18においては長辺側の開口部287aに対向する位置にある開孔287bが隠れているため図面には記載しないが明細書においてはその開口部を287bとする。これらの開口部287a,287b、287c,287dは、単電池230の開口部285a,285b,286a,286bに対応する位置に形成されており、ガス分離・分配板282の中央部に形成された大きな開口部分と連通するように形成されている。その結果、開口部287a,287b,287c,287dを通ったガス流は、単電池230の上面にある固体電解質電極板231,232の表面と接触する構造である。但し、ガス分離・分配板282において、それぞれの固体電解質電極板231,232の表面を流れるガス流は混合されないように、対向する開口、例えば開口部287aと開口部287bとの間、及び開口部287cと開口部287dとの間でそれぞれ別々にガスの給排気が行われるよう構成されている。したがって、開口部287a,287b,287c,287dと別種のガスが流れる中央部分に形成された開口部292とは隔離されている。このため、単電池230の上側に積層されたガス分離・分配板282の4辺部分及び中央部分に2系統のガスが独立して流れる流路が形成されている。
【0121】
一方、単電池230の下側に積層されたガス分離・分配板283においては、ガス流の方向が上側のガス分離・分配板282と90゜異なっている。上側のガス分離・分配板282の中央部分にある独立した開口部292の直下となる下側のガス分離・分配板283には大きな開口部が形成されている。上側のガス分離・分配板282の短辺側にある独立した開口部291a,291bに対応する位置、すなわち垂線上の同一位置にある開口部293a,293bは、中央部分の大きな開口部と連通している。このため、下側のガス分離・分配板283においては、ガス流が両側の開口部293a,293bから流入し、単電池230の中央部分に形成された独立した開口部246から排出されるよう構成されている。このように下側のガス分離・分配板283において流れるガスは、単電池230の上側のガス分離・分配板282を流れて電極膜に接触するガスとは異なる別のガスであり、それぞれの流れる方向は90゜異なっている。
下側のガス分離・分配板283における開口部293a,293bとは90゜異なる辺側(長辺側)には別種のガスが流れる開口部294a,294b(図示してない),294c,284dがそれぞれ独立して形成されている。即ち、単電池230の上面又は下面の電極膜に接触した空気と燃料ガスは混合されることなく別々に供給、排気される構成であり、その方向は上下面で90゜異なるように形成されている。なお、本発明の燃料電池においては、両ガスの供給及び排気の方向は、前記の説明のような構成に制限されるものではなく逆であっても何ら問題はない。
【0122】
図18に示すように、上側のガス分離・分配板282の上方にはこのガス分離・分配板282と実質的に同一平面形状を有するセパレータ281aが積層されている。また、下側のガス分離・分配板283の下方にはこのガス分離・分配板283と実質的に同一平面形状を有するセパレータ281bが積層されている。セパレータ281a,281bは、単電池230の両面を流れる異なるガスを分離する機能を有している。上側のセパレータ281aには複数の開口部301a,301b,301c,301d,302a,302b,303が互いに独立して形成されている。下側のセパレータ281bには複数の開口部295a,295b,296a,296b,296c,296d,297が互いに独立して形成されている。
上記において説明した実施例4における単電池230,ガス分離・分配板282,283及びセパレータ281a,281bは、実質的に同一の平面形状を有しており、それぞれに形成された独立した開口部は、全て同じ形状で且つ同一垂線上に配置されるように形成されている。このような関係は本発明の燃料電池における全ての積層構成体に当てはまることである。
実施例4の燃料電池は、図18に示した単電池230を有する単セルが複数積層されて積層構成体が構成されている。この積層構成体において上下に配置された複数の単電池には、図18の単電池230の挟着電極金属板の外周部に形成された複数の開孔部311a,311b,312と対応する位置、即ちこれらの開孔部311a,311b,312の垂線上の位置に開孔部がそれぞれ形成されている。これらの対応する開孔部には棒状金属導電体、具体的にはネジ部を有する金属ビスが挿入接続されている。この金属ビスの導出端部が出力端子となり、実施例4の燃料電池が所定の電圧を出力するよう構成されている。
【0123】
図19は図18に示した単セルを3層積層した実施例4の燃料電池の斜視図である。図19において単セルを3層積層した積層構成体321の両側にはガス分離・分配・保温板322,323が積層され、このガス分離・分配・保温板322,323の両角には前記棒状金属導電体が挿入される開孔部331a,331bが形成されており、これらの開孔部331a,331bの垂線上の下側の両角から導出した棒状金属導電体には一方の出力端子となる外部リード接続端子325,326が接続されている。上側のガス分離・分配・保温板322における長辺側の中央部分に形成された開孔部にも棒状金属導電体が挿入されており、この棒状金属導電体の上方への導出端部には他方の出力端子となる外部リード接続端子327が設けられている。
【0124】
上記のように構成された積層構成体321と、その両側のガス分離・分配・保温板322,323には、さらにその両側の最外層部分に、空気或いは燃料ガスの給排気用開口を有する剛性の高い金属板324a,324bが積層されている。このように積層構成体321とガス分離・分配・保温板322,323と金属板324a,324bとの積層体は、複数のビス328により締め付けられており、積層体の内部のガス流路が確実に密封された構造を有する燃料電池が構成されている。
【0125】
以上のように、本発明に係る実施例4の燃料電池は挟着電極金属板により各電極膜を接続する方式であるため、実質的な同一平面内に複数の固体電解質電極板を有する単電池を簡単に形成でき、その結果、単位容積当たりの出力の大きな燃料電池を実現することができる。
【0126】
《実施例5》
以下、本発明に係る実施例5の燃料電池について図20を用いて説明する。図20は実施例5の燃料電池における単電池333の構成を示す斜視図である。
実施例5は、従来の矩形平板状の固体電解質電極板を用いた内部マニホールド型の燃料電池と基本的に同じ構成の燃料電池に、本発明の挟着電極金属板による接続方式を適用したものである。
図20において、単電池333の固体電解質電極板334の両面には酸素電極膜又は燃料電極膜が形成されている。但し、これらの電極膜は両方ともそのパターン位置がズレた位置ではなく中央部分に形成されている。したがって、固体電解質基板を挟んで取り付けられた2組の挟着電極金属板335,336は、いずれの電極膜とも接触しておらず、両面の電極膜とは電気的に絶縁状態を有している。
【0127】
単電池333の両側には導電性を有する矩形状の多孔質体2,3、電気的絶縁性を有するガス分離・分配板4,5、及び導電性を有するセパレータ6,7が積層されて単セルが構成されている。このように構成された積層構成体内において流れるガスは、前述の実施例1において説明したガス流と同一であるため、その説明は省略する。
上記のように構成された実施例5の燃料電池においては、単電池333で発生した出力を挟着電極金属板より取り出すのではなく、積層構成体の導電性の多孔質板から導電性のセパレータを通して取り出す方式であり、従来の燃料電池においてセパレータを介して出力を取る方式と同じとなる。
したがって、実施例5の燃料電池の構成によれば、前述の実施例のように2枚の金属薄板により固体電解質基板を挟み込み電極膜から挟着電極金属板を介して出力を取り出す方式を用いない従来の燃料電池における電気的接続方式にも何らの問題無く適用できる。
【0128】
上記実施例1〜5では実質的な正方形形状の固体電解質基板を用いた構造について説明したが、本発明はこの形状に限定されるものではなく、金属薄板による挟み込み接続方式が適用できる形状であれば、長方形の形状や多角形の形状の固体電解質基板にも問題なく適用できる。
また、実施例1〜5では固体電解質基板としてグリーンシート法で成型した基板について説明したが、本発明に係る基板構造は前記の製造方法に限定されるものではなく、例えば多孔質酸素電極板或いは多孔質燃料電極板の表面に、スクリーン印刷法や溶射法或いはスパッター法等で薄膜状に形成した固体電解質を有する構造の基板等にも適用できる。
【0129】
本発明に係る燃料電池は、挟着電極金属板による接続構造で矩形平板形状の固体電解質電極板を複数枚積層した内部マニホールド型の燃料電池であり、本発明における固体電解質電極板を用いた燃料電池は、比較的低い温度、約500℃で作動する。
本発明において、ガス分離・分配板、ガス分離・分配・保温板或いはセパレータの材料としては、耐熱性があり電気的絶縁性があれば材料の種類を制限するものではない。例えばセラミックス材料については、酸素電極膜及び燃料電極膜の膜面付近の温度と外周部分の温度とに大きな温度差が生じるので、熱膨張係数の極端に大きい材料は材料内の温度差により破壊されるため使用できない。しかし、熱膨張係数が5×10−6〜15×10−6の範囲内にある材料、例えば、ムライト(3Al・2SiO)熱膨張係数;5×10−6或いはステアタイト(MgO・SiO)熱膨張係数;7〜9×10−6或いは、フォルステライト(2MgO・SiO)熱膨張係数;9〜11×10−6或いは、アルミナ(92〜96Al)熱膨張係数;7〜8×10−6或いは、マイカ材料、熱膨張係数;10〜12×10−6或いは、その他のガラスやセラミックス材料で熱膨張係数が5〜15×10−6の範囲内の材料等が最適材料として使用できる。特に好ましくは、マイカ材料である。マイカ材料は、曲げ力に強く、耐熱性があり、電気絶縁性を有するので有効な材料である。
【0130】
また、出力を取り出すためのネジ切りした金属棒や締め付け用ナットは、高温酸化雰囲気中で使用されるので、耐酸化性の大きい材料に制限される。その材料としては、ステンレス鋼、ニッケル合金、コバルト合金、ニッケル−コバルト合金、鉄合金等が有効である。特に好ましくは、耐酸化性が良く熱膨張係数が小さい、ハステロイ、インコネル、インコロイ、インバー等のニッケル、コバルト系合金、ニッケル−コバルト合金等が有効である。また、高温酸化性雰囲気なので、金属棒やナットの表面に白金、金、銀、アルミニウム、ニッケル、パラジウム等の酸化されにくい材料を表面に被覆すると接続部の信頼性が極端に向上する。
【0131】
また、挟着電極金属板の金属薄板材料としては、高温酸化性雰囲気で使用可能であり、加えて高温状態でもバネ性、即ち酸素電極膜及び燃料電極膜を圧接する力が劣化しない材料が要求される。このような仕様に耐える金属材料としては、ニッケル合金、例えば三菱マテリアル(株)のハステロイX(Fe;18%、Cr;22%、Mo;9%,Ni;Balance)熱膨張係数;14.7×10−6、MA750(Fe;7%、Cr;15%、Al;0.7%、Ni;Balance)熱膨張係数;14×10−6、MA263(Co;20%、Cr;20%、Mo;5.9%、Al;0.5%)熱膨張係数;13.3×10−6など、別名インコネルといわれている材料或いは、コバルト合金、例えば三菱マテリアル(株)のヘインズアロイNo.25(Ni;10%、Cr;20%、W;15%、Co;Balance)熱膨張係数;13.9×10−6等、鉄合金、例えば三菱マテリアル(株)のMA800H(Ni;32.5%、Cr;21%、Al;0.5%)熱膨張係数;16.6×10−6、MA155N(Ni;20%、Co;20%、Cr;21%、Mo;3%、W;2.5%)15.6×10−6等の材料或いは、ニッケル−コバルト合金、例えばインバー(別名;アンバー)材で42インバー〔(Ni+co);41〜43%、Mo;0.9〜1.3%、Fe;Balance〕熱膨張係数;4.5〜6×10−6の低熱膨張係数の材料或いは、ステンレス鋼、例えばSUS310S(Ni;19〜22%、Cr;24〜26%、Fe;Balance)熱膨張係数;16.9×10−6(含有量は重量%、熱膨張係数は常温〜400−500℃)の材料が最適であった。即ち、各材料特有の熱処理条件で熱処理したとき、常温〜500℃−600℃でバネ性を有し、電気導電性で且つ前記の温度領域での熱膨張係数が、4×10−6〜20×10−6の範囲内の材料であれば上記材料に制限するものではなく如何なる材料でも使用可能である。
【0132】
また、挟着電極金属板の金属薄板の板厚は、0.1mm〜0.5mmの範囲内であり、好適には0.15mm〜0.3mm範囲内である。この板厚が前記範囲以下だとバネ圧が小さすぎて電気的接触に不安定要素が生じ、反対に前記範囲より厚いとバネ圧が強すぎ2枚の金属薄板を固体電解質基板に溶接接合する時、固体電解質基板に与えるダメージが大きく、最悪の場合には破損することがある。本発明者らは上記の好適な範囲内の金属薄板を用いることにより、固体電解質基板との熱膨張係数の違いによる材料の伸縮差を接触部分の滑りにより吸収できることを確認している。
【0133】
金属薄膜材料は高温時のバネ性を持たせるために、各材料特有の熱処理を行う必要がある。熱処理を行った金属薄膜材料としては、特に好ましくは、耐酸化性が良く熱膨張係数が固体電解質に近く、バネ性が高温でも劣化しにくい、ハステロイ、インコネル、インコロイ、インバー等のニッケル、コバルト系合金が有効である。また、高温酸化性雰囲気なので、金属板の表面の全面或いは一部の必要な部分に白金、金、銀、アルミニウム、ニッケル、パラジウム等の酸化されにくい材料で表面に被覆すると接続部の信頼性が極端に向上する。特に好ましくは金メッキが有効である。発明者らの実験によれば金メッキの場合のメッキ厚みは、0.5〜1.0μm程度で十分な酸化防止膜の機能を果たした。
【0134】
上記の各実施例の説明において、3枚の固体電解質電極板を積層する燃料電池について説明したが、本発明はの燃料電池は1枚でも或いは5枚以上でも適用できることは言うまでもない。
上記の各実施例の説明において、金属薄板により固体電解質電極板の隣接する2辺で接続する構造について説明したが、本発明は2辺に限定するものではなく1辺でも或いは金属線による接続も可能であり、その気密性を確保すれば直ちに実用化できる。
【0135】
上記の各実施例の説明において、挟着電極金属板の外周部の角部で電気的に接続する構造を説明したが、本発明は角部に制限されるものではなく、その他の部分でもガス流路となる開口部の位置を変更すれば直ちに実現できる。
上記の各実施例の説明において、固体電解質基板が水平状態に配置されることを前提に説明したが、本発明者らはその方向が如何なる方向でも何等問題無く使用できることを実験により確かめている。
また、上記の各実施例の説明において、酸素電極膜に流入する空気の給排路が密封したガス給排路構造で説明したが、本発明の燃料電池としては空気側がオープン構造でも可能である。
さらに、上記の各実施例の説明においては、燃料電池本体を主体に説明したが実際に使用する場合には、燃料電池本体に流入する供給ガスの高温化をはかるために熱交換器を接続したり、排出された燃料ガスにおける未使用の燃料ガスを燃焼させて熱エネルギーを取り出すための装置等を設けて併用することにより、さらに好ましい燃料電池となる。
【0136】
さらに、上記の各実施例の説明においては、ペロブスカイト型Ba−Ce−Gd−O系酸化物、Ba−Ce−Gd−Zr−O系酸化物或いはBa−Ce−Gd−Al−O系酸化物セラミックスの薄板状固体電解質を用いた燃料電池について説明してきたが、本発明は前記の組成にこだわるものではなくその他の組成の固体電解質にも問題なく適用できることは勿論のことである。即ち、本発明は固体電解質の駆動温度が、使用する金属薄板のバネ性を保持する限度内であれば、如何なる固体電解質を用いた燃料電池に適用できる。
【0137】
【発明の効果】
以上、実施例について詳細に説明したところから明らかなように、本発明は次の効果を有する。
本発明に係る燃料電池は、固体電解質基板の両面に形成した電極膜の端部近傍を金属薄板で両側から挟み込み、金属薄板の弾性力により圧接して電気的に接続する方式で構成されている。これにより、本発明によれば、駆動時の高温状態において材料間の熱膨張率の違いにより生じる伸縮差によるストレスを接触部のズレにより吸収でき、信頼性の高い燃料電池を提供できる。従来の燃料電池においては、導電性ペーストなどにより接合部分を強固に接続していたため、接合部分の材料間の熱膨張の差により伸縮が生じると、接合部分に亀裂が生じ断線するという問題があり、本発明においてはこの問題を解決して、信頼性の高い燃料電池を提供している。
【0138】
本発明に係る燃料電池は、固体電解質基板の両面に形成した酸素電極膜又は燃料電極膜が互いに反転した異なった位置に形成されており、この固体電解質基板には2組の挟着電極金属板が電気的に絶縁されて取り付けられている。一方の挟着電極金属板が酸素電極膜又は燃料電極膜の一方の電極膜に接続されており、他方の挟着電極金属板が燃料電極膜又は酸素電極膜の他方の電極膜に接続されている。一組の挟着電極金属板は2枚の金属薄板で構成され、一方の金属薄膜が一方の電極膜にのみ電気的に接続され、他方の金属薄膜が他方の電極膜に絶縁状態となるよう2枚の金属薄板が固体電解質基板に取り付けられている。即ち、本発明により、矩形平板状の固体電解質電極板と実質的に同一平面内において固体電解質電極板の両面の電極膜に外部接続用の挟着電極金属板を接続した新規な構造の燃料電池を実現した。したがって、本発明においては、挟着電極金属板の金属薄板の一部に形成した開孔に導電体を挿入して出力を取り出すよう構成されているので、多孔質体やセパレータを絶縁性材料で構成することが可能となり、材料選択の範囲が大幅に広がるという優れた効果を有する。本発明によれば、曲げ力が働いても破壊しない耐熱性のある材料を使用することが可能となり、振動や衝撃に強い信頼性の高い燃料電池を提供できる。
【0139】
また、本発明によれば、固体電解質電極板の電極膜に挟着電極金属板を電気的に接続するよう構成されているので、積層した単電池の直列接続や並列接続、或いは直列接続と並列接続が混在した構造等が簡単に構築することが可能となる。更に、本発明によれば、固体電解質電極板の電極膜に挟着電極金属板を電気的に接続するよう構成されているので、積層構成体における他の部材を介して隣接する単電池の対向する面の電極を同極に構成することにより、単電池自体がセパレータの機能を果たし、セパレータ不要の燃料電池が実現することが可能となる。
更に、本発明によれば、挟着電極金属板、ガス分離・分配板及びセパレータのそれぞれの外周部分に独立した2系統のガス給排路が形成されているため、各固体電解質電極板に対して酸化剤ガス(空気)及び燃料ガスを容易に且つ確実に供給できる内部マニホールド型の燃料電池を提供することができる。
【0140】
更に、本発明によれば、固体電解質基板に形成した電極膜に挟着電極金属板を電気的に接続するよう構成されており、動作温度が500℃前後と低いためマイカ板のような抗折力に強い材料を固体電解質基板として使用することが可能となり、積層構成体の密封方式を両側に設けた剛性の高い金属板により締め付けることにより容易に実現できるため、低価格の燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る実施例1における燃料電池用の単セルの構成を示す分解斜視図である。
【図2】本発明に係る実施例1における固体電解質電極板を示す斜視図である。
【図3】本発明に係る実施例1における挟着電極金属板を示す分解斜視図である。
【図4】本発明に係る実施例1における単電池を示す斜視図である。
【図5】図4のIII−III線による断面図である。
【図6】本発明に係る実施例1における別の形状の多孔質体を用いた単セルの構成を示す分解斜視図である。
【図7】本発明に係る実施例1における更に別の形状の多孔質体を用いた単セルの構成を示す分解斜視図である。
【図8】本発明に係る実施例1における単セルを3層用いた燃料電池の構成を示す分解斜視図である。
【図9】図8のIV−IV線による断面図である。
【図10】本発明に係る実施例1の燃料電池の組み立てを示す斜視図である。
【図11】本発明に係る実施例1の燃料電池を示す完成斜視図である。
【図12】本発明に係る実施例2における単セルを3層用いた構造の燃料電池を示す分解斜視図である。
【図13】図12のV−V線による断面図である。
【図14】本発明に係る実施例3の燃料電池の構成を示す分解斜視図である。
【図15】図14のVI−VI線による断面図である。
【図16】本発明に係る実施例4における単電池の構成を示す斜視図である。
【図17】図16のX−X線による断面図である。
【図18】本発明に係る実施例4における単セルの構成を示す分解斜視図である。
【図19】本発明に係る実施例4の燃料電池を示す完成斜視図である。
【図20】本発明に係る実施例5における単セルの構成を示す分解斜視図である。
【図21】従来の単電池を示す斜視図である。
【図22】従来の積層型の燃料電池の構成を示す分解斜視図である。
【符号の説明】
1、74a、74b、74c、141、142、143、181、182、183、230、333   単電池
2、3、67a、67b、68a、68b、73a、73b、73c、73d、73e、73f、284a、284b、284c、284d、345、358     多孔質体
4、5、72a、72b、72c、75a、75b、75c
282、283               ガス分離・分配板
6、7、71a、71b、71c、71d、281a、
281b、344              セパレータ
11、12                 挟着電極金属板
31、342                固体電解質基板
32、33、261、262、263、264、341、343電極膜
41、42                 金属薄板
122、123、193、194、322、323ガス分離・分配・保温板
124a、124b、324a、324b   金属板
233、234               L字型挟着電極金属板
235                   T字型挟着電極金属板

Claims (36)

  1. 矩形平板状の固体電解質基板の表裏両面の一方の面に酸素電極膜を形成し、他方の面に燃料電極膜を形成した固体電解質電極板と、
    前記固体電解質電極板の表裏両面と実質的に同一平面内で、前記酸素電極膜又は前記燃料電極膜に電気的に互いに独立して接続された2組の挟着電極金属板とを有する単電池を具備し、
    前記単電池を1個或いは複数個の積層で構成された燃料電池。
  2. 2組の挟着電極金属板のそれぞれが矩形平板状の固体電解質基板の異なる少なくとも1辺を異なる電極膜に接触するように挟み込み弾性力により挟着する2枚の金属薄板により構成され、
    前記固体電解質基板に2組の前記挟着電極金属板が挟着された単電池の一方の面側に多孔質体、燃料ガス分離・分配板及びセパレータを積層し、そして前記単電池の他方の面側に多孔質体、空気ガス分離・分配板及びセパレータを積層して構成された単セルを複数積層した燃料電池であって、
    前記挟着電極金属板、前記燃料ガス分離・分配板、前記空気ガス分離・分配板及び前記セパレータのそれぞれの外周部分近傍に燃料ガスが流通するための燃料ガス給排路となる開口及び空気ガスが流通するための空気ガス給排路となる開口がそれぞれ形成されており、当該燃料電池内に前記燃料ガス給排路と前記空気ガス給排路が互いに連通しない2系統のガス給排路となるよう構成された請求項1に記載の燃料電池。
  3. 2系統うちの一方のガス給排路が前記固体電解質電極板の一方の電極膜面にガス流を送り、他方のガス給排路が前記固体電解質電極板の他方の電極膜面にガスを送るよう構成された請求項2に記載の燃料電池。
  4. 2系統のガス給排路において、前記固体電解質電極板の一方の電極膜面に流れるガス流の方向と、前記固体電解質電極板の他方の電極膜面に流れるガス流の方向が実質的に直角方向に流れるよう構成された請求項3に記載の燃料電池。
  5. 単セルが複数個積層された積層構成体の積層方向における両外側部分にガス分離・分配・保温板と、前記ガス分離・分配・保温板のさらに両側最外部分に、ガス給排口を有する剛性のある金属板がそれぞれ積層された請求項2乃至4のいずれか一項に記載の燃料電池。
  6. 複数の固体電解質電極板を有する積層構成体において、他の部材を介して隣接する固体電解質電極板の対向する電極膜が異なる極となるように構成された請求項1乃至5のいずれか一項に記載の燃料電池。
  7. 固体電解質基板の表裏両面の一方の面と他方の面に異なる電極膜が形成されており、一方の電極膜が前記固体電解質基板の一方の端部近傍に偏って配設され、他方の電極膜が前記固体電解質板の他方の端部近傍に偏って配設された請求項1乃至6のいずれか一項に記載の燃料電池。
  8. 固体電解質電極板の表裏両面の一方の面に酸素電極膜が形成され、他方の面に燃料電極膜が形成された燃料電池において、前記酸素電極膜と前記燃料電極膜のパターン位置が前記固体電解質電極板の中心より異なる方向に変位しており、且つ前記酸素電極膜のパターンと前記燃料電極膜のパターンが反転した位置に形成されており、前記固体電解質電極板を挟着する2組の挟着電極金属板が前記酸素電極膜又は前記燃料電極膜の周辺部のいずれかを圧接するように配設された請求項1乃至7のいずれか一項に記載の燃料電池。
  9. 固体電解質電極板と当該固体電解質電極板を挟着する挟着電極金属板とを有する単電池において、前記固体電解質電極板の端部を挟着して接合された挟着電極金属板が前記酸素電極膜或いは前記燃料電極膜と電気的に接触し、前記挟着電極金属板の周辺部に1個或いは複数個のガス給排路となる開口部がそれぞれ独立して形成された請求項1乃至8のいずれか一項に記載の燃料電池。
  10. 挟着電極金属板が固体電解質電極板の端部の表裏両面を挟む少なくとも2枚の金属薄板より構成されており、前記固体電解質電極板の少なくとも2箇所の端部を挟んだ2組の挟着電極金属板において、
    一方の組の挟着電極金属板の表面の金属薄板が前記固体電解質電極板の表面の電極膜を圧接し、当該一方の組の挟着電極金属板の裏面の金属薄板が前記固体電解質電極板の裏面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、
    他方の組の挟着電極金属板の表面の金属薄板が前記固体電解質電極板の表面の電極膜に接触せずに前記固体電解質電極板を圧接し、当該他方の組の挟着電極金属板の裏面の金属薄板が前記固体電解質電極板の裏面の電極膜を圧接するように構成された請求項1乃至9のいずれか一項に記載の燃料電池。
  11. 単電池、ガス分離・分配板、セパレータ及びガス分離・分配・保温板による積層構成体において、各々の外周部分に連通する開孔を有し、当該開孔に棒状の電気伝導体を挿入して、酸素電極膜又は燃料電極膜に接続した2組の挟着電極金属板の一方の挟着電極金属板の開孔又は他方の挟着電極金属板の開孔に電気的に接続し、複数個の前記電気伝導体の導出部分に外部リード線を接続した構造を有する請求項1乃至10のいずれか一項に記載の燃料電池。
  12. 固体電解質電極板の表裏両面の異なった位置に形成された酸素電極膜又は燃料電極膜を少なくとも2組の挟着電極金属板で挟着した単電池の両側のそれぞれに多孔質体、ガス分離・分配板及びセパレータを積層した単セルを複数積層した積層構成体において、
    一つの単電池の表面側を酸素電極膜とした場合、積層された単電池の全ての表面側が酸素電極膜となり、裏面側が燃料電極膜となるように積層され、且つ、積層された各表面側及び裏面側の電極膜の位置が互い違いに異なるように形成されており、前記酸素電極膜が一方の挟着電極金属板に接続されており、燃料電極膜が他方の挟着電極金属板に接続された構成を有し、
    前記積層構成体における複数の単セルにおいて、他の部材を介して隣接する単セルの下側の単電池の酸素電極膜が上側の単電池の燃料電極膜に電気的に接続され、当該下側の単電池の燃料電極が更に下側の単電池の酸素電極膜に電気的に接続されることにより、前記積層構成体における複数の単セルの単電池が直列に接続された請求項1乃至11のいずれか一項に記載の燃料電池。
  13. 固体電解質電極板の表裏両面の一方の面に酸素電極膜が形成され、他方の面に燃料電極膜が形成され、少なくとも2組の挟着電極金属板で挟着した単電池の両側のそれぞれに多孔質体、ガス分離・分配板及びセパレータを積層した単セルを複数積層した積層構成体において、
    一つの単電池の表面側を酸素電極膜とした場合、積層された単電池の全ての表面側が酸素電極膜となり、裏面側が燃料電極膜となるように積層され、且つ、積層された各表面側及び裏面側の電極膜の位置が同一方向に変位して形成されており、前記酸素電極膜が一方の前記挟着電極金属板を介して一方の電気伝導体に接続されており、前記燃料電極膜が他方の前記挟着電極金属板を介して他方の電気伝導体に接続されて、前記単電池を電気的に並列接続をした請求項1乃至12のいずれか一項に記載の燃料電池。
  14. 固体電解質基板の表裏両面における反転した位置に酸素電極膜又は燃料電極膜が形成され、かつ前記固体電解質基板を前記酸素電極膜又は前記燃料電極膜に電気的に接触するように2枚の金属薄板により挟みその弾性力により圧接した2組の挟着電極金属板を有する単電池と、前記単電池の一方の面側に多孔質体、燃料ガス分離・分配板とを積層し、他方の面側に多孔質体、空気ガス分離・分配板とを積層した単セルをさらに複数積層した積層構成体において、
    前記積層構成体の両側最外部分にガス分離・分配・保温板が配置され積層されており、前記電極金属板、燃料ガス分離・分配板、空気ガス分離・分配板及びガス分離・分配・保温板の外周部分の近傍に燃料ガス及び空気ガスが流通するためのガス給排路となる開口部が形成されており、前記燃料ガス給排路と空気ガス給排路が互いに連通しない2系統のガス給排路が形成された燃料電池。
  15. 単セルが複数個積層された積層構成体の積層方向における両最外部にガス給排口を有する剛性のある金属板を積層した請求項14に記載の燃料電池。
  16. 挟着電極金属板が固体電解質電極板の端部の表裏両面を挟む少なくとも2枚の金属薄板より構成されており、前記固体電解質電極板の端部を前記2枚の金属薄板より挟着する2組の挟着電極金属板において、
    一方の組の挟着電極金属板の表面側の金属薄板が前記固体電解質電極板の表面の電極膜に圧接し、当該一方の組の電極金属板の裏面側の金属薄板が前記固体電解質電極板の裏面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、
    他方の組の挟着電極金属板の表面側の金属薄板が前記固体電解質電極板の表面の電極膜に接触せずに前記固体電解質電極板を圧接するよう構成されており、当該他方の組の電極金属板の裏面側の金属薄板が前記固体電解質電極膜の裏面の電極膜を圧接するように構成された請求項14又は15に記載の燃料電池。
  17. 複数の固体電解質電極板を有する積層構成体において、他の部材を介して隣接する固体電解質電極板の対向する電極が同じ極となるように構成された請求項14乃至16のいずれか一項に記載の燃料電池。
  18. 複数の固体電解質電極板を有する積層構成体において、隣り合い対向する固体電解質電極板の間の空間には同一のガスが流れ、前記固体電解質電極板における対向しない面には前記ガスと直交する別のガスが流れるように構成された請求項14乃至17のいずれか一項に記載の燃料電池。
  19. 複数の単セルを有する積層構成体の両側最外部分にガス分離・分配・保温板が配置された積層体において、
    挟着電極金属板とガス分離・分配板の外周部分に1個或いは複数個のガス給排路となる開口部を有して2系統のガス給排路が形成され、
    隣り合い対向する固体電解質電極板において一方の固体電解質電極板の酸素電極膜を挟着した酸素側挟着電極金属板と他方の固体電解質電極板の燃料電極膜を挟着した燃料側挟着電極金属板とを電気伝導体により連結し、
    更に前記他方の固体電解質電極板の酸素電極膜を挟着した酸素側挟着電極金属板と当該固体電解質電極板と隣り合い対向する別の固体電解質電極板の燃料電極膜を挟着した燃料側挟着電極金属板とを別の電気伝導体により連結し、
    順次交互に各電極膜に接続された酸素側挟着電極金属板と燃料側挟着電極金属板とを異なる電気伝導体により連結して複数の単セルを電気的直列接続で構成した請求項14乃至18のいずれか一項に記載の燃料電池。
  20. 矩形平板状の固体電解質基板の表裏両面の一方の面に酸素電極膜を形成し、他方の面に燃料電極膜を形成した固体電解質電極板と、前記固体電解質電極板の前記酸素電極膜又は前記燃料電極膜のいずれかに接触するように弾性力により圧接して挟む2枚の金属薄板を有する2組或いは複数組の挟着電極金属板とを有する単電池を具備し、
    前記単電池の両面側に多孔質体、ガス分離・分配板及びセパレータをそれぞれ積層した単セルを複数積層した積層構成体において、前記挟着電極金属板、前記ガス分離・分配板及び前記セパレータの外周部分近傍に燃料ガスが流れる燃料ガス給排路となる開口部及び空気ガスが流れる空気ガス給排路となる開口部が複数形成されており、前記燃料ガス給排路と前記空気ガス給排路が互いに連通しない2系統のガス給排路となるよう構成された燃料電池。
  21. 積層構成体において、各単電池における積層方向の挟着電極金属板を棒状の電気伝導体で電気的に接続した請求項20記載の燃料電池。
  22. ガス分離・分配板及びセパレータが緻密質、且つ耐熱性と絶縁性を有する材料で形成された請求項2乃至21のいずれか一項に記載の燃料電池。
  23. ガス分離・分配板、ガス分離・分配・保温板及び、セパレータの熱膨張係数が、5×10−6〜15×10−6の範囲内にある耐熱性と絶縁性を有する材料で構成された請求項5乃至22のいずれか一項に記載の燃料電池。
  24. ガス分離・分配板、ガス分離・分配・保温板、及びセパレータが、マイカ、セラミックス素材或いはガラス素材で形成された請求項5乃至23のいずれか一項に記載の燃料電池。
  25. 挟着電極金属板は、熱膨張係数が4×10−6〜20×10−6の範囲にある金属材料で構成された請求項1乃至24のいずれか一項に記載の燃料電池。
  26. 挟着電極金属板は、鉄合金板、ニッケル合金板、コバルト合金板、ニッケル−コバルト合金或いはステンレス鋼板よりなる請求項1乃至25のいずれか一項に記載の燃料電池。
  27. 挟着電極金属板の片面或いは両面の全面或いは一部分に、金、銀、ニッケル或いはアルミニウム皮膜が形成された請求項1乃至26のいずれか一項に記載の燃料電池。
  28. セパレータが、電気伝導性を有し且つ緻密質な材料である請求項2乃至27のいずれか一項に記載の燃料電池。
  29. 単電池の挟着電極金属板を電気的に接合する棒状の電気伝導体がネジを有する金属製のビスよりなり、各挟着電極金属板が前記ビスに貫通されナットにより締め付けて接続する構造を有し、複数の単電池を電気的に直列状態或いは並列状態で接続したビスの導出端部に外部リード線が接続された請求項1乃至28のいずれか一項に記載の燃料電池。
  30. 棒状の電気伝導体が、鉄合金材、ニッケル合金材、コバルト合金材、ニッケル−コバルト合金材或いはステンレス鋼材のいずれかで構成された請求項11乃至29のいずれか一項に記載の燃料電池。
  31. 多孔質体が、矩形形状、複数の角柱形状或いは複数の円柱形状よりなることを特徴とする請求項2乃至30のいずれか一項に記載の燃料電池。
  32. 多孔質体が、金属或いは非金属材の多孔質材料からなる請求項2乃至31のいずれか一項に記載の燃料電池。
  33. 多孔質体が、無機材料の繊維よりなる不織材或いは発泡材、或いは金属材料の繊維よりなる不織材或いは発泡材よりなる請求項2乃至32のいずれか一項に記載の燃料電池。
  34. 燃料電池の最外層のガス給排口を有する金属板が、鉄合金板、ニッケル合金板、コバルト合金板、ニッケル−コバルト合金板或いはステンレス鋼板よりなる剛性を有する材料で形成されており、前記金属板を単セルの積層構成体の最外部両側面に配設し、且つ前記金属板のガス給排口が前記積層構成体のガス給排路に連通するよう配設し、前記金属板を棒状の電気伝導体で締め付け固着した請求項2乃至33のいずれか一項に記載の燃料電池。
  35. 固体電解質基板は、結晶構造がペロブスカイト型のバリウム・セリウム・ガドリニウム系酸化物セラミックス材料、バリウム・セリウム・ガドリニウム・ジルコニウム系酸化物材料、或いはバリウム・セリウム・ガドリニウム・アルミニウム系酸化物で形成された請求項1乃至34のいずれか一項に記載の燃料電池。
  36. 固体電解質基板がグリーンシート工法で形成された1枚のシート或いは複数枚のシートを積層・焼成した材料からなる請求項1乃至35のいずれか一項に記載の燃料電池。
JP2002227886A 2002-08-05 2002-08-05 燃料電池 Expired - Fee Related JP4511779B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227886A JP4511779B2 (ja) 2002-08-05 2002-08-05 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227886A JP4511779B2 (ja) 2002-08-05 2002-08-05 燃料電池

Publications (2)

Publication Number Publication Date
JP2004071308A true JP2004071308A (ja) 2004-03-04
JP4511779B2 JP4511779B2 (ja) 2010-07-28

Family

ID=32014776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227886A Expired - Fee Related JP4511779B2 (ja) 2002-08-05 2002-08-05 燃料電池

Country Status (1)

Country Link
JP (1) JP4511779B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745742B1 (ko) 2006-08-22 2007-08-02 삼성에스디아이 주식회사 바이폴라 플레이트 및 그것이 적층된 스택을 구비한연료전지
CN100347899C (zh) * 2005-09-23 2007-11-07 清华大学 一种燃料电池堆紧固自适应方法
JP2010501971A (ja) * 2006-08-23 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 電気化学セルのスタックの繰り返しユニット、スタック配置、および繰り返しユニットの製造方法
JP2011129309A (ja) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2012119126A (ja) * 2010-11-30 2012-06-21 Magunekusu Kk 固体酸化物燃料電池
JP2012525679A (ja) * 2009-04-30 2012-10-22 エフディーアイ エナジー インク. 大量生産による燃料電池の配置およびその製造方法
US20150200415A1 (en) * 2012-09-27 2015-07-16 Murata Manufacturing Co., Ltd. Solid electrolytic fuel battery
JPWO2014050715A1 (ja) * 2012-09-27 2016-08-22 株式会社村田製作所 固体電解質形燃料電池
JP2018529839A (ja) * 2015-08-12 2018-10-11 コミッサリアット ア ル’エネルギエ アトミク エト アウクス エネルギーズ オルタナティブス 反応器又は燃料電池スタック(sofc)それぞれの内部での水の(共)電気分解(soec)又は発電のための高温低温グラジエント法
CN110571448A (zh) * 2019-08-26 2019-12-13 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283164A (ja) * 1996-04-19 1997-10-31 Osaka Gas Co Ltd 燃料電池
JPH1050336A (ja) * 1996-05-27 1998-02-20 Osaka Gas Co Ltd 燃料電池
JPH10302818A (ja) * 1997-04-24 1998-11-13 Osaka Gas Co Ltd 燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283164A (ja) * 1996-04-19 1997-10-31 Osaka Gas Co Ltd 燃料電池
JPH1050336A (ja) * 1996-05-27 1998-02-20 Osaka Gas Co Ltd 燃料電池
JPH10302818A (ja) * 1997-04-24 1998-11-13 Osaka Gas Co Ltd 燃料電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347899C (zh) * 2005-09-23 2007-11-07 清华大学 一种燃料电池堆紧固自适应方法
KR100745742B1 (ko) 2006-08-22 2007-08-02 삼성에스디아이 주식회사 바이폴라 플레이트 및 그것이 적층된 스택을 구비한연료전지
JP2010501971A (ja) * 2006-08-23 2010-01-21 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. 電気化学セルのスタックの繰り返しユニット、スタック配置、および繰り返しユニットの製造方法
JP2012525679A (ja) * 2009-04-30 2012-10-22 エフディーアイ エナジー インク. 大量生産による燃料電池の配置およびその製造方法
JP2011129309A (ja) * 2009-12-16 2011-06-30 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2012119126A (ja) * 2010-11-30 2012-06-21 Magunekusu Kk 固体酸化物燃料電池
US20150200415A1 (en) * 2012-09-27 2015-07-16 Murata Manufacturing Co., Ltd. Solid electrolytic fuel battery
JPWO2014050714A1 (ja) * 2012-09-27 2016-08-22 株式会社村田製作所 固体電解質形燃料電池
JPWO2014050715A1 (ja) * 2012-09-27 2016-08-22 株式会社村田製作所 固体電解質形燃料電池
US9742022B2 (en) * 2012-09-27 2017-08-22 Murata Manufacturing Co., Ltd. Solid electrolytic fuel battery having an inner gas supply path
JP2018529839A (ja) * 2015-08-12 2018-10-11 コミッサリアット ア ル’エネルギエ アトミク エト アウクス エネルギーズ オルタナティブス 反応器又は燃料電池スタック(sofc)それぞれの内部での水の(共)電気分解(soec)又は発電のための高温低温グラジエント法
CN110571448A (zh) * 2019-08-26 2019-12-13 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆
CN110571448B (zh) * 2019-08-26 2022-02-11 武汉中极氢能产业创新中心有限公司 双极板、燃料电池单电池及燃料电池堆

Also Published As

Publication number Publication date
JP4511779B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
JP6175410B2 (ja) 燃料電池及びその製造方法
JP5198797B2 (ja) 固体電解質形燃料電池
JP2000331692A (ja) 保持薄板枠付き平板型単電池及びそれを用いた燃料電池
JP2001273914A (ja) 電気化学装置および集積電気化学装置
US20120009497A1 (en) Electrochemical cell holder and stack
JP4633531B2 (ja) 固体酸化物形燃料電池スタックの電気的接合構造及び接合方法
JP4511779B2 (ja) 燃料電池
JP3841148B2 (ja) 固体電解質型燃料電池用セル板及びスタック
JP5257974B2 (ja) 電気化学リアクターモジュール及び電気化学リアクターモジュール集合体
JP2000048831A (ja) 固体電解質型燃料電池
JPWO2008044429A1 (ja) 固体電解質形燃料電池支持構造体とそれを備えた固体電解質形燃料電池モジュール
JP5362605B2 (ja) 固体酸化物形燃料電池のセル
JPH06349516A (ja) 固体電解質型燃料電池のスタック
JPH1116585A (ja) 平板型固体電解質燃料電池及びその積層方法
JPH06325779A (ja) 固体電解質型燃料電池のスタックおよびその作製方法
JP2005317291A (ja) 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP3963762B2 (ja) 酸素ポンプ
JPH05129033A (ja) 固体電解質燃料電池
JP2005317241A (ja) 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP5203635B2 (ja) 固体酸化物形燃料電池スタック及びモノリス形固体酸化物形燃料電池
JP6917193B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP2010153212A (ja) 電気化学装置
JPH09115530A (ja) 機械的シ−ル構造を有する固体電解質燃料電池
JPH0714591A (ja) 固体電解質燃料電池のガスシール構造
JP2018181405A (ja) 燃料電池発電モジュール

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees