JP2004066838A - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP2004066838A
JP2004066838A JP2002203985A JP2002203985A JP2004066838A JP 2004066838 A JP2004066838 A JP 2004066838A JP 2002203985 A JP2002203985 A JP 2002203985A JP 2002203985 A JP2002203985 A JP 2002203985A JP 2004066838 A JP2004066838 A JP 2004066838A
Authority
JP
Japan
Prior art keywords
air
heat source
tank
source fluid
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203985A
Other languages
English (en)
Other versions
JP3925335B2 (ja
Inventor
Yoshihiko Okumura
奥村 佳彦
Katsumi Nishikawa
西川 克巳
Tomonori Akatsuka
赤塚 智則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002203985A priority Critical patent/JP3925335B2/ja
Priority to US10/238,217 priority patent/US6679434B2/en
Publication of JP2004066838A publication Critical patent/JP2004066838A/ja
Application granted granted Critical
Publication of JP3925335B2 publication Critical patent/JP3925335B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00157Temperature regulation without by-pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00171Valves on heaters for modulated liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0096Radiators for space heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Duct Arrangements (AREA)

Abstract

【課題】エアミックス方式による吹出空気の温度調整機能の確保と、空調装置の小型化とを両立する。
【解決手段】車室内へ向かって流れる空気を加熱する暖房用熱交換器4の入口側タンク41内に流体流れ制御部材52を内蔵し、暖房用熱交換器4のうち熱源流体が流れる熱源流体通過領域Aと、熱源流体が流れない熱源流体非通過領域Bとの比率を流体流れ制御部材52の位置制御により変更する。これにより、暖房用熱交換器4の熱源流体通過領域の温風と、暖房用熱交換器4の熱源流体非通過領域の冷風の風量割合を調整できる。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明は暖房用熱交換器の熱源流体(温水等)が流れる熱源流体通過領域と、熱源流体が流れない熱源流体非通過領域との比率を可変して、吹出空気温度を調整する車両用空調装置に関する。
【0002】
【従来の技術】
従来、車両用空調装置の吹出空気の温度調整方式として、暖房用熱交換器をバイパスする冷風と暖房用熱交換器を通過する温風との風量割合をエアミックスドアにより調整して、吹出空気温度を調整するエアミックス方式が知られている。
【0003】
このエアミックス方式は、冷風と温風との風量割合を調整して吹出空気温度を調整するので、エアミックスドアの全開度範囲において吹出空気温度を応答よく変化させることができ、吹出空気の温度調整特性が良好である。
【0004】
また、別方式として、暖房用熱交換器に供給される温水の流量または温度を調整して、吹出空気温度を調整する温水調整方式が知られている。
【0005】
【発明が解決しようとする課題】
しかし、前者のエアミックス方式においては、暖房用熱交換器の搭載スペースの他に、エアミックスドアの作動空間、あるいは冷風と温風を混合するための混合空間等を必要とするので、その分、空調装置の体格(容積)が大型化するという不具合がある。
【0006】
これに反し、後者の温水調整方式では、エアミックス方式における混合空間、ドア作動空間等が不要となるので、空調装置の体格(容積)を小型化できる利点がある。しかし、後者の温水調整方式においては、暖房用熱交換器の熱容量が大きいので、温水の流量または温度を調整しても温度調整の応答性が悪い。
【0007】
また、この後者の温水調整方式のうち、温水流量調整方式においては、暖房用熱交換器の放熱特性が、温水弁の開弁後、小流量域で温水流量が増加するときに吹出温度が急激に立ち上がって、その後、温水流量の増加に対して吹出温度の上昇割合が緩慢となる特性になっている。そのため、車室内への吹出温度を低温域から高温域にわたって連続的に調整することが困難となる。
【0008】
この問題を解決するには、温水弁の操作ストロークに対して温水流量を小流量域で微細に調整できるように温水弁を構成する必要があり、温水弁がコスト高となる。また、車両エンジン駆動の温水ポンプにより暖房用熱交換器に温水が供給されるので、温水流量調整方式においてはエンジン回転数の変動が外乱となって吹出温度の変動を起こしやすい。また、暖房用熱交換器に送風される空気の風量の変動も外乱となって吹出温度の変動を起こしやすい。
【0009】
また、温水調整方式のうち、温水温度調整方式においては、温水温度の調整のために、高温温水と低温温水との混合が必要となる。そのため、低温温水の循環用ポンプ等を温水回路に新たに追加する必要が生じる。また、高温温水と低温温水とを混合する特殊な弁等も必要となり、コストアップが避けられない。
【0010】
本発明は上記点に鑑みてなされたもので、エアミックス方式による吹出空気の温度調整機能の確保と、空調装置の小型化とを両立することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、空調ケース(1a)内に配置され、空気を加熱する暖房用熱交換器(4)と、暖房用熱交換器(4)に内蔵され、暖房用熱交換器(4)のうち熱源流体が流れる熱源流体通過領域と、熱源流体が流れない熱源流体非通過領域との比率を変更する流体流れ制御手段(52、52a、52b)とを備えることを特徴とする。
【0012】
これによると、暖房用熱交換器(4)の熱源流体通過領域では、空気が温水等の熱源流体により加熱されて温風となり、一方、暖房用熱交換器(4)の熱源流体非通過領域では空気が加熱されることなくそのまま通過する。つまり、熱源流体非通過領域では冷風が通過する。従って、熱源流体通過領域と熱源流体非通過領域との比率を流体流れ制御手段(52、52a、52b)により変更することにより冷温風の風量割合を調整できる。よって、エアミックス方式による吹出空気の温度調整機能を確保できる。
【0013】
しかも、流体流れ制御手段(52、52a、52b)は温水等の熱源流体の流れを制御するものであるから、空気通路側ではなく、暖房用熱交換器(4)内部に内蔵できる。従って、従来のエアミックス方式のように、暖房用熱交換器(4)の外部にエアミックスドアの作動空間を設定する必要がなく、空調装置の体格(容積)を大幅に小型化できる。
【0014】
従って、エアミックス方式による良好な温度調整機能を確保しつつ、空調装置の小型化を達成できる。
【0015】
請求項2に記載の発明では、車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、空調ケース(1a)内に配置され、空気を加熱する熱源流体が多数本のチューブ(44、44a、44b)を流れる暖房用熱交換器(4)と、暖房用熱交換器(4)に内蔵され、暖房用熱交換器(4)の多数本のチューブ(44、44a、44b)のうち、熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更する流体流れ制御手段(52、52a、52b)とを備えることを特徴とする。
【0016】
これによっても、流体流れ制御手段(52、52a、52b)により熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更して、請求項1と同様の作用効果を発揮できる。
【0017】
請求項3に記載の発明では、車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、空調ケース(1a)内に配置され、空気を加熱する暖房用熱交換器(4)とを備え、暖房用熱交換器(4)は、空気を加熱する熱源流体が流れる多数本のチューブ(44、44a、44b)と、多数本のチューブ(44、44a、44b)に対する熱源流体の分配・集合を行うタンク部材(41、42)とを有し、タンク部材(41、42)内部に流体流れ制御手段(52、52a、52b)を移動可能に配置し、流体流れ制御手段(52、52a、52b)によりタンク部材(41、42)内の空間を多数本のチューブ(44、44a、44b)の配列方向に仕切るようにし、流体流れ制御手段(52、52a、52b)の位置を多数本のチューブ(44、44a、44b)の配列方向に直線的に移動させることにより多数本のチューブ(44、44a、44b)のうち、熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更するようにしたことを特徴とする。
【0018】
これによっても、タンク部材(41、42)内部に移動可能に配置した流体流れ制御手段(52、52a、52b)により熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更して、請求項1と同様の作用効果を発揮できる。
【0019】
請求項4に記載の発明では、請求項3において、タンク部材(41、42)の内部に多数本のチューブ(44、44a、44b)の配列方向に延びるようにねじ回転軸(51、51a、51b)が配置され、
流体流れ制御手段(52、52a、52b)は、タンク部材(41、42)の内壁面に摺動可能に嵌合するとともにねじ回転軸(51、51a、51b)にねじ結合され、
ねじ回転軸(51、51a、51b)が回転することにより、流体流れ制御手段(52、52a、52b)がタンク部材(41、42)の内壁面との嵌合により回り止めされた状態でタンク部材(41、42)内を直線的に移動することを特徴とする。
【0020】
これにより、ねじ回転軸(51、51a、51b)の回転により流体流れ制御手段(52、52a、52b)を直線的に移動させて、請求項3の作用効果を発揮する機構を提供できる。
【0021】
請求項5に記載の発明では、請求項4において、タンク部材(41、42)の断面形状を非円形状に形成することにより、流体流れ制御手段(52、52a、52b)の回り止めを行うようになっていることを特徴とする。
【0022】
これにより、タンク部材(41、42)自身の非円形状の断面形状を利用して、流体流れ制御手段(52、52a、52b)の回り止めを簡単に行うことができる。
【0023】
請求項6に記載の発明では、請求項4または5において、流体流れ制御手段(52、52a、52b)は、タンク部材(41、42)の内壁面に弾性的に圧着する弾性材からなる弁体(520)と、ねじ回転軸(51、51a、51b)にねじ結合され、且つ、弁体(520)が固定される剛体からなる弁台座(521)とを有することを特徴とする。
【0024】
これによると、弾性材からなる弁体(520)によりシール機能を良好に発揮してタンク部材(41、42)内の空間を流体洩れが生じることなく確実に仕切ることができる。しかも、剛体からなる弁台座(521)により弁体(520)を確実に固支持定できとともに、剛体からなる弁台座(521)の部分にてねじ回転軸(51、51a、51b)とのねじ結合部を構成するから、ねじ結合部の耐久寿命を長期にわたって安定的に保障できる。
【0025】
請求項7に記載の発明では、請求項4ないし6のいずれか1つにおいて、タンク部材(41、42)のうち多数本のチューブ(44、44a、44b)の配列方向の一端部に、ねじ回転軸(51、51a、51b)の一端部を支持する軸支持部(510)を配置し、タンク部材(41、42)のうち前記チューブ配列方向の他端部に、流体流れ制御手段(52、52a、52b)をタンク部材(41、42)内に挿入できる大きさを持った開口部(41g)を設け、開口部(41g)を脱着可能なキャップ部材(41h)により閉塞するとともに、キャップ部材(41h)を貫通してねじ回転軸(51、51a、51b)の他端部をタンク部材(41、42)の外部に突出し、ねじ回転軸(51、51a、51b)の他端部に、ねじ回転軸(51、51a、51b)を回転駆動する操作機構(50)を連結したことを特徴とする。
【0026】
これにより、タンク部材(41、42)外部の操作機構(50)によりねじ回転軸(51、51a、51b)を回転駆動して、流体流れ制御手段(52、52a、52b)の移動位置を調整できる。しかも、キャップ部材(41h)の脱着によりタンク部材(41、42)に対してねじ回転軸および流体流れ制御手段を簡単に脱着することができ、これら部材のメンテナンス性を向上できる。
【0027】
請求項8に記載の発明では、請求項7において、タンク部材(41、42)の前記一端部に、タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置したことを特徴とする。
【0028】
これにより、タンク部材(41、42)において、操作機構(50)の配置場所と反対側の端部に熱源流体入口(46)を配置できる。このため、熱源流体入口(46)を操作機構(50)により妨げられることなく、タンク部材(41、42)の筒形状と同一方向に突出するパイプ形状(例えば、図33、35参照)にすることができ、熱源流体入口(46)のパイプ形状をタンク部材(41、42)に一体成形することが容易である。
【0029】
請求項9に記載の発明では、請求項4ないし6のいずれか1つにおいて、タンク部材(41、42)のうち多数本のチューブ(44、44a、44b)の配列方向の端部に、タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置し、多数本のチューブ(44、44a、44b)のうち熱源流体入口(46)に最も近接するチューブと熱源流体入口(46)との間の部位にて、タンク部材(41、42)の断面形状を、前記最も近接するチューブから熱源流体入口(46)側へ向かって断面積が減少する形状としたことを特徴とする。
【0030】
これによると、多数本のチューブ(44、44a、44b)のうち熱源流体入口(46)に最も近接するチューブと熱源流体入口(46)との間に、流体流れ制御手段(52、52a、52b)が移動して、熱源流体入口(46)からの熱源流体の流れを遮断する場合、すなわち、全チューブへの熱源流体の流れを遮断する場合に、タンク断面積の減少により流体流れ制御手段(52、52a、52b)がタンク部材(41、42)内壁面により強く圧着する。従って、熱源流体の流れの遮断作用をより確実に発揮でき、最大冷房性能を確実に保障できる。
【0031】
請求項10に記載の発明では、請求項4ないし6のいずれか1つにおいて、タンク部材(41、42)のうち多数本のチューブ(44、44a、44b)の配列方向の端部に、タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置し、多数本のチューブ(44、44a、44b)のうち熱源流体入口(46)に最も近接するチューブと熱源流体入口(46)との間に流体流れ制御手段(52、52a、52b)が移動して、熱源流体入口(46)からの熱源流体の流れを遮断する際に、流体流れ制御手段(52、52a、52b)とねじ回転軸(51、51a、51b)とのねじ結合部(521d)をシールするシール手段(51e)を備えることを特徴とする。
【0032】
これによると、流体流れ制御手段とねじ回転軸とのねじ結合部から熱源流体が洩れるのをシール手段(51e)により防止して、最大冷房性能をより確実に保障できる。
【0033】
請求項11に記載の発明では、請求項3ないし10のいずれか1つにおいて、暖房用熱交換器(4)は、多数本のチューブ(44、44a、44b)の端部を支持する支持プレート(430)を有し、タンク部材(41、42)は筒状の形状であり、筒状の形状の周面のうち、支持プレート(430)側の部位に、多数本のチューブ(44、44a、44b)の端部と対応する穴部(41c)を設け、多数本のチューブ(44、44a、44b)の端部が穴部(41c)を介してタンク部材(41、42)の内部空間(41a)に連通した状態にてタンク部材(41、42)が支持プレート(430)に組付られていることを特徴とする。
【0034】
これによると、支持プレート(430)により支持されたチューブ端部が筒状のタンク部材(41、42)の周面の穴部(41c)を介してタンク部材(41、42)の内部空間(41a)に連通するから、タンク部材(41、42)を支持プレート(430)とは別部品で構成し、タンク部材(41、42)の内壁面をチューブ端部による凹凸のない滑らかな面とすることができる。これにより、タンク部材(41、42)内にて流体流れ制御手段(52、52a、52b)をスムースに直線的に移動できる。
【0035】
請求項12に記載の発明では、請求項11において、支持プレート(430)とタンク部材(41、42)との間に、多数本のチューブ(44、44a、44b)の端部およびタンク部材(41、42)の穴部(41c)と連通する穴部(432a)を有するシート状のシール材(432)を介在したことを特徴とする。
【0036】
これにより、チューブ端部とタンク部材(41、42)の穴部(41c)との連通部のシール性をシート状のシール材(432)により確実に確保でできる。
【0037】
請求項13に記載の発明では、請求項11または12において、支持プレート(430)に、タンク部材(41、42)を固定するかしめ固定部(430b)が備えられていることを特徴とする。
【0038】
これにより、支持プレート(430)のかしめ固定部(430b)によりタンク部材(41、42)と支持プレート(430)との組付を簡単に行うことができる。
【0039】
請求項14に記載の発明では、車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、空調ケース(1a)内に配置され、空気を加熱する暖房用熱交換器(4)とを備え、暖房用熱交換器(4)は、空気を加熱する熱源流体が流れる多数本のチューブ(44、44a、44b)と、多数本のチューブ(44、44a、44b)に対する熱源流体の分配・集合を行うタンク部材(41、42)とを有し、タンク部材(41、42)内部に流体流れ制御手段(52)を内蔵するとともに、流体流れ制御手段(52)を多数本のチューブ(44、44a、44b)の配列方向と平行な回転中心軸により回転可能に構成し、流体流れ制御手段(52)はチューブ配列範囲の全長に及ぶ軸方向寸法を有しており、流体流れ制御手段(52)の回転位置を選択することにより、熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更するようにしたことを特徴とする。
【0040】
これによると、流体流れ制御手段(52)の回転位置の選択により、熱源流体が流れるチューブ本数と熱源流体が流れないチューブ本数との比率を変更して、請求項1と同様の作用効果を発揮できる。
【0041】
特に、請求項14の流体流れ制御手段(52)はチューブ配列範囲の全長に及ぶ軸方向寸法を有し、回転運動により上記チューブ本数の比率を変更できるので、請求項3の流体流れ制御手段(52)のようにチューブ配列方向に沿って直線移動する必要がない。そのため、請求項14では流体流れ制御手段(52)の移動時間を短縮できる。
【0042】
請求項15に記載の発明では、請求項14において、流体流れ制御手段(52)は軸方向の一端部に開口部(78)を形成した中空形状であり、中空形状の外周面が多数本のチューブ(44、44a、44b)の端部に対向し、中空形状の外周面に、多数本のチューブ(44、44a、44b)の端部を閉塞するためのシール面(79)と多数本のチューブ(44、44a、44b)の端部を開口するための切り欠き部(80)とを形成し、切り欠き部(80)を軸方向の一端部から他端部に向かって螺旋状に形成したことを特徴とする。
【0043】
これにより、中空形状の外周面に形成したシール面(79)と切り欠き部(80)とにより多数本のチューブ端部を開閉して、上記チューブ本数の比率を変更できる。
【0044】
請求項16に記載の発明では、請求項14または15において、シール面(79)と多数本のチューブ(44、44a、44b)の端部との間に、シール面(79)に弾性的に圧接するシール部材(81)を配置したことを特徴とする。
【0045】
これにより、シール部材(81)が弾性的なシール作用を発揮して、チューブ端部の閉塞を確実に行うことができる。
【0046】
請求項17に記載の発明では、請求項14ないし16のいずれか1つにおいて、流体流れ制御手段(52)の軸方向の他端部に駆動軸(83)を設け、駆動軸(83)をタンク部材(41、42)の外部に突出させ、駆動軸(83)の突出部を操作機構(50)に連結することを特徴とする。
【0047】
これにより、タンク部材外部の操作機構(50)により駆動軸(83)を介してタンク部材内の流体流れ制御手段(52)を回転操作できる。
【0048】
請求項18に記載の発明のように、請求項3ないし17のいずれか1つにおいて、タンク部材は、多数本のチューブ(44、44a、44b)に熱源流体を分配する入口側タンク(41)と、多数本のチューブ(44、44a、44b)から流出する熱源流体を集合する出口側タンク(42)とから構成され、流体流れ制御手段(52、52a、52b)は入口側タンク(41)と出口側タンク(42)のうち、少なくとも一方に配置すればよい。
【0049】
請求項19に記載の発明のように、請求項18において、暖房用熱交換器(4)は、入口側タンク(41)から多数本のチューブ(44、44a、44b)を通過して出口側タンク(42)へ向かって熱源流体が一方向に流れるように構成することができる。
【0050】
これにより、構成が簡素で、熱源流体側の圧損が低い一方向流れタイプの暖房用熱交換器(4)を用いて、エアミックス方式による良好な温度調整機能の確保と空調装置の小型化を達成できる。
【0051】
請求項20に記載の発明のように、請求項18において、暖房用熱交換器(4)の空気の流れ方向(D)の前後に入口側タンク(41)と出口側タンク(42)を隣接配置し、入口側タンク(41)と出口側タンク(42)の配置部位と反対側の部位に中継タンク(62)を配置し、入口側タンク(41)と中継タンク(62)との間、および出口側タンク(42)と中継タンク(62)との間をそれぞれ多数本のチューブ(44a、44b)により連結し、入口側タンク(41)から熱源流体が多数本のチューブ(44a)を通過して中継タンク(62)に流入し、中継タンク(62)にて熱源流体がUターンして多数本のチューブ(44b)を通過した後に出口側タンク(42)に流入するようになっており、更に、中継タンク(62)内の空間を、多数本のチューブ(44a、44b)の配列方向に各チューブ毎に仕切ることを特徴とする。
【0052】
これにより、熱源流体が空気流れ方向(D)の前後にてUターンして流れるタイプの暖房用熱交換器(4)を用いて、エアミックス方式による良好な温度調整機能の確保と空調装置の小型化を達成できる。
【0053】
しかも、暖房用熱交換器(4)の空気の流れ方向(D)の前後に入口側タンク(41)と出口側タンク(42)を隣接配置するから、入口側タンク(41)の熱源流体入口部(46)と出口側タンク(42)の熱源流体出口部(47)とを隣接配置することが可能となり、熱源流体循環用の配管取り回し性が良好となる。そのため、暖房用熱交換器(4)の空調ケース(1a)に対する組付(搭載)作業性を向上できる。
【0054】
請求項21に記載の発明では、請求項2ないし20のいずれか1つにおいて、多数本のチューブ(44、44a、44b)のうち、熱源流体が最初に流れる1本目のチューブ周辺部の通風圧損を、暖房用熱交換器(4)の他の部位よりも大きくする圧損増大部(1c、1d)を備えることを特徴とする。
【0055】
ところで、本発明者の実験検討によると、多数本のチューブの全部に熱源流体が流れない最大冷房状態から、1本目のチューブのみに熱源流体が流れる状態に移行すると、この1本目のチューブからその周辺部分への熱伝導により車室内吹出空気温度が後述の図19のa部のように急上昇することが分かった。そこで、請求項21では1本目のチューブ周辺部の通風圧損を大きくする圧損増大部(1c、1d)を備えることにより室内吹出空気温度の急上昇を抑制して温度制御特性を改善できる。
【0056】
請求項22に記載の発明では、請求項2ないし20のいずれか1つにおいて、多数本のチューブ(44、44a、44b)のうち、熱源流体が最初に流れる1本目のチューブを、暖房用熱交換器(4)の空気通過領域の最外端の位置に配置したことを特徴とする。
【0057】
これにより、熱源流体が最初に流れる1本目のチューブからの熱伝導を受ける領域を減らして、室内吹出空気温度の急上昇を抑制できる。
【0058】
請求項23に記載の発明では、請求項2ないし20のいずれか1つにおいて、多数本のチューブ(44、44a、44b)のうち、熱源流体が最初に流れる1本目のチューブを、暖房用熱交換器(4)の空気通過領域の最外端の位置に配置し、熱源流体が最初に流れる1本目のチューブ周辺部の通風圧損を、暖房用熱交換器(4)の他の部位よりも高くする圧損増大部(1c、1d)を備えることを特徴とする。
【0059】
これにより、請求項21と請求項22の作用効果を併せ奏することにより、室内吹出空気温度の急上昇をより一層効果的に抑制できる。
【0060】
請求項24に記載の発明では、請求項1ないし23のいずれか1つにおいて、空調ケース(1a)内において、暖房用熱交換器(4)の上方部および下方部のいずれか一方に、暖房用熱交換器(4)をバイパスして冷風が流れる冷風バイパス通路(60)および冷風バイパス通路(60)を開閉するバイパスドア(61)を配置することを特徴とする。
【0061】
これにより、空調装置の吹出モードが車室内の上下両側に空気を吹き出す吹出モードである場合に、冷風バイパス通路(60)に近接した上方または下方の吹出開口部からの吹出空気温度をバイパスドア(61)の開度調整により独立に制御できる。このため、車室内への上下吹出温度を独立制御できる。
【0062】
請求項25に記載の発明では、請求項1ないし23のいずれか1つにおいて、空調ケース(1a)内において、暖房用熱交換器(4)の上方部および下方部のいずれか一方に熱源流体の入口部(46)を配置し、空調ケース(1a)内の上下方向において、熱源流体の入口部(46)の配置部位と同じ側に、暖房用熱交換器(4)をバイパスして冷風が流れる冷風バイパス通路(60)および冷風バイパス通路(60)を開閉するバイパスドア(61)を配置することを特徴とする。
【0063】
これにより、冷風バイパス通路(60)を通過する冷風の流れが暖房用熱交換器(4)の熱源流体の入口部(46)と同じ側に形成される。そして、暖房用熱交換器(4)においては熱源流体の入口部(46)側に熱源流体通過領域(熱源流体が通過するチューブ域)が形成され、熱源流体の入口部(46)と反対側に熱源流体非通過領域(熱源流体が通過しないチューブ域)が形成されるから、熱源流体通過領域の温風を冷風バイパス通路(60)の冷風と熱源流体非通過領域の冷風とにより挟み込む3層流の流れ形態を作り出すことができる。これにより、温風と冷風の接触面積が増加して温風と冷風の混合性を向上できる。
【0064】
請求項26に記載の発明では、請求項1ないし24のいずれか1つにおいて、暖房用熱交換器(4)を上下方向に延びるように空調ケース(1a)内に配置し、暖房用熱交換器(4)の下方部に熱源流体の入口部(46)を設け、暖房用熱交換器(4)の上方部に熱源流体の出口部(47)を設けることを特徴とする。
【0065】
これにより、熱源流体の入口部(46)が位置する熱交換器下方側に熱源流体通過領域(熱源流体が通過するチューブ域)が形成され、熱源流体の出口部(47)が位置する熱交換器上方側に熱源流体非通過領域(熱源流体が通過しないチューブ域)が形成されるから、暖房用熱交換器(4)の下方側に温風を、上方側に冷風を形成でき、頭寒足熱型の快適な吹出温度分布を形成できる。しかも、暖房用熱交換器(4)の上方部に熱源流体の出口部(47)を設けているから、温水等の熱源流体中に空気が混入している場合にも、その混入空気を上方部の出口部(47)から熱交換器外部へ容易に排出できる。
【0066】
請求項27に記載の発明では、請求項1ないし26のいずれか1つにおいて、空調ケース(1a)内のうち暖房用熱交換器(4)の空気流れ下流側に前席用空気通路(71)と後席用空気通路(72)を形成し、流体流れ制御手段として、前席用空気通路(71)に対応する前席用流体流れ制御手段(52a)と、後席用空気通路(72)に対応する後席用流体流れ制御手段(52b)を独立に設けることを特徴とする。
【0067】
これにより、前席用空気通路(71)から車室内の前席側へ吹き出す空気温度と後席用空気通路(72)から車室内の後席側へ吹き出す空気温度を、前席用流体流れ制御手段(52a)と後席用流体流れ制御手段(52b)によりそれぞれ独立に制御できる。
【0068】
請求項28に記載の発明では、請求項1ないし27のいずれか1つにおいて、空調ケース(1a)内のうち暖房用熱交換器(4)の空気流れ下流側に、暖房用熱交換器(4)を通過した空気流れを乱流化する複数のリブ(75)を所定間隔により配置したことを特徴とする。
【0069】
これにより、暖房用熱交換器(4)下流の空気流れを複数のリブ(75)により乱流化して、冷風と温風の混合性を向上できる。
【0070】
請求項29に記載の発明では、請求項28において、複数のリブ(75)は、暖房用熱交換器(4)を通過する温風の領域(A)と冷風の領域(B)との境界と平行に延びるように配置されることを特徴とする。
【0071】
これにより、暖房用熱交換器(4)を通過した空気が複数のリブ(75)に衝突して乱流化する際に、乱流化の渦が上記境界と直交する方向に拡大して、冷風と温風の混合性を一層向上できる。
【0072】
請求項30に記載の発明では、請求項28または29において、複数のリブ(75)相互の間隔を60mm以下としたことを特徴とする。
【0073】
本発明者の実験検討によると、リブ(75)相互の間隔を60mm以下とすることにより、冷風と温風の混合性向上の効果を高めることができることを確認している。
【0074】
請求項31に記載の発明では、請求項1ないし27のいずれか1つにおいて、空調ケース(1a)内のうち暖房用熱交換器(4)の空気流れ下流側に、暖房用熱交換器(4)を通過した温風と冷風のうち、いずれか一方を他方に向けて方向転換するガイド(76)を配置したことを特徴とする。
【0075】
これにより、ガイド(76)の空気ガイド作用によって、温風と冷風の混合性を良好に向上できる。
【0076】
請求項32に記載の発明では、請求項1ないし31のいずれか1つにおいて、空調ケース(1a)内のうち暖房用熱交換器(4)の空気流れ下流側に、車室内の左側領域に空気を吹き出すための左側通路(92)と車室内の右側領域に空気を吹き出すための右側通路(93)を形成し、暖房用熱交換器(4)を通過して左側通路(92)に流入する左側空気風量と、暖房用熱交換器(4)を通過して右側通路(93)に流入する右側空気風量の割合を変更する風量割合変更手段(85、86)を備えることを特徴とする。
【0077】
これにより、左側空気風量と右側空気風量の割合を変更して、車室内の左側領域への吹出空気温度と車室内の右側領域への吹出空気温度とを独立に制御できる。
【0078】
請求項33に記載の発明のように、請求項32において、暖房用熱交換器(4)は、具体的には熱源流体通過領域と熱源流体非通過領域が上下方向に積層されるように構成され、風量割合変更手段は、具体的には暖房用熱交換器(4)の左右方向の中央部に配置された回転軸(85a、86a)を中心として左右方向に回転するドア(85、86)にて構成できる。
【0079】
請求項34に記載の発明のように、請求項33において、ドア(85、86)は、暖房用熱交換器(4)の空気流れ下流側に配置すればよい。
【0080】
また、請求項35に記載の発明のように、請求項33において、ドア(85、86)は、暖房用熱交換器(4)の空気流れ上流側に配置してもよい。
【0081】
請求項36に記載の発明では、請求項33ないし35のいずれか1つにおいて、ドアは、暖房用熱交換器(4)の熱源流体通過領域に対応して設けられる温風量左右振り分けドア(85)と、暖房用熱交換器(4)の熱源流体非通過領域に対応して設けられる冷風量左右振り分けドア(86)とから構成されることを特徴とする。
【0082】
これにより、一方のドア(85)にて温風量の左右振り分けを行い、他方のドア(86)にて冷風量の左右振り分けを行うことができる。
【0083】
請求項37に記載の発明では、請求項36において、温風量左右振り分けドア(85)と冷風量左右振り分けドア(86)は、共通の操作機構(90)に連結されて連動して回転することを特徴とする。
【0084】
これにより、共通の操作機構(90)にて両ドア(85、86)を連動して回転操作できる。
【0085】
請求項38に記載の発明では、請求項37において、温風量左右振り分けドア(85)と冷風量左右振り分けドア(86)は左右方向に相反的に回転することを特徴とする。
【0086】
これによると、両ドア(85、86)が左右方向に相反的に回転することにより、車室内左右への温風量と冷風量が相反的に増減するので、車室内左右への吹出風量を一定に維持したまま、車室内左右への吹出空気温度を独立に制御できる。
【0087】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0088】
【発明の実施の形態】
(第1実施形態)
図1、図2は本発明の第1実施形態を示すものであり、本実施形態における車両用空調装置の空調ユニット部1は自動車の車室内計器盤の左右方向の略中央部に配置され、かつ車両の前後、上下方向に対して図1の矢印に示すように配置される。
【0089】
空調ユニット部1は、車室内へ向かって空気が流れる空気通路を構成する樹脂製の空調ケース(ケース部材)1aを有している。この空調ケース1aは本例では車両左右方向に分割されており、図1はその片側(左側)のケースを取り外して、他の片側(右側)のケースの組付嵌合面を示している。
【0090】
空調ケース1a内部の最も車両前方側部位に空気流入空間2が形成され、この空気流入空間2には車室内計器盤の助手席側に配置される送風ユニット(図示せず)から送風空気が流入する。なお、送風ユニットは内気又は外気を切替導入して送風するようになっている。
【0091】
空調ケース1a内には、その空気上流側から順に蒸発器3、ヒータコア4が配置されている。ここで、蒸発器3とヒータコア4はともに上下方向に延びるように平行に配置され、且つ、蒸発器3とヒータコア4とを30mm程度の微小間隔Cを介して近接配置している。
【0092】
蒸発器3は冷却用熱交換器であり、周知の冷凍サイクルに設けられ、空調ケース1a内への送風空気から吸熱して冷媒が蒸発することにより送風空気を冷却する。また、ヒータコア4は加熱用熱交換器であり、内部を流れる温水(エンジン冷却水)を熱源として空調ケース1a内の空気を加熱する。
【0093】
また、蒸発器3とヒータコア4はともにその配置部位において空調ケース1a内側の空気通路の全断面積を横断するように配置されているので、空気流入空間2に流入した空気の全量が蒸発器3とヒータコア4を通過するようになっている。
【0094】
空調ケース1aのうち、ヒータコア4の空気下流側部位(車両後方側部位)には複数の吹出開口部5、6、7が形成されている。このうち、デフロスタ開口部5は空調ケース1aの上面部に配置され、図示しないデフロスタダクトが接続され、このデフロスタダクト先端部のデフロスタ吹出口から空調空気を車両フロントガラスの内面に向けて吹き出す。
【0095】
また、フェイス開口部6は空調ケース1aの車両後方側の面の上部に配置され、図示しないフェイスダクトが接続され、このフェイスダクト先端部のフェイス吹出口から空調空気を乗員の上半身に向けて吹き出す。更に、フット開口部7は空調ケース1aの車両後方側の左右両側面に配置され、運転席および助手席の乗員の足元部に向けて空調空気を吹き出す。
【0096】
なお、デフロスタ開口部5とフェイス開口部6は図示しないデフ・フェイス用の共通の吹出モードドアにより開閉されるようになっている。本例では、このデフ・フェイス用吹出モードドアを薄膜状の樹脂フィルムドアにより構成して、空調ケース1aの体格、特に車両前後方向の体格を小型化できるようにしている。また、左右のフット開口部7は、デフ・フェイス用吹出モードドアとは別体のフット専用の吹出モードドア(図示せず)により開閉されるようになっている。このフット用の吹出モードドアは、例えば、周知の板ドアにより構成できる。
【0097】
デフ・フェイス用吹出モードドアとフット用の吹出モードドアは図示しないリンク機構を介してサーボモータを用いたアクチュエータに連結され、このアクチュエータにより複数の吹出開口部5、6、7の開閉を行うようになっている。
【0098】
次に、図2はヒータコア4部分の具体例を示すものであり、本例のヒータコア4は、車両左右方向の一方側に温水入口側タンク41を配置するとともに、温水出口側タンク42を車両左右方向の他方側に配置している。この両タンク41、42は上下方向に延びるように配置されている。そして、この両タンク41、42の間に熱交換コア部43を構成している。
【0099】
この熱交換コア部43は周知のごとく断面偏平状に成形してなる偏平チューブ44を水平方向に延びるように配置して、この偏平チューブ44の一端部を入口側タンク41に、他端部を出口側タンク42にそれぞれ連通させる。そして、この偏平チューブ44をコルゲートフィン45を介在して上下方向に多数本並列配置している。偏平チューブ44の両端部と両タンク41、42との間および偏平チューブ44とコルゲートフィン45との間はそれぞれ一体に接合する。
【0100】
ヒータコア4において温水入口側タンク41の下端部に温水入口46を設け、温水出口側タンク42の上端部に温水出口47を設けている。従って、温水入口46からの流入温水は温水入口側タンク41により熱交換コア部43の多数本の偏平チューブ44に分配され、この偏平チューブ44を並列に通過する。そして、偏平チューブ44からの温水は温水出口側タンク42内に流入して集合される。よって、本例のヒータコア4は、温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向に流れる一方向流れタイプ(全パスタイプ)として構成されている。
【0101】
なお、ヒータコア4の構成部品(41、42、44、45、46、47)は本例ではすべてアルミニュウム製であり、一体ろう付けにて組み付けられる。ヒータコア4の温水入口46には図1に示す入口温水配管48を、また、温水出口47には図1に示す出口温水配管49をそれぞれ接続し、この両温水配管48、49はさらに車両エンジンの温水回路に接続される。なお、車両エンジン温水回路には車両エンジンにより駆動される機械式温水ポンプ(図示せず)が備えられており、この機械式温水ポンプにより車両エンジンの温水(冷却水)がヒータコア4に循環する。
【0102】
温水入口側タンク41のうち、温水入口46と反対側の端部、すなわち、上端部にはアクチュエータ50が組付られている。このアクチュエータ50は電気信号により回転量(作動角)が制御可能なサーボモータを用いて構成されている。このアクチュエータ50内部のモータ出力軸(図示せず)に減速ギヤ(図示せず)を連結し、この減速ギヤによりねじ回転軸51を回転させる構成になっている。従って、アクチュエータ50はねじ回転軸51を回転させる操作機構を構成する。
【0103】
ねじ回転軸51はその外周面に雄ねじ部を形成した樹脂製または金属製の軸部材である。このねじ回転軸51は温水入口側タンク41内部に、このタンク41の長手方向、換言すると多数本の偏平チューブ44の配列方向(車両上下方向)の全長にわたって延びるように配置されている。
【0104】
そして、温水入口側タンク41の内部には板状の流れ制御部材52をタンク長手方向(チューブ配列方向)に直線的に移動可能に配置している。この流れ制御部材52の中心部はねじ回転軸51にねじ結合している。流れ制御部材52はタンク内空間をタンク長手方向(チューブ配列方向)の2つの空間に仕切るとともにその仕切り位置を変化させることにより温水流れを制御する。
【0105】
流れ制御部材52は、より具体的にはゴム系の弾性材により温水入口側タンク41の略長円状の断面形状に合致する板形状に成形され、流れ制御部材52の外周縁部がタンク41の内壁面に弾性的に圧着することにより、温水入口側タンク41の内部空間を流れ制御部材52により温水の洩れなく仕切ることができる。
【0106】
また、温水入口側タンク41の断面形状が略長円状の非円形形状になっているため、流れ制御部材52はタンク41の内壁面により回り止めされている。従って、ねじ回転軸51が回転すると、流れ制御部材52はねじ回転軸51とのねじ結合によりタンク長手方向に移動することになる。従って、アクチュエータ50の回転方向と回転量を選択することにより、ねじ回転軸51を介して流れ制御部材52を温水入口側タンク41内にて所望の位置に移動させることができる。
【0107】
なお、ヒータコア4のアルミニュウム製構成部品(41、42、44、45、46、47)を一体ろう付けにて組み付けした後に、温水入口側タンク41の上端の開口部からねじ回転軸51および流れ制御部材52を温水入口側タンク41内部に組み込み、その後に、温水入口側タンク41の上端の開口部を図示しない弾性シール部材を介してアクチュエータ50により密封する。
【0108】
なお、アクチュエータ50の回転方向および回転量は空調用制御装置53の出力信号により制御される。この空調用制御装置53はマイクロコンピュータおよびその周辺回路から構成され、予め設定されたプログラムにより所定の演算を行って、空調機器の作動を制御する。空調用制御装置53には内気温Tr、外気温Tam、日射量Ts、温水温度Tw、蒸発器3の吹出温度Te等を検出する周知のセンサ群54から検出信号が入力される。
【0109】
また、空調用制御装置53には、車室内計器盤近傍に設置される空調制御パネル55の操作スイッチ群56の操作信号も入力される。この操作スイッチ群56として、具体的には、温度設定信号Tsetを発生する温度設定スイッチ、風量切替信号を発生する風量スイッチ、吹出モード信号を発生する吹出モードスイッチ、内外気切替信号を発生する内外気切替スイッチ、空調用圧縮機のオンオフ信号を発生するエアコンスイッチ、空調制御のオート状態を設定するオートスイッチ等が設けらる。
【0110】
次に、上記構成において本実施形態の作動を説明する。周知のごとく空調用制御装置53では、空調の自動制御のための基本制御値として目標吹出空気温度TAOを算出する。この目標吹出空気温度TAOは、空調の熱負荷変動があっても車室内を空調制御パネル55の温度設定スイッチの設定温度Tsetに維持するために必要な吹出温度であり、下記数式1に基づいて算出される。
【0111】
【数1】
TAO=Kset ×Tset −Kr ×Tr −Kam×Tam−Ks ×Ts +C
但し、Tr:センサ群54の内気センサにより検出される内気温
Tam:センサ群54の外気センサにより検出される外気温
Ts:センサ群54の日射センサにより検出される日射量
Kset、Kr、Kam、Ks:制御ゲイン
C:補正用の定数
そして、流れ制御部材52の目標仕切り位置SWを、上記TAO、蒸発器吹出温度Te、及び温水温度Twに基づいて下記の数式2に基づいて算出する。
【0112】
【数2】
SW={(TAO−Te)/(Tw−Te)}×100(%)
ここで、数式2によると、流れ制御部材52の目標仕切り位置SWは、流れ制御部材52の最大冷房位置(図2の最下端の破線位置MC)を0%とし、流れ制御部材52の最大暖房位置(図2の最上端の破線位置MH)を100%とする百分率で表される。
【0113】
いま、空調用制御装置53において流れ制御部材52の目標仕切り位置SW=0%(最大冷房位置)が算出されると、空調用制御装置53の出力信号によりアクチュエータ50(すなわち、ねじ回転軸51)の回転方向および回転量が決定され、ねじ回転軸51の回転により流れ制御部材52が図2の最下端位置MCに移動する。これにより、流れ制御部材52がヒータコア4の温水入口側タンク41の最下端部(温水入口46部)の流路を閉塞する。
【0114】
この結果、ヒータコア4の全部の偏平チューブ44への温水流入が阻止されるので、熱交換コア部43の空気通路(偏平チューブ44とコルゲートフィン45との空隙部)の全域が温水と熱交換しない通路となる。つまり、熱交換コア部43の空気通路全域が、蒸発器3で冷却された冷風を加熱せずにそのまま通過させる冷風通路として作用する。
【0115】
次に、空調用制御装置53において流れ制御部材52の目標仕切り位置SWとして、0%(最大冷房位置)と100%(最大暖房位置)との間の中間位置の値が算出されると、空調用制御装置53の出力信号によりアクチュエータ50(すなわち、ねじ回転軸51)の回転方向および回転量が決定され、ねじ回転軸51の回転により流れ制御部材52が図2の実線で示す中間位置に移動する。
【0116】
これにより、ヒータコア4の温水入口側タンク41の温水入口46部の流路が開放状態になるので、図示しない車両エンジンの温水ポンプにより圧送される温水が、温水入口配管48、温水入口46を経てヒータコア4の温水入口側タンク41内に流入する。そして、温水入口側タンク41内の空間が流れ制御部材52により上下に仕切られているので、熱交換コア部43の偏平チューブ44のうち、流れ制御部材52よりも下側領域(温水入口46側の領域)Aの偏平チューブ44のみに温水が流れ、流れ制御部材52よりも上側領域(温水出口47側の領域)Bの偏平チューブ44には温水が流れない。
【0117】
従って、熱交換コア部43の空気通路のうち、流れ制御部材52の下側領域Aが温水により空気を加熱する温風通路として作用し、流れ制御部材52の上側領域Bは冷風が加熱されることなくそのまま通過する冷風通路として作用する。このため、空調用制御装置53の出力信号により流れ制御部材52の仕切り位置を制御することにより、温風風量と冷風風量の割合を制御して車室内への吹出空気温度を目標吹出温度TAOとなるように制御できる。
【0118】
以上により、冷温風の風量割合の制御により車室内への吹出空気温度を制御することができ、エアミックス方式による温度調整機能を発揮できる。しかも、温水入口側タンク41内に内蔵される流れ制御部材52の位置制御によって温度調整機能を発揮できるから、従来技術のようにエアミックスドアをヒータコア4の外部に設ける必要がない。
【0119】
そのため、図1に示すように蒸発器3の下流側に、ヒータコア4を平行に、且つ、近接配置でき、空調ユニット1部の体格(本実施形態では車両前後方向の体格)を大幅に小型化できる。
【0120】
しかも、本実施形態によると、冷風をヒータコア4内に通過させることができるから、ヒータコア4の外側に冷風バイパス通路を形成する必要がない。そのため、エアミックス方式でありながら、ヒータコア4の大きさを蒸発器3と同等の大きさに拡大できる。その結果、ヒータコア4の外側に冷風バイパス通路を形成する通常のエアミックス方式に比較して暖房時の圧損を大幅に低減でき、暖房時の風量を大幅に増加できる。
【0121】
また、ヒータコア4内の通風路を冷風と温風の両方が通過するので、ヒータコア4の下流側にて冷風と温風が互いに隣り合って流れ、冷風と温風の接触面積が大きい。そのため、従来のエアミックス方式(冷風と温風が離れて流れる方式)に比較して、冷風と温風の混合性が格段と向上するので、冷風と温風の混合室を小型化することが可能である。これによって、空調ユニット1部の体格(本実施形態では車両前後方向の体格)をより一層小型化できる。
【0122】
更に、本実施形態によると、温度調整機能自体についても従来のエアミックス方式よりも下記の点で有利となる。すなわち、従来のエアミックス方式では、ヒータコアの通風路を通過する温風量と、ヒータコア外部の冷風バイパス通路を通過する冷風量との風量割合をエアミックスドアにより制御しているので、ヒータコア外部の冷風バイパス通路に比較してヒータコアの通風路はチューブとコルゲートフィンとによる圧損がどうしても発生し、温風量を冷風量より低下させる原因となる。
【0123】
そのため、図3の▲1▼に示すようにエアミックスドアの操作ストローク(開度)の増加に対して車室内への吹出空気温度が比例的に増加せず、下側へ凸となる温度制御特性になり、温度制御特性のリニア性を悪化させる。
【0124】
これに反し、本実施形態によると、熱交換コア部43の空気通路に、空気を加熱する温風通路部分(流れ制御部材52の下側領域A)と、冷風が加熱されることなくそのまま通過する冷風通路部分(流れ制御部材52の上側領域B)とを形成しているから、温風通路部分と冷風通路部分の圧損条件が同一になる。そのため、流れ制御部材52の操作ストローク(仕切り位置)の増加に対して車室内への吹出空気温度を図3の▲2▼のように比例的に増加させることができ、温度制御特性のリニア性を容易に確保できる。
【0125】
(第2実施形態)
上記の第1実施形態では、ヒータコア4を空調ケース1a内の空気通路の全断面積を横断するように配置して、空調ケース1a内への送風空気の全量がヒータコア4を通過するようにしているが、第2実施形態では図4に示すように、蒸発器3よりもヒータコア4の高さを低くして、空調ケース1a内においてヒータコア4の上方部に冷風バイパス通路60を形成し、この冷風バイパス通路60をバイパスドア61により開閉するようになっている。このバイパスドア61は空調用制御装置53により通電制御される図示しないアクチュエータによって開閉駆動される。
【0126】
第2実施形態では、バイパスドア61により冷風バイパス通路60を開放すると、蒸発器3通過後の冷風を冷風バイパス通路60を通して直接、デフロスタ開口部5またはフェイス開口部6へ導入することができる。
【0127】
従って、デフロスタ開口部5とフット開口部7を同時に開口するフットデフロスタモードや、フェイス開口部6とフット開口部7を同時に開口するバイレベルモードのように車室内の上下両側に同時に空気を吹き出す吹出モードにおいて、バイパスドア61の開度調整によりデフロスタ開口部5またはフェイス開口部6への冷風バイパス導入量を調整して、上下吹出温度を独立に制御することができる。
【0128】
(第3実施形態)
上記の第1、第2実施形態では、ヒータコア4の温水入口側タンク41内のみに流れ制御部材52を移動可能に配置しているが、第3実施形態では図5に示すように、ヒータコア4の温水入口側タンク41内および温水出口側タンク42内にそれぞれ流れ制御部材52a、52bを移動可能に配置している。このため、各流れ制御部材52a、52b毎にそれぞれアクチュエータ50a、50b、およびねじ回転軸51a、51bを配置している。
【0129】
第3実施形態によると、各流れ制御部材52a、52bをそれぞれ専用のアクチュエータ50a、50bにより独立に所望の位置に移動させることが可能となる。従って、第1実施形態のように温水の流れるチューブ本数(温風風量)と温水の流れないチューブ本数(冷風風量)との比率を調節する機能の他に、温水の流れるチューブの位置を任意に設定することが可能となる。
【0130】
図5に示す例では、ヒータコア4の熱交換コア部43において、上下方向の中央部に温水の流れるチューブ領域(温風通路部)Aを設定し、そして、この温水の流れるチューブ領域Aの上側および下側の双方に、温水の流れないチューブ領域(冷風通路部)Bを設定している。このため、上下方向の中央部の温風を上下両側の冷風で挟み込む3層流の流れ形態を作り出すことができる。これにより、温風と冷風の接触面積が増加して温風と冷風の混合性を向上できる。
【0131】
また、前述のフットデフロスタモードやバイレベルモードのように車室内の上下両側に同時に空気を吹き出す吹出モードにおいて、上下の吹出空気温度差を上記2枚の流れ制御部材52a、52bの位置調整により任意に設定できる。
【0132】
(第4実施形態)
上記の第1〜第3実施形態では、いずれも、ヒータコア4の温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向のみに流れるようにしているが、第4実施形態ではヒータコア4において空気流れDの前後方向に温水がUターンして流れるようにしている。
【0133】
第4実施形態を図6により具体的に説明すると、ヒータコア4において、車両左右方向の一方側に温水入口側タンク41と温水出口側タンク42の両方を空気流れDの前後方向に隣接配置している。ここで、図6(b)、(c)に示すように空気流れ方向Dの上流側に温水出口側タンク42を配置し、空気流れ方向Dの下流側に温水入口側タンク41を配置することにより、空気流れと温水流れが熱交換効率の良い対向流となるようにしてある。
【0134】
ヒータコア4において、車両左右方向の他方側には温水Uターン用の中継タンク62を配置している。そして、図6(c)に示すように、空気流れ方向Dの前後に偏平チューブ44a、44bを並列に配置し、空気流れ下流側の偏平チューブ44aの一端部を温水入口側タンク41に連通させ、他端部を中継タンク62に連通させている。また、空気流れ上流側の偏平チューブ44bの一端部を温水出口側タンク42に連通させ、他端部を中継タンク62に連通させている。
【0135】
更に、中継タンク62はその長手方向(上下方向)に各偏平チューブ44a、44b毎に仕切部62aを設けて、タンク長手方向(上下方向)において隣接する各偏平チューブ44a、44bの温水が互いに中継タンク62内で混合することなく、Uターンするようにしてある。温水入口側タンク41内には、第1実施形態と同様に、アクチュエータ50により回転駆動されるねじ回転軸51とこのねじ回転軸51に対してねじ結合している流れ制御部材52を配置している。
【0136】
第4実施形態においても、流れ制御部材52の移動により温水の流れるチューブ領域(温風通路部)Aと、温水の流れないチューブ領域(冷風通路部)Bとの比率を調整することにより、エアミックス方式にて吹出空気の温度調整を行うことができる。
【0137】
しかも、第4実施形態によると、ヒータコア4の温水流れを空気流れの前後方向にてUターンさせるから、ヒータコア4の片側に温水入口46と温水出口47を集中配置できる。従って、ヒータコア4に対する温水配管48、49(図1、4)の取り回しが容易になるという利点がある。
【0138】
なお、第4実施形態においても、第3実施形態(図5)と同様に温水入口側タンク41内および温水出口側タンク42内にそれぞれ移動可能な流れ制御部材52a、52bを配置してもよい。この場合には、2個のアクチュエータ50a、50bが隣接配置されるので、2個のアクチュエータ50a、50bに対する電気配線の取り回しも容易になる。
【0139】
従って、第4実施形態によると、空調ケース1aに対するヒータコア4の組付性が向上するとともに、空調装置の車両搭載後に、ヒータコア4の交換を行う際の交換作業性も向上できる。
【0140】
(第5実施形態)
前述の図5の第3実施形態では、ヒータコア4の温水入口側タンク41内および温水出口側タンク42内にそれぞれ流れ制御部材52a、52bを移動可能に配置して、ヒータコア4の上下方向の中央部の温風を上下両側の冷風で挟み込む3層流の流れ形態を作り、これにより、温風と冷風の混合性を向上するようにしているが、第5実施形態では1つの流れ制御部材52を使用するのみで、3層流の冷温風の流れ形態を作るようにしたものである。
【0141】
第5実施形態を図7、図8により具体的に説明すると、ヒータコア4は第1実施形態(図2)と同様に、温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向に流れる一方向流れタイプ(全パスタイプ)として構成されている。しかし、第1実施形態では、温水入口46を温水入口側タンク41の下端部に設けているのに対して、第5実施形態では温水入口46を温水入口側タンク41の上端部に設けている。つまり、温水入口46と温水出口47の両方をヒータコア4の上端部に設けている。
【0142】
そして、ヒータコア4において温水入口側タンク41内のみに流れ制御部材52を配置し、この流れ制御部材52をねじ回転軸51を介して移動させるアクチュエータ50を温水入口側タンク41の下端部に設けている。
【0143】
また、第5実施形態では第2実施形態(図4)と同様に、蒸発器3よりもヒータコア4の高さを低くして、空調ケース1a内においてヒータコア4の上方部に冷風バイパス通路60(図7)を形成し、この冷風バイパス通路60をバイパスドア61により開閉するようになっている。このバイパスドア61は空調用制御装置53により通電制御される図示しないアクチュエータによって開閉駆動される。
【0144】
第5実施形態では、空調用制御装置53によりバイパスドア61を流れ制御部材52の位置制御と連動して開閉するようになっている。具体的には、流れ制御部材52が図8の最上端位置、すなわち、最大冷房位置MCにあるとき、バイパスドア61は図7の実線で示す全開位置に操作される。そして、流れ制御部材52が図8の最上端の最大冷房位置MCから下方の中間位置に移動すると、これに連動してバイパスドア61の開度が減少していく。更に、流れ制御部材52が図8の最下端位置、すなわち、最大暖房位置MHに到達すると、これに連動してバイパスドア61は図7の破線で示す全閉位置に操作される。
【0145】
流れ制御部材52が図8の実線で示す中間位置に移動すると、バイパスドア61は所定の中間開度の位置となる。そのため、図8に示すヒータコア4の熱交換コア部43の上側領域(温風通路部)Aを温風が通過し、下側領域(冷風通路部)Bを冷風が通過すると同時に、ヒータコア4上方の冷風バイパス通路60を冷風が通過する。
【0146】
従って、上下方向の中央部の温風を上下両側の冷風で挟み込む3層流の流れ形態を作り出すことができ、これにより、温風と冷風の混合性を向上できる。
【0147】
また、バイパスドア61の開度を流れ制御部材52の位置制御と一義的に連動させることを止めて、バイパスドア61の開度を独立制御することにより、前述のフットデフロスタモードやバイレベルモードのように車室内の上下両側に同時に空気を吹き出す吹出モードにおいて、上下の吹出空気温度差を独立に調整できる。すなわち、冷風バイパス通路60およびバイパスドア61は、冷温風の混合性向上のために使用するだけでなく、上下吹出温度の独立制御のためにも使用できる。
【0148】
(第6実施形態)
上記の第5実施形態では、ヒータコア4として図8に示すように、温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向に流れる一方向流れタイプ(全パスタイプ)のものを用いているが、第6実施形態では、ヒータコア4として、第4実施形態(図6)と同様に、空気流れDの前後方向に温水がUターンして流れる前後Uターンタイプのものを用いている。
【0149】
図9は第6実施形態による前後Uターンタイプのヒータコア4であり、第4実施形態(図6)のものと異なり、温水入口側タンク41の上部に温水入口46を配置し、温水入口側タンク41の下部にアクチュエータ50を設けている。
【0150】
これにより、第6実施形態では、前後Uターンタイプのヒータコア4を用いて、ヒータコア4の熱交換コア部43の上側領域Aに温風通路部を形成し、下側領域Bに冷風通路部を形成できる。従って、図9のヒータコア4を図7のように空調ケース1a内に搭載することにより、上下方向の中央部の温風を上下両側の冷風で挟み込む3層流の流れ形態を作り出すことができ、温風と冷風の混合性を向上できる。そのため、第6実施形態では、前後Uターンタイプのヒータコア4の利点(第4実施形態参照)を発揮しつつ、第5実施形態と同様の作用効果を発揮できる。
【0151】
(第7実施形態)
上記の第5、第6実施形態では、図7に示すように、ヒータコア4の上方部に冷風バイパス通路60と、この冷風バイパス通路60を開閉するバイパスドア61とを配置しているが、第7実施形態では図10に示すように、ヒータコア4の下方部に冷風バイパス通路60と、この冷風バイパス通路60を開閉するバイパスドア61とを配置している。
【0152】
第7実施形態において用いるヒータコア4は、図2に示す第1実施形態の一方向流れタイプのヒータコア4、あるいは図6に示す第4実施形態の前後Uターンタイプのヒータコア4のいずれでもよい。要は、ヒータコア4の熱交換コア部43の下側に温風通路領域Aを形成し、上側に冷風通路領域Bを形成すればよい。
【0153】
これにより、ヒータコア4の下方部に冷風バイパス通路60を配置するレイアウトにおいても、図10に示すように空調ケース1aの上下方向中央部の温風を上下両側の冷風で挟み込む3層流の流れ形態を作り出すことができ、温風と冷風の混合性を向上できる。
【0154】
なお、第7実施形態においても第5実施形態と同様に、空調用制御装置53によりバイパスドア61を流れ制御部材52の位置制御と連動して開閉する。
【0155】
また、第7実施形態においてもバイパスドア61の開度を独立制御することにより、フットデフロスタモードやバイレベルモードのように車室内の上下両側に同時に空気を吹き出す吹出モードにおいて、上下の吹出空気温度差を独立に調整できる。
【0156】
(第8実施形態)
第8実施形態は、車室内前席側空間への吹出空気温度と、車室内後席側空間への吹出空気温度とを独立制御可能とするものである。図11は第8実施形態による空調ユニット1の配置レイアウトを示すものであり、ヒータコア4の下流側(車両後方側)に、ヒータコア4の下流側空気通路を上下に仕切る仕切り板70を配置している。この仕切り板70は空調ケース1aと一体成形または別体の板部材を接着固定する等により構成できる。
【0157】
仕切り板70の上側に前席用空気通路71を形成し、この前席用空気通路71の空気が前席側のフェイス開口部6、前席側のフット開口部7およびデフロスタ開口部5から吹き出す。一方、仕切り板70の下側に後席用空気通路72を形成し、この後席用空気通路72の空気が後席側フェイス開口部73または後席側のフット開口部74に向かって流れる。
【0158】
後席側フェイス開口部73には図示しない後席側フェイスダクトが接続され、この後席側フェイスダクト先端部の吹出口から後席乗員の顔部側へ空気を吹き出すようになっている。また、後席側フット開口部74には図示しない後席側フットダクトが接続され、この後席側フットダクト先端部の吹出口から後席乗員の足元部へ空気を吹き出すようになっている。また、後席側フェイス開口部73と後席側フット開口部74は図示しない後席側吹出モードドアにより切替開閉されるようになっている。
【0159】
図12は第8実施形態で用いるヒータコア4であり、このヒータコア4は第3実施形態(図5)と同様に、温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向に流れる一方向流れタイプ(全パスタイプ)として構成され、且つ、温水入口側タンク41および温水出口側タンク42内にそれぞれ流れ制御部材52a、52bを配置している。
【0160】
但し、第8実施形態では、温水入口側タンク41内の流れ制御部材52aを前席側の吹出空気温度制御用として構成し、温水出口側タンク42内の流れ制御部材52bを後席側の吹出空気温度制御用として構成している。すなわち、第8実施形態では、ヒータコア4の下流側の上方部に仕切り板70により前席用空気通路71を形成しているので、この前席用空気通路71の範囲内にて温水入口側タンク41内の流れ制御部材52aを上下方向に移動させることにより、前席側の温風通路領域A1と冷風通路領域B1との比率を調整して、前席側の吹出空気温度を制御できる。
【0161】
また、ヒータコア4の下流側の下方部に仕切り板70により後席用空気通路72を形成しているので、この後席用空気通路72の範囲内にて温水出口側タンク42内の流れ制御部材52bを上下方向に移動させることにより、後席側の温風通路領域A2と冷風通路領域B2との比率を調整して、後席側の吹出空気温度を制御できる。
【0162】
従って、アクチュエータ50a、50bにより前席側の流れ制御部材52aと後席側の流れ制御部材52bの位置を独立制御することにより、車室内前席側空間への吹出空気温度と車室内後席側空間への吹出空気温度をそれぞれ独立に制御できる。
【0163】
(第9実施形態)
上記の第8実施形態では、ヒータコア4として、温水入口側タンク41から温水出口側タンク42へ向かって温水が一方向に流れる一方向流れタイプ(全パスタイプ)のものを用いているが、第9実施形態では、ヒータコア4として、図13に示すように第4実施形態(図6)および第6実施形態(図9)と同様に、空気流れDの前後方向に温水がUターンして流れる前後Uターンタイプのものを用いている。このような前後Uターンタイプのヒータコア4を用いても、車室内前席側空間への吹出空気温度と車室内後席側空間への吹出空気温度を独立に制御できる。
【0164】
なお、第8、第9実施形態では、ヒータコア4の下流側空気通路を前席用空気通路71と後席用空気通路72とに仕切る仕切り部材として、空調ケース1aと一体成形または空調ケース1aに固定された仕切り板70を用いているが、この仕切り板70の代わりに、変位可能なドア部材を用いてもよい。このように前席用空気通路71と後席用空気通路72の仕切り部材としてドア部材を用いれば、後席側空間に空気を吹き出す必要のある時のみ、ドア部材により前席用空気通路71と後席用空気通路72を仕切り、後席側空間に空気を吹き出す必要のない時はヒータコア4の下流側空気通路を前席用空気通路71と後席用空気通路72とに仕切らない位置にドア部材を変位させて、後席用空気通路72の空気も前席側に吹き出すようにしてもよい。
【0165】
(第10実施形態)
上記の第1〜第9実施形態では、ヒータコア4を通過した温風と冷風が層流状態となることにより、温風と冷風の混合性が悪化して車室内吹出空気の温度バラツキが増大することが分かった。。
【0166】
第10実施形態は上記点に鑑みて、ヒータコア4の空気流れ下流側において温風と冷風の流れを乱流化して、温風と冷風の混合性を向上するものである。このため、第10実施形態では図14、図15に示すように、ヒータコア4の空気流れ下流側に、乱流促進用のリブ75を配置している。
【0167】
このリブ75の配置形態についてより具体的に説明すると、リブ75は断面矩形状の角柱状に形成され、水平方向(車両左右方向)に細長く延びて、ヒータコア4のコア部43の幅方向の全域に配置される。ここで、ヒータコア4のコア部43の幅方向とは図14の紙面垂直方向であり、車両左右方向に向いている。なお、ヒータコア4のチューブ44の長手方向も水平方向(車両左右方向)に向いているから、リブ75はチューブ44の長手方向に対して平行に配置されることになる。
【0168】
次に、リブ75の具体的寸法例について述べると、リブ75の空気流れ方向の長さLは本例では10mm、リブ75の板厚tは本例では6mmにしている。また、リブ75はヒータコア4の空気流れ下流側に所定の微小間隔M、例えば5mm程度の間隔を隔てて配置されている。また、リブ75は上下方向に所定間隔Nにて複数個平行配置され、図示の例ではリブ75が5段に配置されている。ここで、ヒータコア4のコア部43の高さHは本例では228.7mmになっているので、リブ75相互の間隔L2は約38mmである。
【0169】
リブ75は空調ユニット部1の空調ケース1aの左右の分割ケースに樹脂にて一体成形することができるが、リブ75を別体として成形し、その後に、リブ75を空調ケース1aの内壁に接着等の固着手段により固着してもよい。
【0170】
なお、第10実施形態による空調ユニット部1の全体構成は第2実施形態(図4)と同じでよい。但し、ヒータコア4の空気流れ流側にリブ75を配置するに伴ってフット開口部7の開口位置を図4より上方に配置している。
【0171】
次に、第10実施形態の作用効果を説明する。第10実施形態によるヒータコア4は図2(第1、第2実施形態)と同じ構成であるため、入口側タンク41(図2)内の流れ制御部材52を図2の実線に示す中間位置に操作すると、ヒータコア4において、下方側領域Aが温風領域となり、上方側領域Bが冷風領域となる。
【0172】
ここで、ヒータコア4の空気流れ下流側にリブ75を配置していない場合は、ヒータコア4の下方側領域Aを通過した温風と上方側領域Bを通過した冷風が層流状態となることにより、温風と冷風の混合性が悪化して車室内吹出空気の温度バラツキが増大する。
【0173】
しかるに、第10実施形態によると、ヒータコア4の直後の部位にて温風と冷風がリブ75に衝突して、温風と冷風の流れが乱流化する。この際、リブ75が水平方向、すなわち、温風領域Aと冷風領域Bの境界X(図15)と平行に延びるように等間隔で複数配置されている。その結果、温風と冷風の流れの乱流化によって、リブ75から上下方向(境界Xと直交する方向)に拡大する渦が生じ、この上下方向の渦によって上下に隣り合って流れる温風と冷風を撹拌し、温風と冷風の混合を促進できる。これにより、車室内への吹出空気の温度バラツキを効果的に低減できる。
【0174】
図16は第10実施形態による効果を示す実験結果であり、横軸はリブ75の本数であり、リブ75の長さL=10mm、板厚t=6mmである。リブ75とヒータコア4との間隔M=5mmであり、ヒータコア4のコア部43の高さH=228.7mmである。従って、リブ75相互の間隔Nは、リブ本数=5本のとき、前述のように約38mmとなる。
【0175】
図16の左側の縦軸は車室内への吹出空気の温度バラツキであり、この温度バラツキは吹出空気の最高温度と最低温度との温度差を言う。また、図16の右側の縦軸は空調ユニット部1の空調ケース1a内の通風圧損であり、蒸発器3の吹出直後の部位と空調ケース1aの吹出開口部5、6、7との間の圧損である。より具体的に述べると、図16の通風圧損は、吹出モードとしてフェイス開口部6を開口するフェイスモード時で、かつ、エアミックス開度=50%時の測定値である。なお、第10実施形態において、エアミックス開度=50%とは下側の温風領域Aのチューブ本数と上側の冷風領域Bのチューブ本数とが等しい状態を言う。
【0176】
ところで、図16の実験では、図17に示す従来周知のエアミックス式空調ユニット部1を比較例として用いている。この従来技術では、周知のごとくヒータコア4の空気流れ入口側に配置したエアミックスドア4aにより温風と冷風の風量割合を調整して、車室内への吹出空気温度を調整するようになっている。図17において、冷風バイパス通路60およびバイパスドア61の機能は第10実施形態と同じである。
【0177】
第10実施形態および図17の従来技術において、図示しない送風機能力および蒸発器3の大きさを同一条件にして、空調ケース1a内のフェイスモード時の通風圧損を測定している。
【0178】
第10実施形態によると、車室内への吹出空気の温度バラツキを図16の線aに示すようにリブ本数の増加とともに大幅に低減できる。特に、リブ本数を3本以上(リブ相互の間隔N=約60mm以下)にすると、a1部に示すように温度バラツキを30℃付近に低減できることが分かった。これは、リブ無しの際の温度バラツキ=61℃を半減できるレベルであり、リブ本数を3本以上にすると混合性向上の効果が顕著であることが分かる。
【0179】
因みに、図17の従来技術における温度バラツキは25℃付近であるから、リブ本数=4.2本以上とすることにより、温度バラツキを図17の従来技術と同等以下にできる。実際のリブ本数は整数であるから、第10実施形態では、リブ本数=5本として、温度バラツキを図17の従来技術より低減している。ここで、リブ本数=5本の際のリブ相互の間隔Nは約38mmであり、リブ本数=4.2本の際のリブ相互の間隔Nは約44mmである。
【0180】
また、第10実施形態では、図17の従来技術に比較してエアミックスドア4aを廃止することにより、空調ケース1a内にてヒータコア4のコア部通風面積を拡大して、ヒータコア4を蒸発器3と平行に配置できる。そのため、ヒータコア4前後の空気通路が直線的な短い通路となるので、通風圧損を図16の線bに示すように図17の従来技術に比較して大幅に低減できる。具体的には、図17の従来技術では通風圧損が102Pa程度であるのに反し、第10実施形態では、リブ本数=5本の際に、通風圧損をb1部に示すように78Pa程度に大幅に低減することができる。
【0181】
なお、本発明者の実験検討によると、ヒータコア4とリブ75との間隔Mは5〜15mmの範囲において温度バラツキを図16の実験と同等レベルに低減できることを確認している。但し、間隔Mを大きくすることは、空調ユニット部1の体格の大型化の原因となるので、温度バラツキの低減効果を発揮できる範囲内でなるべく小さい方が好ましい。そこで、第10実施形態では間隔Mを5mmに設定している。リブ75の長さLも同様の見地からなるべく小さい方が好ましい。
【0182】
(第11実施形態)
第11実施形態は、上記第10実施形態と同様に温風と冷風の混合性を向上して車室内吹出空気の温度バラツキを低減するものであるが、混合性向上のための手段を上記第10実施形態とは異にするものである。
【0183】
図18は第11実施形態であり、図14との比較から理解されるように、リブ75を廃止し、その代わりに、ガイド76を備えている。このガイド76は、空調ケース1aのうち、ヒータコア4の空気流れ下流側に所定の間隔を隔てて対向する壁面1b、具体的には車両後方側の壁面1bに配置される。
【0184】
ヒータコア4の下方側領域Aを通過した温風がその後矢印Eのように壁面1bに沿って上昇する際、ガイド76はこの温風が矢印Fのようにヒータコア4の上方側領域Bを通過した矢印Gの冷風流れへ向かって方向転換するようにガイド作用を発揮するものである。
【0185】
このため、ガイド76はその上部側が徐々にヒータコア4側(車両前方側)へ向かって円弧状に湾曲する形状になっている。なお、ガイド76は図18の湾曲形状によりヒータコア4の幅方向(車両左右方向であり、図18の紙面垂直方向)の全域に及ぶように形成される。また、ガイド76はリブ75と同様に空調ケース1aに一体成形により形成できる。また、別体のガイド76を空調ケース1aに接着等により固着してもよい。
【0186】
第11実施形態によると、ガイド76が温風のガイド作用を果たすことによって、温風を矢印Fのように矢印Gの冷風流れへ向けて、温風を冷風流れに対向状に衝突させることができる。これにより、温風と冷風との混合性を格段と向上できるので、車室内吹出空気の温度バラツキを第10実施形態と同程度に低減できる。
【0187】
なお、第11実施形態ではヒータコア4の下方側領域Aを温風が通過し、上方側領域Bを冷風が通過するようになっているので、ガイド76により温風を冷風流れへ向けるように方向転換させているが、これとは逆に、ヒータコア4の下方側領域Aを冷風が通過し、上方側領域Bを温風が通過するようになっている場合(図7、8の第5実施形態参照)は、ガイド76により下方側領域Aからの冷風を上方側領域Bの温風へ向けるように方向転換させればよい。
【0188】
(第12実施形態)
第12実施形態は車室内吹出空気の温度制御特性を向上するための改良に関するものである。
【0189】
最初に、上記した各実施形態における温度制御特性の不具合点を図19〜図21により説明すると、図19の横軸のエアミックス開度はヒータコア4におけるコア部43のチューブ44の温水通過本数の比率で表される。すなわち、エアミックス開度=0%は、流れ制御部材52が最大冷房位置MC(図2等参照)に位置して、温水が通過するチューブ本数が0となる状態であり、これに対し、エアミックス開度=100%は、流れ制御部材52が最大暖房位置MH(図2等参照)に位置して、ヒータコア4のコア部43の全部のチューブ44に温水が通過する状態である。
【0190】
本発明者の実験検討によると、上記した各実施形態においては流れ制御部材52が最大冷房位置MCから最大暖房位置MH側へ微小量変位して、温水が通過するチューブ本数が1本になると、図19のa部に示すように車室内吹出空気温度が急上昇するという不具合が生じることが分かった。なお、図19の実線は上記した各実施形態による温度制御特性の実験値であり、破線はエアミックス開度の増加に比例して車室内吹出空気温度が直線的に上昇する理想値である。
【0191】
次に、温水通過のチューブ本数が1本になると車室内吹出空気温度が急上昇する理由について説明する。図20は第1実施形態によるヒータコア4の下部を示すものであり、流れ制御部材52が破線で示す最大冷房位置MCから実線位置に変位すると、ヒータコアコア部43の多数本のチューブ44のうち、最下部の1本のチューブ44のみに、温水入口46からの温水が入口側タンク41内を通して流入する。
【0192】
この状態の時に、最下部の1本のチューブ44の上下両側にはコルゲートフィン45が一体に接合され、上下両側のコルゲートフィン45に最下部のチューブ44の熱が伝導する。更に、上側のコルゲートフィン45を経て、その上方のチューブ44、コルゲートフィン45にも熱伝導が生じる。
【0193】
このため、ヒータコア直後の吹出空気温度が図21に示すように、最下部の1本のチューブ44部分以外に、この最下部の1本のチューブ44に隣接する部分bにおいても上昇するという現象が起きる。この結果、最下部の1本のチューブ44のみに温水が流れる状態、すなわち、エアミックス開度が微小開度増加するだけで、温風量が急増して車室内への吹出空気温度が急上昇することになる。
【0194】
そこで、上記点に鑑みて第12実施形態では、エアミックス開度が0%から微小開度増加するときに、温風量が急増することを抑制して、車室内への吹出空気温度の急上昇を抑制するものである。
【0195】
図22は第12実施形態を示すもので、ヒータコア4の下部付近の部分断面図である。空調ケース1aのうち、ヒータコア4の下部を支持する底面部に圧損増大部1c、1dを形成している。
【0196】
この圧損増大部1c、1dは、ヒータコア4の下部付近の空気流れ上流側および空気流れ下流側の空気通路を狭めるように空調ケース1aの底面部に一体に形成される。この圧損増大部1c、1dによって、ヒータコア4の下部付近の圧損を他の部位(ヒータコア4の上部側)の圧損より増大できる。
【0197】
このため、最下部の1本のチューブ44のみに温水が流れる状態、すなわち、エアミックス開度=微小開度のときに、この最下部の1本のチューブ44周囲を通過する温風量を抑制できる。従って、エアミックス開度=微小開度時における温風量の急増に起因する車室内吹出空気温度の急上昇を抑制できる。なお、図22において、最下部のチューブ44に多数の細点を付しているのは、温水が最初に流れる1本目のチューブであることを明示するためである。
【0198】
本発明者の実験検討によると、第1実施形態の図1のように、空調ケース1aの底面部に圧損増大部1c、1dを形成していない場合には、エアミックス開度=0%から最下部の1本のチューブ44のみに温水が流れる状態(微小開度=5%)までエアミックス開度を増加したときに、車室内吹出空気温度が一挙に8℃上昇したが、第12実施形態では、圧損増大部1c、1dの高さH1をヒータコア4のコア部43の高さH(例えば、H=228.7mm)の10%に設定して、エアミックス開度を上記と同じ変化をさせた場合に、車室内吹出空気温度の上昇幅を6℃まで低減できた。
【0199】
なお、実験によると、圧損増大部1c、1dをヒータコア4の下部付近の空気流れ上流側および空気流れ下流側の双方に形成することで車室内吹出空気温度の上昇抑制効果を高めることが確認できた。従って、空気流れの前後両側に圧損増大部1c、1dを形成することが好ましいが、圧損増大部1c、1dをヒータコア4の下部付近の空気流れ前後の片側のみに形成しても、車室内吹出空気温度の上昇抑制効果をある程度発揮できる。
【0200】
(第13実施形態)
第12実施形態では、エアミックス開度=0%(最大冷房状態)からエアミックス開度が増加する時に最初に温水が通過する1本目のチューブ44が多数のチューブ群の最下部に位置する場合について説明したが、エアミックス開度=0%(最大冷房状態)からエアミックス開度が増加する時に最初に温水が通過するチューブ44が多数のチューブ群の中央部(コア部43の中央部)に位置する場合もある。
【0201】
例えば、図5の第3実施形態のように、ヒータコア4のコア部43において、上下方向の中央部に温水の流れるチューブ領域(温風通路部)Aを設定し、そして、この温水の流れるチューブ領域Aの上側および下側の双方に、温水の流れないチューブ領域(冷風通路部)Bを設定する場合である。この場合は、入口側タンク41および出口側タンク42内の流れ制御手段52a、52bによって、最初に温水が通過する1本目のチューブ44をヒータコア4のコア部43の中央部に位置させることができる。
【0202】
図23は第13実施形態であり、最初に温水が通過する1本目のチューブ44がヒータコア4のコア部43の中央部に位置するとともに、圧損増大部1c、1dをヒータコア4のコア部43の中央部の空気流れの前後両側に配置するものである。圧損増大部1c、1dは断面V形状のリブにて形成されて、V形状の先端部が最初に温水が通過する中央部のチューブ44の端部に位置するように配置されている。
【0203】
ここで、ヒータコア4のコア部43の幅方向は車両左右方向(図13の紙面垂直方向)に向いており、圧損増大部1c、1dは断面V形状でもってコア部43の幅方向の全域にわたって延びるように配置されている。
【0204】
また、圧損増大部1c、1dは空調ケース1aの左右の分割ケースに樹脂にて一体成形することができるが、圧損増大部1c、1dを別体として成形し、その後に、圧損増大部1c、1dを空調ケース1aの内壁に接着等の固着手段により固着してもよい。
【0205】
また、本例では、圧損増大部1c、1dの断面V形状の大きさを中央部のチューブ44の上下両側のコルゲートフィン45およびこの上下両側のコルゲートフィン45の更に上下両側に位置するチューブ44の範囲を覆うように設定して、この範囲への空気流入を抑制するようになっている。
【0206】
第13実施形態では、以上のごとき断面V形状の圧損増大部1c、1dを、最初に温水が通過する中央部のチューブ44の空気流れの前後両側に配置することにより、最初に温水が通過する中央部のチューブ44周辺部への空気流入を抑制して、エアミックス開度が開度=0%の状態から増加するときの温風量の急増を抑制して、車室内吹出空気温度の急上昇を抑制できる。
【0207】
(第14実施形態)
第14実施形態は第12実施形態と同様に、最初に温水が通過するチューブ44が多数のチューブ群の最下部に位置するものにおいて、第12実施形態とは別の対応策にて、エアミックス開度が開度=0%の状態から増加するときの車室内吹出空気温度の急上昇を抑制するものである。
【0208】
前述の図20に示すように、今まで説明したヒータコア4においては、コア部43の各チューブ44の上下両側にそれぞれコルゲートフィン45を配置しているので、最初に温水が通過する最下部のチューブ44においても上下両側にそれぞれコルゲートフィン45が配置されることになる。その結果、最下部の1本目のチューブ44のみに温水が通過する時(エアミックス微小開度時)においても、最下部のチューブ44からの熱伝導により上下両側のコルゲートフィン45において空気に放熱される。これにより、空気への放熱範囲が増大し、温風量が増大して車室内吹出空気温度の急上昇を生じる。
【0209】
そこで、第14実施形態では図24に示すように、最下部のチューブ44の下側に位置するコルゲートフィン45を廃止して、最初に温水が通過するチューブ44をヒータコア4のコア部43の最下端位置に配置している。
【0210】
これによると、最下端のチューブ44の熱は上側のコルゲートフィン45のみに伝導されるようになる。これにより、最下端のチューブ44から空気への放熱範囲が下側のコルゲートフィン45の1段分減少し、温風量が減少するので、車室内吹出空気温度の急上昇を抑制できる。
【0211】
なお、図24では最初に温水が通過する1本目のチューブ44をヒータコア4のコア部43の最下端位置に配置しているが、図8の第5実施形態のように、ヒータコア4のコア部43の上方側領域Aに温風領域を形成する場合には、ヒータコア4のコア部43の最上端位置に最初に温水が通過する1本目のチューブ44を配置すればよい。
【0212】
(第15実施形態)
第15実施形態は上記第14実施形態によるチューブ配置と図22の第12実施形態による空調ケース1aへの圧損増大部1c、1dの配置とを組み合わせたものである。
【0213】
図25は第15実施形態であり、ヒータコア4のコア部43の最下端位置に、最初に温水が通過する1本目のチューブ44を配置するとともに、最下端のチューブ44の空気流れの前後両側に圧損増大部1c、1dを配置している。
【0214】
これにより、最下端のチューブ44周辺部への空気流入を抑制すると同時に、最下部のチューブ44から空気への放熱範囲を減少して、車室内吹出空気温度の急上昇を抑制する効果をより一層高めている。
【0215】
なお、上記した第12〜第15実施形態の変形例として、最初に温水が通過する1本目のチューブ44と、この1本目のチューブ44の両側に位置するチューブ44との間隔(チューブピッチ)のみを、他のチューブ相互の間隔より大きくして、両側のチューブへの熱伝導を抑制して車室内吹出空気温度の急上昇を抑制するようにしてもよい。
【0216】
また、別の変形例として、最初に温水が通過する1本目のチューブ44と、この1本目のチューブ44の上下両側に位置するチューブ44との間に位置するコルゲートフィン45のフィンピッチfp(図24参照)を他のコルゲートフィン45のフィンピッチfpより大きくして、両側のコルゲートフィン45での放熱面積を減少することにより、車室内吹出空気温度の急上昇を抑制するようにしてもよい。
【0217】
(第16実施形態)
上記した各実施形態では、ヒータコア4のタンク41、42内に流れ制御部材52、52a、52bを内蔵し、この流れ制御部材52、52a、52bをチューブ44の配列方向に直線的に移動させるスライド式の弁機構により構成している。このため、流れ制御部材52、52a、52bを最大冷房状態MCと最大暖房状態MHとの間で移動させる移動距離が長くなる。
【0218】
その結果、最大冷房状態MCと最大暖房状態MHとの間の流れ制御部材52、52a、52bの移動時間が大きくなるという不具合が生じる。また、流れ制御部材52、52a、52bを駆動するアクチュエータ50、50a、50bの作動角(回転数)が大きくなるので、アクチュエータの消費電力が増加する等の不具合が生じる。
【0219】
そこで、第16実施形態では、流れ制御部材52、52a、52bをタンク41、42内にて回転運動を行う回転式の弁機構にて構成することにより、上記不具合を解消するものである。
【0220】
図26、図27は第16実施形態であり、ヒータコア4の温水入口側タンク41を円筒状に形成し、この円筒状タンク41内部に、円筒状の回転式弁機構を構成する流れ制御部材52を回転可能に配置している。
【0221】
流れ制御部材52は図27に示すように円筒状本体部77を有し、この円筒状本体部77の軸方向の一端部に開口部78を開口し、この開口部78がタンク41の温水入口46に対向配置されている。このため、温水入口46からタンク41内に流入した温水が開口部78から円筒状本体部77の内部にスムースに流入する。なお、円筒状本体部77は請求項5における中空形状を構成するものである。
【0222】
円筒状本体部77の軸方向はヒータコア4のチューブ44の配列方向(チューブ積層方向)と平行になっている。従って、円筒状本体部77はチューブ44の配列方向と平行な回転中心軸により回転することになる。そして、円筒状本体部77の軸方向寸法(図26の上下方向寸法)はヒータコア4の全部のチューブ44の配列範囲の全長より大きくしてある。
【0223】
円筒状本体部77の円筒面は図26に示すようにチューブ44の端部を閉塞するシール面79とチューブ44の端部を開放する螺旋状の切り欠き部80とを構成する。なお、図26ではシール面79の形成範囲を細点部により明示している。そして、このシール面79と切り欠き部80との組み合わせにより、図27に示すように円筒状本体部77の円筒面の円周方向のうち、所定の微小角度範囲の部分により最大冷房領域MCを構成し、また、この最大冷房領域MCに隣接する所定の微小角度範囲の部分により最大暖房領域MHを構成する。
【0224】
更に、円筒状本体部77の円筒面の円周方向のうち、最大冷房領域MCおよび最大暖房領域MHを除く残余の大部分の角度範囲にて温度制御領域TCを構成する。
【0225】
円筒状本体部77の形態についてより具体的に説明すると、円筒状本体部77の円周方向において、最大冷房領域MCではシール面79が円筒状本体部77の軸方向全長にわたって形成してある。そのため、円筒状本体部77が回転操作されて最大冷房領域MCの部分がチューブ44の端部に対向すると、全部のチューブ44の端部をシール面79により同時に閉塞することができる。
【0226】
ここで、チューブ44の端部は入口側タンク41の内部に微小寸法だけ突き出しており、このチューブ44の突出端部は図26に示すようにシール部材81の穴部81a内に圧入されるようになっている。シール部材81はゴム系の弾性材から構成されるシート状部材であり、円筒状本体部77と略同一の軸方向寸法を有している。また、シール部材81はチューブ44の偏平状開口形状の長径寸法より大きい円周方向長さを有し、全部のチューブ44の端部が圧入される穴部81aが設けてある。
【0227】
シート状のシール部材81はチューブ44の突出端部の突出量よりも大きい板厚を有し、タンク41の内壁面と円筒状本体部77のシール面79との間に配置され、シール部材81が円筒状本体部77のシール面79に弾性的に圧接するようになっている。これにより、シール部材81のシール機能が発揮されて、全部のチューブ44の端部をシール面79により確実に閉塞できる。
【0228】
一方、円筒状本体部77の円周方向において、最大暖房領域MHでは切り欠き部80が円筒状本体部77の軸方向全長にわたって形成してある。そのため、円筒状本体部77が回転操作されて最大暖房領域MHの部分がチューブ44の端部に対向すると、全部のチューブ44の端部を切り欠き部80により円筒状本体部77の内側に同時に連通することができる。すなわち、切り欠き部80により全部のチューブ44の端部が同時に開放状態となる。
【0229】
切り欠き部80の円周方向の一方の開口端縁80aは軸方向と平行な形状であり、これに対し、円周方向の他方の開口端縁80bは軸方向に対して斜めとなって螺旋形状を形成する。この螺旋形状によって、切り欠き部80の円周方向の開口範囲は、円筒状本体部77の軸方向の一端側(開口部78側の端部)で最も狭くなり、円筒状本体部77の軸方向の他端側(開口部78と反対側の端部)へ行くにつれて切り欠き部80の円周方向の開口範囲が拡大する。すなわち、切り欠き部80の円周方向の開口範囲は円筒状本体部77の軸方向の他端側で最大となる。
【0230】
次に、円筒状本体部77の軸方向の他端側には円板状の支持板82が設けられ、この支持板82の中心部から軸方向外方へ突き出すように駆動軸83が一体に設けられている。なお、円筒状本体部77、支持板82および駆動軸83は本例では樹脂により一体成形している。
【0231】
このように流れ制御部材52は樹脂製であり、また、シール部材81はゴム系の弾性材であるから、入口側タンク41の下端部を開口したままで、ヒータコア4の一体ろう付けによる組み付けを終了した後に、シール部材81を入口側タンク41の下端開口部から入口側タンク41内に組み付け、その後に、流れ制御部材52を同様に入口側タンク41の下端開口部から入口側タンク41内に組み付ける。
【0232】
次に、入口側タンク41の下端開口部を閉塞するキャップ84の組み付けを行う。このキャップ84は金属製または樹脂製の円板状部材であり、その中心部には駆動軸83を回転可能に支持する軸受け穴84aが開けてある。これにより、駆動軸83を軸受け穴84aに嵌合してキャップ84の外方へ突き出した状態にてキャップ84をねじ止め等の固定手段(図示せず)で入口側タンク41の下端開口部に組み付けることができる。
【0233】
なお、駆動軸83と軸受け穴84aとの嵌合面およびキャップ84と入口側タンク41の下端開口部との当接面にはOリング等のシール手段を設けて、温水の洩れを防止するようになっている。また、駆動軸83の突出先端部はアクチュエータ50の出力軸に連結されており、これにより、流れ制御部材52の円筒状本体部77をアクチュエータ50により回転駆動できる。
【0234】
次に、第16実施形態の作動を説明すると、アクチュエータ50により流れ制御部材52の円筒状本体部77を回転駆動して、円筒状本体部77の円周方向のうち最大冷房領域MCの部分がチューブ44の端部に対向すると、全部のチューブ44の端部をシール面79により同時に閉塞することができる。これにより、全部のチューブ44への温水流入が阻止されるので、ヒータコア4のコア部43の全領域が温水非通過領域となり、最大冷房機能を発揮できる。
【0235】
この最大冷房状態から円筒状本体部77を図27において反時計方向に回転駆動すると、円筒状本体部77の円周方向のうち温度制御領域TCがチューブ44の端部に対向するようになる。ここで、円筒状本体部77の螺旋状切り欠き部80の円周方向の開口範囲は円筒状本体部77の軸方向下端側が最大であり、軸方向上部へ行くにつれて減少する。
【0236】
従って、円筒状本体部77を図27において反時計方向に回転駆動すると、ヒータコア4のコア部43のチューブ44のうち、下部側のチューブ44から順次螺旋状切り欠き部80と連通し開口する。そのため、円筒状本体部77の回転位置を選択することにより、螺旋状切り欠き部80と連通して温水が流れる下部側のチューブ44の本数と、シール面79により閉塞されて温水が流れない上部側のチューブ44の本数との比率を変更できる。
【0237】
なお、図26は、円筒状本体部77を温度制御領域TCの円周方向中間位置がチューブ44の端部に対向する状態を示している。具体的には、温水が流れる下側領域(温風領域)Aに比べて、温水が流れない上側領域(冷風領域)Bの比率が若干大きくなっている。
【0238】
更に、円筒状本体部77を図27において反時計方向に回転駆動すると、円筒状本体部77の円周方向において、最大暖房領域MHの部分がチューブ44の端部に対向するようになる。この最大暖房領域MHの部分では、切り欠き部80が円筒状本体部77の軸方向全長にわたって形成してあるので、全部のチューブ44の端部が切り欠き部80と連通し開口する。従って、切り欠き部80を通して全部のチューブ44に温水を流すことができ、ヒータコア4のコア部43の全領域が温水通過領域となり、最大暖房機能を発揮できる。
【0239】
以上により第16実施形態によると、流れ制御部材52がタンク41内にて回転運動を行う回転式の弁機構として作用することにより、温水通過領域Aと温水非通過領域Bとの比率を変更して車室内吹出空気温度を調整できる。従って、第1〜第15実施形態のように流れ制御部材52がチューブ44の配列方向に直線的に移動するスライド式の弁機構を構成する場合に比較して、第16実施形態による流れ制御部材52の移動量(回転量)は大幅に減少できる。このため、最大冷房状態MCと最大暖房状態MHとの間の流れ制御部材52の移動時間を大幅に減少できる。
【0240】
(第17実施形態)
上記第16実施形態では、ヒータコア4のコア部43の下側領域Aを温水通過領域(温風領域)とし、上側領域Bを温水非通過領域(冷風領域)とし、ヒータコア4のコア部43を2層化しているが、第17実施形態は図28に示すようにヒータコア4のコア部43の上下方向の中間領域を温水通過領域(温風領域)Aとし、そして、この温水通過領域Aの上下両側に温水非通過領域(冷風領域)Bを形成して、ヒータコア4のコア部43を3層化している。
【0241】
このため、第17実施形態では、流れ制御部材52の円筒状本体部77に、螺旋状の切り欠き部80を軸方向の上下両側に対称となるように2個設けている。より具体的には、螺旋状の切り欠き部80の円周方向の開口範囲が最大となる側がヒータコア4のコア部43の上下方向の中間領域A側に位置するように、上下両側の2個の螺旋状切り欠き部80が対称に形成してある。
【0242】
(第18実施形態)
第18実施形態は上記だい16、第17実施形態の変形例であり、図29に示すようにヒータコア4のコア部43を、2個の温水通過領域(温風領域)Aと2個の温水非通過領域(冷風領域)Bとにより4層化している。このため、第18実施形態では、第16実施形態による流れ制御部材52を軸方向に2段に積層して一体化した構成にしている。
【0243】
第17、第18実施形態から理解されるように、流れ制御部材52が回転式の弁機構を構成するため、温水配管の複雑化やアクチュエータ作動角度の増加を生じることなく、ヒータコア4のコア部43を容易に3層化、4層化できる。そして、この3層化、4層化により冷風と温風との接触面積を第16実施形態の2層構造に比較して増加でき、冷風と温風との混合性を向上できる。
【0244】
(第19実施形態)
第19実施形態は、車室内の左側領域(右ハンドル車であれば助手席側領域)と車室内の右側領域(右ハンドル車であれば運転席側領域)とを独立に温度制御できる左右独立温度制御機能を付加するものである。
【0245】
図30は第19実施形態の空調ユニット部1を示しており、空調ユニット部1の基本的構成及びヒータコア4は第1実施形態(図1、図2)と同じでよい。
【0246】
ヒータコア4は図2に示すように、流れ制御部材52により下側領域Aが温水通過領域(温風領域)となり、上側領域Bが温水非通過領域(冷風領域)となる。そこで、ヒータコア4の空気流れ下流部のうち下側に温風左右振り分け用ドア85を配置し、ヒータコア4の空気流れ下流部のうち上側に冷風左右振り分け用ドア86を配置している。
【0247】
図31は上記の両ドア85、86の平面配置図であり、両ドア85、86の回転軸85a、86aはヒータコア4から空気流れ下流側へ所定寸法離れた位置において、空調ユニット部1(ヒータコア4)の左右方向の中心線87上に配置されている。ここで、両ドア85、86の回転軸85a、86aは上下方向、すなわち、ヒータコア4のチューブ配列(積層)方向に延びるように配置されている。従って、温風左右振り分け用ドア85は回転軸85aを中心として下側の温風領域Aを左右方向に回転する。また、冷風左右振り分け用ドア86は回転軸86aを中心として上側の冷風領域Bを左右方向に回転する。
【0248】
また、回転軸85aと回転軸86aは一方の直径分だけ車両前後方向にずらして配置されている。本例では、上側の回転軸86aの車両後方側に下側の回転軸85aが配置されている。
【0249】
そして、両ドア85、86を連動して作動させるために、下側の回転軸85aの上端部と上側の回転軸86aの下端部にそれぞれギヤ部を形成して、両回転軸85a、86a間をギヤ結合している。図30の符号88はそのギヤ結合部を示す。
【0250】
下側の回転軸85aの下端部は空調ケース1aの下側へ突き出し、その突出端部を傘歯車により構成されるギヤ結合部89を介して左右温度制御用のアクチュエータ90の出力軸に結合されている。従って、アクチュエータ90の回転駆動力により両回転軸85a、86aが互いに逆方向に相反的に回転する。
【0251】
空調ケース1aの内部空間において、両ドア85、86の空気流れ下流部(車両後方側)の左右方向中央部に、上下方向に延びる仕切り板91を配置している。この仕切り板91は両ドア85、86の空気流れ下流部のケース内空間を図31に示すように左側空間92と右側空間93とに仕切る。
【0252】
これに伴って、デフロスタ開口部5、フェイス開口部6およびフット開口部7はそれぞれ左側空間92と右側空間93に別々に連通する左側開口部と右側開口部に分けて設けられている。
【0253】
次に、第19実施形態の作動を図31により説明する。いま、冷風左右振り分け用ドア86が回転軸86aを中心として図31(b)のように左側へ回転すると、これに連動して温風左右振り分け用ドア85が回転軸85aを中心として図31(c)のように右側へ回転する。
【0254】
このため、ヒータコア4の上側の冷風領域Bにおいては、左右方向の中央部の冷風aが冷風左右振り分け用ドア86により右側空間93側へ流れる。従って、右側空間93側へ流れる冷風量が大となり、左側空間92側へ流れる冷風量が小となる。
【0255】
また、ヒータコア4の下側の温風領域Aにおいては、左右方向の中央部の温風bが温風左右振り分け用ドア85により左側空間92側へ流れる。従って、左側空間92側へ流れる温風量が大となり、右側空間93側へ流れる温風量が小となる。
【0256】
以上により、左側空間92の吹出空気温度が高く、右側空間93の吹出空気温度が低くなる。上記とは逆に、冷風左右振り分け用ドア86が右側へ回転し、温風左右振り分け用ドア85が左側へ回転すれば、左側空間92の吹出空気温度が低く、右側空間93の吹出空気温度が高くなる。左右の吹出空気温度差は両ドア85、86の開度により調整できる。
【0257】
左側空間92と右側空間93の間は仕切り板91により仕切られ、左側空間92と右側空間93にそれぞれ左右の吹出開口部5、6、7が別々に設けてあるから、車室内の左側領域と右側領域に異なる温度の空気を吹き出すことができる。
【0258】
更に、温風左右振り分け用ドア85と冷風左右振り分け用ドア86が逆方向に相反的に回転するから、左右の空間92、93への冷風量と温風量が相反的に増減する。そのため、左右の吹出空気の風量割合を一定に維持したまま、左右の吹出空気の温度を独立に調整できる。
【0259】
なお、第19実施形態による左右独立温度制御機能は、具体的には、空調用制御装置53(図2)により自動制御される。この自動制御の概要を述べると、空調制御パネル55(図2)に、車室内の左側領域の温度設定を行う左側温度設定スイッチと、車室内の右側領域の温度設定を行う右側温度設定スイッチを備え、空調用制御装置53において、左側温度設定スイッチにより設定された左側設定温度Tset1等に基づいて左側目標吹出温度TAO1を算出するとともに、右側温度設定スイッチにより設定された右側設定温度Tset2等に基づいて右側目標吹出温度TAO2を算出する(前述の数式1参照)。
【0260】
そして、左側目標吹出温度TAO1および右側目標吹出温度TAO2の平均値に基づいて流れ制御部材52の目標位置SWを算出する(前述の数式2参照)。流れ制御部材52はこの目標位置SWになるようにアクチュエータ50により位置制御される。
【0261】
更に、温風左右振り分け用ドア85と冷風左右振り分け用ドア86は、左側設定温度Tset1と右側設定温度Tset2との温度差が得られるように、アクチュエータ90により開度が調整される。
【0262】
(第20実施形態)
第19実施形態では、温風左右振り分け用ドア85と冷風左右振り分け用ドア86をヒータコア4の空気下流側に配置しているが、第20実施形態では、図32に示すように温風左右振り分け用ドア85と冷風左右振り分け用ドア86をヒータコア4の空気上流側に配置している。このようにしても、第19実施形態と同様の左右独立温度制御機能を発揮できる。
【0263】
なお、第20実施形態では、両ドア85、86をヒータコア4の空気上流側に配置するので、仕切り板91はヒータコア4の直後の部位から左右の空間を仕切るように配置されている。また、ヒータコア4の空気上流側の部位においても、両ドア85、86の回転軸85a、86aとヒータコア4との間を仕切る部分91aが仕切り板91に備えてある。
【0264】
なお、第19、第20実施形態では、左右独立温度制御機能を発揮するために、温風左右振り分け用ドア85と冷風左右振り分け用ドア86の2枚のドアを用いているが、この両ドア85、86のいずれか一方のみ、例えば、温風左右振り分け用ドア85のみを用いて、温風の左右振り分けを調整することにより、左右独立温度制御機能を発揮することもできる。但し、左右振り分け用ドアを1枚にすると、左右の吹出風量が変化してしまうので、左右の吹出風量維持の効果は発揮できない。
【0265】
(第21実施形態)
第21実施形態は、図2に示す第1実施形態による流れ制御部材52とヒータコア4の具体的構成に関するものである。
【0266】
図33は第21実施形態によるヒータコア4の温水入口側タンク41部分を示す断面図、図34は図33のX−X断面図、図35は図33の要部拡大断面図である。本例の温水入口側タンク41は樹脂にて筒形状に成形されている。本例の筒形状は非円形状の断面形状であり、具体的には図34に示すような長円状の断面形状からなるタンク内部空間41aを形成している。
【0267】
温水入口側タンク41は、流れ制御部材52を収容し、流れ制御部材52をタンク長手方向(チューブ配列方向)に直線的に移動させるバルブハウジングとしての役割を果たす。そして、温水入口側タンク41の断面形状を上記のように非円形状の断面形状とすることにより、流れ制御部材52の回り止めを行う。この点は第1実施形態等と同じである。
【0268】
温水入口側タンク41は、ヒータコア4の左右方向の一方側にて上下方向に延びるように配置されている。そして、温水入口側タンク41の下端部、すなわち、タンク長手方向(チューブ配列方向)の一端部に温水入口46を設けている。ここで、温水入口46のパイプ形状をタンク41の下端部からタンク長手方向(チューブ配列方向)に突出することにより温水入口46をタンク41に一体成形で設けている。
【0269】
温水入口側タンク41の筒形状の周面のうち、ヒータコア4の熱交換コア部43側の部位の外表面は平面部41b(図34)を形成している。また、この平面部41b側の部位には穴部41cが偏平チューブ44に対応して上下方向に並べて設けてある。この穴部41cはタンク内部空間41aを平面部41bの外方へ開口するもので、熱交換コア部43の偏平チューブ44の一端部をタンク内部空間41aに連通するためのものである。
【0270】
一方、ヒータコア4の熱交換コア部43において左右方向の一方側には、偏平チューブ44の一端部が支持される支持プレート430が配置してある。この支持プレート430にも偏平チューブ44の一端部が挿入される穴部430a(図34、35)が偏平チューブ44に対応して上下方向に並べて設けてある。熱交換コア部43の上下両側にはサイドプレート431が配置されている。
【0271】
このサイドプレート431および支持プレート430は、ヒータコア4の偏平チューブ44、コルゲートフィン45、出口側タンク42(図2)等と同様にアルミニュウム製であり、これらの部品は所定構造に仮組み付けされた後に炉中にて一体ろう付けにより接合される。
【0272】
温水入口側タンク41の平面部41bは、支持プレート430の上下方向寸法の全長にわたって延びるように形成され、この平面部41bと支持プレート430との間にはゴム系の弾性材からなるシート状のシール部材432が介在される。このシール部材432にも偏平チューブ44の一端部が挿入される穴部432a(図34、35)が偏平チューブ44に対応して上下方向に並べて設けてある。
【0273】
ここで、穴部41c、430a、432aはいずれも偏平チューブ44の偏平形状に沿った偏平状(スリット状)の穴形状になっており、この偏平状の穴形状の長軸方向は図34の上下方向(図33の紙面垂直方向)である。
【0274】
ヒータコア4の一体ろう付け工程の終了状態では、偏平チューブ44の一端部が支持プレート430の外方側へ所定量突出している。そこで、この偏平チューブ44の突出部にシート状シール部材432の穴部432aを嵌合して、支持プレート430の外方側にシート状シール部材432を組み付ける。ここで、支持プレート430から突出する偏平チューブ44の突出量がシート状シール部材432の板厚より小さいので、偏平チューブ44の先端はシール部材432の穴部432a内に位置している。
【0275】
その後に、偏平チューブ44の先端部およびシール部材432の穴部432aの位置に温水入口側タンク41の穴部41cの位置が一致するようにして、温水入口側タンク41の平面部41bをシール部材432上に押し付ける。次に、支持プレート430のかしめ片430bを図34のように温水入口側タンク41の拡大傾斜面41dにかしめて、温水入口側タンク41をシート状シール部材432を介在して支持プレート430に固定する。
【0276】
ここで、かしめ片430bは、支持プレート430の前後の両側面部から突出する凸形状のものであり、この両側面部の上下方向に多数形成されている。また、拡大傾斜面41dは、温水入口側タンク41の長円形状の長軸方向の寸法よりも平面部41bの幅寸法を拡大することにより形成される。
【0277】
上記のかしめ固定の際に、シート状シール部材432が弾性的に圧縮されて、入口側タンク41の平面部41bと支持プレート430とに圧着するので、偏平チューブ44の先端部と穴部41cとの連通部を確実にシールできる。
【0278】
次に、入口側タンク41に対するアクチュエータ50、ねじ回転軸51および流れ制御部材52の具体的な組付構造を説明する。これら機器50、51、52の組付は、上記のように入口側タンク41を支持プレート430にかしめ固定した状態で行うか、あるいは入口側タンク41単独の状態で行うか、いずれでもよい。
【0279】
流れ制御部材52は図35に拡大図示するように弁体520と弁台座521とにより構成され、弁体520はゴム系の弾性材によりリング状に成形されれている。但し、弁体520は真円状ではなく、入口側タンク41の内部空間41aの長円状の内壁面に摺動自在に嵌合する長円状の外周面を有する形状になっている。
【0280】
これに対し、弁台座521は弁体520を支持固定する剛体の部材であり、具体的には樹脂の成形品である。この弁台座521は、円筒部521aと、この円筒部521aの一端部にて径外方側に拡大する鍔部521bと、円筒部521aの他端部に形成された抜け止め用爪部521cとを有する形状になっている。鍔部521bの外周面と入口側タンク41の内壁面との間には所定隙間を形成し、鍔部521bの外周面が入口側タンク41の内壁面に接触しないようになっている。
【0281】
リング状の弁体520を爪部521cを乗り越えて円筒部521aの外周面にはめ込むことにより、弁体520を円筒部521aの外周部に固定するようになっている。また、円筒部521aの内周部には雌ねじ部521dを形成し、この雌ねじ部521dをねじ回転軸51の雄ねじ部にねじ結合している。
【0282】
ここで、ねじ回転軸51は第1実施形態等と同様に、雄ねじ部を外周面に形成した樹脂製または金属製の軸部材であり、温水入口側タンク41内部に、タンク長手方向(チューブ配列方向)の全長にわたって延びるように配置されている。
【0283】
ねじ回転軸51の一端部(下端部)は、温水入口側タンク41の下端部(温水入口46側の端部)側に位置し、軸支持部材510により支持されるようになっている。この軸支持部材510は樹脂の成形品であり、図36に示すようにねじ回転軸51の下端部の小径部51dが回転自在に嵌合する円形凹部を有する支持台部510aと、温水入口側タンク41内部の底面段部41eに圧入固定されるリング状固定部510bと、支持台部510aとリング状固定部510bとを一体に連結する複数本(例えば、4本)の連結脚部510cとを有する。
【0284】
ねじ回転軸51の下端部の小径部51d(図35)において、軸支持部材510の上方側(雄ねじ部側の部位)にはOリングからなるシール材51eが装着してある。このシール材51eの装着位置は小径部51dとその上方の雄ねじ部との間の段差により位置決めするようになっている。
【0285】
また、多数本のチューブ44のうち温水入口46に最も近接する最下部のチューブ44と温水入口46との間の部位にて、温水入口側タンク41の断面形状を、最下部のチューブ44から温水入口46側へ向かって断面積が徐々に減少するテーパ状の形状にしてある。41fはこの断面積が徐々に減少するテーパ状部を示す。
【0286】
温水入口側タンク41のうち、温水入口46と反対側の端部、すなわち、上端部には開口部41gを設けている。この開口部41gは、流れ制御部材52をねじ結合したねじ回転軸51を温水入口側タンク41の内部へ挿入するためのものであり、この開口部41gは、流れ制御部材52の弁体520の長円状の長軸方向の外径寸法と同等以上の内径を有する円形状のものである。
【0287】
この円形状の開口部41gは樹脂等で成形された円形状のキャップ部材41hにより閉塞するようになっている。このキャップ部材41hは開口部41gの外周部にねじにより脱着可能に装着される。これにより、温水入口側タンク41の内部への流れ制御部材52およびねじ回転軸51の脱着作業が容易となり、メンテナンス性を向上できる。
【0288】
また、開口部41gの端面とキャップ部材41hの内面部との間にOリングからなるシール材41iを介在して、開口部41gの端面とキャップ部材41hとの間をシールしている。
【0289】
また、キャップ部材41hの中心部には円形の貫通穴からなる軸受穴41jを設けている。この軸受穴41jによりねじ回転軸51を回転自在に支持するとともに、この軸受穴41jを通してねじ回転軸51をキャップ部材41hの外部に突き出して、ねじ回転軸51をアクチュエータ50に連結している。軸受穴41jにもOリングからなるシール材41kを配置してシールするようになっている。また、ねじ回転軸51のうち開口部41gの内側に位置する部位には円板状のストッパ部51fが一体に設けてある。このストッパ部51fは、流れ制御部材52の最大暖房位置(図33の上側破線位置MH)を規定するものである。
【0290】
第21実施形態による流れ制御部材52の基本的作動は、図2に示す第1実施形態等と同じでよいので、説明は省略する。
【0291】
図33の下側破線位置MCは流れ制御部材52の最大冷房位置であり、ヒータコア4の全チューブへの温水流入を遮断している。この最大冷房位置MCでは、上下方向に配列された多数本のチューブ44のうち、最下部のチューブ44の下方に流れ制御部材52が位置し、流れ制御部材52の弁体520が温水入口側タンク41のテーパ状部41fの内側に位置する。
【0292】
このテーパ状部41fは、最下部のチューブ44から温水入口46側へ向かってタンク断面積を徐々に減少させる形状になっているから、弾性材からなる弁体520がテーパ状部41fの内壁面により強く圧着して、弁体520の外周面と温水入口側タンク41の内壁面との間の温水洩れをより確実に防止する。
【0293】
また、最大冷房位置MCでは、剛体からなる弁台座521の円筒部521a先端がねじ回転軸51の小径部51d上のシール材51eに圧着する。これにより、弁台座521の円筒部521a内周の雌ねじ部521dとねじ回転軸51の雄ねじ部とのねじ結合部をシールして、このねじ結合部からの温水洩れも確実に防止できる。
【0294】
以上により、最大冷房位置MCでは温水入口46からの温水が流れ制御部材52の上方側に洩れてチューブ44内に流入することを確実に防止でき、最大冷房能力を保障できる。
【0295】
流れ制御部材52の最大暖房位置(図33の上側破線位置MH)では、流れ制御部材52がヒータコア4の最上部のチューブ44よりも更に上方側に位置することにより、温水入口46からの温水が全チューブ44に流入する。この最大暖房位置MHは、流れ制御部材52の弁台座521がねじ回転軸51のストッパ部51fに当接して位置決めされる。
【0296】
上記した第21実施形態および第1実施形態等においては、温水入口側タンク41の断面形状を長円状のような非円形状の断面形状としているが、温水入口側タンク41の断面形状を多角形状のような非円形状にしてもよい。
【0297】
また、上記した第21実施形態および第1実施形態等においては、温水入口側タンク41の断面形状を長円状のような非円形状の断面形状とし、流れ制御部材52の弁体520を非円形状の断面形状に嵌合することにより、流れ制御部材52の回り止めを行うようにしているが、温水入口側タンク41の断面形状を真円状にしても流れ制御部材52の回り止めを行うことができる。例えば、温水入口側タンク41の内壁面にねじ回転軸51と平行に延びるスリット溝又はリブを形成し、このスリット溝又はリブと嵌合するリブ又はスリット溝を流れ制御部材52の弁台座521に形成すれば、温水入口側タンク41の断面形状が真円状であっても、流れ制御部材52の回り止めを行うことができる。
【0298】
なお、温水出口側タンク42内に流れ制御部材52bを内蔵する場合(図5等)に、流れ制御部材52bの回り止めのための手段を温水入口側タンク41の場合と同様に上記のように変形できることはもちろんである。
【0299】
また、上記した第21実施形態では、温水入口側タンク41と支持プレート430とをかしめ固定する場合について説明したが、ねじ止め、金属ばねクリック等の締結手段を用いて温水入口側タンク41と支持プレート430とを固定してもよい。
【0300】
また、上記した第21実施形態では、温水入口側タンク41内に、タンク41とは別体の軸支持部材510を組み付けてねじ回転軸51の下端部(一端部)を支持しているが、温水入口側タンク41に一体成形した軸支持部によりねじ回転軸51の下端部(一端部)を支持してもよい。
【0301】
また、上記した第21実施形態では、チューブ44の突出先端部をシート状シール材432の穴部432aのみに挿入し、温水入口側タンク41の穴部41cにはチューブ44の突出先端部を挿入していないが、チューブ44の突出先端部をシート状シール材432の穴部432aと温水入口側タンク41の穴部41cの両方に挿入するようにしてもよい。このようにすれば、両穴部41c、432aの位置合わせが容易となる。
【0302】
この変形例の場合も、チューブ44の突出先端部の挿入位置を穴部41cの途中までとし、チューブ44の突出先端部がタンク41の内部空間41aに突出しないことにより、流れ制御部材52をスムースに移動できる。
【0303】
(他の実施形態)
なお、上記の各実施形態では、暖房用熱交換器をなすヒータコア4に、熱源流体として温水が流れる場合について説明したが、例えば、エンジンオイル、油圧機械の作動オイル等のオイルを熱源流体としてヒータコア4に循環させ、空気を加熱する車両用空調装置に本発明を適用してもよい。
【図面の簡単な説明】
【図1】本発明の第1実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図2】第1実施形態のヒータコアを示す正面図である。
【図3】車室内への吹出空気温度の制御特性図である。
【図4】第2実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図5】第3実施形態のヒータコアを示す正面図である。
【図6】(a)は第4実施形態のヒータコアを示す正面図、(b)は(a)の側面図、(c)は(a)の上面図である。
【図7】第5実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図8】第5実施形態のヒータコアを示す正面図である。
【図9】(a)は第6実施形態のヒータコアを示す正面図、(b)は(a)の側面図である。
【図10】第7実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図11】第8実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図12】第8実施形態のヒータコアを示す正面図である。
【図13】(a)は第9実施形態のヒータコアを示す正面図、(b)は(a)の側面図である。
【図14】第10実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図15】第10実施形態によるリブ配置形態を示す概要図である。
【図16】第10実施形態による効果を示すグラフである。
【図17】従来技術(第10実施形態の比較例)の空調ユニットの概略断面図である。
【図18】第11実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図19】第12実施形態の課題を示すグラフである。
【図20】第12実施形態の課題の原因を説明するためのヒータコア部分正面図である。
【図21】第12実施形態の課題の原因を説明するためのヒータコア吹出温度の説明図である。
【図22】第12実施形態による圧損増大部を示す空調ユニットの要部断面図である。
【図23】第13実施形態による圧損増大部を示すヒータコア中央部の要部断面図である。
【図24】第14実施形態によるヒータコアの部分正面図である。
【図25】第15実施形態による圧損増大部とヒータコアとの組み合わせを示す空調ユニットの要部断面図である。
【図26】第16実施形態のヒータコアを示す正面図である。
【図27】第16実施形態による流れ制御部材(回転式弁機構)の斜視図である。
【図28】第17実施形態のヒータコアを示す正面図である。
【図29】第18実施形態のヒータコアを示す正面図である。
【図30】第19実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図31】第19実施形態の作動説明図である。
【図32】第20実施形態の空調ユニットを示すもので、空調ケースの片側を取り外した状態の側面図である。
【図33】第21実施形態によるヒータコアの要部断面図である。
【図34】図33のX−X断面図である。
【図35】図33の要部拡大断面図である。
【図36】図35の軸支持部材の拡大斜視図である。
【符号の説明】
1a…空調ケース、4…ヒータコア(暖房用熱交換器)、
44、44a、44b…チューブ、41…入口側タンク、
42…出口側タンク、52、52a、52b…流体流れ制御部材。

Claims (38)

  1. 車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、
    前記空調ケース(1a)内に配置され、前記空気を加熱する暖房用熱交換器(4)と、
    前記暖房用熱交換器(4)に内蔵され、前記暖房用熱交換器(4)のうち熱源流体が流れる熱源流体通過領域と、熱源流体が流れない熱源流体非通過領域との比率を変更する流体流れ制御手段(52、52a、52b)とを備えることを特徴とする車両用空調装置。
  2. 車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、
    前記空調ケース(1a)内に配置され、前記空気を加熱する熱源流体が多数本のチューブ(44)を流れる暖房用熱交換器(4)と、
    前記暖房用熱交換器(4)に内蔵され、前記暖房用熱交換器(4)の前記多数本のチューブ(44、44a、44b)のうち、前記熱源流体が流れるチューブ本数と前記熱源流体が流れないチューブ本数との比率を変更する流体流れ制御手段(52、52a、52b)とを備えることを特徴とする車両用空調装置。
  3. 車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、
    前記空調ケース(1a)内に配置され、前記空気を加熱する暖房用熱交換器(4)とを備え、
    前記暖房用熱交換器(4)は、前記空気を加熱する熱源流体が流れる多数本のチューブ(44、44a、44b)と、前記多数本のチューブ(44、44a、44b)に対する前記熱源流体の分配・集合を行うタンク部材(41、42)とを有し、
    前記タンク部材(41、42)内部に流体流れ制御手段(52、52a、52b)を移動可能に配置し、前記流体流れ制御手段(52、52a、52b)により前記タンク部材(41、42)内の空間を前記多数本のチューブ(44、44a、44b)の配列方向に仕切るようにし、
    前記流体流れ制御手段(52、52a、52b)の位置を前記多数本のチューブ(44、44a、44b)の配列方向に直線的に移動させることにより前記多数本のチューブ(44、44a、44b)のうち、前記熱源流体が流れるチューブ本数と前記熱源流体が流れないチューブ本数との比率を変更するようにしたことを特徴とする車両用空調装置。
  4. 前記タンク部材(41、42)の内部に前記多数本のチューブ(44、44a、44b)の配列方向に延びるようにねじ回転軸(51、51a、51b)が配置され、
    前記流体流れ制御手段(52、52a、52b)は、前記タンク部材(41、42)の内壁面に摺動可能に嵌合するとともに前記ねじ回転軸(51、51a、51b)にねじ結合され、
    前記ねじ回転軸(51、51a、51b)が回転することにより、前記流体流れ制御手段(52、52a、52b)が前記タンク部材(41、42)の内壁面との嵌合により回り止めされた状態で前記タンク部材(41、42)内を直線的に移動することを特徴とする請求項3に記載の車両用空調装置。
  5. 前記タンク部材(41、42)の断面形状を非円形状に形成することにより、前記流体流れ制御手段(52、52a、52b)の回り止めを行うようになっていることを特徴とする請求項4に記載の車両用空調装置。
  6. 前記流体流れ制御手段(52、52a、52b)は、
    前記タンク部材(41、42)の内壁面に弾性的に圧着する弾性材からなる弁体(520)と、
    前記ねじ回転軸(51、51a、51b)にねじ結合され、且つ、前記弁体(520)が固定される剛体からなる弁台座(521)とを有することを特徴とする請求項4または5に記載の車両用空調装置。
  7. 前記タンク部材(41、42)のうち前記多数本のチューブ(44、44a、44b)の配列方向の一端部に、前記ねじ回転軸(51、51a、51b)の一端部を支持する軸支持部(510)を配置し、
    前記タンク部材(41、42)のうち前記配列方向の他端部に、前記流体流れ制御手段(52、52a、52b)を前記タンク部材(41、42)内に挿入できる大きさを持った開口部(41g)を設け、
    前記開口部(41g)を脱着可能なキャップ部材(41h)により閉塞するとともに、前記キャップ部材(41h)を貫通して前記ねじ回転軸(51、51a、51b)の他端部を前記タンク部材(41、42)の外部に突出し、
    前記ねじ回転軸(51、51a、51b)の他端部に、前記ねじ回転軸(51、51a、51b)を回転駆動する操作機構(50)を連結したことを特徴とする請求項4ないし6のいずれか1つに記載の車両用空調装置。
  8. 前記タンク部材(41、42)の前記一端部に、前記タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置したことを特徴とする請求項7に記載の車両用空調装置。
  9. 前記タンク部材(41、42)のうち前記多数本のチューブ(44、44a、44b)の配列方向の端部に、前記タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置し、
    前記多数本のチューブ(44、44a、44b)のうち前記熱源流体入口(46)に最も近接するチューブと前記熱源流体入口(46)との間の部位にて、前記タンク部材(41、42)の断面形状を、前記最も近接するチューブから前記熱源流体入口(46)側へ向かって断面積が減少する形状としたことを特徴とする請求項4ないし6のいずれか1つに記載の車両用空調装置。
  10. 前記タンク部材(41、42)のうち前記多数本のチューブ(44、44a、44b)の配列方向の端部に、前記タンク部材(41、42)内へ熱源流体を流入させる熱源流体入口(46)を配置し、
    前記多数本のチューブ(44、44a、44b)のうち前記熱源流体入口(46)に最も近接するチューブと前記熱源流体入口(46)との間に前記流体流れ制御手段(52、52a、52b)が移動して、前記熱源流体入口(46)からの熱源流体の流れを遮断する際に、前記流体流れ制御手段(52、52a、52b)と前記ねじ回転軸(51、51a、51b)とのねじ結合部(521d)をシールするシール手段(51e)を備えることを特徴とする請求項4ないし6のいずれか1つに記載の車両用空調装置。
  11. 前記暖房用熱交換器(4)は、前記多数本のチューブ(44、44a、44b)の端部を支持する支持プレート(430)を有し、
    前記タンク部材(41、42)は筒状の形状であり、前記筒状の形状の周面のうち、前記支持プレート(430)側の部位に、前記多数本のチューブ(44、44a、44b)の端部と対応する穴部(41c)を設け、
    前記多数本のチューブ(44、44a、44b)の端部が前記穴部(41c)を介して前記タンク部材(41、42)の内部空間(41a)に連通した状態にて前記タンク部材(41、42)が前記支持プレート(430)に組付られていることを特徴とする請求項3ないし10のいずれか1つに記載の車両用空調装置。
  12. 前記支持プレート(430)と前記タンク部材(41、42)との間に、前記多数本のチューブ(44、44a、44b)の端部および前記タンク部材(41、42)の穴部(41c)と連通する穴部(432a)を有するシート状のシール材(432)を介在したことを特徴とする請求項11に記載の車両用空調装置。
  13. 前記支持プレート(430)に、前記タンク部材(41、42)を固定するかしめ固定部(430b)が備えられていることを特徴とする請求項11または12に記載の車両用空調装置。
  14. 車室内へ向かって空気が流れる空気通路を構成する空調ケース(1a)と、
    前記空調ケース(1a)内に配置され、前記空気を加熱する暖房用熱交換器(4)とを備え、
    前記暖房用熱交換器(4)は、前記空気を加熱する熱源流体が流れる多数本のチューブ(44、44a、44b)と、前記多数本のチューブ(44、44a、44b)に対する前記熱源流体の分配・集合を行うタンク部材(41、42)とを有し、
    前記タンク部材(41、42)内部に流体流れ制御手段(52)を内蔵するとともに、前記流体流れ制御手段(52)を前記多数本のチューブ(44、44a、44b)の配列方向と平行な回転中心軸により回転可能に構成し、
    前記流体流れ制御手段(52)は前記チューブ配列範囲の全長に及ぶ軸方向寸法を有しており、
    前記流体流れ制御手段(52)の回転位置を選択することにより、前記熱源流体が流れるチューブ本数と前記熱源流体が流れないチューブ本数との比率を変更するようにしたことを特徴とする車両用空調装置。
  15. 前記流体流れ制御手段(52)は軸方向の一端部に開口部(78)を形成した中空形状であり、
    前記中空形状の外周面が前記多数本のチューブ(44、44a、44b)の端部に対向し、
    前記中空形状の外周面に、前記多数本のチューブ(44、44a、44b)の端部を閉塞するためのシール面(79)と前記多数本のチューブ(44、44a、44b)の端部を開口するための切り欠き部(80)とを形成し、
    前記切り欠き部(80)を前記軸方向の一端部から他端部に向かって螺旋状に形成したことを特徴とする請求項14に記載の車両用空調装置。
  16. 前記シール面(79)と前記多数本のチューブ(44、44a、44b)の端部との間に、前記シール面(79)に弾性的に圧接するシール部材(81)を配置したことを特徴とする請求項14または15に記載の車両用空調装置。
  17. 前記流体流れ制御手段(52)の軸方向の他端部に駆動軸(83)を設け、前記駆動軸(83)を前記タンク部材(41、42)の外部に突出させ、前記駆動軸(83)の突出部を操作機構(50)に連結することを特徴とする請求項14ないし16のいずれか1つに記載の車両用空調装置。
  18. 前記タンク部材は、前記多数本のチューブ(44、44a、44b)に前記熱源流体を分配する入口側タンク(41)と、前記多数本のチューブ(44、44a、44b)から流出する前記熱源流体を集合する出口側タンク(42)とから構成され、
    前記流体流れ制御手段(52、52a、52b)は前記入口側タンク(41)と前記出口側タンク(42)のうち、少なくとも一方に配置されていることを特徴とする請求項3ないし17のいずれか1つに記載の車両用空調装置。
  19. 前記暖房用熱交換器(4)は、前記入口側タンク(41)から前記多数本のチューブ(44、44a、44b)を通過して前記出口側タンク(42)へ向かって前記熱源流体が一方向に流れるように構成されていることを特徴とする請求項18に記載の車両用空調装置。
  20. 前記暖房用熱交換器(4)において、前記空気の流れ方向(D)の前後に前記入口側タンク(41)と前記出口側タンク(42)を隣接配置し、
    前記入口側タンク(41)と前記出口側タンク(42)の配置部位と反対側の部位に中継タンク(62)を配置し、
    前記入口側タンク(41)と前記中継タンク(62)との間、および前記出口側タンク(42)と前記中継タンク(62)との間をそれぞれ前記多数本のチューブ(44a、44b)により連結し、
    前記入口側タンク(41)から前記熱源流体が前記多数本のチューブ(44a)を通過して前記中継タンク(62)に流入し、前記中継タンク(62)にて前記熱源流体がUターンして前記多数本のチューブ(44b)を通過した後に前記出口側タンク(42)に流入するようになっており、
    更に、前記中継タンク(62)内の空間を、前記多数本のチューブ(44a、44b)の配列方向に各チューブ毎に仕切ることを特徴とする請求項18に記載の車両用空調装置。
  21. 前記多数本のチューブ(44、44a、44b)のうち、前記熱源流体が最初に流れる1本目のチューブ周辺部の通風圧損を、前記暖房用熱交換器(4)の他の部位よりも大きくする圧損増大部(1c、1d)を備えることを特徴とする請求項2ないし20のいずれか1つに記載の車両用空調装置。
  22. 前記前記多数本のチューブ(44、44a、44b)のうち、前記熱源流体が最初に流れる1本目のチューブを、前記暖房用熱交換器(4)の空気通過領域の最外端の位置に配置したことを特徴とする請求項2ないし20のいずれか1つに記載の車両用空調装置。
  23. 前記前記多数本のチューブ(44、44a、44b)のうち、前記熱源流体が最初に流れる1本目のチューブを、前記暖房用熱交換器(4)の空気通過領域の最外端の位置に配置し、
    前記熱源流体が最初に流れる1本目のチューブ周辺部の通風圧損を、前記暖房用熱交換器(4)の他の部位よりも高くする圧損増大部(1c、1d)を備えることを特徴とする請求項2ないし20のいずれか1つに記載の車両用空調装置。
  24. 前記空調ケース(1a)内において、前記暖房用熱交換器(4)の上方部および下方部のいずれか一方に、前記暖房用熱交換器(4)をバイパスして冷風が流れる冷風バイパス通路(60)および前記冷風バイパス通路(60)を開閉するバイパスドア(61)を配置することを特徴とする請求項1ないし23のいずれか1つに記載の車両用空調装置。
  25. 前記空調ケース(1a)内において、前記暖房用熱交換器(4)の上方部および下方部のいずれか一方に前記熱源流体の入口部(46)を配置し、
    前記空調ケース(1a)内の上下方向において、前記熱源流体の入口部(46)の配置部位と同じ側に、前記暖房用熱交換器(4)をバイパスして冷風が流れる冷風バイパス通路(60)および前記冷風バイパス通路(60)を開閉するバイパスドア(61)を配置することを特徴とする請求項1ないし23のいずれか1つに記載の車両用空調装置。
  26. 前記暖房用熱交換器(4)は上下方向に延びるように前記空調ケース(1a)内に配置され、
    前記暖房用熱交換器(4)の下方部に前記熱源流体の入口部(46)を設け、前記暖房用熱交換器(4)の上方部に前記熱源流体の出口部(47)を設けることを特徴とする請求項1ないし24のいずれか1つに記載の車両用空調装置。
  27. 前記空調ケース(1a)内において前記暖房用熱交換器(4)の空気流れ下流側に前席用空気通路(71)と後席用空気通路(72)を形成し、
    前記流体流れ制御手段として、前記前席用空気通路(71)に対応する前席用流体流れ制御手段(52a)と、前記後席用空気通路(72)に対応する後席用流体流れ制御手段(52b)を独立に設けることを特徴とする請求項1ないし26のいずれか1つに記載の車両用空調装置。
  28. 前記空調ケース(1a)内において前記暖房用熱交換器(4)の空気流れ下流側に、前記暖房用熱交換器(4)を通過した空気流れを乱流化する複数のリブ(75)を所定間隔により配置したことを特徴とする請求項1ないし27のいずれか1つに記載の車両用空調装置。
  29. 前記複数のリブ(75)は、前記暖房用熱交換器(4)を通過する温風の領域(A)と冷風の領域(B)との境界と平行に延びるように配置されることを特徴とする請求項28に記載の車両用空調装置。
  30. 前記複数のリブ(75)相互の間隔を60mm以下としたことを特徴とする請求項28または29に記載の車両用空調装置。
  31. 前記空調ケース(1a)内において前記暖房用熱交換器(4)の空気流れ下流側に、前記暖房用熱交換器(4)を通過した温風と冷風のうち、いずれか一方を他方に向けて方向転換するガイド(76)を配置したことを特徴とする請求項1ないし27のいずれか1つに記載の車両用空調装置。
  32. 前記空調ケース(1a)内において前記暖房用熱交換器(4)の空気流れ下流側に、車室内の左側領域に空気を吹き出すための左側通路(92)と車室内の右側領域に空気を吹き出すための右側通路(93)を形成し、
    前記暖房用熱交換器(4)を通過して前記左側通路(92)に流入する左側空気風量と、前記暖房用熱交換器(4)を通過して前記右側通路(93)に流入する右側空気風量の割合を変更する風量割合変更手段(85、86)を備えることを特徴とする請求項1ないし31のいずれか1つに記載の車両用空調装置。
  33. 前記暖房用熱交換器(4)は、前記熱源流体通過領域と前記熱源流体非通過領域が上下方向に積層されるように構成され、
    前記風量割合変更手段は、前記暖房用熱交換器(4)の左右方向の中央部に配置された回転軸(85a、86a)を中心として前記左右方向に回転するドア(85、86)であることを特徴とする請求項32に記載の車両用空調装置。
  34. 前記ドア(85、86)は、前記暖房用熱交換器(4)の空気流れ下流側に配置されることを特徴とする請求項33に記載の車両用空調装置。
  35. 前記ドア(85、86)は、前記暖房用熱交換器(4)の空気流れ上流側に配置されることを特徴とする請求項33に記載の車両用空調装置。
  36. 前記ドアは、前記暖房用熱交換器(4)の前記熱源流体通過領域に対応して設けられる温風量左右振り分けドア(85)と、前記暖房用熱交換器(4)の前記熱源流体非通過領域に対応して設けられる冷風量左右振り分けドア(86)とから構成されることを特徴とする請求項33ないし35のいずれか1つに記載の車両用空調装置。
  37. 前記温風量左右振り分けドア(85)と前記冷風量左右振り分けドア(86)は、共通の操作機構(90)に連結されて連動して回転することを特徴とする請求項36に記載の車両用空調装置。
  38. 前記温風量左右振り分けドア(85)と前記冷風量左右振り分けドア(86)は前記左右方向に相反的に回転することを特徴とする請求項37に記載の車両用空調装置。
JP2002203985A 2001-09-12 2002-07-12 車両用空調装置 Expired - Lifetime JP3925335B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002203985A JP3925335B2 (ja) 2001-09-12 2002-07-12 車両用空調装置
US10/238,217 US6679434B2 (en) 2001-09-12 2002-09-10 Vehicle air conditioner with flow area adjustment of fluid in heating heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001277055 2001-09-12
JP2002174149 2002-06-14
JP2002203985A JP3925335B2 (ja) 2001-09-12 2002-07-12 車両用空調装置

Publications (2)

Publication Number Publication Date
JP2004066838A true JP2004066838A (ja) 2004-03-04
JP3925335B2 JP3925335B2 (ja) 2007-06-06

Family

ID=27347488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203985A Expired - Lifetime JP3925335B2 (ja) 2001-09-12 2002-07-12 車両用空調装置

Country Status (2)

Country Link
US (1) US6679434B2 (ja)
JP (1) JP3925335B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176826B1 (ko) 2005-11-09 2012-08-24 한라공조주식회사 열교환기
JP2015108489A (ja) * 2013-12-05 2015-06-11 新晃工業株式会社 空調機の熱交換器
KR20150115236A (ko) * 2014-04-03 2015-10-14 대우조선해양 주식회사 극지용 선박의 공기 흡입 공조시스템 및 공기 흡입 공조방법
KR101762196B1 (ko) * 2014-04-03 2017-07-27 대우조선해양 주식회사 극지용 선박의 수평 방열 블레이드형 히터

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0209352D0 (en) * 2002-04-24 2002-06-05 Ashe Morris Ltd Improved heat exchanger temperature control system
JP3979051B2 (ja) * 2001-09-18 2007-09-19 株式会社デンソー 車両用空調装置
JP3701927B2 (ja) * 2002-06-18 2005-10-05 株式会社ケーヒン 車両用空調装置
JP2004322914A (ja) * 2003-04-25 2004-11-18 Denso Corp 複合サイクル用熱交換器
US7806171B2 (en) * 2004-11-12 2010-10-05 Carrier Corporation Parallel flow evaporator with spiral inlet manifold
EP1777480B1 (de) * 2005-10-19 2018-11-28 MAHLE Behr GmbH & Co. KG Wärmeübertrager
FR2903768B1 (fr) * 2006-07-12 2008-11-28 Renault Sas Appareil de traitement de fluides et son utilisation.
ITBO20080004U1 (it) * 2008-01-10 2009-07-11 Irsap Spa Deviatore di flusso per colletori
IL192499A (en) * 2008-06-29 2013-03-24 S E S Solar Energy Solutions Ltd Solar collector
US20100083919A1 (en) * 2008-10-03 2010-04-08 Gm Global Technology Operations, Inc. Internal Combustion Engine With Integrated Waste Heat Recovery System
SE535433C2 (sv) * 2010-12-14 2012-08-07 Scania Cv Ab Modulsystem för bildande av en kylaranordning samt laddluftkylare och kylarvätskekylare bildade av ett sådant modulsystem
EP2724879A4 (en) * 2011-06-23 2014-12-31 Toyota Motor Co Ltd VEHICLE
KR101316268B1 (ko) * 2011-12-09 2013-10-08 현대자동차주식회사 가변 코어형 열교환기 유닛
CN103712482B (zh) * 2012-10-02 2017-04-12 马勒国际公司 热交换器
US9810486B2 (en) * 2013-12-20 2017-11-07 Denso International America, Inc. Heat exchanger pressure adjustable baffle
US10443945B2 (en) * 2014-03-12 2019-10-15 Lennox Industries Inc. Adjustable multi-pass heat exchanger
KR102293449B1 (ko) * 2017-06-27 2021-08-24 르노삼성자동차 주식회사 콘덴서에 설치되는 열 전달 핀들의 메커니즘
CN111997734B (zh) * 2020-04-15 2022-04-15 湖北雷迪特冷却系统股份有限公司 一种非均匀开窗散热带
US11512901B2 (en) * 2020-09-25 2022-11-29 Rheem Manufacturing Company Adjustable capacity heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731735A (en) * 1971-03-19 1973-05-08 Ecodyne Corp Selective orificing steam condenser
US3774678A (en) * 1971-04-07 1973-11-27 F Glorisi Cooling system with selectively replaceable radiator sections
US3802496A (en) * 1971-05-03 1974-04-09 Ecodyne Corp Adjustable selective orificing steam condenser
US3731734A (en) * 1971-05-03 1973-05-08 Ecodyne Corp Adjustable selective orificing steam condenser
US5526873A (en) * 1989-07-19 1996-06-18 Valeo Thermique Moteur Heat exchanger apparatus for a plurality of cooling circuits using the same coolant
US5287917A (en) * 1993-02-16 1994-02-22 Antonio Cannata Heat exchanger
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
JP3705859B2 (ja) * 1996-03-29 2005-10-12 サンデン株式会社 分配装置を備えた熱交換器
FR2754888B1 (fr) * 1996-10-23 1999-01-08 Valeo Thermique Moteur Sa Echangeur de chaleur a alimentation perfectionnee pour installation de chauffage, ventilation et/ou climatisation, notamment de vehicule automobile
JP3131774B2 (ja) * 1997-09-26 2001-02-05 漢拏空調株式会社 車両エアコン用の多重流動型凝縮器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176826B1 (ko) 2005-11-09 2012-08-24 한라공조주식회사 열교환기
JP2015108489A (ja) * 2013-12-05 2015-06-11 新晃工業株式会社 空調機の熱交換器
KR20150115236A (ko) * 2014-04-03 2015-10-14 대우조선해양 주식회사 극지용 선박의 공기 흡입 공조시스템 및 공기 흡입 공조방법
KR101713853B1 (ko) * 2014-04-03 2017-03-09 대우조선해양 주식회사 극지용 선박의 공기 흡입 공조시스템 및 공기 흡입 공조방법
KR101762196B1 (ko) * 2014-04-03 2017-07-27 대우조선해양 주식회사 극지용 선박의 수평 방열 블레이드형 히터

Also Published As

Publication number Publication date
JP3925335B2 (ja) 2007-06-06
US6679434B2 (en) 2004-01-20
US20030047300A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
JP2004066838A (ja) 車両用空調装置
US7931074B2 (en) Heat exchanger and air conditioner
US7871316B2 (en) Passage opening and closing device
US7942192B2 (en) Vehicle air conditioner
JP4457958B2 (ja) 車両用空調装置
JP3322016B2 (ja) 自動車用温水式暖房装置
JPS6246706A (ja) 自動車用暖房兼空気調和装置
US6796368B1 (en) Air conditioning apparatus for vehicle
US11554630B2 (en) Vehicular air conditioner having heating heat exchanger disposed downstream of blower fan
JPH0872529A (ja) 流量制御弁及びそれを用いた温水式暖房装置
JP3969099B2 (ja) 車両用空調装置
US20070158047A1 (en) Air conditioner for vehicle
JP2001315526A (ja) 車両用空調装置
US20020011325A1 (en) Vehicle air conditioner
JP2009001169A (ja) 空気通路切替装置および車両用空調装置
JP4089393B2 (ja) 車両用空調装置
JP2005138618A (ja) 車両用空調装置
JPH08290714A (ja) 自動車用空調装置
JP4624773B2 (ja) 車両用空調装置
JP2005082079A (ja) 空調装置および車両用空調装置
JP2009018644A (ja) 車両用空調装置
JP2004353955A (ja) 空調用熱交換器および車両用空調装置
WO2020045195A1 (ja) 車両用空調装置
CN116265271A (zh) 机动车辆空气调节系统和用于操作机动车辆空气调节系统的方法
JP2021066310A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6