JP2004065110A - 液体搬送装置および液体搬送方法 - Google Patents

液体搬送装置および液体搬送方法 Download PDF

Info

Publication number
JP2004065110A
JP2004065110A JP2002229245A JP2002229245A JP2004065110A JP 2004065110 A JP2004065110 A JP 2004065110A JP 2002229245 A JP2002229245 A JP 2002229245A JP 2002229245 A JP2002229245 A JP 2002229245A JP 2004065110 A JP2004065110 A JP 2004065110A
Authority
JP
Japan
Prior art keywords
liquid
space
discharge port
base
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229245A
Other languages
English (en)
Other versions
JP3610349B2 (ja
Inventor
Takeo Yamazaki
山崎 剛生
Takeshi Imamura
今村 剛士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002229245A priority Critical patent/JP3610349B2/ja
Priority to PCT/JP2003/009909 priority patent/WO2004012863A1/en
Priority to US10/480,040 priority patent/US7294310B2/en
Priority to AU2003254805A priority patent/AU2003254805A1/en
Publication of JP2004065110A publication Critical patent/JP2004065110A/ja
Application granted granted Critical
Publication of JP3610349B2 publication Critical patent/JP3610349B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7179Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
    • B01F35/71791Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets using ink jet heads or cartridges, e.g. of the thermal bubble jet or piezoelectric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】液体の導入や搬送が可能であり、液体の逆流を防止することが可能な小型化分析システムにおける液体搬送装置を提供する。
【解決手段】基体201と、前記基体201と一体に設けられ液体を吐出させる吐出口205と、前記吐出口205と連通して設けられ前記吐出口から吐出された液体が飛翔していく第一の空間部210と、前記第一の空間部210と連通して前記飛翔していく液体が到達可能な距離内に設けられ前記液体を受入れる第二の空間部204を有する液体搬送装置。前記吐出口の液体と前記第二の空間部内の液体が、前記第一の空間部内の気体により分離されている。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、チップ上で化学分析や化学合成を行う小型化分析システム(μTAS: Micro Total Analysis System)において、液体を搬送するための液体搬送装置および液体搬送方法に関する。
【0002】
【従来の技術】
近年、立体微細加工技術の発展に伴い、ガラスやシリコン等の基板上に、微小な流路とポンプ、バルブ等の液体素子およびセンサを集積化し、その基板上で化学分析を行うシステムが注目されている。これらのシステムは、小型化分析システム、μ−TAS(Micro Total Analysis System)あるいはLab on a Chipと呼ばれている。化学分析システムを小型化することにより、無効体積の減少や試料の分量の大幅な低減が可能となる。また、分析時間の短縮やシステム全体の低消費電力化が可能となる。さらに、小型化によりシステムの低価格を期待することができる。μ−TASは、システムの小型化、低価格化および分析時間の大幅な短縮が可能なことから、在宅医療やベッドサイドモニタ等の医療分野、DNA解析やプロテオーム解析等のバイオ分野での応用が期待されている。
【0003】
特開平10−337173号公報においては、溶液を混合して反応を行った後、定量及び分析をしてから分離するという一連の生化学実験操作をいくつかのセルの組み合わせによって実現可能なマイクロリアクタが開示されている。図6にマイクロリアクタ601の概念を模式的に示す。マイクロリアクタ601は、シリコン基板上に平板で密閉された独立した反応チャンバを有している。このリアクタは、リザーバーセル602、混合セル603、反応セル604、検出セル605、分離セル606が組み合わされている。このリアクタを基板上に多数個形成することにより、多数の生化学反応を同時に並列的に行うことができる。さらに、単なる分析だけでなく、タンパク質合成などの物質合成反応もセル上で行うことができる。
【0004】
また、Jr−Hung Tsai and Liwei Lin,”A Thermal Bubble Actuated Micro Nozzle−Diffuser Pump”,Proceedings of 2001IEEE Micro Electro Mechanical Systems Workshop ,2001,pp.409−412では、ヒータを加熱することにより液体を加熱し気泡を発生させ、発生した気泡の膨張と収縮を利用して液体を搬送する装置が開示されている。この装置の原理図を図7に示す。この装置では、図7に示したようにチャンバ702内に発熱体素子703が形成されている。またチャンバ702に連通する出口707と入口704には、テーパ−形状の流路705、706が形成されている。発熱体素子703に電圧を印加することにより、チャンバ内に気泡701が発生する。発生した気泡は一定時間膨張した後、収縮に転じてやがて消滅する。
【0005】
気泡701の膨張時には、チャンバ702内の液体は気泡が膨張する作用力によりチャンバの外側に流出する。出口707側と入口704側には、流路705、706のテーパ−形状により流路抵抗に差が生じる。これにより、出口707に流出する流量は、入口704に流出する流量と比較して大きくなる(図7(a))。
【0006】
一方、気泡701の収縮時には、出口側および入口側の流体は、チャンバ内に流入する。このときは、膨張時とは逆に、入口704側から流入する流量が出口707側から流入する流量よりも大きくなる(図7(b))。
【0007】
発熱体素子703を繰り返し駆動し、気泡701の膨張と収縮を繰り返すことにより、流体は入口704側から出口707側(図7において右から左に向かう方向)に搬送される。
【0008】
【発明が解決しようとする課題】
特開平10−337173号公報で開示されている図6に示したようなマイクロリアクタを使用する場合、例えばシリコーンチューブをリザーバーセル601に接続しシリンジポンプ等を用いて液体試料をリアクタ内に導入していた。このような場合、マイクロリアクタの外部にシリンジポンプが必要となり、コストが増大しシステム全体が大きくなってしまうという問題がある。またディスペンサー等を用いて、リザーバーに液体試料を滴下する場合も、同様にマイクロリアクタの外部に大掛かりな装置が必要となる。
【0009】
また図6に示したようなマイクロリアクタを用いた場合、混合セル603内で混合した液体や、反応セル604内で反応した液体が、リザーバーセル602側に逆流してしまい、安定した化学反応が行われない場合があった。逆流を防止するためには、マイクロリアクタ内にマイクロバルブを形成する方法も考え得る。しかしながら、その場合、マイクロバルブを形成するのに非常に多くの工程を要しマイクロリアクタの作製コストが増大してしまう。またバルブを多数回開閉することにより、経時変化によりバルブの開閉性能やシール特性が劣化し、マイクロリアクタの寿命が短くなってしまう場合がある。
【0010】
図7に示した液体搬送装置でも、出口707と入口704側の流体が連通しており、出口707側の液体が入口704側に逆流してしまう可能性がある。特に、発熱体素子を駆動していない場合に、出口707と入口704側の流体が連通していることにより拡散が生じ、出口707側の液体と入口704側の液体が混合してしまう。これを防止するためには、やはりマイクロバルブを形成する必要が生じる。
【0011】
本発明は、外部にシリンジポンプやディスペンサー等の液体を導入するための機構を必要とすることなく液体の導入や搬送が可能であり、小型で低コストな液体搬送装置ならびに液体搬送方法を提供するものである。
さらに、本発明は、複雑な機構のマイクロバルブを必要とすることなく液体の逆流を防止することが可能な液体搬送装置ならびに液体搬送方法を提供するものである。
さらに、本発明は、上記の液体搬送装置を使用して、安定した化学反応を行うことができる長寿命な化学分析装置および化学分析方法を提供するものである。
【0012】
【課題を解決するための手段】
即ち、本発明は、基体と、前記基体と一体に設けられ液体を吐出させるための吐出口と、前記吐出口と連通して備えられ前記吐出口から吐出された液体が飛翔するための第一の空間部と、前記第一の空間部と連通して前記飛翔する液体が到達可能な距離内に備えられた前記液体を受入れるための受入口を有する第二の空間部とを有し、前記吐出口から前記第二の空間部に前記液体を搬送することを特徴とする液体搬送装置である。
【0013】
前記吐出口の液体と前記第二の空間部内の液体が、前記第一の空間部内の気体により分離されていることが好ましい。
前記基体上に、前記吐出口に液体を供給するための供給室を備えることが好ましい。
前記基体上に設けられた前記第一の空間部は凹部からなり、該凹部の深さは前記吐出口の底面の位置よりも深いことが好ましい。
【0014】
前記基体上に設けられた前記第一の空間部は凹部からなり、該凹部の深さは前記第二の空間部の底面の位置よりも深いことが好ましい。
前記基体上に、前記吐出口を複数有し、搬送された複数の液体を取り入れ混合するための混合室を備えることが好ましい。
前記混合室で混合した前記液体を搬送するための吐出口をさらに備えることが好ましい。
【0015】
前記第一の空間部内の液体を前記基体の外部に排出するための流路を有することが好ましい。
さらに液体を供給する供給室、液体を搬送する液体搬送部、流路及び搬送された複数の液体を混合する混合室を有し、それらのうちの少なくとも一つを外気から遮断するための遮断部を備えることが好ましい。
前記吐出口に前記液体を搬送するための液体搬送部を更に有し、前記液体搬送部に発熱体素子が設けられ、前記発熱体素子を急速に加熱することにより液体内に気泡を発生させ、前記気泡の膨張により、前記吐出口より液体を吐出することが好ましい。
【0016】
また、本発明は、基体と、前記基体と一体に設けられ液体を吐出させる吐出口と、前記吐出口と連通して設けられ前記吐出口から吐出された液体が飛翔していく第一の空間部と、前記第一の空間部と連通して前記飛翔していく液体が到達可能な距離内に設けられ前記液体を受入れる第二の空間部を有する液体搬送装置を用いた液体の搬送方法であり、前記吐出口から吐出した液体を前記第一の空間部中に飛翔させ第二の空間部に到達させる工程を有することを特徴とする液体搬送方法である。
【0017】
また、本発明は、基体と、前記基体と一体に設けられ液体を吐出させる吐出口と、前記吐出口と連通して設けられ前記吐出口から吐出された液体が飛翔していく第一の空間部と、前記第一の空間部と連通して前記飛翔していく液体が到達可能な距離内に設けられ前記液体を受入れる第二の空間部を有する液体搬送装置を用いた液体の搬送方法であり、前記吐出口から吐出した液体を前記第一の空間部中に飛翔させ、前記吐出した液体のうちの全部もしくは一部を前記第二の空間部に到達させることなく、前記第一の空間部内に留める工程を有することを特徴とする液体搬送方法である。
【0018】
さらに、本発明は、上記の液体搬送装置を用いて液体を搬送することを特徴とする化学分析装置である。
さらに、本発明は、上記の液体搬送方法を用いて液体を搬送することを特徴とする化学分析方法である。
【0019】
【発明の実施の形態】
以下、本発明を詳細に説明する。
図1は本発明の液体搬送装置を用いた化学分析装置の一形態を示す概念図である。以下、図1に示した化学分析装置を用いて、液体試料を成分ごとに分離し検出する場合を例にとり説明する。
【0020】
図1に示した化学分析装置は、基体101上に液体供給タンク102〜104を有する。図2に示した本発明の液体搬送装置により、液体供給タンクから化学分析装置に液体が導入される。液体搬送装置に関しては、後の項で詳しく説明する。流路105〜107に供給されたそれぞれの液体は、混合室108に導入され、そこで混合される。混合した液体は、基板101上に形成された従来公知のポンプ110により、流路109を介して分離部111に送液され、ここで成分ごとに分離される。分離の方法としては、例えば液体クロマトグラフィ法、電気泳動法等が挙げられる。成分ごとに分離された液体は、流路112を介して検出部113に導入され、ここで検出される。検出の方法としては、例えば電気化学的検出方法、蛍光を用いた検出方法等が挙げられる。検出された試料は、排出口114から、装置外に排出される。なお、図1においては装置内の液体を外気から遮断するための遮断部は、省略してある。
【0021】
液体供給タンク102−104は、基板101に対して着脱可能である。これにより、タンク内の液体試料が無くなった場合や、異なる液体試料を分析装置内に導入する場合は、交換することができる。また液体供給タンクを用いて液体を化学分析装置内に導入するので、装置外部に液体導入のためのポンプやディスペンサー等を設置する必要がない。
【0022】
また、液体タンクを交換した直後は、古い液体試料や種類の異なる液体試料が混合室内に残留している可能性があるので、混合室内の液体を外部に排出する必要が生じる場合がある。このような場合は、通常の分析時は閉状態である弁116を開状態とすることにより、流路115を介して混合室内の液体を排出部114へ送液し、外部へ排出してもよい。この場合、流路115は、流路109に比べて、液体の流れ方向に垂直な断面を大きくし、流路抵抗を小さくすることが好ましい。これにより速やかに、混合室中の不要な液体を排出することが可能となる。
【0023】
図2は、本発明の液体搬送装置の一形態を示す概念図である。図2の液体搬送装置は、基体201上に一体化した吐出口205を有する液体液体搬送部202、吐出口205から吐出された液滴(液体)209を飛翔させるための第一の空間部210、第一の空間部210と連通した第二の空間部204を有する。第二の空間部204は、吐出口205から吐出された液滴209が到達可能な距離内に位置し、液体を受入れる受入口212を備えている。また吐出口205内の液体と第二の空間部204内の液体は、第一の空間部内の気体により分離されている。これにより第二の空間部内の液体が液体搬送装置側に逆流して、液体搬送装置内の液体と混合もしくは反応することはない。このため、第二の空間部内の液体が液体搬送部に逆流するのを防ぐために、マイクロバルブ等の複雑な機構を設ける必要がない。
【0024】
図2の液体搬送装置はさらに、液体搬送部202に液体を供給するための供給室207、供給室207に液体供給するための液体供給タンク203を有する。液体供給タンク203は、基体に対し着脱可能となっており、交換が可能である。液体供給タンク203内は、例えばスポンジ等の多孔質の物質で満たされていても良い。これにより、液体搬送部内に負圧が発生するので、液体搬送部202内の液体が、第一の空間部210内に移動するのを防ぐことができる。これ以外にも例えば、第一の空間部210の内壁に、液体の種類に応じて撥水処理や親水処理等の表面処理を施すことにより、第一の空間部内に液体が移動するのを防ぐことができる。
【0025】
液体搬送部202には、液体内に気泡を発生するための発熱体素子206が設けられている。
【0026】
また、第二の空間部204および液体搬送部202内の液体は、遮断部208により外気から遮断されている。これにより、大気に触れると変質する恐れにある液体に関しても、変質することなく搬送することが可能となる。遮断部208はガラス等の光を透過する材料であっても、透過しない材料であっても良い。光透過性の材料を用いることにより、搬送の状況を外部から確認することが可能となる。一方、光に当たることで変質する恐れのある液体を搬送する場合は、光を透過しない材質により遮断部を形成することが好ましい。
【0027】
また、液体タンクの交換に際して、液体搬送部202、流路204及び供給室207に存在する古い液体試料を排出する必要がある。例えば、排出流路211からポンプで流路中の液体を引くことで排出する方法や、供給室207側から流路204方向に洗浄液を流すことで排出する方法などを用いて古い液体を排出する。ここで、液体タンクの交換に際してとは、液体タンクの交換の前でも後でもよい。
【0028】
以下、図2に示した液体搬送装置の液体搬送の方法について説明する。
液体供給タンク203より供給室207に供給された液体は、まず発熱体素子206を有する液体搬送部202に送られる。発熱体素子206は薄膜抵抗体と該薄膜抵抗体にパルス電圧を印加するための配線(不図示)よりなる。薄膜抵抗体上に液体が存在した状態で、薄膜抵抗体にパルス電圧を印加し、膜沸騰が生じる温度まで温度を急激に上昇させることにより気泡が発生する。発生した気泡は、急激に膨張する。この気泡の急激な膨張に基づく作用力により吐出口205より液体試料が押し出され、吐出液滴209が形成される。吐出液滴209は、第一の空間部210中を飛翔し、第二の空間部204に到達する。膨張した気泡は、やがて収縮に転じ、さらに時間がたつと消滅する。気泡が発生してから消滅するまでに要する時間は数μsec〜20μsec程度であり、最大10数kHz程度の繰り返し周波数で、気泡の膨張と収縮を繰り返し、液体試料を吐出させ液体搬送部202から第二の空間部204に搬送することが可能である。第二の空間部204に搬送された液体は、さらに、流路や例えば複数の液体を混合するための混合室に送られるる。
【0029】
上記では、第二の空間部204を介して液体を流路や混合室等に搬送する場合を述べたが、第二の空間部204を介さずに液体搬送部202から、直接、流路や混合室等に液体を搬送する実施形態もある。
【0030】
また、例えば液体供給タンクを交換した直後等は、異なる種類の液体試料や極わずかではあるが大気に触れて変質した試料等が、供給室207に混入する可能性がある。このような場合は、発熱体素子206の駆動条件を変更することにより、吐出液滴209の飛翔距離を短くし、吐出液滴209を第二の空間部204に到達させずに、第一の空間部210下部に落下させても良い。これにより、種類の異なる液体試料や変質した液体試料が、混合室内に混入するのを防ぐことができ、安定した混合、反応を得ることができる。
【0031】
次に、発熱体素子の構成の具体例を、図3に示す。発熱体素子301は、基板305上に形成されており、薄膜抵抗体303の上下両面を絶縁体の保護層302で挟んだ構成となっている。薄膜抵抗体303の材質としては、金属材料、導電性を持たせたシリコン等の半導体材料が挙げられる。保護層302により、薄膜抵抗体の表面を化学反応から保護することが可能である。保護層302の材質としては、薬品耐性が高いものが好ましい。例えば、SiO やSi N 等の絶縁材料、Ta等の金属材料が挙げられる。また、薄膜抵抗体の両端は、保護層302に形成したコンタクトホールを介して電極304に電気的に接続されている。電極304を介して薄膜抵抗体の両端に電圧を印加することにより、発熱体素子を加熱することができる。
【0032】
上記では、発熱体素子により気泡を発生させ液体を吐出する場合を述べたが、例えば従来公知のインクジェットヘッド等で用いられる圧電体素子や静電アクチュエータを用いて液体を吐出しても良い。
【0033】
【実施例】
以下、実施例を用いて本発明を、より詳細に説明する。
なお実施例中における、寸法、形状、材質、作製条件、反応条件等は、一例であり、本発明の要件を満たす範囲内であれば、設計事項として任意に変更できるものである。
【0034】
実施例1
本実施例では、本発明の液体搬送装置を作製方法について説明する。以下、図4に示した工程図を用いて本実施例の化学分析装置の作製方法を説明する。
【0035】
まず、シリコン基板(たて20mm、よこ20mm)401上に、薄膜抵抗体と該薄膜抵抗体にパルス電圧を印加するための電極(不図示)よりなる発熱体素子402を形成した。薄膜抵抗体の材質としては、P(リン)イオンを導入することにより導電性を持たせた多結晶シリコンを用いた。薄膜抵抗体の表面は、保護層であるSiN膜(不図示)で覆われた構造とした(図4(a))。本実施例の発熱体素子の構成は、図3に示したものと同様の構成である。
【0036】
次に、フォトリソグラフィ法によりフォトレジストパターンを形成した。該フォトレジストパターンをエッチングマスクとして、SF ガスおよびC F ガスを用いてドライエッチングを行い、供給室403および第一の空間部404を形成した(図4(b))。このとき発熱体素子402は、フォトレジストにより保護されている。
【0037】
次に、第二の空間部405および第一の空間部404の上部および供給室403の上部を、フォトリソグラフィとドライエッチングにより形成したシリコン基板406を、エポキシ系接着剤を用いて、シリコン基板401に貼り合わせた。さらに、ガラスよりなる遮断部407を、シリコン基板406にエポキシ系接着剤を用いて貼り合わせた。遮断部407には、液体供給タンクから供給室403に液体を供給するための液体供給口408を、あらかじめエッチングにより形成しておいた(図4(c))。
【0038】
次に、ポリプロピレンよりなる液体供給タンク409を作製し、液体供給タンク内に液体を充填した状態で液体供給口408に装着した(図4(d))。液体供給タンク409には、爪部411が設けられており、爪部411を液体供給口408に引っ掛けることにより固定することが可能となっている。この工程によりにより、供給室403および液体搬送部410は液体により満たされた。
以上の工程により図2に概念図を示した液体搬送装置を作製することができた。
【0039】
実施例2
本実施例では、図2示した液体搬送装置を組み合わせることにより、図5に示した化学分析装置を作製した。図5は、図2におけるB−B’断面図に対応する断面図である。本実施例の化学分析装置は、フォトリソグラフィのフォトマスクを変更するのみで、実施例1の作製方法で作製することが可能である。
【0040】
本実施例の化学分析装置では、基板(たて25mm、よこ40mm)上に、混合室501、供給室502〜504、混合室505、供給室506が形成されている。混合室501、供給室502〜504、506には、液体を供給するための液体供給タンク511〜514、516が設置されている。図5においては、各液体供給タンクを点線で示した。さらに、混合室501および505、供給室502〜504には、下流側の混合室に液体を搬送するための発熱体素子521〜525および吐出液滴が飛翔するための第一の空間部531〜535が設置されている。各供給室および混合室間は、これらの第一の空間部により分離されており、各供給室および混合室間の液体が混じりあうことはない。図5において、各第一の空間部中を飛翔する吐出液滴の方向を矢印で示した。
【0041】
図5に示した化学分析装置を用いて、ラット肝臓中カルニチンパルミトイル転移酵素活性の測定を実施した。以下にその手順を示す。
まず、緩衝液(16mMトリス−塩酸緩衝液、2.5mM EDTA、0.2%トリトンX−100(商品名;キシダ化学社製)pH8.0、0.5ml)に水を加えて良く混合する。該溶液を液体供給タンク511に入れる。液体供給タンク511を混合室501上に配置することにより、混合室511内に該溶液が導入される。なお、「M」は、「mol/l」の濃度の単位を示す。
【0042】
次に、冷生理食塩水で洗浄したラットの肝臓の一部(約30g)を200mlのホモジナイズ用緩衝液(0.25Mショ糖液、1mM EDTAを含む3mMトリス塩酸(pH7.2))でホモジナイズし、500xgで10分間(4℃)遠心する。得られた上澄を他の遠心チューブに移し、9,000xgで10分間(4℃)遠心し、上澄として検体サンプルを得る。得られた検体サンプル溶液を液体供給タンク512に入れ、供給室502上に配置する。これにより供給室502に検体サンプルが導入される。
【0043】
同様に、5mMのDTNB水溶液を供給室503に導入する。
同様に、80μMのパルミトイル−CoA溶液(商品名;SIGMA社製)を供給室504に導入する。
同様に、緩衝液(16mMトリス−塩酸緩衝液、2.5mM EDTA、0.2%トリトンX−100(pH8.0);0.5ml)に水を加えた溶液を供給室506に導入する。
【0044】
この状態で、発熱体素子522を駆動することにより、供給室502内の液体を混合室501に搬送する。同時に、発熱体素子533を駆動することにより、供給室503内の液体を混合室501に搬送する。この状態を1分間保持する。次に、発熱体素子531を駆動することにより、混合室501内の液体を混合室505に搬送する。同時に、発熱体素子524を駆動することにより、供給室504内の液体を混合室505に搬送する。この状態を1分間保持する。
【0045】
次に、発熱体素子525を駆動することにより、混合室505内の液体を供給室506に導入する。その後、供給室506の液体を検出部に搬送し、波長500nmの光吸収を測定することにより、ラット肝臓中カルニチンパルミトイル転移酵素活性の経時変化を測定することができた。
【0046】
【発明の効果】
以上説明したように、本発明の液体搬送装置および液体搬送方法では、基体中に一体化された吐出口を有する液体搬送部を用い、前記吐出口に連通した第一の空間部に液体を吐出し、該空間部中に吐出液滴を飛翔させることにより液体を第二の空間部に搬送することにより、外部からポンプ等を用いて圧力を供給することなく、液体を搬送することが可能となった。
【0047】
さらに本発明の液体搬送装置および液体搬送方法では、液体搬送部の液体と該液体搬送部から液体を搬送する第二の空間部内の液体が第一の空間部の気体により分離されていることにより、マイクロバルブ等の複雑な機構なしに、液体の逆流を抑えることが可能となった。これにより低コストで安定した化学反応を行うことが可能で、長寿命な化学分析装置を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の液体搬送装置を用いた化学分析装置を示す概念図である。
【図2】本発明の液体搬送装置を示す説明図である。
【図3】本発明の液体搬送装置に用いる発熱体素子を示す説明図である。
【図4】本発明の液体搬送装置の作製方法を示す工程図である。
【図5】本発明の液体搬送装置を用いた化学分析装置を示す概念図である。
【図6】従来技術のマイクロリアクタを示す概念図である。
【図7】従来技術の液体搬送装置を示す概念図である。
【符号の説明】
101 基体
102−104 液体供給タンク
105−107 流路
108 混合室
109 流路
110 ポンプ
111 分離部
112 流路
113 検出部
114 排出口
201 基体
202 液体搬送部
203 液体供給タンク
204 第二の空間部(流路)
205 吐出口
206 発熱体素子
207 供給室
208 遮断部
209 吐出液滴
210 第一の空間部(空間)
211 排出流路
212 受入口
301 発熱体素子
302 保護層
303 薄膜抵抗体
304 電極
305 基板
401 シリコン基板
402 発熱体素子
403 供給室
404 第一の空間部
405 第二の空間部(流路)
406 シリコン基板
407 遮断部
408 液体供給口
409 液体供給タンク
410 液体搬送部
411 爪部
500 基板
501、505 混合室
502〜504、506 供給室
511〜514、516 液体供給タンク
521〜525 発熱体素子
531〜535 第一の空間部
601 マイクロリアクタ
602 リザーバセル
603 混合セル
604 反応セル
605 検出セル
606 分離セル

Claims (14)

  1. 基体と、前記基体と一体に設けられ液体を吐出させるための吐出口と、前記吐出口と連通し、前記吐出口から吐出された液体が飛翔するための第一の空間部と、前記第一の空間部と連通し、かつ前記飛翔する液体が到達可能な距離内に位置し、前記液体を受入れるための受入口を有する第二の空間部とを有し、前記吐出口から前記第一の空間部を介して前記第二の空間部に前記液体を搬送することを特徴とする液体搬送装置。
  2. 前記吐出口の液体と前記第二の空間部内の液体が、前記第一の空間部内の気体により分離されていることを特徴とする請求項1に記載の液体搬送装置。
  3. 前記基体上に、前記吐出口に液体を供給するための供給室を備えることを特徴とする請求項1または2に記載の液体搬送装置。
  4. 前記基体上に設けられた前記第一の空間部は凹部からなり、該凹部の深さは前記吐出口の底面の位置よりも深いことを特徴とする請求項1乃至3のいずれかの項に記載の液体搬送装置。
  5. 前記基体上に設けられた前記第一の空間部は凹部からなり、該凹部の深さは前記第二の空間部の底面の位置よりも深いことを特徴とする請求項1乃至3のいずれかの項に記載の液体搬送装置。
  6. 前記基体上に、前記吐出口を複数有し、搬送された複数の液体を取り入れ混合するための混合室を備えることを特徴とする請求項1乃至5のいずれかの項に記載の液体搬送装置。
  7. 前記混合室で混合した前記液体を搬送するための吐出口をさらに備えることを特徴とする請求項1乃至6のいずれかの項に記載の液体搬送装置。
  8. 前記第一の空間部内の液体を前記基体の外部に排出するための流路を有することを特徴とする請求項1乃至7のいずれかの項に記載の液体搬送装置。
  9. さらに液体を供給する供給室、液体を搬送する液体搬送部、流路及び搬送された複数の液体を混合する混合室を有し、それらのうちの少なくとも一つを外気から遮断するための遮断部を備えることを特徴とする請求項1乃至8のいずれかの項に記載の液体搬送装置。
  10. 前記吐出口に前記液体を搬送するための液体搬送部を更に有し、前記液体搬送部に発熱体素子が設けられ、前記発熱体素子を急速に加熱することにより液体内に気泡を発生させ、前記気泡の膨張により、前記吐出口より液体を吐出することを特徴とする請求項1乃至9のいずれかの項に記載の液体搬送装置。
  11. 基体と、前記基体と一体に設けられ液体を吐出させる吐出口と、前記吐出口と連通して設けられ前記吐出口から吐出された液体が飛翔していく第一の空間部と、前記第一の空間部と連通して前記飛翔していく液体が到達可能な距離内に設けられ前記液体を受入れる第二の空間部を有する液体搬送装置を用いた液体の搬送方法であり、前記吐出口から吐出した液体を前記第一の空間部中に飛翔させ第二の空間部に到達させる工程を有することを特徴とする液体搬送方法。
  12. 基体と、前記基体と一体に設けられ液体を吐出させる吐出口と、前記吐出口と連通して設けられ前記吐出口から吐出された液体が飛翔していく第一の空間部と、前記第一の空間部と連通して前記飛翔していく液体が到達可能な距離内に設けられ前記液体を受入れる第二の空間部を有する液体搬送装置を用いた液体の搬送方法であり、前記吐出口から吐出した液体を前記第一の空間部中に飛翔させ、前記吐出した液体のうちの全部もしくは一部を前記第二の空間部に到達させることなく、前記第一の空間部内に留める工程を有することを特徴とする液体搬送方法。
  13. 請求項1乃至10のいずれかに記載の液体搬送装置を用いて液体を搬送することを特徴とする化学分析装置。
  14. 請求項11または12に記載の液体搬送方法を用いて液体を搬送することを特徴とする化学分析方法。
JP2002229245A 2002-08-06 2002-08-06 液体搬送装置 Expired - Fee Related JP3610349B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002229245A JP3610349B2 (ja) 2002-08-06 2002-08-06 液体搬送装置
PCT/JP2003/009909 WO2004012863A1 (en) 2002-08-06 2003-08-05 Liquid transport device and liquid-transporting method
US10/480,040 US7294310B2 (en) 2002-08-06 2003-08-05 Liquid transport device and liquid transporting method
AU2003254805A AU2003254805A1 (en) 2002-08-06 2003-08-05 Liquid transport device and liquid-transporting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229245A JP3610349B2 (ja) 2002-08-06 2002-08-06 液体搬送装置

Publications (2)

Publication Number Publication Date
JP2004065110A true JP2004065110A (ja) 2004-03-04
JP3610349B2 JP3610349B2 (ja) 2005-01-12

Family

ID=31492287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229245A Expired - Fee Related JP3610349B2 (ja) 2002-08-06 2002-08-06 液体搬送装置

Country Status (4)

Country Link
US (1) US7294310B2 (ja)
JP (1) JP3610349B2 (ja)
AU (1) AU2003254805A1 (ja)
WO (1) WO2004012863A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511869A (ja) * 2005-10-07 2009-03-19 ホリバ アベイクス エスアーエス 血液等の生体液を分析するモジュラー装置
JP2011523698A (ja) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ マイクロアレイシステム
JP2015508705A (ja) * 2012-02-09 2015-03-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 誘発されたキャビテーションによって駆動される高速オンデマンド型液滴生成および単一細胞封入
JP2015158489A (ja) * 2010-02-09 2015-09-03 株式会社マイクロジェット 粒状体を含む液滴の吐出装置
JP2018500541A (ja) * 2015-01-30 2018-01-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体ポンピング及び温度調節
US10071359B2 (en) 2013-03-15 2018-09-11 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
US10226768B2 (en) 2009-08-08 2019-03-12 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025559A1 (fr) * 2001-09-11 2003-03-27 Arkray, Inc. Instrument de mesure, corps d'installation et mesureur de densite
DE102004062216A1 (de) * 2004-12-23 2006-07-06 Albert-Ludwigs-Universität Freiburg Vorrichtung und Verfahren zur ortsaufgelösten chemischen Stimulation
ATE530250T1 (de) * 2006-03-09 2011-11-15 Sekisui Chemical Co Ltd Mikrofluidische vorrichtung und verfahren zur verdünnung von flüssigkeit in spuren
KR101541458B1 (ko) * 2008-07-03 2015-08-04 삼성전자주식회사 유체 혼합 방법 및 유체 혼합 장치
US9138714B2 (en) * 2011-10-31 2015-09-22 General Electric Company Microfluidic chip and a related method thereof
US9067189B2 (en) * 2012-03-30 2015-06-30 General Electric Company Microfluidic device and a related method thereof
US9399216B2 (en) * 2013-12-30 2016-07-26 General Electric Company Fluid transport in microfluidic applications with sensors for detecting fluid presence and pressure
US10960396B2 (en) 2014-05-16 2021-03-30 Cytonome/St, Llc Thermal activated microfluidic switching
US11698149B2 (en) * 2017-02-15 2023-07-11 Hewlett-Packard Development Company, L.P. Microfluidic valve
EP3554991A4 (en) * 2017-02-15 2019-11-27 Hewlett-Packard Development Company, L.P. MICROFLUIDIC NETWORK
WO2019083512A1 (en) * 2017-10-24 2019-05-02 Hewlett-Packard Development Company, L.P. FLUID DISPENSER

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129668A (ja) * 1983-12-19 1985-07-10 Jeol Ltd 液体クロマトグラフ質量分析装置
DE4405026A1 (de) 1994-02-17 1995-08-24 Rossendorf Forschzent Mikro-Fluidmanipulator
SE9502251D0 (sv) * 1995-06-21 1995-06-21 Pharmacia Ab Flow-through sampling cell and use thereof
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
WO1997029508A2 (en) * 1996-02-08 1997-08-14 Perseptive Biosystems, Inc. Interface between liquid flow and mass spectrometer
JP3654481B2 (ja) 1997-06-05 2005-06-02 独立行政法人理化学研究所 生化学反応用マイクロリアクタ
JP4313861B2 (ja) 1997-08-01 2009-08-12 キヤノン株式会社 プローブアレイの製造方法
US6103199A (en) 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
US6555389B1 (en) * 1999-05-11 2003-04-29 Aclara Biosciences, Inc. Sample evaporative control
JP2001212469A (ja) 2000-02-01 2001-08-07 Seiko Epson Corp ピペット及びそれを用いた反応方法と混合方法
JP2002181839A (ja) 2000-12-12 2002-06-26 Olympus Optical Co Ltd 液体分注装置およびマイクロアレイ製造装置
US20020197733A1 (en) 2001-06-20 2002-12-26 Coventor, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
JP3809086B2 (ja) 2001-10-12 2006-08-16 オリンパス株式会社 液体分注装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511869A (ja) * 2005-10-07 2009-03-19 ホリバ アベイクス エスアーエス 血液等の生体液を分析するモジュラー装置
JP2011523698A (ja) * 2008-05-09 2011-08-18 アコーニ バイオシステムズ マイクロアレイシステム
US10226768B2 (en) 2009-08-08 2019-03-12 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
JP2015158489A (ja) * 2010-02-09 2015-09-03 株式会社マイクロジェット 粒状体を含む液滴の吐出装置
US10232368B2 (en) 2011-02-11 2019-03-19 The Regents Of The University Of California High-speed on demand droplet generation and single cell encapsulation driven by induced cavitation
JP2015508705A (ja) * 2012-02-09 2015-03-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 誘発されたキャビテーションによって駆動される高速オンデマンド型液滴生成および単一細胞封入
US10071359B2 (en) 2013-03-15 2018-09-11 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
US10780413B2 (en) 2013-03-15 2020-09-22 The Regents Of The University Of California High-speed on demand microfluidic droplet generation and manipulation
JP2018500541A (ja) * 2015-01-30 2018-01-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体ポンピング及び温度調節

Also Published As

Publication number Publication date
US20040258569A1 (en) 2004-12-23
WO2004012863A1 (en) 2004-02-12
AU2003254805A1 (en) 2004-02-23
JP3610349B2 (ja) 2005-01-12
US7294310B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
JP3610349B2 (ja) 液体搬送装置
JP3605102B2 (ja) 液体混合装置
JP4878663B2 (ja) 化学反応用微細加工スリーブデバイス
US9387478B2 (en) Micro-fluidic modules on a chip for diagnostic applications
JP4522480B2 (ja) 一体型流体操作カートリッジ
US8393356B2 (en) Device for controlling fluid motion into micro/nanochannels by means of surface acoustic waves
TWI508772B (zh) 微流體元件
WO1999042805A9 (en) Device for delivering defined volumes
US20090185955A1 (en) Microfluidic device for molecular diagnostic applications
US20020187564A1 (en) Microfluidic library analysis
JP2004033141A (ja) ポリメラーゼ連鎖反応容器及びその製造方法
US10308977B2 (en) Device and method for processing a biological sample and analysis system for analyzing a biological specimen
JP2005507309A (ja) 微細加工された化学反応器
JP2004069498A (ja) 液体搬送装置及び液体搬送方法
US20060028908A1 (en) Micro-mixer
JP2004069499A (ja) 液体搬送装置およびそれを用いた化学分析装置
KR100826584B1 (ko) 바이오칩 분석을 위한 유체 채널링 액츄에이터
US7879301B2 (en) Microfluidic element
JP2004113967A (ja) マイクロミキサー
JP4111266B2 (ja) 液体混合装置
KR101091988B1 (ko) 중합효소 연쇄반응 챔버 칩 및 그 제조방법
WO2004048254A1 (en) Micropump and micro-incubator utilizing gas generation and production method thereof
KR100865634B1 (ko) 열공압 구동 방식 모세관 마이크로 펌프 및 그 제조 방법
JP2006029485A (ja) マイクロバルブ及び該バルブを有するマイクロ流体デバイス
Reichert et al. Micro flow-through thermocycler with simple meandering channel with symmetric temperature zones for disposable PCR-devices in microscope slide format

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040113

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees