JP2004062136A - 色調補正フィルタ - Google Patents
色調補正フィルタ Download PDFInfo
- Publication number
- JP2004062136A JP2004062136A JP2002338062A JP2002338062A JP2004062136A JP 2004062136 A JP2004062136 A JP 2004062136A JP 2002338062 A JP2002338062 A JP 2002338062A JP 2002338062 A JP2002338062 A JP 2002338062A JP 2004062136 A JP2004062136 A JP 2004062136A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- filter
- light
- color tone
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Projection Apparatus (AREA)
- Optical Filters (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】液晶プロジェクタの投射レンズから出る光の角度が変化する方向に発生する色むらを抑制しながら色調を補正することができる光学多層膜を用いた色調補正フィルタを提供する。
【解決手段】緑の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する緑色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部301とする。また、青の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する青色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部302を設ける。
【選択図】 図2
【解決手段】緑の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する緑色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部301とする。また、青の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する青色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部302を設ける。
【選択図】 図2
Description
【0001】
【発明の属する技術分野】
本発明は、投射型表示装置、特に液晶プロジェクタ等の表示装置に用いられる色温度および色調の補正を行うためのフィルタに関する。
【0002】
【従来の技術】
液晶プロジェクタは、昼間のオフィスでの会議やプレゼンテーションにおいて、パーソナルコンピュータの画面投射に使われるデータプロジェクターとしての需要が多く、昼間の明るい室内でも使えるように、年々高輝度化が進んできている。そのため、光源として視感度の高い緑の波長に強い光を発するランプが採用され、3原色の色バランスが多少不自然になってでも明るさを重視した設計をした商品が多い。
【0003】
一方、家庭内等で大画面のテレビ映像や映画を楽しむ使い方も増えてきており、この場合輝度も必要であるが、自然で豊かな色調で画面表示されることが最も重要な性能となる。
【0004】
高輝度で色バランスが不自然なプロジェクタの色バランスを自然な色調に変更するには、液晶パネルの透過率を3原色それぞれ調整して色合いを変えることも可能である。しかし、液晶パネルを制御して色調を調整すると、限られた透過率範囲しか使わない状態となり、コントラストを低下させることになってしまう問題が生じてしまう。
【0005】
このため、コントラストを維持しつつ色調を調整するために、色調補正フィルタを光学系に入れることが提案されている。この色調補正フィルタは3原色それぞれの透過率を自然な色合いになる適切な値に減ずるもので、使用時に必要に応じて脱着可能な投射レンズの前面の位置等に取りつけるものである。透過率を適切な値に減ずるには、色プラスチックス・色ガラス等のように原料そのものや、添加した染料・顔料等により着色して特定の波長の光を吸収させる方法と、光の干渉を利用した光学多層膜による方法がある。これにより電気回路で液晶パネルの透過率を制限する必要がなくなり、液晶パネル本来のコントラストを維持しつつ色調を調整することが可能になる。
【0006】
液晶プロジェクタ用の色調補正フィルタとして用いる場合、色プラスチックスは安価であり、染色等の方法で様々な透過率に調整することが可能であるが、有機系の原料を用いるため、強い光が当たるプロジェクタでは使用中に材料が劣化して透過率性能が変化してしまうという耐光性の問題がある。
【0007】
無機系の原料を使う色ガラスは一般に原料のコストが高いことと、製造設備や使用する原料の制限により透過率調整の自由度が制限されてしまう問題がある。
【0008】
一方、光学多層膜による色調補正フィルタは、成膜材料の選択と膜厚の設計次第で様々な透過率調整が可能である利点があり、無機ガラス上に成膜することで耐光性も良好にできる。また、光学多層膜を製造するためには大掛かりな真空蒸着装置で精度良く成膜する必要があり、コストが高くなってしまう問題もあるが、前述の色ガラスや色プラスチックスでも表面の光の反射によって透過率を低下させたくない場合に光学多層膜による反射防止膜が必要で、色調補正フィルタの多層膜で片面の反射防止膜を置き換えた構成にした場合には、総合的なコストの比較において反射防止膜付の色ガラス・色プラスチックスを用いたフィルタに対して同等程度とすることも可能である。
【0009】
【発明が解決しようとする課題】
しかしながら、光学多層膜を用いた色調補正フィルタでは、光の入射角が変化した場合に光学多層膜の透過率特性も変化してしまう角度依存性を有するため、プロジェクタの投射レンズから出る光の角度が変化する方向に色むらが発生してしまう問題がある。
【0010】
図1に示すように、液晶プロジェクタ100を机上において前面上方に向けて煽り角をもたせて映像を投射する場合を例にとると、投射レンズ101の前面に設けられた色調補正フィルタ1への入射角θは上下方向で0度から30度程度に変化する。その結果、光学多層膜の角度依存性により、従来知られているような単純に3原色の透過率を調整した光学多層膜による色調補正フィルタでは上下方向の色むらが許容できなくなる。
【0011】
本発明は、上記事情に鑑みてなされたもので、液晶プロジェクタの投射レンズから出る光の角度が変化する方向に発生する色むらを抑制しながら色調を補正することができる光学多層膜を用いた色調補正フィルタを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、上記目的を達成するため、鋭意検討した結果、光学多層膜の角度依存性は、光学多層膜の分光透過率曲線が入射角に応じて一定の方向に形を変動させながら移動することにより、液晶プロジェクタの光源の輝線ピークに対する光学多層膜の光透過率が大きく変動することが原因であることが分かった。また、分光透過率曲線の移動の方向は、P偏光とS偏光で全く異なることも判明した。液晶プロジェクタにおいては、液晶パネルを通過して投射レンズから出射する光は3原色それぞれ1方向の偏光成分になっている。そのため、緑色成分が多い色調を補正するために、緑の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する緑色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部とし、フィルタへ入射する緑色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部を設けることにより、分光透過率曲線が入射角に応じて移動しても、傾斜部の傾きを移動方向に対して平行に近くなるように設定しているので、傾斜部自体は入射角が変化してもほぼ重なった状態となる。その結果、入射角に応じて分光透過率曲線が移動しても、輝線ピークに対する透過率をほぼ一定にすることが可能であり、緑色成分を減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。
【0013】
上述した考え方は青色でも同様であり、青の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する青色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部を設け、フィルタへ入射する青色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部を設けることにより、青色成分を減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。
【0014】
これらの緑色の領域における傾斜部と青色の領域における傾斜部の両方の傾斜部を有する色調補正フィルタとすることにより、緑色成分と青色成分とを減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。また、高輝度の光源を使用する液晶プロジェクタの光源の色調を調整する色調補正フィルタは、緑色と青色を減らし、赤色をできる限り透過する必要がある。
【0015】
かかる色調補正フィルタは、液晶プロジェクタの投射レンズの前面に配置することにより、その機能を発揮することができる。
【0016】
従って、請求項1記載の発明は、光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492〜577nmの緑の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する緑色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、フィルタへ入射する緑色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、かつ、前記傾斜部の透過率が、30〜90%の範囲であることを特徴とする色調補正フィルタを提供する。
【0017】
請求項2記載の発明は、光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492nm以下の青の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する青色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、フィルタへ入射する青色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、かつ、前記傾斜部の透過率が、60〜100%の範囲であることを特徴とする色調補正フィルタを提供する。
【0018】
請求項3記載の発明は、請求項1記載の分光透過率曲線と請求項2記載の分光透過率曲線を有し、かつ600〜700nmの赤色の波長領域で85%以上の透過率を有することを特徴とする色調補正フィルタ提供する。
【0019】
請求項4記載の発明は、請求項1〜3いずれかに記載の色調補正フィルタにおいて、液晶プロジェクタの投射レンズの前面に配置されて用いられることを特徴とする色調補正フィルタを提供する。
【0020】
【発明の実施の形態】
以下、本発明の色調補正フィルタの実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0021】
昼間のオフィスでの会議やプレゼンテーションにおいて、パーソナルコンピュータの画面投射に使われるデータプロジェクターとしての液晶プロジェクタは、光量優先で、光源に視感度の高い緑の波長に強い光を発する超高圧水銀灯等の高輝度な光源を用い、緑色と青色が強い色調バランスとなっている場合がある。このような色調バランスの液晶プロジェクタを例えば家庭で映画等を鑑賞する用途にも用いようとすると、不自然な発色となる。そのため、映画鑑賞等の自然な色バランスの発色とするために、本発明の色調補正フィルタは、主として液晶プロジェクタの投射レンズの前面に着脱自在に装着する用途に用いられる。
【0022】
図1に示すように、液晶プロジェクタ100の投射レンズ101の前面に色調補正フィルタ1を配置し、投射レンズ101から投射される投射光を色調補正フィルタ1を通し、赤色の光を最大限透過しつつ緑色の光を10〜70%カットし、青色の光を0〜40%カットして色調を補正し、色調を補正した投射光を投影スクリーン200に投射して映画等を鑑賞するものである。
【0023】
この場合、図1に示すように、机上において前面上方に向けて煽り角をもたせて映像を投射する場合、投射レンズ101の前面につけた色調補正フィルタ1への入射角θは上下方向で0度から30度程度に変化してしまう。また、色調補正フィルタ1は投射レンズ101の光軸上に設置され、入射角は0°あるいは投射レンズ101への戻り光を逃がすために5°程度に傾けられる。
【0024】
光学多層膜は、入射角によって分光透過率曲線が変化する角度依存性を有する。この角度依存性は、光学多層膜の層数が増えるほど顕著になるといわれている。本発明の色調補正フィルタは、光学多層膜の角度依存性を可及的に少なくすることを目的として開発されたものである。
【0025】
図1に示すように、本発明の色調補正フィルタ1は、光透過性基板2のいずれかの表面に光学多層膜3を形成した反射型のフィルタである。
【0026】
光透過性基板2としては、光線を透過する材質のものであれば良く、通常は無機ガラスが用いられ、例えばソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス、無アルカリガラス、石英ガラス、ネオセラム、コーニング社の7971チタン珪酸ガラス、サファイアガラスなどが用いられる。その他プラスチック材料から適宜選択することができる。
【0027】
光学多層膜3は、高屈折率層と低屈折率層とが交互に積層された誘電体多層膜である。光学多層膜に用いられる材料は、TiO2、Ta2O5、ZrO2、CeO2、酸化ニオブ、酸化イットリウム、ランタンチタン酸化物、SiO2、Al2O3、MgO、MgF2等の誘電体材料から選択して用いることが可能である。
【0028】
高屈折率層と低屈折率層とを交互に光透過性基板上に成膜するには、物理的成膜法が一般的であり、通常の真空蒸着法でも可能であるが、膜の屈折率の安定した制御が可能で、保管・仕様環境変化による分光特性の経時変化が少ない膜を作成できるイオンアシスト蒸着やイオンプレーティング法、スパッタ法が望ましい。真空蒸着法は、高真空中で薄膜材料を加熱蒸発させ、この蒸発粒子を基板上に堆積させて薄膜を形成する方法である。イオンプレーティング法は、蒸着粒子をイオン化し、電界により加速して基板に付着させる方法であり、APS(Advanced Plasma Source)、EBEP(Electron Beam Excited Plasma)法、RF(Radio Frequency)直接基板印加法(成膜室内に高周波ガスプラズマを発生させた状態で反応性の真空蒸着を行う方法)などの方式がある。スパッタ法は、電界により加速したイオンを薄膜材料に衝突させて薄膜材料を叩き出すスパッタリングにより薄膜材料を蒸発させ、蒸発粒子を基板上に堆積させる薄膜形成方法である。
【0029】
本発明の色調補正フィルタにおける光学多層膜は、液晶プロジェクタの光源の輝線ピーク及び偏光の種類に対応した分光透過率特性を有することに特徴がある。
【0030】
液晶プロジェクタ100では、光源の光を赤色、緑色、青色の三原色に分解し、それぞれの原色を液晶パネルで変調し、変調した三原色をクロスプリズム等で合成し、合成した画像を投射レンズ101から投射するようになっている。液晶パネルには偏光板が組み込まれ、液晶パネルを通過して投射レンズから出射する光は3原色それぞれ1方向の偏光成分になっている。クロスプリズムで3原色を合成する方式では、ほとんどの機種で青色と赤色の光がプリズムのクロス傾斜面に対してS偏光で、緑の光がP偏光に変換されている。S偏光は、試料面に入射する光の電気ベクトルの振動方向が、試料面の法線と光の進行方向である波面の法線とを含む面に垂直な直線偏光である。P偏光は、試料面に入射する光の電気ベクトルの振動方向が、入射面(試料面に立てた法線と光の進行方向を含む面)内に含まれる直線偏光である。
【0031】
投射レンズ101から色調補正フィルタ1に入射する緑の光は、クロスプリズムに入射する場合と逆で、通常S偏光であり、青の光は、通常P偏光である。これは図1のように水平に置かれた液晶プロジェクタから上方に煽り角をもたせて映像を投射する場合で、液晶プロジェクタ100内の光学系が横型に設計されている、すなわちクロスプリズムの入出射面が水平方向を向いている時に当てはまる。縦型の光学系を有する場合などでは、色調補正フィルタ1への入射角が最も大きく変化する方向について青の光がS偏光の場合があり、色調補正フィルタ1への入射角が最も大きく変化する方向について緑の光がP偏光の場合がある。
【0032】
図2に、光源の一例として、超高圧水銀灯の輝線スペクトル9を示す。以下の説明では、この超高圧水銀灯の輝線スペクトル9に合わせた分光透過率曲線を有する色調補正フィルタについて説明するが、光源の種類が変われば輝線ピークの位置も異なるため、光源の輝線スペクトルに合わせた色調補正フィルタを設計することができる。
【0033】
超高圧水銀灯では、492nm以下の青の波長領域においては約440nmの輝線ピークが存在し、492〜577nmの緑の波長領域においては約550nmの輝線ピークが存在する。本発明の色調補正フィルタは、赤色の光を最大限透過しつつ緑色の光を10〜70%、好ましくは20〜40%程度カットし、青色の光を0〜40%、好ましくは10〜30%程度カットして色調を補正するものである。そのため、約550nmの輝線ピークの光透過率が30〜90%、好ましくは60〜80%の範囲、約440nmの輝線ピークでの光透過率が60〜100%、好ましくは70〜90%の範囲、赤色光(波長範囲600〜700nm)については、85%以上の平均透過率であることが好ましい。
【0034】
図2に本発明にかかる実施例1の色調補正フィルタの分光透過率曲線10を示す。この分光透過率曲線10はフィルタへの入射角がゼロの場合を示し、緑色の光がS偏光、青色の光がP偏光の場合を想定している。約550nmの輝線ピークに対しては、約540nm〜約570nmの波長範囲での波長の増加に対して光透過率が約7%増加する右上がりの傾斜を有する○で囲った第1傾斜部301が形成されている。また、約440nmの輝線ピークに対しては、約430nm〜約470nmの範囲での波長の増加に対して光透過率が約10%低下する右下がりの傾斜を有する○で囲った第2傾斜部302が形成されている。
【0035】
S偏光に対する光学多層膜への入射角が大きくなると、分光透過率曲線は斜め左下側へ移動する傾向を示す。第1傾斜部301はS偏光の入射角に応じて移動する移動方向に概ね平行になるように設定されている。
【0036】
図3に示すように、入射角がゼロの分光透過率曲線10から、入射角が10°の分光透過率曲線11、入射角が20°の分光透過率曲線12、入射角が30゜の分光透過率曲線13に変化しても、約550nm付近の第1傾斜部301はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0037】
このことから、光学多層膜の分光透過率曲線が、492〜577nmの緑の波長領域での光源の少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する緑色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%、好ましくは2〜5%増加する傾斜を有する第1傾斜部を有するように設計することが望ましい。輝線ピークを挟んだマイナス5nmとプラス10nmの波長範囲は、分光透過率曲線の移動方向と距離を考慮したものである。輝線ピークは、最もピークが高い一つを選択してもよく、あるいは2つ以上の輝線ピークに対してそれぞれ傾斜部を設けるようにしてもよい。
【0038】
また、色調補正フィルタへ入射する緑色光がP偏光の場合、S偏光と逆になり、波長10nm増加に対して透過率が2〜8%、好ましくは3〜6%減少する傾斜を有する傾斜部を有するように光学多層膜を設計することが望ましい。
【0039】
一方、P偏光に対する光学多層膜への入射角が大きくなると、分光透過率曲線は斜め左上側へ移動する傾向を示す。図2に示す第2傾斜部302は、P偏光の入射角に応じて分光透過率曲線が移動する方向に概ね平行になるように設定されている。
【0040】
図4に示すように、入射角がゼロの分光透過率曲線10から、入射角が10°の分光透過率曲線15、入射角が20°の分光透過率曲線16、入射角が30゜の分光透過率曲線17に変化しても、約440nm付近の第2傾斜部302はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0041】
このことから、光学多層膜の透過率曲線が、492nm以下の青の波長領域での光源の少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する青色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%、好ましくは3〜6%減少する傾斜を有する傾斜部を有するように設計することが好ましい。輝線ピークは、最もピークが高い一つを選択してもよく、あるいは2つ以上の輝線ピークに対してそれぞれ傾斜部を設けるようにしてもよい。
【0042】
また、フィルタへ入射する青色光がS偏光の場合、P偏光と逆になり、波長10nm増加に対して透過率が1〜6%、好ましくは2〜5%増加する傾斜を有する第2傾斜部を有するように光学多層膜を設計することが好ましい。
【0043】
赤色光(波長範囲600〜700nm)については、入射角が変化しても透過率の変化が大きくならず、85%以上の平均透過率であるように光学多層膜を設計する。
【0044】
このような光学多層膜の設計は市販のソフトウエアを用いて理論的に行うことができる(参考文献:OPTRONICS誌 1999 No.5 p.175−190)。
【0045】
さらに、色調補正用の光学多層膜の反対側の光透過性基板表面に反射防止膜を成膜することも有効であり、透過率を高くしたい赤色光の反対側表面の反射による透過率の減少を少なくすることができる。
【0046】
【実施例】
<実施例1>
光透過性基板として、透明な無機ガラス(550nmでの屈折率1.52)を用いた。
【0047】
色調補正用の光学多層膜は、次に述べる分光透過率曲線を得られる構成とする。フィルタへの入射角が最も大きく変化する方向について青色光がP偏光の場合、青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率86%、波長10nm増加に対して概ね2.5%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線とする。緑色光がP偏光の場合、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率66%、波長10nm増加に対して概ね2.5%透過率が増加する傾斜を有する分光透過率曲線とする。赤色光の波長範囲600〜700nmにおいては、入射角が変化しても透過率の変化が大きくならず、90%以上の高透過率であるように設計する。
【0048】
設計結果の例として、図2の分光透過率特性10となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.66H 0.08L 0.79H 0.12L 0.76H 0.32L 0.62H 0.60Lの8層膜が得られた。入射角が0°〜30°まで変化しても440nm、550nmのランプ輝線波長において透過率の変化が少ない特性となった。
【0049】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタ100の投射レンズ101前面に設置したところ、投射した画面の色むらがみられなかった。
【0050】
同様に色調補正フィルタのTa2O5層をZrO2(屈折率2.05)に置き換えて通常の蒸着で成膜し、裏面の反射防止膜を省略した色調補正フィルタを製作した。このフィルタも赤色光の透過率は裏面反射により減少したものの、投射した画面の色むらは見られなかった。
<実施例2>
設計結果の例として、図5の分光透過率特性となる、設計波長λ=540nmにおいて、TiO2(屈折率2.50)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.67H 0.07L 0.79H 0.10L 0.73H 0.29L 0.65H 0.55Lの8層膜が得られた。
【0051】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約89%、波長10nm増加に対して概ね3%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率約55%、波長10nm増加に対して概ね2%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0052】
図5に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線20から、入射角が10°の分光透過率曲線21、入射角が20°の分光透過率曲線22、入射角が30゜の分光透過率曲線23に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0053】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線20から、入射角が10°の分光透過率曲線25、入射角が20°の分光透過率曲線26、入射角が30゜の分光透過率曲線27に変化しても、約440nm付近の傾斜部は概ね重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0054】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜し、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例3>
設計結果の例として、図6の分光透過率特性となる、設計波長λ=540nmにおいて、A12O3(屈折率1.71)層の光学膜厚1λを1M、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.59M 0.07L 0.95M 0.05L 0.81M 0.08L 0.69M 0.25L 0.77M 0.26L 0.74M 0.50Lの12層膜が得られた。
【0055】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約95%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率80%、波長10nm増加に対して概ね2%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0056】
図6に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線30から、入射角が10°の分光透過率曲線31、入射角が20°の分光透過率曲線32、入射角が30゜の分光透過率曲線33に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0057】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線30から、入射角が10°の分光透過率曲線35、入射角が20°の分光透過率曲線36、入射角が30゜の分光透過率曲線37に変化しても、約440nm付近の傾斜部は概ね重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0058】
この12層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例4>
設計結果の例として、図7の分光透過率特性となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.66H 0.08L 0.82H 0.10L 0.76H 0.37L 0.57H 0.63Lの8層膜が得られた。
【0059】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約90%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率約79%、波長10nm増加に対して概ね5%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0060】
図7に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線40から、入射角が10°の分光透過率曲線41、入射角が20°の分光透過率曲線42、入射角が30゜の分光透過率曲線43に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0061】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線40から、入射角が10°の分光透過率曲線45、入射角が20°の分光透過率曲線46、入射角が30゜の分光透過率曲線47に変化しても、約440nm付近の傾斜部はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0062】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジエクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例5>
設計結果の例として、図8の分光透過率特性となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.65H 0.10L 0.70H 0.21L 0.74H 0.27L 0.67H 0.58Lの8層膜が得られた。
【0063】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約78%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率55%、波長10nm増加に対して概ね3%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0064】
図8に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線50から、入射角が10°の分光透過率曲線51、入射角が20°の分光透過率曲線52、入射角が30゜の分光透過率曲線53に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0065】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線50、入射角が10°の分光透過率曲線55、入射角が20°の分光透過率曲線56、入射角が30゜の分光透過率曲線57に変化しても、約440nm付近の傾斜部はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0066】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<比較例>
約440nmの輝度ピークに対応する435〜450nmの波長範囲で平均透過率85%、約550nmの輝度ピークに対応する545〜560nmの波長範囲で平均透過率65%、赤色光の波長範囲600〜700nmにおいて平均透過率85%であり、波長範囲内で透過率の変化が少ない平坦な特性であるフィルタを設計した。
【0067】
設計波長λ=500nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.48H 0.58L 0.13H 0.10L 0.82H 0.40L 0.09H 0.24L 0.88H 0.12L 0.07H 0.34Lの12層膜で、図9に示すような分光透過率特性となる。
【0068】
図9に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線60から、入射角が10°の分光透過率曲線61、入射角が20°の分光透過率曲線62、入射角が30゜の分光透過率曲線63に変化すると、約550nm付近の透過率は大きく変化している。また、P偏光の青色に対して、入射角がゼロの分光透過率曲線60から、入射角が10°の分光透過率曲線65、入射角が20°の分光透過率曲線66、入射角が30゜の分光透過率曲線67に変化すると、約440nm付近の透過率は大きく変化している。その結果、液晶プロジェクタの投射レンズ前面に設置した場合、投射した画面の色むらが発生する。
【0069】
このように、本発明の色調補正フィルタは、光学多層膜の欠点である入射角による透過率特性の変動を輝線ピークに対応する部分で可及的に抑制することができるため、液晶プロジェクタの投射レンズから出る光の角度が変化する方向に発生する色むらを抑制しながら色調を補正することができる。
【図面の簡単な説明】
【図1】本発明の色調補正フィルタを液晶プロジェクタに用いる使用形態を示す概念図である。
【図2】実施例1の色調補正フィルタの入射角がゼロのときの透過率特性と超高圧水銀灯の輝線スペクトルを示すグラフである。
【図3】S偏光に対する実施例1の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図4】P偏光に対する実施例1の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図5】P偏光及びS偏光に対する実施例2の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図6】P偏光及びS偏光に対する実施例3の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図7】P偏光及びS偏光に対する実施例4の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図8】P偏光及びS偏光に対する実施例5の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図9】P偏光及びS偏光に対する比較例の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【符号の説明】
1:色調補正フィルタ、2:光透過性基板、3:光学多層膜、100:液晶プロジェクタ、101:投射レンズ、9:輝線スペクトル、10:実施例1のフィルタの分光透過率曲線、11,21,31,41,51,61:10度入射S偏光分光透過率曲線、12,22,32,42,52,62:20度入射S偏光分光透過率曲線、13,23,33,43,53,63:30度入射S偏光分光透過率曲線、15,25,35,45,55,65:10度入射P偏光分光透過率曲線、16,26,36,46,56,66:20度入射P偏光分光透過率曲線、17,27,37,47,57,67:30度入射P偏光分光透過率曲線、301:第1傾斜部、302:第2傾斜部
【発明の属する技術分野】
本発明は、投射型表示装置、特に液晶プロジェクタ等の表示装置に用いられる色温度および色調の補正を行うためのフィルタに関する。
【0002】
【従来の技術】
液晶プロジェクタは、昼間のオフィスでの会議やプレゼンテーションにおいて、パーソナルコンピュータの画面投射に使われるデータプロジェクターとしての需要が多く、昼間の明るい室内でも使えるように、年々高輝度化が進んできている。そのため、光源として視感度の高い緑の波長に強い光を発するランプが採用され、3原色の色バランスが多少不自然になってでも明るさを重視した設計をした商品が多い。
【0003】
一方、家庭内等で大画面のテレビ映像や映画を楽しむ使い方も増えてきており、この場合輝度も必要であるが、自然で豊かな色調で画面表示されることが最も重要な性能となる。
【0004】
高輝度で色バランスが不自然なプロジェクタの色バランスを自然な色調に変更するには、液晶パネルの透過率を3原色それぞれ調整して色合いを変えることも可能である。しかし、液晶パネルを制御して色調を調整すると、限られた透過率範囲しか使わない状態となり、コントラストを低下させることになってしまう問題が生じてしまう。
【0005】
このため、コントラストを維持しつつ色調を調整するために、色調補正フィルタを光学系に入れることが提案されている。この色調補正フィルタは3原色それぞれの透過率を自然な色合いになる適切な値に減ずるもので、使用時に必要に応じて脱着可能な投射レンズの前面の位置等に取りつけるものである。透過率を適切な値に減ずるには、色プラスチックス・色ガラス等のように原料そのものや、添加した染料・顔料等により着色して特定の波長の光を吸収させる方法と、光の干渉を利用した光学多層膜による方法がある。これにより電気回路で液晶パネルの透過率を制限する必要がなくなり、液晶パネル本来のコントラストを維持しつつ色調を調整することが可能になる。
【0006】
液晶プロジェクタ用の色調補正フィルタとして用いる場合、色プラスチックスは安価であり、染色等の方法で様々な透過率に調整することが可能であるが、有機系の原料を用いるため、強い光が当たるプロジェクタでは使用中に材料が劣化して透過率性能が変化してしまうという耐光性の問題がある。
【0007】
無機系の原料を使う色ガラスは一般に原料のコストが高いことと、製造設備や使用する原料の制限により透過率調整の自由度が制限されてしまう問題がある。
【0008】
一方、光学多層膜による色調補正フィルタは、成膜材料の選択と膜厚の設計次第で様々な透過率調整が可能である利点があり、無機ガラス上に成膜することで耐光性も良好にできる。また、光学多層膜を製造するためには大掛かりな真空蒸着装置で精度良く成膜する必要があり、コストが高くなってしまう問題もあるが、前述の色ガラスや色プラスチックスでも表面の光の反射によって透過率を低下させたくない場合に光学多層膜による反射防止膜が必要で、色調補正フィルタの多層膜で片面の反射防止膜を置き換えた構成にした場合には、総合的なコストの比較において反射防止膜付の色ガラス・色プラスチックスを用いたフィルタに対して同等程度とすることも可能である。
【0009】
【発明が解決しようとする課題】
しかしながら、光学多層膜を用いた色調補正フィルタでは、光の入射角が変化した場合に光学多層膜の透過率特性も変化してしまう角度依存性を有するため、プロジェクタの投射レンズから出る光の角度が変化する方向に色むらが発生してしまう問題がある。
【0010】
図1に示すように、液晶プロジェクタ100を机上において前面上方に向けて煽り角をもたせて映像を投射する場合を例にとると、投射レンズ101の前面に設けられた色調補正フィルタ1への入射角θは上下方向で0度から30度程度に変化する。その結果、光学多層膜の角度依存性により、従来知られているような単純に3原色の透過率を調整した光学多層膜による色調補正フィルタでは上下方向の色むらが許容できなくなる。
【0011】
本発明は、上記事情に鑑みてなされたもので、液晶プロジェクタの投射レンズから出る光の角度が変化する方向に発生する色むらを抑制しながら色調を補正することができる光学多層膜を用いた色調補正フィルタを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、上記目的を達成するため、鋭意検討した結果、光学多層膜の角度依存性は、光学多層膜の分光透過率曲線が入射角に応じて一定の方向に形を変動させながら移動することにより、液晶プロジェクタの光源の輝線ピークに対する光学多層膜の光透過率が大きく変動することが原因であることが分かった。また、分光透過率曲線の移動の方向は、P偏光とS偏光で全く異なることも判明した。液晶プロジェクタにおいては、液晶パネルを通過して投射レンズから出射する光は3原色それぞれ1方向の偏光成分になっている。そのため、緑色成分が多い色調を補正するために、緑の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する緑色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部とし、フィルタへ入射する緑色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部を設けることにより、分光透過率曲線が入射角に応じて移動しても、傾斜部の傾きを移動方向に対して平行に近くなるように設定しているので、傾斜部自体は入射角が変化してもほぼ重なった状態となる。その結果、入射角に応じて分光透過率曲線が移動しても、輝線ピークに対する透過率をほぼ一定にすることが可能であり、緑色成分を減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。
【0013】
上述した考え方は青色でも同様であり、青の波長領域にある光源の輝線ピークに対応する分光透過率曲線の部分において、フィルタへ入射する青色光がP偏光の場合、波長の増加に対して特定の減少率で減少する傾斜を有する傾斜部を設け、フィルタへ入射する青色光がS偏光の場合、波長の増加に対して特定の増加率で増加する傾斜を有する傾斜部を設けることにより、青色成分を減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。
【0014】
これらの緑色の領域における傾斜部と青色の領域における傾斜部の両方の傾斜部を有する色調補正フィルタとすることにより、緑色成分と青色成分とを減少させて色調を補正する際に、光学多層膜の角度依存性を可及的に少なくし、入射角の変化による色むらの発生を抑制することができる。また、高輝度の光源を使用する液晶プロジェクタの光源の色調を調整する色調補正フィルタは、緑色と青色を減らし、赤色をできる限り透過する必要がある。
【0015】
かかる色調補正フィルタは、液晶プロジェクタの投射レンズの前面に配置することにより、その機能を発揮することができる。
【0016】
従って、請求項1記載の発明は、光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492〜577nmの緑の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する緑色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、フィルタへ入射する緑色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、かつ、前記傾斜部の透過率が、30〜90%の範囲であることを特徴とする色調補正フィルタを提供する。
【0017】
請求項2記載の発明は、光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492nm以下の青の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する青色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、フィルタへ入射する青色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、かつ、前記傾斜部の透過率が、60〜100%の範囲であることを特徴とする色調補正フィルタを提供する。
【0018】
請求項3記載の発明は、請求項1記載の分光透過率曲線と請求項2記載の分光透過率曲線を有し、かつ600〜700nmの赤色の波長領域で85%以上の透過率を有することを特徴とする色調補正フィルタ提供する。
【0019】
請求項4記載の発明は、請求項1〜3いずれかに記載の色調補正フィルタにおいて、液晶プロジェクタの投射レンズの前面に配置されて用いられることを特徴とする色調補正フィルタを提供する。
【0020】
【発明の実施の形態】
以下、本発明の色調補正フィルタの実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
【0021】
昼間のオフィスでの会議やプレゼンテーションにおいて、パーソナルコンピュータの画面投射に使われるデータプロジェクターとしての液晶プロジェクタは、光量優先で、光源に視感度の高い緑の波長に強い光を発する超高圧水銀灯等の高輝度な光源を用い、緑色と青色が強い色調バランスとなっている場合がある。このような色調バランスの液晶プロジェクタを例えば家庭で映画等を鑑賞する用途にも用いようとすると、不自然な発色となる。そのため、映画鑑賞等の自然な色バランスの発色とするために、本発明の色調補正フィルタは、主として液晶プロジェクタの投射レンズの前面に着脱自在に装着する用途に用いられる。
【0022】
図1に示すように、液晶プロジェクタ100の投射レンズ101の前面に色調補正フィルタ1を配置し、投射レンズ101から投射される投射光を色調補正フィルタ1を通し、赤色の光を最大限透過しつつ緑色の光を10〜70%カットし、青色の光を0〜40%カットして色調を補正し、色調を補正した投射光を投影スクリーン200に投射して映画等を鑑賞するものである。
【0023】
この場合、図1に示すように、机上において前面上方に向けて煽り角をもたせて映像を投射する場合、投射レンズ101の前面につけた色調補正フィルタ1への入射角θは上下方向で0度から30度程度に変化してしまう。また、色調補正フィルタ1は投射レンズ101の光軸上に設置され、入射角は0°あるいは投射レンズ101への戻り光を逃がすために5°程度に傾けられる。
【0024】
光学多層膜は、入射角によって分光透過率曲線が変化する角度依存性を有する。この角度依存性は、光学多層膜の層数が増えるほど顕著になるといわれている。本発明の色調補正フィルタは、光学多層膜の角度依存性を可及的に少なくすることを目的として開発されたものである。
【0025】
図1に示すように、本発明の色調補正フィルタ1は、光透過性基板2のいずれかの表面に光学多層膜3を形成した反射型のフィルタである。
【0026】
光透過性基板2としては、光線を透過する材質のものであれば良く、通常は無機ガラスが用いられ、例えばソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス、無アルカリガラス、石英ガラス、ネオセラム、コーニング社の7971チタン珪酸ガラス、サファイアガラスなどが用いられる。その他プラスチック材料から適宜選択することができる。
【0027】
光学多層膜3は、高屈折率層と低屈折率層とが交互に積層された誘電体多層膜である。光学多層膜に用いられる材料は、TiO2、Ta2O5、ZrO2、CeO2、酸化ニオブ、酸化イットリウム、ランタンチタン酸化物、SiO2、Al2O3、MgO、MgF2等の誘電体材料から選択して用いることが可能である。
【0028】
高屈折率層と低屈折率層とを交互に光透過性基板上に成膜するには、物理的成膜法が一般的であり、通常の真空蒸着法でも可能であるが、膜の屈折率の安定した制御が可能で、保管・仕様環境変化による分光特性の経時変化が少ない膜を作成できるイオンアシスト蒸着やイオンプレーティング法、スパッタ法が望ましい。真空蒸着法は、高真空中で薄膜材料を加熱蒸発させ、この蒸発粒子を基板上に堆積させて薄膜を形成する方法である。イオンプレーティング法は、蒸着粒子をイオン化し、電界により加速して基板に付着させる方法であり、APS(Advanced Plasma Source)、EBEP(Electron Beam Excited Plasma)法、RF(Radio Frequency)直接基板印加法(成膜室内に高周波ガスプラズマを発生させた状態で反応性の真空蒸着を行う方法)などの方式がある。スパッタ法は、電界により加速したイオンを薄膜材料に衝突させて薄膜材料を叩き出すスパッタリングにより薄膜材料を蒸発させ、蒸発粒子を基板上に堆積させる薄膜形成方法である。
【0029】
本発明の色調補正フィルタにおける光学多層膜は、液晶プロジェクタの光源の輝線ピーク及び偏光の種類に対応した分光透過率特性を有することに特徴がある。
【0030】
液晶プロジェクタ100では、光源の光を赤色、緑色、青色の三原色に分解し、それぞれの原色を液晶パネルで変調し、変調した三原色をクロスプリズム等で合成し、合成した画像を投射レンズ101から投射するようになっている。液晶パネルには偏光板が組み込まれ、液晶パネルを通過して投射レンズから出射する光は3原色それぞれ1方向の偏光成分になっている。クロスプリズムで3原色を合成する方式では、ほとんどの機種で青色と赤色の光がプリズムのクロス傾斜面に対してS偏光で、緑の光がP偏光に変換されている。S偏光は、試料面に入射する光の電気ベクトルの振動方向が、試料面の法線と光の進行方向である波面の法線とを含む面に垂直な直線偏光である。P偏光は、試料面に入射する光の電気ベクトルの振動方向が、入射面(試料面に立てた法線と光の進行方向を含む面)内に含まれる直線偏光である。
【0031】
投射レンズ101から色調補正フィルタ1に入射する緑の光は、クロスプリズムに入射する場合と逆で、通常S偏光であり、青の光は、通常P偏光である。これは図1のように水平に置かれた液晶プロジェクタから上方に煽り角をもたせて映像を投射する場合で、液晶プロジェクタ100内の光学系が横型に設計されている、すなわちクロスプリズムの入出射面が水平方向を向いている時に当てはまる。縦型の光学系を有する場合などでは、色調補正フィルタ1への入射角が最も大きく変化する方向について青の光がS偏光の場合があり、色調補正フィルタ1への入射角が最も大きく変化する方向について緑の光がP偏光の場合がある。
【0032】
図2に、光源の一例として、超高圧水銀灯の輝線スペクトル9を示す。以下の説明では、この超高圧水銀灯の輝線スペクトル9に合わせた分光透過率曲線を有する色調補正フィルタについて説明するが、光源の種類が変われば輝線ピークの位置も異なるため、光源の輝線スペクトルに合わせた色調補正フィルタを設計することができる。
【0033】
超高圧水銀灯では、492nm以下の青の波長領域においては約440nmの輝線ピークが存在し、492〜577nmの緑の波長領域においては約550nmの輝線ピークが存在する。本発明の色調補正フィルタは、赤色の光を最大限透過しつつ緑色の光を10〜70%、好ましくは20〜40%程度カットし、青色の光を0〜40%、好ましくは10〜30%程度カットして色調を補正するものである。そのため、約550nmの輝線ピークの光透過率が30〜90%、好ましくは60〜80%の範囲、約440nmの輝線ピークでの光透過率が60〜100%、好ましくは70〜90%の範囲、赤色光(波長範囲600〜700nm)については、85%以上の平均透過率であることが好ましい。
【0034】
図2に本発明にかかる実施例1の色調補正フィルタの分光透過率曲線10を示す。この分光透過率曲線10はフィルタへの入射角がゼロの場合を示し、緑色の光がS偏光、青色の光がP偏光の場合を想定している。約550nmの輝線ピークに対しては、約540nm〜約570nmの波長範囲での波長の増加に対して光透過率が約7%増加する右上がりの傾斜を有する○で囲った第1傾斜部301が形成されている。また、約440nmの輝線ピークに対しては、約430nm〜約470nmの範囲での波長の増加に対して光透過率が約10%低下する右下がりの傾斜を有する○で囲った第2傾斜部302が形成されている。
【0035】
S偏光に対する光学多層膜への入射角が大きくなると、分光透過率曲線は斜め左下側へ移動する傾向を示す。第1傾斜部301はS偏光の入射角に応じて移動する移動方向に概ね平行になるように設定されている。
【0036】
図3に示すように、入射角がゼロの分光透過率曲線10から、入射角が10°の分光透過率曲線11、入射角が20°の分光透過率曲線12、入射角が30゜の分光透過率曲線13に変化しても、約550nm付近の第1傾斜部301はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0037】
このことから、光学多層膜の分光透過率曲線が、492〜577nmの緑の波長領域での光源の少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する緑色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%、好ましくは2〜5%増加する傾斜を有する第1傾斜部を有するように設計することが望ましい。輝線ピークを挟んだマイナス5nmとプラス10nmの波長範囲は、分光透過率曲線の移動方向と距離を考慮したものである。輝線ピークは、最もピークが高い一つを選択してもよく、あるいは2つ以上の輝線ピークに対してそれぞれ傾斜部を設けるようにしてもよい。
【0038】
また、色調補正フィルタへ入射する緑色光がP偏光の場合、S偏光と逆になり、波長10nm増加に対して透過率が2〜8%、好ましくは3〜6%減少する傾斜を有する傾斜部を有するように光学多層膜を設計することが望ましい。
【0039】
一方、P偏光に対する光学多層膜への入射角が大きくなると、分光透過率曲線は斜め左上側へ移動する傾向を示す。図2に示す第2傾斜部302は、P偏光の入射角に応じて分光透過率曲線が移動する方向に概ね平行になるように設定されている。
【0040】
図4に示すように、入射角がゼロの分光透過率曲線10から、入射角が10°の分光透過率曲線15、入射角が20°の分光透過率曲線16、入射角が30゜の分光透過率曲線17に変化しても、約440nm付近の第2傾斜部302はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0041】
このことから、光学多層膜の透過率曲線が、492nm以下の青の波長領域での光源の少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、フィルタへ入射する青色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%、好ましくは3〜6%減少する傾斜を有する傾斜部を有するように設計することが好ましい。輝線ピークは、最もピークが高い一つを選択してもよく、あるいは2つ以上の輝線ピークに対してそれぞれ傾斜部を設けるようにしてもよい。
【0042】
また、フィルタへ入射する青色光がS偏光の場合、P偏光と逆になり、波長10nm増加に対して透過率が1〜6%、好ましくは2〜5%増加する傾斜を有する第2傾斜部を有するように光学多層膜を設計することが好ましい。
【0043】
赤色光(波長範囲600〜700nm)については、入射角が変化しても透過率の変化が大きくならず、85%以上の平均透過率であるように光学多層膜を設計する。
【0044】
このような光学多層膜の設計は市販のソフトウエアを用いて理論的に行うことができる(参考文献:OPTRONICS誌 1999 No.5 p.175−190)。
【0045】
さらに、色調補正用の光学多層膜の反対側の光透過性基板表面に反射防止膜を成膜することも有効であり、透過率を高くしたい赤色光の反対側表面の反射による透過率の減少を少なくすることができる。
【0046】
【実施例】
<実施例1>
光透過性基板として、透明な無機ガラス(550nmでの屈折率1.52)を用いた。
【0047】
色調補正用の光学多層膜は、次に述べる分光透過率曲線を得られる構成とする。フィルタへの入射角が最も大きく変化する方向について青色光がP偏光の場合、青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率86%、波長10nm増加に対して概ね2.5%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線とする。緑色光がP偏光の場合、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率66%、波長10nm増加に対して概ね2.5%透過率が増加する傾斜を有する分光透過率曲線とする。赤色光の波長範囲600〜700nmにおいては、入射角が変化しても透過率の変化が大きくならず、90%以上の高透過率であるように設計する。
【0048】
設計結果の例として、図2の分光透過率特性10となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.66H 0.08L 0.79H 0.12L 0.76H 0.32L 0.62H 0.60Lの8層膜が得られた。入射角が0°〜30°まで変化しても440nm、550nmのランプ輝線波長において透過率の変化が少ない特性となった。
【0049】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタ100の投射レンズ101前面に設置したところ、投射した画面の色むらがみられなかった。
【0050】
同様に色調補正フィルタのTa2O5層をZrO2(屈折率2.05)に置き換えて通常の蒸着で成膜し、裏面の反射防止膜を省略した色調補正フィルタを製作した。このフィルタも赤色光の透過率は裏面反射により減少したものの、投射した画面の色むらは見られなかった。
<実施例2>
設計結果の例として、図5の分光透過率特性となる、設計波長λ=540nmにおいて、TiO2(屈折率2.50)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.67H 0.07L 0.79H 0.10L 0.73H 0.29L 0.65H 0.55Lの8層膜が得られた。
【0051】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約89%、波長10nm増加に対して概ね3%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率約55%、波長10nm増加に対して概ね2%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0052】
図5に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線20から、入射角が10°の分光透過率曲線21、入射角が20°の分光透過率曲線22、入射角が30゜の分光透過率曲線23に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0053】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線20から、入射角が10°の分光透過率曲線25、入射角が20°の分光透過率曲線26、入射角が30゜の分光透過率曲線27に変化しても、約440nm付近の傾斜部は概ね重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0054】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜し、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例3>
設計結果の例として、図6の分光透過率特性となる、設計波長λ=540nmにおいて、A12O3(屈折率1.71)層の光学膜厚1λを1M、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.59M 0.07L 0.95M 0.05L 0.81M 0.08L 0.69M 0.25L 0.77M 0.26L 0.74M 0.50Lの12層膜が得られた。
【0055】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約95%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率80%、波長10nm増加に対して概ね2%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0056】
図6に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線30から、入射角が10°の分光透過率曲線31、入射角が20°の分光透過率曲線32、入射角が30゜の分光透過率曲線33に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0057】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線30から、入射角が10°の分光透過率曲線35、入射角が20°の分光透過率曲線36、入射角が30゜の分光透過率曲線37に変化しても、約440nm付近の傾斜部は概ね重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0058】
この12層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例4>
設計結果の例として、図7の分光透過率特性となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.66H 0.08L 0.82H 0.10L 0.76H 0.37L 0.57H 0.63Lの8層膜が得られた。
【0059】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約90%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率約79%、波長10nm増加に対して概ね5%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0060】
図7に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線40から、入射角が10°の分光透過率曲線41、入射角が20°の分光透過率曲線42、入射角が30゜の分光透過率曲線43に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0061】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線40から、入射角が10°の分光透過率曲線45、入射角が20°の分光透過率曲線46、入射角が30゜の分光透過率曲線47に変化しても、約440nm付近の傾斜部はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0062】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジエクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<実施例5>
設計結果の例として、図8の分光透過率特性となる、設計波長λ=540nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H,SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.65H 0.10L 0.70H 0.21L 0.74H 0.27L 0.67H 0.58Lの8層膜が得られた。
【0063】
青の輝線波長440nmを挟んだ435〜450nmの範囲で平均透過率約78%、波長10nm増加に対して概ね4%透過率が低下する傾斜を有する傾斜部を有する分光透過率曲線となっている。また、緑の輝線波長550nmを挟んだ545〜560nmの範囲で平均透過率55%、波長10nm増加に対して概ね3%透過率が増加する傾斜を有する分光透過率曲線となっている。
【0064】
図8に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線50から、入射角が10°の分光透過率曲線51、入射角が20°の分光透過率曲線52、入射角が30゜の分光透過率曲線53に変化しても、約550nm付近の傾斜部はほぼ重なり、約550nmの輝線ピークに対する透過率の変動がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0065】
また、P偏光の青色に対して、入射角がゼロの分光透過率曲線50、入射角が10°の分光透過率曲線55、入射角が20°の分光透過率曲線56、入射角が30゜の分光透過率曲線57に変化しても、約440nm付近の傾斜部はほぼ重なり、約440nmの輝線ピークに対する透過率の変化がほとんどなく、概ね30゜程度までの角度依存性が解消されている。
【0066】
この8層の色調補正フィルタ膜をイオンプレーティング法で成膜して、裏面に5層反射防止膜を成膜して、図1に示すように液晶プロジェクタの投射レンズ前面に設置したところ、投射した画面の色むらがみられなかった。
<比較例>
約440nmの輝度ピークに対応する435〜450nmの波長範囲で平均透過率85%、約550nmの輝度ピークに対応する545〜560nmの波長範囲で平均透過率65%、赤色光の波長範囲600〜700nmにおいて平均透過率85%であり、波長範囲内で透過率の変化が少ない平坦な特性であるフィルタを設計した。
【0067】
設計波長λ=500nmにおいて、Ta2O5(屈折率2.10)層の光学膜厚1λを1H、SiO2(屈折率1.46)層の光学膜厚1λを1Lと表して、基材側から光学膜厚が0.48H 0.58L 0.13H 0.10L 0.82H 0.40L 0.09H 0.24L 0.88H 0.12L 0.07H 0.34Lの12層膜で、図9に示すような分光透過率特性となる。
【0068】
図9に示すように、S偏光の緑色に対して、入射角がゼロの分光透過率曲線60から、入射角が10°の分光透過率曲線61、入射角が20°の分光透過率曲線62、入射角が30゜の分光透過率曲線63に変化すると、約550nm付近の透過率は大きく変化している。また、P偏光の青色に対して、入射角がゼロの分光透過率曲線60から、入射角が10°の分光透過率曲線65、入射角が20°の分光透過率曲線66、入射角が30゜の分光透過率曲線67に変化すると、約440nm付近の透過率は大きく変化している。その結果、液晶プロジェクタの投射レンズ前面に設置した場合、投射した画面の色むらが発生する。
【0069】
このように、本発明の色調補正フィルタは、光学多層膜の欠点である入射角による透過率特性の変動を輝線ピークに対応する部分で可及的に抑制することができるため、液晶プロジェクタの投射レンズから出る光の角度が変化する方向に発生する色むらを抑制しながら色調を補正することができる。
【図面の簡単な説明】
【図1】本発明の色調補正フィルタを液晶プロジェクタに用いる使用形態を示す概念図である。
【図2】実施例1の色調補正フィルタの入射角がゼロのときの透過率特性と超高圧水銀灯の輝線スペクトルを示すグラフである。
【図3】S偏光に対する実施例1の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図4】P偏光に対する実施例1の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図5】P偏光及びS偏光に対する実施例2の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図6】P偏光及びS偏光に対する実施例3の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図7】P偏光及びS偏光に対する実施例4の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図8】P偏光及びS偏光に対する実施例5の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【図9】P偏光及びS偏光に対する比較例の色調補正フィルタの入射角による透過率特性の変化を示すグラフである。
【符号の説明】
1:色調補正フィルタ、2:光透過性基板、3:光学多層膜、100:液晶プロジェクタ、101:投射レンズ、9:輝線スペクトル、10:実施例1のフィルタの分光透過率曲線、11,21,31,41,51,61:10度入射S偏光分光透過率曲線、12,22,32,42,52,62:20度入射S偏光分光透過率曲線、13,23,33,43,53,63:30度入射S偏光分光透過率曲線、15,25,35,45,55,65:10度入射P偏光分光透過率曲線、16,26,36,46,56,66:20度入射P偏光分光透過率曲線、17,27,37,47,57,67:30度入射P偏光分光透過率曲線、301:第1傾斜部、302:第2傾斜部
Claims (4)
- 光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、
前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492〜577nmの緑の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、
フィルタへ入射する緑色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、
フィルタへ入射する緑色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、
かつ、前記傾斜部の透過率が、30〜90%の範囲であることを特徴とする色調補正フィルタ。 - 光透過性基板の表面に光学多層膜を形成した色調補正フィルタにおいて、
前記光学多層膜の入射角がゼロのときの分光透過率曲線が、492nm以下の青の波長領域での少なくとも一つの輝線ピークのピーク波長から5nm減じた波長とそのピーク波長に10nmを加えた波長との波長範囲で、
フィルタへ入射する青色光がP偏光の場合、波長10nm増加に対して透過率が2〜8%減少する傾斜を有する傾斜部を有し、
フィルタへ入射する青色光がS偏光の場合、波長10nm増加に対して透過率が1〜6%増加する傾斜を有する傾斜部を有し、
かつ、前記傾斜部の透過率が、60〜100%の範囲であることを特徴とする色調補正フィルタ。 - 請求項1記載の分光透過率曲線と請求項2記載の分光透過率曲線を有し、かつ600〜700nmの赤色の波長領域で85%以上の透過率を有することを特徴とする色調補正フィルタ。
- 請求項1〜3いずれかに記載の色調補正フィルタにおいて、
液晶プロジェクタの投射レンズの前面に配置されて用いられることを特徴とする色調補正フィルタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002338062A JP2004062136A (ja) | 2002-06-03 | 2002-11-21 | 色調補正フィルタ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002162062 | 2002-06-03 | ||
JP2002338062A JP2004062136A (ja) | 2002-06-03 | 2002-11-21 | 色調補正フィルタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004062136A true JP2004062136A (ja) | 2004-02-26 |
Family
ID=31949278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002338062A Withdrawn JP2004062136A (ja) | 2002-06-03 | 2002-11-21 | 色調補正フィルタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004062136A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006285196A (ja) * | 2005-03-11 | 2006-10-19 | Seiko Epson Corp | 光学多層膜、光学素子、反射ミラーおよびプロジェクタ |
JP2008518388A (ja) * | 2004-10-25 | 2008-05-29 | バルコ・ナムローゼ・フエンノートシャップ | 高均一パネルライトの光学補正 |
JP2009042762A (ja) * | 2007-08-08 | 2009-02-26 | Samsung Corning Precision Glass Co Ltd | ディスプレイ装置用色補償フィルムおよびディスプレイ装置用光学フィルタ |
JP2010008789A (ja) * | 2008-06-27 | 2010-01-14 | Nikon Corp | 光学部材と、これを有する光学系と光学装置 |
JP2010079253A (ja) * | 2008-09-01 | 2010-04-08 | Seiko Epson Corp | プロジェクタ |
-
2002
- 2002-11-21 JP JP2002338062A patent/JP2004062136A/ja not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008518388A (ja) * | 2004-10-25 | 2008-05-29 | バルコ・ナムローゼ・フエンノートシャップ | 高均一パネルライトの光学補正 |
US9070316B2 (en) | 2004-10-25 | 2015-06-30 | Barco Nv | Optical correction for high uniformity panel lights |
US9384710B2 (en) | 2004-10-25 | 2016-07-05 | Barco N. V. | Optical correction for high uniformity panel lights |
US9916795B2 (en) | 2004-10-25 | 2018-03-13 | Barco N.V | Optical correction for high uniformity panel lights |
JP2006285196A (ja) * | 2005-03-11 | 2006-10-19 | Seiko Epson Corp | 光学多層膜、光学素子、反射ミラーおよびプロジェクタ |
JP2009042762A (ja) * | 2007-08-08 | 2009-02-26 | Samsung Corning Precision Glass Co Ltd | ディスプレイ装置用色補償フィルムおよびディスプレイ装置用光学フィルタ |
JP2012053483A (ja) * | 2007-08-08 | 2012-03-15 | Samsung Corning Precision Materials Co Ltd | ディスプレイ装置用色補償フィルムおよびディスプレイ装置用光学フィルタ |
JP2010008789A (ja) * | 2008-06-27 | 2010-01-14 | Nikon Corp | 光学部材と、これを有する光学系と光学装置 |
JP2010079253A (ja) * | 2008-09-01 | 2010-04-08 | Seiko Epson Corp | プロジェクタ |
US8876302B2 (en) | 2008-09-01 | 2014-11-04 | Seiko Epson Corporation | Projector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100572554B1 (ko) | 다층막 컷 필터 및 그 제조 방법, uv 컷 필터, 방진 유리, 표시 패널 및 투사형 표시 장치 | |
US7165846B2 (en) | Dichroic mirror and projection-type display unit | |
JP4672469B2 (ja) | 液晶装置及び投射型表示装置 | |
WO2007069644A1 (ja) | スピネル製透明基板、光学エンジン用透明基板およびそれらを使用したリアプロジェクションテレビ受像機と液晶を利用した画像プロジェクター | |
JP5984771B2 (ja) | 位相差素子及びその製造方法、液晶表示装置及びその製造方法、並びに投射型画像表示装置 | |
US20110228177A1 (en) | Liquid crystal device and projection display device | |
US11269218B2 (en) | Phase difference compensation element, liquid crystal display device and projection type image display device | |
JP2004062136A (ja) | 色調補正フィルタ | |
JP2003107242A (ja) | Uvカットフィルタ | |
JP2003140125A (ja) | 投射型表示装置、表示パネル及び防塵ガラス | |
WO2019102902A1 (ja) | 光学素子及び投射型画像表示装置 | |
JP2005031297A (ja) | 液晶表示装置の反射防止膜付き透明基板 | |
JP3710664B2 (ja) | 偏光フィルタ | |
CN106033158B (zh) | 相位差元件、液晶显示装置以及投影型图像显示装置 | |
JP2008203493A (ja) | 映像投射装置 | |
US11256140B2 (en) | Liquid crystal display apparatus and display method | |
JP2007304229A (ja) | 光学素子およびプロジェクション装置 | |
JP2006178261A (ja) | 誘電体多層膜フィルタ及び光学部材 | |
JP2003131010A (ja) | 光学部品、光学ユニット及びこれを用いた映像表示装置 | |
JP2001183524A (ja) | 投射型表示装置 | |
Lee et al. | Optical coatings for displays and lighting | |
US11550091B2 (en) | Phase difference compensation element, liquid crystal display device, and projection image display device | |
US11977222B2 (en) | Image display apparatus | |
US20210165262A1 (en) | Phase difference compensation element, liquid crystal display device, and projection image display device | |
JPH11133447A (ja) | 電極基板とそれを用いた液晶素子、液晶表示素子、液晶表示装置と液晶プロジェクター |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051107 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070305 |