JP2004060980A - コージェネレーションシステム - Google Patents

コージェネレーションシステム Download PDF

Info

Publication number
JP2004060980A
JP2004060980A JP2002219324A JP2002219324A JP2004060980A JP 2004060980 A JP2004060980 A JP 2004060980A JP 2002219324 A JP2002219324 A JP 2002219324A JP 2002219324 A JP2002219324 A JP 2002219324A JP 2004060980 A JP2004060980 A JP 2004060980A
Authority
JP
Japan
Prior art keywords
hot water
path
temperature
water
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219324A
Other languages
English (en)
Other versions
JP3836761B2 (ja
Inventor
Hisahiro Satou
佐藤 寿洋
Hirotada Kikuzawa
菊沢 央忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Toho Gas Co Ltd
Original Assignee
Rinnai Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp, Toho Gas Co Ltd filed Critical Rinnai Corp
Priority to JP2002219324A priority Critical patent/JP3836761B2/ja
Publication of JP2004060980A publication Critical patent/JP2004060980A/ja
Application granted granted Critical
Publication of JP3836761B2 publication Critical patent/JP3836761B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

【課題】新たな加熱機器等を付加することなく、コージェネレーションシステムが本来的に必要とする加熱機器等を利用することによって、配管内の水が凍結するのを防止することができるコージェネレーションシステムを提供する。
【解決手段】配管の凍結防止が必要であるときに、貯湯槽44内の湯水の水温が低下していなければ、貯湯槽44内の湯水が凍結防止経路12内を循環することによって配管を加熱して凍結を防止する。発電機20が長時間運転を停止しており、貯湯槽44内の湯水の水温が低下していれば、既存の加熱機器(例えば給湯暖房機50のバーナ38)によって凍結防止経路12内の湯水が強制的に加熱され、加熱された湯水が配管を加熱して凍結を防止する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】本発明は、コージェネレーションシステム(電気と熱の併給システム)に関する。特に、発電に伴って発生する熱を利用して温水を得、その温水を利用して生活を快適にするシステムで用いられる給水管等の配管の凍結を防止する技術に関する。
【0002】
【従来の技術】コージェネレーションシステムは、電力と発電熱を発生する発電機と、貯湯槽と、貯湯槽内の水を発電機に送って発電熱で加熱して貯湯槽に戻す水循環路を備えており、発電に伴って発生する発電熱を利用して水を加熱し、加熱された温水を貯湯槽に貯湯する。貯湯槽内の温水を適温に調温して温水使用箇所(例えば、床暖房システムや風呂やシャワーや温水栓)に給湯する。温水使用箇所で必要とされる湯温よりも高温の温水が貯湯槽に貯湯されていれば、貯湯槽内の温水を水道水と混合させることで必要湯温に調整できる。温水使用箇所で必要とされる湯温よりも低温の温水が貯湯槽に貯湯されていれば、温水供給手段でさらに加熱する必要があるが、発電熱で加熱された温水を加熱すればよいことから、加熱に要する熱量を少なくすることができる。コージェネレーションシステムは、総合的なエネルギー効率が高い。
【0003】
【発明が解決しようとする課題】貯湯槽に溜められた温水は温水使用箇所に給湯されて減少するため、貯湯槽には水道水を補給するための給水路が配管されている。また、先に述べたように貯湯槽内の温水を適温に調温するために用いられる水道水の給水路も配管されている。水道水は外気温を反映しやすく、外気温が低下すると水道水の水温も低下し、給水路内で水道水が凍結してしまう場合がある。また、発電運転が長時間停止すると、外気温の低下に伴って、システムに配設されている配管(例えば、暖房用の循環経路や発電熱を回収する水循環路等)内の水温が低下して凍結する場合もある。この配管の凍結問題は、配管を加熱するヒータ等を付加することによって解決できる。しかし、コージェネレーションシステムでは、システムの容積が大きく、凍結の可能性のある配管全てにヒータを付加するとコストが増大化してしまう。凍結防止のために必要な電力量が大きいと、コージェネレーションシステムの利点が失われてしまう。
【0004】
本発明は、新たな加熱機器等を付加することなく、コージェネレーションシステムが本来的に必要とする加熱機器等を利用することによって、配管内の水が凍結するのを防止する技術を提供することを目的とする。
【0005】
【課題を解決するための手段と作用と効果】本発明のコージェネレーションシステムは、発電に伴って発生する発電熱を利用するシステムであり、電力と発電熱を発生する発電機と、貯湯槽と、貯湯槽内の水を発電機に送って発電熱で加熱して貯湯槽に戻す水循環路と、貯湯槽に水を補給する第1給水路と、貯湯槽からの出湯管に混合する水を給水する第2給水路と、貯湯槽を通過して第1給水路と第2給水路に併行し、伝熱する経路を含む凍結防止経路と、凍結防止経路の湯水を循環させるポンプと、外気温が第1所定温度以下又は給水温度が第2所定温度以下のときにポンプを駆動するポンプ制御装置を備えている。
ここで「凍結防止経路が貯湯槽を通過する」とは、凍結防止経路内の湯水が貯湯槽内の湯水と混合しながら貯湯槽を通過する場合と、混合しないで貯湯槽を通過する場合の双方を含む。
【0006】
本発明のコージェネレーションシステムでは、給水路等の配管が凍結する恐れがある場合には凍結防止経路内の湯水が循環する。この凍結防止経路は貯湯槽を通過するように配されている。
貯湯槽には発電に伴って発生した発電熱によって加熱された温水が貯湯されている。発電機の運転が停止した後も発電時に加熱された温水が貯湯槽に貯湯されており、貯湯槽内の水温が外気温と等しくなるまでには時間を要する。即ち、発電機の運転停止後も貯湯槽内には熱量が保持されている。
凍結防止経路内を循環する湯水は、貯湯槽を通過する際に加熱され、あるいは貯湯槽に貯湯されている湯水と混合することによって加熱され、加熱された湯水が凍結防止経路に送り出される。加熱された湯水が給水路等の配管の近傍を循環することによって配管内の水温を上げて凍結することを防止する。
本発明のコージェネレーションシステムは、給水路等の配管を加熱するためにヒータ等の加熱機を付加することなく、貯湯槽に貯湯された湯水を利用して配管の凍結を防止することができる。
なお、凍結防止経路を配管に併行させるように配する場合、凍結防止経路の配管を給水路等の配管をなぞるように密着して配してもよいし、配管の凍結の恐れのある部分を2重管とし、2重管の外管を給水路等として内管を凍結防止経路とする構成にしてもよい。
【0007】
上記のポンプ制御装置が、凍結防止経路内の水温が第3所定温度以下のときにポンプの回転数を上げることが好ましい。
このようにすると、凍結防止経路を流れる凍結防止用の湯水の温度が低下して凍結防止効果が低下したときには凍結防止経路のポンプ回転数が上がって凍結防止用湯水の循環速度が増す。これによって、凍結防止用の湯水の温度が低下しても配管の凍結を防止することができる。
【0008】
このコージェネレーションシステムは、貯湯槽内の湯水を設定温度に加熱して温水供給箇所に供給する温水供給手段を備えており、凍結防止経路が温水供給手段を通過するように配されていてもよい。
コージェネレーションシステムでは、通常、貯湯槽に貯湯されている湯水の温度が低い場合に備えて加熱手段を内蔵している温水供給手段(給湯暖房機等)を備えている。凍結防止経路が温水供給手段を通過するようにすると、貯湯槽の湯水の温度が低くて凍結防止効果が低いときに、温水供給手段で加熱することができ、凍結防止効果を維持できる。
【0009】
このコージェネレーションシステムは、凍結防止経路内の水温が第4所定温度以下のときに温水供給手段に内蔵されている加熱手段を強制駆動する温水供給手段制御手段が付加されていることが好ましい。
発電機の運転が停止すると発電熱が得られなくなるため、貯湯槽内の湯水の水温は徐々に低下する。すると貯湯槽から熱量を得ている凍結防止経路内の湯水の水温も低下してしまう。このコージェネレーションシステムでは、凍結防止経路内の湯水の水温が所定の温度まで低下したときには、温水供給手段に内蔵されている加熱手段が強制的に駆動される。これによって凍結防止経路内の湯水が温水供給手段を通過するときに加熱手段によって加熱されるため、給水路等の配管の凍結を防止することができる。即ち、発電機の運転停止時であっても、既存の加熱手段を流用して強制的に駆動することによって凍結防止経路内の湯水を加熱して配管の凍結防止を行なうことができる。
【0010】
このコージェネレーションシステムの凍結防止経路は、温水供給手段を通過しない経路と通過する経路とを有し、温水供給手段に内蔵されている加熱手段が駆動されていないときには温水供給手段を通過しない経路が選択され、温水供給手段に内蔵されている加熱手段が駆動されているときには温水供給手段を通過する経路が選択されるようにしてもよい。
温水供給手段が使用されていないときには内蔵されている加熱手段は駆動されておらず、温水供給手段の循環路内の温度は低下している。温度が低下した温水供給手段内を凍結防止経路内の湯水が通過することで、凍結防止経路内の水温を低下させてしまうこととなり、非効率的である。一方、温水供給手段が使用されているときには内蔵されている加熱手段が駆動されている。温水供給手段内を凍結防止経路内の湯水が通過することで、駆動中の加熱手段によって凍結防止経路内の湯水が加熱されるため、効率的である。このコージェネレーションシステムでは、温水供給手段の加熱手段が駆動していないときは凍結防止経路内の湯水を加熱する必要がないときである。従って温水供給手段内を通過させず、循環経路を短くして無駄に水温を低下させない。温水供給手段の加熱手段が駆動しているときには凍結防止経路内の湯水を積極的に通過させて加熱させる。このことによって、さらに効率的に配管の凍結防止を行なうことができる。
【0011】
本発明のコージェネレーションシステムの凍結防止経路は、発電機を通過するように配されていてもよい。
コージェネレーションシステムに備えられている発電機は、通常、加熱手段を備えている。例えば、発電機が燃料電池である場合には改質器を加熱するためのバーナ等の加熱手段を備えており、発電機がマイクロガスタービンである場合には発電機自体が加熱手段であると考えられる。凍結防止経路が発電機を通過するようにすれば、貯湯槽の湯水の温度が低くて凍結防止効果が低いときに、加熱手段で加熱することができ、凍結防止効果が得られる。
【0012】
このコージェネレーションシステムは、凍結防止経路内の水温が第5所定温度以下のときに発電機に内蔵されている加熱手段を強制駆動する発電機制御手段が付加されていることが好ましい。
発電機の運転が停止すると発電熱が得られなくなるため、貯湯槽内の湯水の水温は徐々に低下する。すると貯湯槽から熱量を得ている凍結防止経路内の湯水の水温も低下してしまう。このコージェネレーションシステムでは、凍結防止経路内の湯水の水温が所定の温度まで低下したときには、発電機に内蔵されている加熱手段が強制的に駆動される。これによって凍結防止経路内の湯水が発電機内を通過するときに加熱手段によって加熱されるため、配管の凍結を防止することができる。即ち、発電機の運転停止時であっても、既存の加熱手段を流用して強制的に駆動することによって凍結防止経路内の湯水を加熱して配管の凍結防止を行なうことができる。なお、発電機の加熱手段を強制的に駆動するときに、発電運転を行なってもよいし、発電運転を行なわなくてもよい。
【0013】
このコージェネレーションシステムの水環経路の湯水を貯湯槽へ戻す経路は、凍結防止経路を兼用する経路と凍結防止経路をバイパスする経路を有しており、外気温が第1所定温度以下又は給水温度が第2所定温度以下のときに凍結防止経路を兼用する経路が選択されるようにしてもよい。
このコージェネレーションシステムでは、給水路等の配管が凍結する恐れがある場合、水循環路内の湯水を発電機から貯湯槽へ戻すときに、配管をなぞるように配された凍結防止経路を通過させる。貯湯槽内の湯水が配管の凍結を防止するのに役立つ温度を持っていれば、この湯水が凍結防止経路内を循環することによって配管内の水が加熱されて凍結を防止することができる。発電機の運転が停止して貯湯槽内の湯水の水温が所定の温度まで低下したときには発電機の加熱手段が強制的に駆動される(請求項7)ため、加熱された湯水が凍結防止経路内を循環することによって配管内の水が加熱されて凍結を防止することができる。一方、配管が凍結する恐れのない場合には凍結防止経路を通過せずに貯湯槽に戻る経路が選択される。循環経路が短い方がより熱量を維持することができる。水循環路内の湯水を凍結防止経路に流すと配管内の湯水に熱を奪われてしまって非効率的であるところ、この問題が解決される。
また、発電機の運転が停止すると、外気温の低下に伴って発電熱を回収する水循環路内の水温も低下する。このコージェネレーションシステムでは水循環路が凍結防止経路の一部を含んでいる。発電機の加熱手段が強制的に駆動されると凍結防止経路内の湯水が加熱されるとともに水循環路内の湯水も加熱されるため、水循環路の凍結をも防止することができる。
【0014】
本発明のコージェネレーションシステムの凍結防止経路内を循環する湯水は、貯湯槽内の湯水と混合されてもよいし、混合されなくてもよい。混合されない方式を採ると、この場合、凍結防止経路内の湯水と貯湯槽内の湯水との間で熱交換が行われ、凍結防止経路内の湯水は温められる。凍結防止経路内の湯水と貯湯槽内の湯水とは混合されることはない。即ち、貯湯槽内の湯水は上水であるが、凍結防止経路内を循環する湯水が上水である必要はなくなる。例えば、凍結防止経路内に不凍液等を循環させることも可能となる。
【0015】
このコージェネレーションシステムは、熱媒体を利用する暖房装置と、暖房装置に熱媒体を循環させる暖房用循環路を備え、凍結防止経路と暖房用循環路が共通区間を有していることが好ましい。
コージェネレーションシステムに既存の暖房用循環路の一部を凍結防止経路として利用することによって配管が簡素化し、配管の凍結防止を効率的に行なうことができる。なお、暖房用循環路内は上水ではなく不凍液を循環させる場合があるが、この場合には、凍結防止経路内の湯水と貯湯槽内の湯水とが混合されない(請求項9)方式を採ることができ、特に問題となることはない。
【0016】
このコージェネレーションシステムは、暖房装置の熱媒体を循環させる暖房用ポンプを備え、その暖房用ポンプが凍結防止経路内の湯水も循環させるようにしてもよい。
暖房用循環路の一部を凍結防止経路として利用している(請求項10)ため、凍結防止経路内の湯水を循環させるためのポンプを新たに付加することなく、暖房用ポンプを用いて循環させることができる。既存のポンプを利用することによって、コストアップを抑えることができる。
【0017】
このコージェネレーションシステムは、凍結防止経路内の水温が第6所定温度以下のときに暖房用熱媒体の加熱手段を強制駆動する暖房装置制御手段が付加されていることが好ましい。
発電機の運転が停止すると発電熱が得られなくなるため、貯湯槽内の湯水の水温は徐々に低下する。すると貯湯槽から熱量を得ている凍結防止経路内の湯水の水温も低下してしまう。このコージェネレーションシステムでは、凍結防止経路内の湯水の水温が所定の温度まで低下したときには、暖房用熱媒体の加熱手段が強制的に駆動される。これによって凍結防止経路内の湯水が暖房用循環路内を通過するときに加熱手段によって加熱されるため、加熱された湯水が給水路等の配管を加熱しながら貯湯槽内へ戻り、凍結を防止することができる。即ち、発電機の運転停止時であっても、既存の加熱手段を流用して強制的に駆動することによって凍結防止経路内の湯水を加熱して配管の凍結防止を行なうことができる。
【0018】
【発明の実施の形態】以下、本発明の好適な実施形態を説明する。
(形態1) 凍結防止経路は貯湯槽と給湯暖房機との間に配されている。給湯暖房機から貯湯槽への戻り経路の一部は貯湯槽への給水経路と兼用されている。凍結防止経路は給湯暖房機をバイパスする経路も有しており、凍結防止経路内の湯水を加熱する必要があるときに給湯暖房機を通る経路が選択され、凍結防止経路内の湯水を加熱する必要がないときに給湯暖房機をバイパスする経路が選択される。
(形態2) 凍結防止経路は貯湯槽と発電機との間に配されている水循環路の戻り経路から分岐した経路であり、二重管である給水配管の内管を通って貯湯槽へ戻る経路である。水循環路の戻り経路は、給水配管を加熱する必要があるときに給水配管の内管を通る経路が選択され、給水配管を加熱する必要がないときに給水配管の内管をバイパスする経路が選択される。
(形態3) 凍結防止経路は貯湯槽と給湯暖房機との間に配されており、暖房経路と共通区間を有している。給湯暖房機から貯湯槽への戻り経路は、二重管である給水配管の内管を通って貯湯槽へ戻る経路である。
(形態4) 凍結防止経路は、貯湯槽と補助熱源を通過する。補助熱源は、貯湯槽内の湯水をさらに加熱して温水使用箇所に温水を供給する給湯機、暖房用熱媒体を加熱する加熱手段、又は、燃料電池式発電機の改質器を加熱する加熱手段のいずれかである。
(形態5) 凍結防止経路は、補助熱源を通過する経路と通過しない経路で切替え可能となっている。
(形態6) 凍結防止経路は、貯湯槽の湯水による凍結防止効果が不充分なときに、補助熱源を通過する経路に切替えて補助熱源を駆動する。
【0019】
【実施例】本発明を具現化した第1実施例を図1,2,3を用いて説明する。図1は本実施例のコージェネレーションシステムの概略構成図であり、図2は制御ユニットとその周辺のブロック図であり、図3は制御ユニットで実施される処理のフローチャートである。
コージェネレーションシステムの構成について説明する。図1に示すように、コージェネレーションシステム10は、電力と発電熱を発生する発電機20と、発電機20の発電熱によって加熱される温水を利用するユニット15等から構成される。発電機20は、燃料電池22と、改質器30と、放熱機28等から構成される。改質器30は、炭化水素系の原燃料ガスから水素ガスを生成する。水素を効率よく生成するためには高温度が必要とされることから、改質器30にはバーナ32が内蔵されている。改質器30には、バーナ32の燃焼排ガスを回収するガス管34が接続されており、そのガス管34は熱交換器70を通過するように配置されている。この構成により、バーナ32の燃焼排ガスが熱交換器70に入力されることになる。なお、改質器30は、制御ユニット60によって駆動制御される。なお、図示25はシスターンである。
燃料電池22は、複数のセルから構成される。燃料電池22には改質器30と連通する図示しない配管が接続されている。その配管を介して改質器30で生成された水素ガスが燃料電池22に供給される。燃料電池22は、空気中の酸素を取込み、取込まれた酸素と改質器30から供給される水素ガスを反応させて発電を行なう。燃料電池22は、発電の際に発熱する。燃料電池22には熱媒循環経路24が接続されており、その熱媒循環経路24の熱媒(本実施例では蒸留水である)が発電の際に生じる発電熱を回収するようになっている。熱媒循環経路24には熱媒循環ポンプ8が配設されている。この熱媒循環ポンプ8は、制御ユニット60によって駆動制御される。
【0020】
熱媒循環経路24は、熱交換器74を通過するように配置されている。この構成により、熱媒によって回収された燃料電池22の発電熱が熱交換器74に入力されることになる。
また、熱媒循環経路24には第1三方弁36が配設されている。第1三方弁36は、1つの入力口と2つの出力口を備える。第1三方弁36によって熱媒循環経路24が二手に分岐している。第1三方弁36の一方の出力口と接続されている熱媒循環経路24は放熱機28を介するように配置されており、他方の出力口と接続されている熱媒循環経路24は放熱機28を介さないように配置されている。この第1三方弁36は、制御ユニット60によってどちらの出力口を開口するかが制御される。この制御により熱媒が放熱機28を経由して循環するか、放熱機28を経由せずに循環するかが切替えられる。具体的には、図示しない温度センサで測定される熱媒温度が異常に高いときには、熱媒が放熱機28を経由して循環するように第1三方弁36の出力口が切替えられる。放熱機28は、例えば送風を行なうことで熱媒を冷却する。
【0021】
ユニット15は、貯湯槽44と給湯暖房機50と制御ユニット60等から構成される。発電機20と貯湯槽44の間には、水循環路4が配設されている。水循環路4は、貯湯槽44の下部から湯水を引出して、貯湯槽44の上部に湯水を戻す。後述するが、水道水は貯湯槽44の下部から供給されるため、貯湯槽44内には上方ほど高温であり下方ほど低温な温度勾配が形成される。水循環路4は、発電機20内の2つの熱交換器70,74を通過するように配設されている。水循環路4には水循環ポンプ6が配設されている。この水循環ポンプ6が駆動することで貯湯槽44の湯水が水循環路4内を循環する(図中矢印方向に循環する)。水循環路4を循環する湯水は熱交換器70,74で加熱されて昇温し、再び貯湯槽44で貯湯される。なお、水循環ポンプ6は、制御ユニット60によって駆動制御される。具体的には、水循環ポンプ6は、燃料電池22の発電運転中に駆動するように制御される。
【0022】
ユニット15には水道水を給水するための給水管64が配されている。給水管64の給水口近傍には減圧弁42と温度センサT1が配設されている。減圧弁42は貯湯槽44を耐圧以下に維持する。給水管64は第1分岐点65で二手に分岐している。第1給水管64aは貯湯槽44の下部に接続しており、貯湯槽44に水道水を供給する。第2給水管64bは後述するミキシングユニット72の一方の入力口と接続している。第2給水管64bには図示しない温度センサが配設されている。
【0023】
貯湯槽44の上部には2つの配管が接続されている。一方は第1出湯管52であり、他方は圧力逃し弁58を介した排水管54である。第1出湯管52の他端はミキシングユニット72(後述する)の一方の入力口に接続されている。貯湯槽44の湯水は第1出湯管52を介してミキシングユニット72へ送られる。また、第1出湯管52には温度センサT2が配設されている。
また、貯湯槽44が耐圧以上になった場合には圧力逃し弁58が作用し、貯湯槽44の湯水が圧力逃し弁58を介して排水管54へと誘導されて排水される。
【0024】
ミキシングユニット72は、2つの入力口72a,72bと1つの出力口72cを有している。このミキシングユニット72には、一方の入力口72aには第1出湯管52を介して貯湯槽44の湯水が入力され、他方の入力口72bには第2給水管64bを介して水道水が入力される。ミキシングユニット72の2つの入力口72a,72bは、それぞれの開口度が可変である。即ち、湯水と水道水の入力比率が可変である。2つの入力口72a,72bの開口度は制御ユニット60によって制御される。開口度が制御されることで、例えば水道水を遮断して(入力口72bを閉じて)第1出湯管52からの湯水のみをミキシングユニット72に入力する(入力口72aを開く)ことが可能であり、逆に湯水を遮断して(入力口72aを閉じて)第2給水管64からの水道水のみを入力する(入力口72bを開く)ことも可能である。また、入力比率を例えば湯水70%、水道水30%とすることも可能である。ミキシングユニット72では、入力された湯水と水道水が混合される。ミキシングユニット72の出力口72cには、第2出湯管76が接続されている。第2出湯管76は二手に分岐しており、一方は給湯暖房機50に接続されており、他方は第2三方弁14の入力口に接続されている。ミキシングユニット72で混合された湯水は第2出湯管76を経て給湯暖房機50へ供給される他、条件によっては第2三方弁14にも案内される。第2三方弁14については後述する。
【0025】
なお、第1出湯管52や第2出湯管76にはポンプが配設されていないが、貯湯槽44の湯水は次のようにして給湯暖房機50に誘導される。貯湯槽44は常に湯水によって満たされている状態にある。水道水の供給圧力は減圧弁42によって減圧されてはいるものの、貯湯槽44の湯水には減圧された水道水の供給圧力が常に加えられている。この直圧作用により、給湯暖房機50に備えられる弁(図示省略)を開放すると、貯湯槽44の温水が第1出湯管52、ミキシングユニット72、第2出湯管76を介して給湯暖房機50へと誘導される。
【0026】
給湯暖房機50にはバーナ38が備えられている。給湯暖房機50のバーナ38はガスを燃料として燃焼する。ガスは、給湯暖房機50に接続されているガス管(図示省略)から導入される。このバーナ38は、加熱能力可変に燃焼することができる。また、給湯暖房機50には給湯管94が接続されており、この給湯管94には温度センサT3が配設されている。給湯管94は途中で二手に分岐しており、給湯管94の一方の端部は、例えば洗面所や台所の蛇口と接続されている。洗面所や台所での給湯温度は、図示しないリモコン(85:図2参照)が予め操作されて設定されている。また、給湯管94の他方の端部は後述する第2三方弁14の一方の入力口と接続されている。
なお、給湯暖房機50には、給湯管94の他、図示はしないが高温水用循環路や低温水用循環路や風呂追焚き用循環路が接続されている。
【0027】
さらに、ユニット15は、貯湯槽44の湯水を循環させるもう1つの循環経路を有している。即ち、給水管64内や他の配管の凍結を防止するための凍結防止経路12である。具体的には以下の通りである。貯湯槽44内の湯水は、貯湯槽44上部から第1出湯管52を経てミキシングユニット72に送られ、ミキシングユニット72の入力口72aから入力される。ミキシングユニット72で調温された湯水が出力口72cから出力されて第2出湯管76に案内される。なお、ここまでは、温水栓等から給湯するための湯水を貯湯槽44から給湯暖房機50へ出湯する経路と共通の経路である。
この凍結防止経路12には先述の第2三方弁14が配されており、この第2三方弁14は2つの入力口14a,14bと1つの出力口14cを持つ。第2出湯管76は二手に分岐している。分岐した第2出湯管76のうち、一方は給湯暖房機50に接続されており、他方は第2三方弁14の入力口14aに接続されている。また、給湯暖房機50に接続された給湯管94も二手に分岐している。分岐した給湯管94のうち、一方は温水栓等に接続されており、他方は第2三方弁14の入力口14bに接続されている。第2三方弁14の入力口14a,14bの何れかの入力口から入力された湯水は、出力口14cから出力される。第2三方弁14は、制御ユニット60によって何れの入力口を開口するかが制御される。入力口14a,14bが切替えられることで、凍結防止経路12は給湯暖房機50を経由する経路か給湯暖房機50を経由しない経路かが切替えられている。具体的には、給湯暖房機50のバーナ38が燃焼中であるときは給湯暖房機50を経由させるために入力口14aを閉じ、14bを開くように制御される。
【0028】
凍結防止経路12の第2三方弁14の出力口14c以降の循環配管は、給水管64の給水口近傍の第2分岐点66に接続されている。凍結防止経路12内の湯水はこの第2分岐点66から第1給水管64a内に合流し、水道水とともに貯湯槽44へ供給される。なお、凍結防止運転中のミキシングユニット72は、第1出湯管52を80%開度、第2給水管64bを20%開度として両側の流路を確保する。
この凍結防止経路12には凍結防止ポンプ18が配設されている。この凍結防止ポンプ18が駆動することによって貯湯槽44内の湯水が凍結防止経路12内を循環する(図中矢印方向)。この凍結防止ポンプ18は制御ユニット60によって制御駆動されている。この制御については図3を用いて後述する。
また、この凍結防止経路12には逆止弁19が配設され、給湯時に、水道水が第2分岐点66から給湯暖房機50へ逆流するのを防止している。
【0029】
次に、図2を用いて制御ユニット60とそれに接続される各種装置の構成を説明する。図2は制御ユニット60に各種装置が接続される様子を示したブロック図である。なお、図2には本発明を特徴付けるセンサと装置のみを示している。制御ユニット60は、発電機20とユニット15の双方を構成する機器を統括的に制御する。
図2に示すように、制御ユニット60は、CPU102とROM104とRAM106と出力ポート108と入力ポート110から構成される。これらCPU102、ROM104およびRAM106はバス109によって出力ポート108および入力ポート110と相互に接続されている。
CPU102は、ROM104に格納された制御プログラムに従ってコージェネレーションシステム10を構成する各種装置を統括的に制御する。ROM104に格納されている制御プログラムには、各温度センサが検出する温度に基づいて所定の三方弁の切替えや所定のポンプの駆動を行なう処理等を実現するためのプログラムが含まれている。RAM106は、ワークメモリとして使用されるメイン記憶素子であって、温度等の各種データや出入力信号等が各種プログラムの実行に応じて格納される。
【0030】
入力ポート110には、外気温センサTXと、温度センサT1からT3が接続されている。また、入力ポート110は、給湯暖房機50を介してリモコン85から信号を受信することができる。
外気温センサTXは、外気温を所定のデータ形式に変換して出力する。温度センサT1からT3は、水温や熱媒温度を所定のデータ信号に変換して出力する。これらの各温度センサは水温を常時測定し、その測定結果を常時出力している。給湯暖房機50は、リモコン85を用いて使用者が設定した給湯設定温度を所定のデータ信号に変換にして出力する。各センサや給湯暖房機50から出力された信号は入力ポート110で受信され、入力ポート110で受信された信号はバス109を介してCPU102、ROM104,RAM106に取込まれる。RAM106では、各温度センサで測定された温度データが常時更新される(書換えられる)。
【0031】
出力ポート108には、第1三方弁36、第2三方弁14、熱媒循環ポンプ8、水循環ポンプ6、凍結防止ポンプ18、燃料電池22、改質器30、ミキシングユニット72、給湯暖房機50が接続されている。
第1三方弁36は制御ユニット60からの信号に基づいて出力口を切替える。第2三方弁14は制御ユニット60からの信号に基づいて入力口を切替える。各ポンプ6,8,18は制御ユニット60からの信号に基づいて駆動する。
改質器30は、制御ユニット60からの信号に基づいてその起動と停止を行なう。改質器30が駆動しているときにはバーナ32で加熱が行われる。燃料電池22は、制御ユニット60からの信号に基づいて発電運転を行なう。
給湯暖房機50は、制御ユニット60からの信号に基づいて第2出湯管76から湯水を導入するように弁を開放する。この場合、供給される湯水が設定温度よりも低い場合にはバーナ38を用いて加熱を行なう。
ミキシングユニット72は、制御ユニット60からの信号に基づいて2つの入力口72a,72bの開口比率を変更する。
【0032】
次に、図3を用いて制御ユニット60が行なう処理について説明する。なお、以下で説明する処理は、本発明を特徴付ける処理、即ち給水管64内や他の配管の凍結防止処理についてのみ説明する。従って、ミキシングユニット72での入力口72a,72bの開口比率の決定処理、決定された開口比率に従ってミキシングユニット72を駆動する処理、給湯処理等については公知の処理が実施されればよく、本明細書での説明は省略するものとする。
制御ユニット60が行なう給水管64等の配管の凍結防止処理を図3を用いて説明する。凍結防止処理では、まず外気温が3℃以下であるか否かを判別する(ステップS10)。外気温が0℃に達すると給水管64や水循環路4等の配管が凍結してしまう可能性があるので、外気温センサTXから受信している外気温データが3℃以下になった場合(YESの場合)、ステップS20に進み、水道水の給水温が5℃以下であるか否かを判別する。温度センサT1から受信している給水温データが5℃以下になった場合(YESの場合)、ステップS30に進む。なお、ステップS10とステップS20の何れかがYESと判定された場合(外気温が3℃以下であるか、又は水道水の給水温が5℃以下である場合)にステップS30に進むようにしてもよい。
【0033】
ステップS30では、給湯暖房機50のバーナ38が燃焼中であるか否かが判別される。バーナ38が燃焼中でない場合(NOの場合)、ステップS40に進み、第2三方弁14の入力口14bを閉じて入力口14aを開く。ステップS50で凍結防止ポンプ18を駆動させると、凍結防止経路12内の湯水が循環する。このとき、凍結防止ポンプ18を最小能力(本実施例では1200rpm)で駆動させて消費電力と騒音を最小限に抑える。ステップS60に進み、凍結防止経路12内の湯水の水温が30℃以上であるか否かを判別する。温度センサT2から受信している水温データが30℃以上である場合(YESの場合)、ステップS70に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、配管の凍結の可能性はなくなるため、ステップS80に進んで凍結防止ポンプ18を停止させて凍結防止処理を終了する。
【0034】
給水管64等の配管の凍結防止は、凍結防止経路12内に貯湯槽44内の湯水を循環させることによって行なわれる。特に水温が低い給水管64は、凍結防止経路12内の湯水を混合させることによって水道水の水温を上昇させ、凍結を防止する。発電機20が運転を停止しても、停止後しばらくは貯湯槽44内の湯水は凍結を防止するのに充分な熱量を保持している。このため、凍結防止ポンプ18を駆動させて貯湯槽44内の湯水を循環させることによって給水管64や他の配管の凍結防止を行なうことができる。給湯暖房機50のバーナ38が燃焼していないときであれば、凍結防止経路12内の湯水は給湯暖房機50を経由しない短い経路で循環する方が効率よく凍結防止を行なうことができる。
【0035】
ステップS30で、バーナ38が燃焼中である場合(YESの場合)、ステップS90に進み、第2三方弁14の入力口14aを閉じて入力口14bを開く。ステップS100で凍結防止ポンプ18を駆動させると、凍結防止経路12内の湯水が循環する。このときも、凍結防止ポンプ18を最小能力(本実施例では1200rpm)で駆動させる。凍結防止運転中は給水温が20℃以上になったか否かを監視する(ステップS110)。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、配管の凍結の可能性はなくなるため、ステップS80に進んで凍結防止ポンプ18を停止させて凍結防止処理を終了する。
【0036】
給湯暖房機50のバーナ38が燃焼中であるときに、凍結防止経路12が給湯暖房機50を経由すれば湯水はバーナ38で加熱される。加熱された温水は凍結防止経路12内を循環し、給水管64や近傍の配管を加熱して凍結を防止する。発電機20が長時間運転していないと貯湯槽44内の水温が外気温に近い温度まで低下している場合がある。このような場合、凍結防止経路12の給湯暖房機50への送り経路内の湯水の水温も低下している。しかし、バーナ38が燃焼中であれば、給湯暖房機50から貯湯槽44への戻り経路内の湯水はバーナ38によって加熱されて温水となる。配管を加熱する経路はこの戻り経路であるため、温水によって配管を加熱して凍結を防止することができる。
【0037】
また、ステップS60で温度センサT2から受信している水温データが30℃以上でない場合(NOの場合)、ステップS120に進み、第2三方弁14の入力口14aを閉じて入力口14bを開く。ステップS130で凍結防止ポンプ18の回転数を上げ(本実施例では1800rpm)、給湯暖房機50の水流スイッチをオンする。ステップS140に進み、給湯暖房機50のバーナ38を点火し、最小熱量で燃焼させる。即ち、強制的に給湯暖房機50を運転させ、バーナ38によって凍結防止経路12内の湯水を加熱する。バーナ38の燃焼中は給湯暖房機50内の水温が45℃以上であるかを常時判別する(ステップS150)。温度センサT3から受信している水温データが45℃以上になった場合(YESの場合)、ステップS160に進んで凍結防止ポンプ18の回転数を下げて(1200rpm)水流スイッチをオフし、バーナ38を消火させる(ステップS170)。なお、バーナ38の燃焼中は、燃焼時間を短縮するために凍結防止ポンプ18の回転数を上昇させて温水の循環速度を高めている。
【0038】
バーナ38の消火後はステップS180に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、給水管64等の配管の凍結の可能性はなくなるため、ステップS80に進んで凍結防止ポンプ18を停止させて凍結防止処理を終了する。給水温データが20℃以上でない場合(NOの場合)、ステップS190に進み、給湯暖房機50内の水温が25℃以上であるかを判別する。温度センサT3から受信している水温データが25℃以上になった場合(YESの場合)、ステップS180に戻り、再び給水温が20℃以上になったか否かを監視する。給水温データが20℃以上になった場合(YESの場合)、先述のようにステップS80に進んで凍結防止ポンプ18を停止させて凍結防止処理を終了する。また、ステップS190で温度センサT3から受信している水温データが25℃以上でない場合(NOの場合)、ステップS130に戻り、再び強制的にバーナ38の点火動作を行なって凍結防止経路12内の水温を上げる処理を行なう。給水温が20℃以上に上昇して配管の凍結の可能性がなくなるまで、以上の処理が繰返される。
【0039】
発電機20が運転を長時間停止していると、貯湯槽44内の湯水の水温が外気温に近い温度まで低下している場合がある。この状態で凍結防止ポンプ18を駆動させても凍結防止経路12内の水温と給水管64内や他の配管内の水温がほぼ等しいため、これらの配管を加熱することができず、凍結防止の効果は得られない。凍結防止経路12内の水温を監視し、所定温度以下(本実施例では30℃以下)となったときには給湯暖房機50のバーナ38を強制的に駆動させる。これによって、低温となっていた凍結防止経路12内の湯水を加熱して凍結防止を行なうことができる。
【0040】
上記した第1実施例のコージェネレーションシステム10では、凍結防止経路12内に貯湯槽44の湯水を循環させることによって給水管64等の配管の凍結を防止する。給湯暖房機50に内蔵されているバーナ38が燃焼中であれば、給湯暖房機50を経由する経路を選択し、凍結防止経路12内の湯水の水温を積極的に上昇させる。バーナ38が燃焼しておらず、凍結防止経路12内の湯水の水温(即ち貯湯槽44内の湯水の水温)が低下しているときにも給湯暖房機50を経由させ、給湯暖房機50に内蔵されているバーナ38を強制的に駆動させて凍結防止経路12内の湯水を加熱する。したがって、貯湯槽44内の水温に関わらず、給水管64等の配管の凍結する可能性がある場合には、凍結防止経路12内を温水が循環して凍結を防止することができる。
【0041】
次に、本発明を具現化した第2実施例を図4,5を用いて説明する。図4は本実施例のコージェネレーションシステムの概略構成図であり、図5は制御ユニットで実施される処理のフローチャートである。
コージェネレーションシステムの構成について説明する。図4に示すコージェネレーションシステム110は、第1実施例で述べたコージェネレーションシステム10とは、給水管164等の配管の凍結を防止するために配設された凍結防止経路112と、制御ユニット160が行なう凍結防止処理が異なっている。したがって、以下では第1実施例と同一の部分の説明を省略し、異なる部分についてのみ説明する。
【0042】
ユニット115内の貯湯槽144と発電機120の間には水循環路104が配設されている。この水循環路104の、発電機120から貯湯槽144への戻り経路は第3分岐点167で二手に分岐している。一方の経路は貯湯槽144の上部に接続されている。他方の経路は第3分岐点167近傍に熱動弁114が配設されており、以下の経路で貯湯槽144の上部に接続されている。この経路は、給水管164等の配管の凍結を防止する凍結防止経路112として作用する。給水管164と第1出湯管152と第2出湯管176は二重管となっており、給水管164の外管を水道水が通り、第1出湯管152の外管を貯水槽144の湯水が通り、第2出湯管176の外管をミキシングユニット172で調温された湯水が通る。これらの給水管164と第1出湯管152と第2出湯管176のそれぞれの内管に凍結防止経路112が形成されている。即ち、水循環路104の配管は熱動弁114以降で給水管164の内管と接続されている。凍結防止経路112は、給水管164の途中に配された分岐点165以降は第1給水管164aの内管を経て、貯湯槽144の下部近傍で外側の配管168と接続されている。この配管168は給水管164の分岐点165近傍で第2給水管164bの内管と接続されている。さらに凍結防止経路112はミキシングユニット172を通過して第2出湯管176の内管に接続され、給湯暖房機150の手前で外側の配管に接続される。この配管は、第1出湯管152の内管と、ミキシングユニット172の入力口172a近傍で接続されている。凍結防止経路112は第1出湯管152の内管を経て貯湯槽144の上部から貯湯槽144内へ案内されている。凍結防止経路112内の湯水は貯湯槽144内に混合される。水循環路104と凍結防止経路112が発電機120へ向かう経路は共通の経路である。この送り経路には水循環ポンプ106が配設されている。この水循環ポンプ106が駆動することで貯湯槽144の湯水が水循環路104を循環し、この水循環路104から分岐した凍結防止経路112を循環する(それぞれ図中矢印方向に循環する)。第1出湯管152の内管には温度センサT2が配設されている。なお、水循環ポンプ106と熱動弁114は、制御ユニット160によって駆動制御される。この制御については図5を用いて後述する。
【0043】
給湯暖房機150の構成は、第1実施例に示したコージェネレーションシステム10と同様であるが、第1実施例では図示を省略したため、改めて本実施例で説明する。給湯暖房機150には給湯管194の他、高温水用循環路184や低温水用循環路186や風呂追焚き用循環路188が接続されている。
高温水用循環路184には、例えば温水暖房端末機192が配されており、約80℃の高温水が温水暖房端末機192に供給される。高温水用循環路184内の水温が低下したときには、温水が低温水用循環路186へ誘導されて給湯暖房機150に戻る。
低温水用循環路186には、例えば床暖房機196が配されており、約60℃の低温水(80℃の温水に対しては低温である)が床暖房機196に供給される。低温水用循環路186内の水温が低下したときには、温水は給湯暖房機150に戻って加熱される。
風呂追焚き用循環路188には浴槽190が配されており、浴槽190にある湯水が循環する。循環する湯水は、高温水用循環路184内の湯水との熱交換によって加熱される。
なお、本実施例では、貯湯槽144内の湯水(即ち第2出湯管176を介して給湯暖房機150に入力された湯水)は、上述の給湯用の温水として使用される。高温水用循環路184内の湯水や低温水用循環路内186の湯水には貯湯槽144内の湯水は使用されない。
【0044】
次に、制御ユニット160が行なう処理について説明する。なお、第1実施例のときと同様に、以下で説明する処理は、本発明を特徴付ける処理、即ち給水管164等の配管の凍結防止処理についてのみ説明する。
制御ユニット160が行なう給水管164等の配管の凍結防止処理を図5を用いて説明する。凍結防止処理では、まず外気温が3℃以下であるか否かを判別する(ステップS310)。外気温が0℃に達すると配管が凍結してしまう可能性があるので、外気温センサTXから受信している外気温データが3℃以下になった場合(YESの場合)、ステップS320に進み、水道水の給水温が5℃以下であるか否かを判別する。温度センサT1から受信している給水温データが5℃以下になった場合(YESの場合)、ステップS330に進む。なお、ステップS310とステップS320の何れかがYESと判定された場合(外気温が3℃以下であるか、又は水道水の給水温が5℃以下である場合)にステップS330に進むようにしてもよい。
【0045】
ステップS330で凍結防止経路112に配されている熱動弁114を開き、ステップS340に進み、水循環ポンプ106を駆動させると、水循環路104内の湯水とともに凍結防止経路112内の湯水が循環する。このとき、水循環ポンプ106を最小能力(本実施例では1200rpm)で駆動させて消費電力と騒音を最小限に抑える。ステップS350に進み、凍結防止経路112内の湯水の水温が30℃以上であるか否かを判別する。温度センサT2から受信している水温データが30℃以上である場合(YESの場合)、ステップS360に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、給水管164等の配管が凍結する可能性はなくなるため、ステップS370に進んで水循環ポンプ106を停止させ、ステップS380に進んで熱動弁114を閉じて凍結防止処理を終了する。
【0046】
給水管164等の配管の凍結防止は、凍結防止経路112内に貯湯槽144内の湯水を循環させて、湯水の持つ熱量によって配管を加熱することによって行なわれる。発電機120が運転を停止しても、停止後しばらくは貯湯槽144内の湯水は配管の凍結を防止するのに充分な熱量を保持している。このため、配管が凍結する恐れがある場合には、水循環路104を分岐する熱動弁114を開いて水循環ポンプ106を駆動させる。これによって、貯湯槽144内の湯水が凍結防止経路112を循環して凍結防止を行なうことができる。
【0047】
また、ステップS350で温度センサT2から受信している水温データが30℃以上でない場合(NOの場合)、ステップS390に進み、発電機120のバーナ132を点火し、最小熱量で燃焼させる。即ち、強制的に発電機120を運転させ、バーナ132によって水循環路104(凍結防止経路112)内の湯水を加熱する。バーナ132の燃焼中は凍結防止経路112内の水温が60℃以上であるかを常時判別する(ステップS400)。温度センサT2から受信している水温データが60℃以上になった場合(YESの場合)、ステップS410に進んでバーナ132を消火させる。なお、バーナ132の燃焼中は、燃焼時間を短縮するために水循環ポンプ106の回転数を上昇させて(1800rpm)温水の循環速度を高めてもよい。
【0048】
バーナ132の消火後はステップS420に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、給水管164等の配管の凍結の可能性はなくなるため、ステップS370に進んで水循環ポンプ106を停止させ、ステップS380に進んで熱動弁114を閉じて凍結防止処理を終了する。給水温データが20℃以上でない場合(NOの場合)、ステップS430に進み、凍結防止経路112内の水温が30℃以上であるかを判別する。温度センサT2から受信している水温データが30℃以上になった場合(YESの場合)、ステップS420に戻り、再び給水温が20℃以上になったか否かを監視する。給水温データが20℃以上になった場合(YESの場合)、先述のようにステップS370に進んで水循環ポンプ106を停止させ、ステップS370に進んで熱動弁114を閉じて凍結防止処理を終了する。また、ステップS430で温度センサT2から受信している水温データが30℃以上でない場合(NOの場合)、ステップS390に戻り、再び強制的にバーナ132の点火動作を行なって凍結防止経路112内の水温を上げる処理を行なう。給水温が20℃以上に上昇して配管の凍結の可能性がなくなるまで、以上の処理が繰返される。
【0049】
発電機120が運転を長時間停止していると、貯湯槽144内の湯水の水温が外気温に近い温度まで低下している場合がある。この状態で水循環ポンプ106を駆動させても貯湯槽144内(凍結防止経路112内)の水温と給水管164内や他の配管内の水温がほぼ等しいため、これらの配管を加熱することができず、凍結防止の効果は得られない。凍結防止経路112内の水温を監視し、所定温度以下(本実施例では30℃以下)となったときには発電機120のバーナ132を強制的に駆動させる。これによって、低温となっていた凍結防止経路112内の湯水を加熱して凍結防止を行なうことができる。
【0050】
上記した第2実施例のコージェネレーションシステム110でも、第1実施例と同様に、凍結防止経路112内に貯湯槽144の湯水を循環させることによって給水管164等の配管の凍結を防止する。凍結防止経路112内の湯水の水温(即ち貯湯槽144内の湯水の水温)が低下しているときには、発電機120に内蔵されているバーナ132を強制的に駆動させて凍結防止経路112内の湯水を加熱する。したがって、配管が凍結する可能性がある場合には、貯湯槽144内の水温に関わらず、凍結防止経路112内を温水が循環して凍結を防止することができる。
なお、本実施例中では発電機に燃料電池を用いたが、発電機にマイクロガスタービン等を用いてもよい。例えば、マイクロガスタービンを用いた場合、凍結防止経路112内の湯水の水温(即ち貯湯槽144内の湯水の水温)が低下しているときには、発電機であるマイクロガスタービン自体を強制的に駆動させることによって凍結防止経路112内の湯水を加熱する。なお、この場合は発電を伴う。
【0051】
次に、本発明を具現化した第3実施例を図6,7を用いて説明する。図6は本実施例のコージェネレーションシステムの概略構成図であり、図7は制御ユニットで実施される処理のフローチャートである。
コージェネレーションシステムの構成について説明する。図6に示すコージェネレーションシステム210は、第1実施例と第2実施例で述べたコージェネレーションシステム10,110とは、給水管等の配管の凍結を防止するために配設された凍結防止経路と、制御ユニットが行なう凍結防止処理が異なっている。したがって、以下では第1実施例と第2実施例と同一の部分の説明を省略し、異なる部分についてのみ説明する。
【0052】
このコージェネレーションシステム210は、ユニット215内の給水管264と第1出湯管252と第2出湯管276は二重管となっており、給水管264の外管を水道水が通り、第1出湯管252の外管を貯水槽244の湯水が通り、第2出湯管276の外管をミキシングユニット272で調温された湯水が通る。これらの給水管264と第1出湯管252と第2出湯管276のそれぞれの内管に、給水管264等の配管の凍結を防止する凍結防止経路212が形成されている。
給湯暖房機250には、低温水用循環路286が接続されている。低温水用循環路286の、床暖房機296への送り経路には熱動弁214が設けられている。この熱動弁214が開かれることによって送り経路が二手に分岐する。一方は、床暖房機296を経由して給湯暖房機250に戻る床暖房用循環路である。他方は、床暖房機296を経由せず、先述の給水管264の内管等を経て貯湯槽244を通過して給湯暖房機250に戻る経路である。この貯湯槽244を通過する経路が給水管264等の配管の凍結を防止する凍結防止経路212として作用する。低温水用循環路286の送り経路には暖房用ポンプ216が配設されている。この暖房用ポンプ216が駆動することで低温水用循環路286内の湯水とともに、この低温水用循環路286から分岐した凍結防止経路212内の湯水が循環する(それぞれ図中矢印方向に循環する)。低温水用循環路286には温度センサT4が配設されている。
【0053】
床暖房用循環路から分岐した凍結防止経路212の配管は給水管264の給水口近傍で給水管264の内管と接続されている。凍結防止経路212は、給水管264の途中に配された分岐点265以降は第1給水管264aの内管を経て、貯湯槽244の下部近傍で外側の配管268と接続されている。この配管268は給水管264の分岐点265近傍で第2給水管264bの内管と接続されている。さらに凍結防止経路212はミキシングユニット272を経て、入力口272a近傍で第1出湯管252の内管と接続されている。凍結防止経路212は第1出湯管252の内管を経て貯湯槽244の上部から貯湯槽244内へ案内されている。
貯湯槽244内には、貯湯槽244内を通過するように凍結防止経路212が配管されている。凍結防止経路212内の湯水は貯湯槽244内には混合されない。貯湯槽244内を通過した凍結防止経路212の配管は、貯湯槽244の上部側面で外側の配管に接続されている。この配管は給湯暖房機250の近傍で第2出湯管276の内管と接続されている。ミキシングユニット272cの出力口272c近傍で外側の配管と接続され、低温水用循環路286の戻り経路に接続されている。凍結防止経路212内の湯水は低温水用循環路286内に合流して循環する。なお、暖房用ポンプ216と熱動弁214は、制御ユニット260によって駆動制御される。
本実施例では、凍結防止経路212は床暖房用循環路と共通の区間を有している。床暖房用循環路内には上水ではなく、不凍液を循環させる場合がある。しかし、凍結防止経路212内を循環する湯水は貯湯槽244や他の循環経路内の上水と混合されることはない。このため、凍結防止経路212内を循環する湯水は上水であってもよいし、上水でなくてもよい。不凍液であっても特に問題となることはない。
【0054】
制御ユニット260が行なう処理について説明する。なお、第1実施例と第2実施例のときと同様に、以下で説明する処理は、本発明を特徴付ける処理、即ち給水管264等の配管の凍結防止処理についてのみ説明する。
制御ユニット260が行なう配管の凍結防止処理を図7を用いて説明する。凍結防止処理では、まず外気温が3℃以下であるか否かを判別する(ステップS510)。外気温が0℃に達すると配管が凍結してしまう可能性があるので、外気温センサTXから受信している外気温データが3℃以下になった場合(YESの場合)、ステップS520に進み、水道水の給水温が5℃以下であるか否かを判別する。温度センサT1から受信している給水温データが5℃以下になった場合(YESの場合)、ステップS530に進む。なお、ステップS510とステップS520の何れかがYESと判定された場合(外気温が3℃以下であるか、又は水道水の給水温が5℃以下である場合)にステップS530に進むようにしてもよい。
【0055】
ステップS530で低温水用循環路286に配されている熱動弁214を開き、ステップS540に進む。ステップS540では、給湯暖房機250の床暖房機296が運転中であるか否かが判別される。床暖房機296が運転中でない場合(NOの場合)、ステップS550に進み、暖房用ポンプ216を駆動させると、凍結防止経路212内の湯水が循環する。このとき、暖房用ポンプ216を最小能力(本実施例では1200rpm)で駆動させて消費電力と騒音を最小限に抑える。ステップS560に進み、低温水用循環路286内の湯水の水温が30℃以上であるか否かを判別する。温度センサT4から受信している水温データが30℃以上である場合(YESの場合)、ステップS570に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、配管の凍結の可能性はなくなるため、ステップS580に進んで暖房用ポンプ216を停止させ、ステップS590に進んで熱動弁214を閉じて凍結防止処理を終了する。
【0056】
給水管264等の配管の凍結防止は、凍結防止経路212内の湯水を貯湯槽244内の湯水と熱交換させて加熱し、この温水の熱量によって配管を加熱することによって行なわれる。発電機220が運転を停止しても、停止後しばらくは貯湯槽244内の湯水は配管の凍結を防止するのに充分な熱量を保持している。このため、配管が凍結する恐れがある場合には、低温水用循環路286を分岐する熱動弁214を開いて暖房用ポンプ216を駆動させる。これによって、凍結防止経路212内を、貯湯槽244内で加熱された湯水が循環して配管の凍結防止を行なうことができる。
【0057】
ステップS540で、床暖房機296が運転中である場合(YESの場合)、暖房用ポンプ216が駆動しているため、ステップS530で熱動弁214が開かれた時点で凍結防止経路212内の湯水が循環する。凍結防止運転中は給水温が20℃以上になったか否かを監視する(ステップS600)。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、配管の凍結の可能性はなくなるため、ステップS590に進んで熱動弁214を閉じ、凍結防止処理を終了する。
【0058】
給湯暖房機250の床暖房機296が運転中であるときには、凍結防止経路212内の湯水は給湯暖房機250の暖房用バーナ256で加熱される。加熱された温水は凍結防止経路212内を循環し、配管を加熱して凍結を防止する。発電機220が長時間運転していないと貯湯槽244内の水温が外気温に近い温度まで低下している場合がある。このような場合、凍結防止経路212の貯湯槽244から給湯暖房機50への経路内の湯水の水温も低下している。しかし、暖房用バーナ256が燃焼中であれば、貯湯槽244への経路内の湯水は暖房用バーナ256によって加熱されて温水となり、配管を加熱して凍結を防止することができる。
【0059】
また、ステップS560で温度センサT2から受信している水温データが30℃以上でない場合(NOの場合)、ステップS610に進み、暖房用バーナ256を点火し、最小熱量で燃焼させる。即ち、強制的に暖房用バーナ256を運転させて低温水用循環路286(凍結防止経路212)内の湯水を加熱する。暖房用バーナ256の燃焼中は低温水用循環路286内の水温が60℃以上であるかを常時判別する(ステップS620)。温度センサT4から受信している水温データが60℃以上になった場合(YESの場合)、ステップS630に進んで暖房用バーナ256を消火させる。なお、暖房用バーナ256の燃焼中は、燃焼時間を短縮するために暖房用ポンプ216の回転数を上昇させて(1800rpm)温水の循環速度を高めてもよい。
【0060】
暖房用バーナ256の消火後はステップS640に進み、給水温が20℃以上になったか否かを監視する。温度センサT1から受信している給水温データが20℃以上になった場合(YESの場合)、配管の凍結の可能性はなくなるため、ステップS580に進んで暖房用ポンプ216を停止させ、ステップS590に進んで熱動弁214を閉じて凍結防止処理を終了する。ステップS640で給水温データが20℃以上でない場合(NOの場合)、ステップS650に進み、低温水用循環路286内の水温が30℃以上であるかを判別する。温度センサT4から受信している水温データが30℃以上になった場合(YESの場合)、ステップS640に戻り、再び給水温が20℃以上になったか否かを監視する。給水温データが20℃以上になった場合(YESの場合)、先述のようにステップS580に進んで暖房用ポンプ216を停止させ、ステップS590に進んで熱動弁214を閉じて凍結防止処理を終了する。また、ステップS650で低温水用循環路286内の水温データが30℃以上でない場合(NOの場合)、ステップS610に戻り、再び強制的に暖房用バーナ256の点火動作を行なって凍結防止経路212内の水温を上げる処理を行なう。給水温が20℃以上に上昇して配管の凍結の可能性がなくなるまで、以上の処理が繰返される。
【0061】
発電機220が運転を長時間停止していると、貯湯槽244内の湯水の水温が外気温に近い温度まで低下している場合がある。この状態で暖房用ポンプ216を駆動させても貯湯槽244内(凍結防止経路212内)の水温と給水管264内や他の配管内の水温がほぼ等しいため、配管を加熱することができず、凍結防止の効果は得られない。凍結防止経路212内の水温を監視し、所定温度以下(本実施例では30℃以下)となったときには暖房用バーナ256を強制的に駆動させる。これによって、低温となっていた凍結防止経路212内の湯水を加熱して凍結防止を行なうことができる。
【0062】
上記した第3実施例のコージェネレーションシステム210では、凍結防止経路212内の湯水を貯湯槽244内の湯水と混合させることなく貯湯槽244内を通過させる。これにより、凍結防止経路212内の湯水と貯湯槽244内の湯水を熱交換させ、凍結防止経路212内の湯水を加熱する。この加熱した温水を循環させることによって給水管264等の配管の凍結を防止する。凍結防止経路212内の湯水の水温(即ち貯湯槽244内の湯水の水温)が低下しているときには、給湯暖房機250に内蔵されている暖房用バーナ256を強制的に駆動させて凍結防止経路212内の湯水を加熱する。したがって、配管が凍結する可能性のある場合には、貯湯槽244内の水温が低下していても、凍結防止経路212内を温水が循環して凍結を防止することができる。
なお、本実施例では低温用循環経路286に熱動弁214が配設されて凍結防止経路212が形成されていたが、高温用循環経路284から分岐させた経路に熱動弁を配設して凍結防止経路を形成してもよい。また、経路を分岐するために熱動弁に替えて三方弁を用いてもよい。
【0063】
本発明のコージェネレーションシステムでは、給水管や水循環路、あるいは暖房用循環経路等の配管の凍結を防止するために凍結防止経路が配設されている。貯湯槽内には発電に伴って発生した発電熱によって加熱された温水が貯湯されている。発電機が運転を停止すれば、貯湯槽内の水温は徐々に低下する。配管の凍結防止が必要であるときに、貯湯槽内の湯水の水温が低下していなければ、この凍結防止経路内の湯水が貯湯槽内を通過することによって加熱され、加熱された湯水が循環することによって配管を加熱して凍結を防止することができる。発電機が長時間運転を停止しており、貯湯槽内の湯水の水温が低下していれば、従来のコージェネレーションシステムが本来的に必要とする加熱機器(給湯暖房機のバーナ、燃料電池式発電機の改質器を加熱するバーナ、暖房用熱媒体を加熱するバーナ等)によって凍結防止経路内の湯水が加熱される。即ち、凍結防止経路内の湯水は、加熱の必要がある場合にのみ加熱機器によってされ、貯湯槽内の熱量が利用できる場合にはこれを利用するため、非常にエネルギー効率が高い。新たな加熱機器を付加することなく、配管内の水が凍結するのを防止することができる。
【0064】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、上記した実施例中では発電機に燃料電池を用いたが、発電機にマイクロガスタービン等を用いることができる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】第1実施例のコージェネレーションシステムの概略構成図。
【図2】制御ユニットとその周辺のブロック図。
【図3】制御ユニットで実施される処理のフローチャート。
【図4】第2実施例のコージェネレーションシステムの概略構成図。
【図5】制御ユニットで実施される処理のフローチャート。
【図6】第3実施例のコージェネレーションシステムの概略構成図。
【図7】制御ユニットで実施される処理のフローチャート。
【符号の説明】
4:水循環路
6:水循環ポンプ
10:コージェネレーションシステム
12:凍結防止経路
14:第2三方弁
15:ユニット
18:凍結防止ポンプ
20:発電機
44:貯湯槽
50:給湯暖房機
52:第1出湯管
60:制御ユニット
64:給水管、64a:第1給水管、64b:第2給水管
72:ミキシングユニット
76:第2出湯管
94:給湯管
104:水循環路
106:水循環ポンプ
110:コージェネレーションシステム
112:凍結防止経路
114:熱動弁
115:ユニット
120:発電機
132:バーナ
144:貯湯槽
150:給湯暖房機
152:第1出湯管
160:制御ユニット
164:給水管、164a:第1給水管、164b:第2給水管
165:第1分岐点
167:第3分岐点
172:ミキシングユニット
176:第2出湯管
194:給湯管
210:コージェネレーションシステム
212:凍結防止経路
214:熱動弁
215:ユニット
216:暖房用ポンプ
244:貯湯槽
250:給湯暖房機
252:第1出湯管
256:暖房用バーナ
260:制御ユニット
264:給水管、264a:第1給水管、264b:第2給水管
265:第1分岐点
272:ミキシングユニット
276:第2出湯管
286:低温水用循環路
296:床暖房機
TX:外気温センサ
T1,T2,T3,T4:温度センサ

Claims (12)

  1. 発電に伴って発生する発電熱を利用するシステムであり、電力と発電熱を発生する発電機と、貯湯槽と、貯湯槽内の水を発電機に送って発電熱で加熱して貯湯槽に戻す水循環路と、貯湯槽に水を補給する第1給水路と、貯湯槽からの出湯管に混合する水を給水する第2給水路と、貯湯槽を通過して第1給水路と第2給水路に併行し、伝熱する経路を含む凍結防止経路と、凍結防止経路の湯水を循環させるポンプと、外気温が第1所定温度以下又は給水温度が第2所定温度以下のときにポンプを駆動するポンプ制御装置とを有するコージェネレーションシステム。
  2. ポンプ制御装置は、凍結防止経路内の水温が第3所定温度以下のときにポンプの回転数を上げることを特徴とする請求項1に記載のコージェネレーションシステム。
  3. 貯湯槽内の湯水を設定温度に加熱して温水供給箇所に供給する温水供給手段を備え、
    凍結防止経路は、温水供給手段を通過することを特徴とする請求項1又は2に記載のコージェネレーションシステム。
  4. 凍結防止経路内の水温が第4所定温度以下のときに温水供給手段に内蔵されている加熱手段を強制駆動する温水供給手段制御手段が付加されていることを特徴とする請求項3に記載のコージェネレーションシステム。
  5. 凍結防止経路は、温水供給手段を通過しない経路と通過する経路とを有し、温水供給手段に内蔵されている加熱手段が駆動されていないときには温水供給手段を通過しない経路が選択され、温水供給手段に内蔵されている加熱手段が駆動されているときには温水供給手段を通過する経路が選択されることを特徴とする請求項3又は4に記載のコージェネレーションシステム。
  6. 凍結防止経路は、発電機を通過することを特徴とする請求項1又は2に記載のコージェネレーションシステム。
  7. 凍結防止経路内の水温が第5所定温度以下のときに発電機に内蔵されている加熱手段を強制駆動する発電機制御手段が付加されていることを特徴とする請求項6に記載のコージェネレーションシステム。
  8. 水循環路の湯水を貯湯槽へ戻す経路は、凍結防止経路を兼用する経路と凍結防止経路をバイパスする経路を有しており、
    外気温が第1所定温度以下又は給水温度が第2所定温度以下のときに凍結防止経路を兼用する経路が選択されることを特徴とする請求項6又は7に記載のコージェネレーションシステム。
  9. 凍結防止経路内を循環する湯水は貯湯槽内の湯水と混合されないことを特徴とする請求項1に記載のコージェネレーションシステム。
  10. 熱媒体を利用する暖房装置と、暖房装置に熱媒体を循環させる暖房用循環路を備え、
    凍結防止経路は暖房用循環路と共通区間を有していることを特徴とする請求項1又は9に記載のコージェネレーションシステム。
  11. 暖房装置の熱媒体を循環させる暖房用ポンプを備え、その暖房用ポンプが凍結防止経路内の湯水も循環させることを特徴とする請求項10に記載のコージェネレーションシステム。
  12. 凍結防止経路内の水温が第6所定温度以下のときに暖房用熱媒体の加熱手段を強制駆動する暖房装置制御手段が付加されていることを特徴とする請求項11に記載のコージェネレーションシステム。
JP2002219324A 2002-07-29 2002-07-29 コージェネレーションシステム Expired - Fee Related JP3836761B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219324A JP3836761B2 (ja) 2002-07-29 2002-07-29 コージェネレーションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219324A JP3836761B2 (ja) 2002-07-29 2002-07-29 コージェネレーションシステム

Publications (2)

Publication Number Publication Date
JP2004060980A true JP2004060980A (ja) 2004-02-26
JP3836761B2 JP3836761B2 (ja) 2006-10-25

Family

ID=31940256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219324A Expired - Fee Related JP3836761B2 (ja) 2002-07-29 2002-07-29 コージェネレーションシステム

Country Status (1)

Country Link
JP (1) JP3836761B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032321A (ja) * 2006-07-28 2008-02-14 Nippon Oil Corp 管路凍結防止方法及びコジェネレーションシステム
JP2008032320A (ja) * 2006-07-28 2008-02-14 Nippon Oil Corp 管路凍結防止方法及びコジェネレーションシステム
JP2008243590A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP2010272343A (ja) * 2009-05-21 2010-12-02 Aisin Seiki Co Ltd 燃料電池システム
JP2012197964A (ja) * 2011-03-18 2012-10-18 Osaka Gas Co Ltd 給湯システムの凍結予防装置及び給湯システム
JP2013029288A (ja) * 2011-07-29 2013-02-07 Noritz Corp コージェネレーションシステム
JP2013114851A (ja) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd 燃料電池システム
JP5626918B2 (ja) * 2009-11-25 2014-11-19 三菱電機株式会社 補助ヒータ制御装置及び加熱流体利用システム及び補助ヒータ制御方法
JP2018076998A (ja) * 2016-11-09 2018-05-17 アイシン精機株式会社 コジェネレーションシステム
JP2018120720A (ja) * 2017-01-24 2018-08-02 大阪瓦斯株式会社 エネルギ供給システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032321A (ja) * 2006-07-28 2008-02-14 Nippon Oil Corp 管路凍結防止方法及びコジェネレーションシステム
JP2008032320A (ja) * 2006-07-28 2008-02-14 Nippon Oil Corp 管路凍結防止方法及びコジェネレーションシステム
JP2008243590A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP2010272343A (ja) * 2009-05-21 2010-12-02 Aisin Seiki Co Ltd 燃料電池システム
JP5626918B2 (ja) * 2009-11-25 2014-11-19 三菱電機株式会社 補助ヒータ制御装置及び加熱流体利用システム及び補助ヒータ制御方法
US9291376B2 (en) 2009-11-25 2016-03-22 Mitsubishi Electric Corporation Auxiliary heater control device, heated fluid utilization system, and auxiliary heater control method
JP2012197964A (ja) * 2011-03-18 2012-10-18 Osaka Gas Co Ltd 給湯システムの凍結予防装置及び給湯システム
JP2013029288A (ja) * 2011-07-29 2013-02-07 Noritz Corp コージェネレーションシステム
JP2013114851A (ja) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd 燃料電池システム
JP2018076998A (ja) * 2016-11-09 2018-05-17 アイシン精機株式会社 コジェネレーションシステム
JP2018120720A (ja) * 2017-01-24 2018-08-02 大阪瓦斯株式会社 エネルギ供給システム

Also Published As

Publication number Publication date
JP3836761B2 (ja) 2006-10-25

Similar Documents

Publication Publication Date Title
JP2005061711A (ja) 排熱回収給湯装置
JP2007255775A (ja) ハイブリッド型給湯装置
JP2004239581A (ja) コージェネレーションシステム
JP3836761B2 (ja) コージェネレーションシステム
JP2008275182A (ja) 排熱回収システム及び副蓄熱タンク
JP4327170B2 (ja) 貯湯式給湯システム
JP3857601B2 (ja) コージェネレーションシステム
JP2004150646A (ja) コジェネレーションシステム
JP3933543B2 (ja) 熱媒供給装置
JP7260352B2 (ja) エネルギー供給システム
JP4405717B2 (ja) コージェネレーションシステム
JP5846413B2 (ja) コージェネレーションシステム
JP5667856B2 (ja) 給湯機
JP6088771B2 (ja) 熱源装置
JP4304601B2 (ja) 貯留式給湯装置およびコージェネレーションシステム
JP6143092B2 (ja) 貯湯給湯装置
JP4077419B2 (ja) コージェネレーションシステム
JP2012180962A (ja) 補助熱源付貯湯タンク給湯システム
JP2017116192A (ja) コージェネレーションシステム、制御装置、制御方法
JP5317810B2 (ja) 温水器
JP2004053151A (ja) 温水供給装置
JP2015158323A (ja) コージェネレーションシステム
JP6191352B2 (ja) 貯湯給湯装置
JP2013069598A (ja) コージェネレーションシステム
JP6396833B2 (ja) 熱源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060727

R150 Certificate of patent or registration of utility model

Ref document number: 3836761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140804

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees