JP2004058157A - ろう付面へフラックスを直接塗布する方法 - Google Patents

ろう付面へフラックスを直接塗布する方法 Download PDF

Info

Publication number
JP2004058157A
JP2004058157A JP2003276953A JP2003276953A JP2004058157A JP 2004058157 A JP2004058157 A JP 2004058157A JP 2003276953 A JP2003276953 A JP 2003276953A JP 2003276953 A JP2003276953 A JP 2003276953A JP 2004058157 A JP2004058157 A JP 2004058157A
Authority
JP
Japan
Prior art keywords
brazing
flux
substrate
braze
particle mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003276953A
Other languages
English (en)
Inventor
Zhibo Zhao
チポォ・チャオ
Bryan A Gillispie
ブライアン・エイ・ギリスピー
John R Smith
ジョン・アール・スミス
Thomas Hubert Van Steenkiste
トーマス・フバート・バン・スシュテンキステ
Yang Luo
ヤン・ルオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Publication of JP2004058157A publication Critical patent/JP2004058157A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】ろう付面へろう付用フラックス材を直接塗布するための方法を提供する。
【解決手段】この方法は動的スプレイ法を用いてろうを基板に塗布してろう付面を形成するステップを含んでいる。基板へのろうの塗布に続いて、ろう付用フラックス材を乾燥粉末または湿潤スラリのどちらかとしてろう付面に直接塗布することができる。ろう付面の状態によってはバインダまたは樹脂材料を追加して使用しなくても塗布されたフラックス材が表面に付着することが可能になる。
【選択図】図2

Description

 本発明はろう付技術に関し、さらに詳細にはろう付面へろう付用フラックスを直接塗布する方法に関する。
 ろう付は、融点が各部品の融点よりも低いろうによって各部品を接合する方法である。このろう付法は一般に、金属または合金のいずれかの部品の接合に使用される。一般的に、ろうは接合される2つの部品に隣接して置かれるかまたはこれら部品間に置かれ、次にこれらの集合体としてのアッセンブリが、ろうは溶融するが部品は溶融しない温度まで加熱される。冷却されると、ろうは2つの部品の面の間に金属結合を形成する。接合される面にはしばしば、各面間に良好なろう付接合を形成するのを妨げる表面金属酸化物層が含まれている。そのため、ろうの他にろう付用フラックス材を含むのが一般的である。代表的なろう付用フラックス材は塩化物および/またはフッ化物のいずれかを含んでおり、フラックス材は一般にろうより低い温度で溶ける。ひとたび溶ければ、ろう付用フラックス材が作用して2つの面上の金属酸化物の硬い殻を溶解し、この溶解によって溶けたろうの濡れ性や流動性が高められ、ろうがろう付される部品の継手間の毛管力によって自由に広がることが可能になる。通常の当業者に知られているように、ろうの組成は接合面の組成によって決定される。同様に、利用可能なろう付用フラックス材が多くあり、特定の使用するフラックス材はろう付される成分を特定して決められる。一般に、アルミニウム成分をろう付けするとき、業界ではSolvay Fluor社製のフラックス材Nocolok(登録商標)を用いている。このフラックスはフルオロアルミン酸カリウムを含んでいる。
 最近の製造工程では、装置のろう付前にろう付用フラックスをろう付面へ塗布することは難しい工程である。一般に、接合面の一方にろうが塗布され、それから装置の事前組み立てが行われる。事前組み立ての後、装置全体を水−フラックスのスラリ中に浸漬するかまたはこのような水−フラックスのスラリを噴霧してアッセンブリ全体に吹きつける。これとは別の方法として、乾式静電粉末塗装法によってフラックス材を装置全体に塗布する。上記したように、実際には、このフラックスが必要なのは2つの面が接合される局部的な部分だけである。フラックスが全体に塗布された装置はその後ろう付炉内に送り込まれ、そこでろう付用フラックス材が液体になり、しばしば装置からしたたり落ちてろう付炉内部で非常に硬い残渣を形成、このため炉を定期的に運転停止して洗浄を行う必要がある。さらに、ろう付用フラックス材が加熱されているためヒュームが発生するがこれは大気中へ放出する前に処理しなければならない。ろう付用フラックスがろう付面によく付着しないことがしばしばあり、その結果、ろう付用フラックス材をろう付面に付着させるためにバインダや樹脂を追加して含めることが必要になる。最後に、これらの方法は、使用すべきフラックス材が過大なため廃棄物が多い。
米国特許第6,139,913号 米国特許第6,283,386号 Van Steenkisteら、「Aluminum coatings via kinetic spray with relatively large powder particles」、Surface and Coatings Technology 154で発表、2002年、237〜252頁
 本発明の目的は、簡便で、ろう付工程に先立ってフラックス材を塗布したろう付面を広範囲に扱うことができる、ろう付面上へろう付用フラックス材を直接塗布する方法を提供することにある。このような方法については、ろう付面だけにフラックスを塗布し、アッセンブリ全体にフラックスを塗布する必要がなく、フラックス塗布装置の設備投資や設置面積、フラックス材の必要量およびフラックス塗布工程に必要な労力が著しく低減される。
 1つの実施形態において、本発明は、動的スプレイ塗装によってろうを基板上に直接塗布してろう付面を形成するステップと、続いてこの形成されたろう付面上にろう付用フラックス材を直接付着させるステップとを含む。
 別の実施形態においては、本発明は、ろうを粒子混合物として供給するステップと、この粒子混合物の熱軟化を引き起こすほど温度が高くないガス流中にこの粒子混合物を搬送するステップと、このガス流中に同伴される粒子混合物を基板に対向して配置される超音速ノズルを通るように誘導するステップと、この粒子混合物を十分な速度まで加速して粒子混合物を基板上に付着させ、これによって動的スプレイ塗装によってろう付面を形成し、その後、形成されたろう付面上に直接ろう付用フラックスを付着させるステップとを含むろう付用フラックス材のろう付面への塗布方法を含む。
 本発明は、基板上へのろうの直接的な動的スプレイ塗装によってろう付面を形成し、この形成されたろう付面上へろう付用フラックスを直接塗布する方法を含む。この方法は、一般に米国特許第6,139,913号と米国特許第6,283,386号およびVan Steenkisteら、「Aluminum coatings via kinetic spray with relatively large powder particles」、Surface and Coatings Technology 154で発表、2002年、237〜252頁に開示されるような動的スプレイ法の使用を含んでおり、これらはすべて参考文献として本明細書に記載している。
 初めに図1について説明すると、本発明による使用のための動的スプレイシステムが一般に参照数字10で示されている。システム10は支持台14またはその他の支持手段が中に配置された囲い12を備えている。台14に固定された取り付けパネル16が塗布する基板を保持する工作物ホルダ18を支えている。1つの実施形態において、この工作物ホルダ18は3次元方向に移動でき、適切な塗布基板を支持することができる。別の実施形態においては、工作物ホルダ18が、以下に説明するように動的スプレイノズル34を通るように塗布基板を送り出すことができる。囲い12は少なくとも1つの空気入口(図示せず)と、適切な排気導管22によって粉塵捕集器(図示せず)に連結される空気出口20を有する周囲の壁を備えている。塗布の作業中はこの粉塵捕集器が囲い12から出てくる空気を連続的に吸引し、排気空気中に含まれる粉塵または粒子をその後処分するために捕集する。
 スプレイシステム10はさらに、3.4MPa(500ポンド/(インチ)2)まで昇圧した空気を高圧空気バラストタンク26に供給できるエアコンプレッサ24を備えている。この空気バラストタンク26はライン28を通して高圧粉末供給器30と分離型空気加熱器32の両方に連結されている。空気加熱器32は、以下に述べるメインガスである高圧の加熱空気を動的スプレイノズル34に供給する。メインガスの温度は、噴霧される単一粉末または複数粉末に応じて100℃から3000℃まで変化する。メインガスおよび粉末供給器30の圧力は1.4MPa(200ポンド/(インチ)2)から3.4MPa(500ポンド/(インチ)2)まで変化する。粉末供給器30は、単一粉末の粒子または粒子と未加熱高圧空気との混合物を混合し、この粒子混合物をノズル34の補給入口ライン48に供給する。本発明で用いられた粒子には選択されたろうが含まれる。このろうは、一般に、金属、合金またはそれらの混合物が含まれ、以下に実例が与えられる。コンピュータ制御35は、空気加熱器32に供給される空気の圧力と空気加熱器32を出ていく加熱メインガスの温度の両方を制御するように動作する。通常の当業者によって理解されるように、システム10は複数の粉末供給器30を備えることができ、これらはすべて1つまたは複数の補給入口ライン48に連結されている。説明を明瞭にするために図1には粉末供給器30を1つだけ示した。
 図2はノズル34、その空気加熱器32との連結部および補給入口ライン48の断面図である。メインエアー通路36は空気加熱器32とノズル34を連結している。通路36は、空気を流れのストレートナ40を通して混合室42に振り向ける予混合室38と連結している。空気または他の加熱されたメインガスの温度と圧力は通路36内のガス入口温度熱電対44および混合室42に接続された圧力センサ46によって監視されている。
 未加熱の高圧空気と粒子粉末の混合物は補給入口ライン48を通して所定の内径を有する直管を含む粉末噴射管50に供給される。この所定の内径は0.40〜3.00ミリメートルの範囲にすることができる。径は0.40〜0.90ミリメートルの範囲が好ましい。この噴射管50は中心軸52を有し、中心軸52は予混合室38の軸と同じであることが好ましい。管50は予混合室38、流れのストレートナ40を通って混合室42内に伸張している。
 混合室42はドラバル型のノズル54と連絡している。ノズル54は直径が減少してのど部58に至る入口コーン部56を有している。のど部の下流は出口端60になっている。入口コーン部56の最大径は10〜6ミリメートルの範囲にすることができ、7.5ミリメートルが好ましい。入口コーン部56はのど部58まで細くなっていく。のど部58の径は3.5〜1.5ミリメートルの範囲にすることができ、3〜2ミリメートルが好ましい。のど部58の下流から出口端60に至るノズル54の部分は多様な形状にすることができるが、好ましい実施形態においては断面形状が長方形のものが好ましい。出口端60において、ノズル54は長い方の辺が8〜14ミリメートル、短い方の辺が2〜6ミリメートルの長方形であることが好ましい。のど部58から出口端60までの距離は60〜400ミリメートルの範囲で変えることができる。
 米国特許第6,139,913号および米国特許第6,283,386号に開示されているように、粉末噴射管50は、通路36からの加熱メインガスの圧力を超える圧力のもとで粒子粉末混合物をシステム10に供給する。ノズル54は、300メートル毎秒から1200メートル/秒もの速い同伴粒子の出口速度を発生する。この同伴粒子はノズル54を通って流れるときに運動熱エネルギーと熱エネルギーを得ている。ガス流中の粒子の温度は粒子の大きさおよびメインガスの温度に応じて変わることが当業者によって理解されるであろう。このメインガスの温度はノズル54の入口における加熱高圧ガスの温度と定義される。これら粒子の温度と曝露時間は、これら粒子が常にその融点以下の温度になるように十分低く保たれ、その結果、衝突した場合でも運動エネルギーおよび熱エネルギーの移動によって粒子のもとの固相状態が変化せず、したがってもとの物性も変化しない。ノズル54を出た粒子は基板を被覆するためにその表面に方向が向けられる。
 ノズル54と対向する基板に衝突すると、粒子は平らになってアスペクト比が一般に約5から1の小さな塊状の構造になる。基板が金属あるいは合金で各粒子が金属あるいは合金を含む場合、基板表面に衝突する粒子はすべて表面層上の酸化物を破砕し、金属あるいは合金の粒子は続いて粒子と基板の間に金属間直接結合を形成する。衝突と同時に動的スプレイを行った粒子はほとんどすべての運動エネルギーと熱エネルギーを基板表面に移動させ降伏応力を超えている場合は表面に固着する。上記したように、ある粒子が基板に付着するためには、粒子がノズル54を出た後基板に衝突する際基板に付着することになる速度と定義される臨界速度にその粒子が達しているかあるいはそれを超えていることが必要である。この臨界速度は粒子の材料組成によって変わってくる。一般に高度が高い材質では、ある基板に付着する前により大きな臨界速度を実現する必要がある。基板結合する粒子の性質が何であるかは今回正確にはわかっていない。しかしながら、この結合の一部は基板と衝突する際の粒子の塑性変形によるものと考えられる。
 動的スプレイシステム10は非常に汎用性がありどのような多様な塗膜でも生成する。この動的スプレイシステム10はお互いに接合される2つの基材の一方にろうを塗布するのに用いられる。このろうは、粒子混合物として供給され、平均の公称粒子寸法が直径25〜200ミクロンの粉末として供給されることが好ましく、直径50〜200ミクロンの粉末として供給されることがより好ましい。上で述べたように、ろうとして選択される材料は金属または合金のどちらかを含むことができ、その組成は接合される基板の組成に依存する。たとえば、アルミニウム基板をお互いにろう付けする場合、ろうがアルミニウム、亜鉛およびシリコンの3つの混合物を含むことが好ましい。この3つの混合物は、すべての重量がろうの総重量を基準にして50〜78重量%のアルミニウム、12〜45重量%の亜鉛および5〜10重量%のシリコンを含むことが好ましい。亜鉛はろうに対し耐腐食性をもたらす。しかしながら、他のろう材、たとえば、シリコン;シリコンとアルミニウム;シリコン、アルミニウム、亜鉛と銅などのろう材を用いることができる。上述のように、システム10は、1つの実施形態において3次元方向に移動可能な工作物ホルダ18を備えている。したがって、ろうを塗布する基板を工作物ホルダ18内に取り付けてノズル34の正面で操作し、作成を希望するろう付面の区域の輪郭を正確に描くことができる。他の実施形態においては、工作物ホルダ18を用いて、ノズル34を、たとえば、毎秒1.3〜25.4cm(0.5〜10インチ)の速度で通り過ぎるように1個の基板を送り出すことができ、これによって、ろうによる基板表面の高速製造による塗布が可能になる。動的スプレイ法によってろうが基板に塗布される場合、図3に示すように一連の「丘と谷の部分」がある粗い塗膜層が生成される。図3はアルミニウム、亜鉛およびシリコンの混合物を含むろうをスプレイした動的スプレイ処理のろう付面の走査型電子顕微鏡写真を示す。ノズル34から基板までのスタンドオフ距離はおよそ2cmである。基板には1m四方当たり50〜100グラムのろうを塗布することが好ましい。
 フラックス材は当業者に知られたどのようなフラックスでも使用することができる。これらにはNocolok(登録商標)の名前で販売されているフルオロアルミン酸カリウムなどのよく知られたフラックスが含まれる。使用するフラックスの組成は基板の組成およびろうの組成を特定して決められる。このフラックスは、乾式静電粉末塗装、乾燥粉末スプレイ塗装、スクリーンによる乾燥粉末付着、粉末の乾式塗装またははけ塗り、ろう付面上をフラックス材を含んだ回転輪を走行させる;水−フラックススラリのスプレイ、または水−フラックススラリ中へのろう付面の浸し塗りなどの多様な方法のいずれかによって動的スプレイ工程の後形成されたろう付面に塗布することができる。一般的に、フラックスはスクリーンによって乾燥粉末としてろう付面上に付着され、その後表面をはけで掃いて過剰分を取り除く。動的スプレイを行ったろう付面によって形成される山や谷の部分のために、図4Aおよび4Bに示されるようにろう付面は多量のフラックス材を保持することができる。特定の塗布に必要なフラックス材の量は、1m四方当たり2〜50gと大きく変化し、1m四方当たり2〜35gがより好ましく、1m四方当たり6〜15gが最も好ましい。図4Aに、ろう付面に1m四方当たり10gを塗布したフラックス材を有するろう付面の平面の走査型電子顕微鏡写真を示した。図4Aで見てわかるように、ろうの粒子は参照数字80で示され、一連の高くなったスポットを形成しており、これら高くなった各スポットの間に乾燥したフラックス材86が配置されている。図4Bに、粒子群90を含むろう付面が、1m四方当たり40gを塗布した参照数字96で示されるフラックスとともに示されている。
 図5では、ろう付面上の乾燥フラックス粉末の保持状態についてテストを行った。3個の試験片A、B、およびCにはそれぞれ乾燥粉末はけ塗りを使用して乾燥フラックスを塗布した。動的スプレイでアルミニウム、亜鉛およびシリコンを含むろうを塗布した10cm長のアルミニウム管を試験片とした。5cmの高さから平らな面上に各管を落下させ、落下テスト前後の面上のフラックス量を記録した。棒グラフ100、106、および112は最初の落下テスト前の各試験片のフラックス量を表している。棒グラフ102、108、および114は1回の落下テスト後に保持されて残ったフラックス量を表している。この図に示されるように、最初の落下テストの後に、はがれ落ちたフラックスは一般に10%未満である。棒グラフ104、110、および116は次の落下テストの結果を示す。図示されるように、2回目の落下テストの結果、さらに減少したフラックスはごく僅かである。テストの結果、フラックス材を塗布する従来技術の方法で必要なバインダや接着剤あるいは樹脂などがまったく無くても、本発明によって塗布されたろう付用フラックス材は動的スプレイを行ったろう付面に十分に付着していることが示されている。この落下テスト後に保持されていた量はかなりの量である。当業者、すなわち通常の当業者に知られているように、フラックスの必要量がろう、接合面およびフラックスによって変わってくることは明白である。付着したフラックス材の少なくとも5%が最初の落下テスト後に保持されていることが好ましく、少なくとも20%が最初の落下テスト後に保持されていることがより好ましく、少なくとも50%が保持されていることが最も好ましい。
 図6Aには、サンプル上のフラックス塗布量に対するフラックス−水スラリ混合物中のフラックス濃度の影響が示されている。サンプルはすべてスプレイ法によって塗布され、過剰な水は空気ジェットで取り除いた。図6Bに示すように、湿ったフラックス材はろう付面に容易に付着する。3つのサンプルA、B、およびCはそれに塗布された湿潤フラックスのスラリを有しており、テスト前の初めの塗布量は棒グラフ120、124、および130で示されている。これらサンプルを平らな面の上の5cmの高さから垂直に落下させ、落下後に保持されて残ったフラックス量を棒グラフ122、128、および132で示している。図6Bからわかるように、湿潤フラックス−水スラリのスプレイ塗装を使用して付着したフラックス材の減少は無視できるほど小さい。テストの結果、フラックス材を塗布する従来技術の方法で必要なバインダや接着剤あるいは樹脂などがまったく無くても、本発明によって塗布されたろう付用フラックス材は動的スプレイを行ったろう付面に十分に付着していることが示されている。この落下テスト後に保持されていた量はかなりの量である。当業者、すなわち通常の当業者に知られているように、フラックスの必要量が、ろう、接合面およびフラックスによって変わってくることは明白である。付着したフラックス材の少なくとも5%が最初の落下テスト後に保持されていることが好ましく、少なくとも20%が最初の落下テスト後に保持されていることがより好ましく、少なくとも50%が保持されていることが最も好ましい。
 図7はろう付面を形成しているろう140および湿潤フラックススラリのスプレイを使用した塗装の後で表面上に保持されて残ったフラックス材142を示す走査型電子顕微鏡写真である。フラックスは1m四方当たり8グラムの密度で塗布した。
 図8では、ろう付用フラックス材212を塗布するシステムが一般に200で示されている。システム200はブラケット214内で回転可能な回転輪208を備えている。フラックス材供給器210は回転輪208の表面上にフラックス212が付着している。ブラケット214は、基板202の表面に関して上記したように動的スプレイ工程で形成されたろう付面204に対して回転輪208を保持している。図8において基板202は矢印206の方向に移動している。供給器210が、回転輪208の表面上にフラックス212を連続的に塗布しており、その結果フラックスを塗布されたろう付面216が得られる。回転輪208は、フラックス212を受け入れ、移動するろう付面204上にフラックスを付着させるものであれはどんな種類の回転輪でも可能である。好ましい実施形態では、回転輪208は粉末フラックス212を容易に受け入れる宝飾品タイプの布地製の回転燐である。このシステム200は操作が簡単であり、本発明を実施する1つの方法である。
 前記の発明を関連する法的基準に従って説明したが、模範例として説明したものであり範囲を限定する性質のものではない。開示された実施形態に対する変形や変更形態が当業者には明白になる可能性があり、これらは本発明の範囲内のものとなる。したがって本発明に与えられる法的保護の範囲は、添付の請求項を検討することによってのみ決定することができる。
本発明で使用する動的スプレイシステムである。 本発明で使用する動的スプレイノズルの断面図である。 本発明による動的スプレイ塗布によって基板に塗布されたろうを有する基板平面の走査型電子顕微鏡写真である。 図4Aは、基板に1m四方当たり10g塗布した本発明による乾燥ろう付用フラックス材を有するろう付面の平面の走査型電子顕微鏡写真である。
 図4Bは、基板に1m四方当たり40g塗布した本発明による乾燥ろう付用フラックス材を有するろう付面の平面の走査型電子顕微鏡写真である。
本発明による3個のサンプルに対し行った一連の落下テスト前後におけるろう付面上のろう付用フラックス材の保持状態を示すグラフである。 図6Aは、本発明による水−ろう付用フラックスのスラリのろう付用フラックス濃度に対するろう付面上のろう付用フラックス塗布量の依存性を示すグラフである。
 図6Bは、本発明による3個のサンプルに対し行った落下テスト前後の水−ろう付用フラックススラリの保持状態を示すグラフである。
本発明による水−ろう付用フラックスのスラリを、基板に1m四方当たり8g塗布した後のろう付面の平面の走査型電子顕微鏡写真である。 本発明によるろう付用フラックス材を塗布する回転輪の図面である。
符号の説明
 10 動的スプレイシステム
 12 囲い
 14 支持台
 18 工作物ホルダ
 20 空気出口
 24 エアコンプレッサ
 26 バラストタンク
 30 高圧粉末供給器
 32 空気加熱器
 34 動的スプレイノズル
 35 コンピュータ制御
 36 メインエアー通路
 38 予混合室
 40 流れのストレートナ
 42 混合室
 44 入口温度熱電対
 46 圧力センサ
 48 補給入口ライン
 50 粉末噴射管
 54 ノズル
 56 入口コーン部
 60 出口端

Claims (31)

  1.  a)動的スプレイ塗装によってろうを基板上に直接塗布してろう付面を形成するステップと、
     b)この形成されたろう付面上に、ろう付用フラックス材を直接付着させるステップとを含むろう付用フラックス材のろう付面への塗布方法。
  2.  ステップa)が、ろうを粒子混合物として供給する工程、この粒子混合物の熱軟化を引き起こすほど温度が高くないガス流中にこの粒子混合物を搬送する工程、このガス流中に同伴される粒子混合物を基板に対向して配置される超音速ノズルを通るように誘導する工程、およびこの粒子混合物を十分な速度まで加速して粒子混合物を基板上に付着させ、これによって動的スプレイ塗装によるろう付面を形成する工程を含む請求項1に記載の方法。
  3.  平均公称粒子径が少なくとも65ミクロンである粒子混合物を供給するステップをさらに含む請求項2に記載の方法。
  4.  平均公称粒子径が65〜250ミクロンである粒子混合物を供給するステップをさらに含む請求項2に記載の方法。
  5.  温度149〜1649℃(300〜3000゜F)でガスを供給するステップを含む請求項2に記載の方法。
  6.  粒子混合物を速度300〜1200メートル/秒に加速するステップを含む請求項2に記載の方法。
  7.  合金または金属を含むろうを供給するステップを含む請求項1に記載の方法。
  8.  耐腐食性材料を備えたろうを供給するステップをさらに含む請求項1に記載の方法。
  9.  アルミニウム、亜鉛およびシリコンの3つの混合物としてろうを供給するステップを含む請求項1に記載の方法。
  10.  すべてのろうの総重量を基準にして、50〜78重量%のアルミニウム、12〜45重量%の亜鉛および5〜10重量%のシリコンからなる3つの混合物としてろうを供給するステップを含む請求項9に記載の方法。
  11.  ろう付用フラックスが、乾式静電粉末として、乾燥粉末のはけ塗りによる選別された乾燥粉末として、ろう付面上をフラックスを含んだ回転輪を走行させることによる乾燥粉末塗りとして、浸し塗りによる湿潤スラリとして、スプレイ塗装による湿潤スラリとして、またはこれらの混合したものとしてのうち少なくとも1つによって付着される請求項1に記載の方法。
  12.  ろう付面上にろう付用フラックス材を1m四方当たり2〜40グラム直接付着させるステップをさらに含む請求項1に記載の方法。
  13.  ステップa)が、動的スプレイ塗装により金属または合金を含む基板上にろうを直接塗布して、ろう付面を形成することを含む請求項1に記載の方法。
  14.  ステップa)が、動的スプレイ塗装によりアルミニウムを含む基板上にろうを直接塗布してろう付面を形成することを含む請求項1に記載の方法。
  15.  ステップa)が、動的スプレイ塗装により基板上にろうを1m四方当たり50〜150グラム直接塗布してろう付面を形成することを含む請求項1に記載の方法。
  16.  ろう付面を備えフラックス材を塗布した基板を5cmの高さから平らな面上に落下させた後、塗布したフラックス材を重量比で少なくとも5%保持するステップをさらに含む請求項1に記載の方法。
  17.  a)ろうを粒子混合物として供給するステップと、この粒子混合物の熱軟化を引き起こすほど温度が高くないガス流中にこの粒子混合物を搬送するステップと、このガス流中に同伴される粒子混合物を基板に対向して配置される超音速ノズルを通るように誘導するステップと、この粒子混合物を十分な速度まで加速して粒子混合物を基板上に付着させ、これによって動的スプレイ塗装によるろう付面を形成するステップと、および
     b)この形成されたろう付面上にろう付用フラックス材を直接付着させるステップとを含むろう付用フラックス材のろう付面への塗布方法。
  18.  平均公称粒子径が少なくとも65ミクロンである粒子混合物を供給するステップをさらに含む請求項17に記載の方法。
  19.  平均公称粒子径が65〜250ミクロンである粒子混合物を供給するステップをさらに含む請求項17に記載の方法。
  20.  温度149〜1649℃(300〜3000゜F)でガスを供給するステップを含む請求項17に記載の方法。
  21.  粒子混合物を速度300〜1200メートル/秒に加速するステップを含む請求項17に記載の方法。
  22.  合金または金属を含むろうを供給するステップを含む請求項17に記載の方法。
  23.  耐腐食性材料を備えたろうを供給するステップをさらに含む請求項17に記載の方法。
  24.  アルミニウム、亜鉛およびシリコンの3つの混合物としてろうを供給するステップを含む請求項17に記載の方法。
  25.  すべてのろうの総重量を基準にしてそれぞれ50〜78重量%のアルミニウム、12〜45重量%の亜鉛および5〜10重量%のシリコンからなる3つの混合物としてろうを供給するステップを含む請求項24に記載の方法。
  26.  ろう付用フラックス材が、乾式静電粉末として、乾燥粉末のはけ塗りによる移動乾燥粉末として、ろう付面上をフラックスを含んだ回転輪を走行させることによる乾燥粉末塗りとして、浸し塗りによる湿潤スラリとして、スプレイ塗装による湿潤スラリとして、またはこれらを混合したものとしてのうち少なくとも1つによって付着される請求項17に記載の方法。
  27.  ろう付面上にろう付用フラックス材を1m四方当たり2〜40グラム直接付着させるステップをさらに含む請求項17に記載の方法。
  28.  ステップa)が、動的スプレイ塗装により金属または合金を含む基板上にろうを直接塗布してろう付面を形成する工程を含む請求項17に記載の方法。
  29.  ステップa)が、動的スプレイ塗装によりアルミニウムを含む基板上にろうを直接塗布してろう付面を形成することを含む請求項17に記載の方法。
  30.  ステップa)が、動的スプレイ塗装により基板上にろうを1m四方当たり50〜150グラム直接塗布してろう付面を形成することを含む請求項17に記載の方法。
  31.  ろう付面を備えフラックス材を塗布した基板を5cmの高さから平らな面上に落下させた後、塗布したフラックス材を重量比で少なくとも5%保持するステップをさらに含む請求項17に記載の方法。
JP2003276953A 2002-07-24 2003-07-18 ろう付面へフラックスを直接塗布する方法 Pending JP2004058157A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/202,308 US6821558B2 (en) 2002-07-24 2002-07-24 Method for direct application of flux to a brazing surface

Publications (1)

Publication Number Publication Date
JP2004058157A true JP2004058157A (ja) 2004-02-26

Family

ID=30000095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276953A Pending JP2004058157A (ja) 2002-07-24 2003-07-18 ろう付面へフラックスを直接塗布する方法

Country Status (6)

Country Link
US (2) US6821558B2 (ja)
EP (1) EP1384545B1 (ja)
JP (1) JP2004058157A (ja)
KR (1) KR100726924B1 (ja)
CN (1) CN100343007C (ja)
DE (1) DE60323791D1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900812B2 (en) * 2004-11-30 2011-03-08 Enerdel, Inc. Secure physical connections formed by a kinetic spray process
US20070029370A1 (en) * 2005-08-08 2007-02-08 Zhibo Zhao Kinetic spray deposition of flux and braze alloy composite particles
US20070098912A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for producing functionally graded coatings using cold gas-dynamic spraying
EP2195134A1 (en) * 2007-10-05 2010-06-16 Diamond Innovations, Inc. Braze-metal coated articles and process for making same
JP5485539B2 (ja) * 2007-12-18 2014-05-07 昭和電工株式会社 熱交換器用部材の製造方法および熱交換器用部材
US9314862B2 (en) * 2013-05-30 2016-04-19 Lucas-Milhaupt, Inc. Process for flux coating braze preforms and discrete parts
CN103521953B (zh) * 2013-10-25 2017-09-01 广州汉源新材料股份有限公司 一种预成型焊片助焊剂的涂覆工艺
CN104400170A (zh) * 2014-10-29 2015-03-11 太原理工大学 一种铝合金超声半固态涂覆钎焊方法
JP6752179B2 (ja) * 2017-06-08 2020-09-09 タツタ電線株式会社 皮膜材料、及びコールドスプレー方法
CN114211071A (zh) * 2022-02-23 2022-03-22 中机智能装备创新研究院(宁波)有限公司 一种气保护钎焊方法及装置
CN114798212B (zh) * 2022-04-22 2023-11-03 浙江创新汽车空调有限公司 一种汽车空调热交换器钎焊剂静电喷涂装置及其喷涂方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100724A (en) 1958-09-22 1963-08-13 Microseal Products Inc Device for treating the surface of a workpiece
US3993411A (en) 1973-06-01 1976-11-23 General Electric Company Bonds between metal and a non-metallic substrate
US4263335A (en) 1978-07-26 1981-04-21 Ppg Industries, Inc. Airless spray method for depositing electroconductive tin oxide coatings
US4891275A (en) 1982-10-29 1990-01-02 Norsk Hydro A.S. Aluminum shapes coated with brazing material and process of coating
US4606495A (en) 1983-12-22 1986-08-19 United Technologies Corporation Uniform braze application process
US4939022A (en) 1988-04-04 1990-07-03 Delco Electronics Corporation Electrical conductors
US5187021A (en) 1989-02-08 1993-02-16 Diamond Fiber Composites, Inc. Coated and whiskered fibers for use in composite materials
WO1991019016A1 (en) 1990-05-19 1991-12-12 Institut Teoreticheskoi I Prikladnoi Mekhaniki Sibirskogo Otdelenia Akademii Nauk Sssr Method and device for coating
US5271965A (en) 1991-01-16 1993-12-21 Browning James A Thermal spray method utilizing in-transit powder particle temperatures below their melting point
US5476725A (en) 1991-03-18 1995-12-19 Aluminum Company Of America Clad metallurgical products and methods of manufacture
US5340015A (en) 1993-03-22 1994-08-23 Westinghouse Electric Corp. Method for applying brazing filler metals
US5395679A (en) 1993-03-29 1995-03-07 Delco Electronics Corp. Ultra-thick thick films for thermal management and current carrying capabilities in hybrid circuits
US5527627A (en) 1993-03-29 1996-06-18 Delco Electronics Corp. Ink composition for an ultra-thick thick film for thermal management of a hybrid circuit
ATE249300T1 (de) 1994-01-21 2003-09-15 Sprayform Holdings Ltd Mit waermeaustauschkanaelen versehene metallische werkstuecke
JPH07314177A (ja) 1994-03-28 1995-12-05 Mitsubishi Alum Co Ltd ろう付用組成物及びろう付用組成物が設けられてなる Al材料並びに熱交換器
JP3348204B2 (ja) * 1994-04-20 2002-11-20 三菱アルミニウム株式会社 ろう粉末付長尺物の製造方法および装置
JPH07303858A (ja) * 1994-05-13 1995-11-21 Nippon Light Metal Co Ltd ろう付け用スラリーの塗布方法
GB9419328D0 (en) 1994-09-24 1994-11-09 Sprayform Tools & Dies Ltd Method for controlling the internal stresses in spray deposited articles
US5464146A (en) 1994-09-29 1995-11-07 Ford Motor Company Thin film brazing of aluminum shapes
US5424101A (en) 1994-10-24 1995-06-13 General Motors Corporation Method of making metallized epoxy tools
US5593740A (en) 1995-01-17 1997-01-14 Synmatix Corporation Method and apparatus for making carbon-encapsulated ultrafine metal particles
US5795626A (en) 1995-04-28 1998-08-18 Innovative Technology Inc. Coating or ablation applicator with a debris recovery attachment
US5744254A (en) 1995-05-24 1998-04-28 Virginia Tech Intellectual Properties, Inc. Composite materials including metallic matrix composite reinforcements
US6051045A (en) 1996-01-16 2000-04-18 Ford Global Technologies, Inc. Metal-matrix composites
DE19605858A1 (de) 1996-02-16 1997-08-21 Claussen Nils Verfahren zur Herstellung von Al¶2¶O¶3¶-Aluminid-Composites, deren Ausführung und Verwendung
GB2310866A (en) 1996-03-05 1997-09-10 Sprayforming Dev Ltd Filling porosity or voids in articles formed by spray deposition
US5711142A (en) * 1996-09-27 1998-01-27 Sonoco Products Company Adapter for rotatably supporting a yarn carrier in a winding assembly of a yarn processing machine
US6129948A (en) 1996-12-23 2000-10-10 National Center For Manufacturing Sciences Surface modification to achieve improved electrical conductivity
US5894054A (en) 1997-01-09 1999-04-13 Ford Motor Company Aluminum components coated with zinc-antimony alloy for manufacturing assemblies by CAB brazing
DE69808565T2 (de) * 1997-07-16 2003-02-13 Denso Corp Rohr und Wärmetauscher aus Aluminiumlegierung, und Verfahren zum Metallspritzen eines Schweisszusatzwerkstoffes
JP3459549B2 (ja) * 1997-11-20 2003-10-20 株式会社デンソー ろう材の溶射方法
US5989310A (en) 1997-11-25 1999-11-23 Aluminum Company Of America Method of forming ceramic particles in-situ in metal
US20010001042A1 (en) * 1998-04-07 2001-05-10 Sinatra Raymond J. Method for depositing braze alloy
US6033622A (en) 1998-09-21 2000-03-07 The United States Of America As Represented By The Secretary Of The Air Force Method for making metal matrix composites
JP2001001136A (ja) * 1999-06-17 2001-01-09 Furukawa Electric Co Ltd:The フラックスが塗布されたアルミニウム合金製ろう付け用部材およびその製造方法
US6139913A (en) 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus
US6317913B1 (en) * 1999-12-09 2001-11-20 Alcoa Inc. Method of depositing flux or flux and metal onto a metal brazing substrate
US6915964B2 (en) * 2001-04-24 2005-07-12 Innovative Technology, Inc. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US6446857B1 (en) 2001-05-31 2002-09-10 Delphi Technologies, Inc. Method for brazing fittings to pipes
US6615488B2 (en) 2002-02-04 2003-09-09 Delphi Technologies, Inc. Method of forming heat exchanger tube

Also Published As

Publication number Publication date
US20040016793A1 (en) 2004-01-29
KR100726924B1 (ko) 2007-06-14
DE60323791D1 (de) 2008-11-13
EP1384545A2 (en) 2004-01-28
US20050087587A1 (en) 2005-04-28
US6821558B2 (en) 2004-11-23
CN100343007C (zh) 2007-10-17
EP1384545A3 (en) 2005-07-27
EP1384545B1 (en) 2008-10-01
CN1480288A (zh) 2004-03-10
KR20040010335A (ko) 2004-01-31

Similar Documents

Publication Publication Date Title
US6811812B2 (en) Low pressure powder injection method and system for a kinetic spray process
EP1579921A2 (en) Improved kinetic spray nozzle system design
US7108893B2 (en) Spray system with combined kinetic spray and thermal spray ability
EP1630253A1 (en) Continuous in-line manufacturing process for high speed coating deposition via kinetic spray process
US6139913A (en) Kinetic spray coating method and apparatus
US6623796B1 (en) Method of producing a coating using a kinetic spray process with large particles and nozzles for the same
US20060251823A1 (en) Kinetic spray application of coatings onto covered materials
US20040058064A1 (en) Spray system with combined kinetic spray and thermal spray ability
JP2004058157A (ja) ろう付面へフラックスを直接塗布する方法
US20050085030A1 (en) Kinetically sprayed aluminum metal matrix composites for thermal management
US7244466B2 (en) Kinetic spray nozzle design for small spot coatings and narrow width structures
EP1508379B1 (en) Gas collimator for a kinetic powder spray nozzle
US20070029370A1 (en) Kinetic spray deposition of flux and braze alloy composite particles
US7335341B2 (en) Method for securing ceramic structures and forming electrical connections on the same
CN101945726A (zh) 热交换器用部件的制造方法和热交换器用部件
US7351450B2 (en) Correcting defective kinetically sprayed surfaces
JP2891752B2 (ja) 熱交換器用管のろう被膜形成方法
JP5554962B2 (ja) ろう付け用アルミニウム材の製造方法及び熱交換器用部材
JP2015507690A (ja) 極低温キャリヤー流体を使用して粒子を噴霧することによる表面コーティングの方法
KR20030085222A (ko) 알루미늄 접합재 코팅방법 및 그 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070302

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070823