JP2004050321A - ロボットハンドの把持制御方法及び把持装置 - Google Patents
ロボットハンドの把持制御方法及び把持装置 Download PDFInfo
- Publication number
- JP2004050321A JP2004050321A JP2002208831A JP2002208831A JP2004050321A JP 2004050321 A JP2004050321 A JP 2004050321A JP 2002208831 A JP2002208831 A JP 2002208831A JP 2002208831 A JP2002208831 A JP 2002208831A JP 2004050321 A JP2004050321 A JP 2004050321A
- Authority
- JP
- Japan
- Prior art keywords
- finger
- control
- force
- gripping
- target component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manipulator (AREA)
Abstract
【課題】フィンガー開閉方向の相対的位置関係におけるロボットハンドと把持対象部品の所望部分との位置出しを可能にすること。
【解決手段】ロボットハンド自体を各フィンガーにより把持対象部品を挟持できる位置に移動し(STEP1)、各フィンガーを相対移動させ(STEP2)て、各フィンガーを把持対象部品に接触させ(STEP3)、一方のフィンガーをフィードバック制御によりフィンガー位置がフィンガー指令位置と一致するように動作させ(位置制御動作)、他方のフィンガーを、フィードバック制御によりフィンガー押圧力(印加力)がフィンガー押圧力指令値(印加力指令)と一致するように動作(力制御動作)させることで、上記各フィンガーの相対移動を行うこと。
【選択図】 図10
【解決手段】ロボットハンド自体を各フィンガーにより把持対象部品を挟持できる位置に移動し(STEP1)、各フィンガーを相対移動させ(STEP2)て、各フィンガーを把持対象部品に接触させ(STEP3)、一方のフィンガーをフィードバック制御によりフィンガー位置がフィンガー指令位置と一致するように動作させ(位置制御動作)、他方のフィンガーを、フィードバック制御によりフィンガー押圧力(印加力)がフィンガー押圧力指令値(印加力指令)と一致するように動作(力制御動作)させることで、上記各フィンガーの相対移動を行うこと。
【選択図】 図10
Description
【0001】
【産業上の利用分野】
この発明は、各種機器の部品の位置決めや移送等に用いるロボットハンドの把持制御方法に関するものであって、把持対象部品が予め教示(ティーチング)された位置や大きさとは異なる場合であっても、適切な把持力で且つ、把持対象部品の基準面の位置出しをしながら、把持対象部品を把持することを可能にするものであり、ロボットハンドによる様々な形状の部品の把持制御に応用することができるものである。
【0002】
【従来の技術】
近年、コピー機やFAX等の各種の機器を組み立て、又は分解する作業においてはできるだけロボットを用いて行うようになっているが、その一部の工程で手作業によることが避けられない場合がある。この手作業が面倒でかつ多大な労力が費やされ、しかもその作業効率が悪いため、手作業に頼っていた作業工程についてもできるだけロボットを利用して自動化することが要請される。
ところで、ロボットに一定の動作をさせる場合は、予め動作順序及び動作内容を教示(ティーチング)して、制御装置の記憶装置に制御データを記憶させ、その記憶装置から記憶内容(制御データ)を順次読み出して、ティーチングによる作業を繰り返させる方法が一般的に採用されている。しかしながらロボットによる作業の対象物については、その存在位置や大きさ等が教示段階でのそれと必ずしも同じではなくて、幾分の誤差がある場合が多く、その上に、部品の組み付け位置のずれが製品品質に影響を与えることがあるため、作業対象物の存在位置や大きさにある程度の誤差がある場合でもこれに対応できる装置にしておくことが必要である。また、部品を把持して組み付ける動作をロボットハンドで行わせる場合、把持対象部品の種類及び把持力の如何によっては当該部品が傷付けられることがあり、他方、作業の如何及び把持力の如何によって、部品に対するロボットハンドの把持位置がずれてしまうという不具合があり、そのために部品が正確に組み付けられない場合もある。このような結果を招来することがないように、個々の把持対象部品(部品)に応じた把持力で適切に対応可能にすることがことが重要である。
【0003】
従来特許第2838582号公報に予め教示(ティーチング)した姿勢での把持対象部品の把持を可能とした発明が記載されているが、把持対象部品の大きさの製作上のばらつき(寸法誤差など)があると、ロボットハンドと把持後の把持対象部品との相対的な位置関係が同じである保証は必ずしもない。
以上のようなことから、この発明は所望の位置出しを行いながら、組み立てや分解等の作業状況に応じた適切な把持力で把持対象部品を把持できるようにすることをその目的とするものである。
【0004】
【発明が解決しようとする課題】
【課題1】
請求項1、請求項2の発明はロボットハンドの把持制御方法について、把持対象部品の大きさのばらつき、把持対象部品の位置が教示段階の位置と同一ではないにも関わらず、フィンガー開閉方向の相対的位置関係におけるロボットハンドと把持対象部品の所望部分との位置出しを可能にすることをその課題とするものである。
【0005】
【課題2】
請求項3の発明はロボットハンドの把持制御方法について、各フィンガーの相対的な位置が把持方向に移動し、把持対象部品を把持したときに、各フィンガーから把持対象部品へ加える力ベクトルがゼロベクトルになるように指令することを可能にすることにより、より安定的に把持できるようにすることをその課題とするものである。
【0006】
【課題3】
請求項4の発明は、ロボットハンドの把持制御方法について、力制御するフィンガー(力制御フィンガー)の合力に負けない位置制御をするフィンガー(位置制御フィンガー)の適切な位置保持力を確保し、安定的に把持できるようにすることをその課題とするものである。
【0007】
【課題4】
請求項5の発明は、ロボットハンドの把持制御方法について、確実な挿入組立動作を実現するため、把持した把持対象部品とハンド本体との挿入組み付け先でのフィンガー開閉方向における相対的位置の位置出しを可能にすることをその課題とするものである。
【0008】
【課題5】
請求項6の発明は、ロボットハンドの把持制御方法について、把持力を把持対象部品に傷が付かない程度に抑えて、把持動作による把持対象部品の損傷が防止されるようにすることをその課題とするものである。
【0009】
【課題6】
請求項7の発明は、ロボットハンドの把持制御方法について、組み立てや分解等の作業時にもロボットハンドと把持した把持対象部品とのフィンガー開閉方向の相対的位置関係の位置ずれを防止して、安定な組み立て及び分解作業を可能にすることをその課題とするものである。
【0010】
【課題7】
請求項8の発明は、ロボットハンドの把持制御方法について、把持対象部品の種類及び作業状況に応じた適切な把持条件を適用して把持を行うことで、組み立てや分解等の作業をより安定的に行うことと、過剰な把持力による把持を防止して、把持機構の摩耗損傷を可及的に低減し、その耐久性を向上させることをその課題とするものである。
【0011】
【課題解決のために講じた手段】
【解決手段1】(請求項1に対応)
上記課題1を解決するために講じた手段1は、ハンド本体に対して直線移動する2本以上のフィンガーを備え、各フィンガーを相対移動させることで把持対象部品を把持するロボットハンドの把持制御方法を前提として、次の(イ)(ロ)によって構成されるものである。
(イ)ロボットハンド自体を各フィンガーにより把持対象部品を挟持できる位置に移動し(STEP1)、各フィンガーを相対移動させ(STEP2)て、各フィンガーを把持対象部品に接触させ(STEP3)ること、
(ロ)一方のフィンガーをフィードバック制御によりフィンガー位置がフィンガー指令位置と一致するように動作させ(位置制御動作)、他方のフィンガーを、フィードバック制御によりフィンガー押圧力(印加力)がフィンガー押圧力指令値(印加力指令)と一致するように動作(力制御動作)させることで、上記各フィンガーの相対移動を行うこと。
なお、ステップ1乃至ステップ3については図10参照。
【0012】
【作用】
教示(ティーチング)されたところに従ってロボットハンド本体自体を、把持対象部品を挟持できる位置に移動させ、各フィンガーを移動させて把持対象部品に接触させる。このとき、一方のフィンガーをフィードバック制御によって教示位置に移動させて当該位置に位置決めし、他方のフィンガーによる把持対象部品に対する押圧力をフィードバック制御によりフィンガー押圧力指令(印加力指令)値に一致するように制御して、両フィンガーによって把持対象部品を把持するものであるから、ロボットハンド本体自体に対する把持対象部品の位置は、制御された上記一方のフィンガー(位置制御フィンガー)の位置によって正確に規定され、把持力は制御された他方のフィンガー(力制御フィンガー)の押圧力によって正確に規定される。
【0013】
作業時の把持対象部品の位置がティーチング時の把持対象部品の位置とは若干違っていても、両フィンガーで把持された状態で、上記一方のフィンガーの位置制御によって、把持対象部品の基準面とロボットハンド本体との位置関係、すなわち、ロボットハンド本体に対する把持対象部品の位置関係が正確に制御されて、その位置で他方のフィンガーの押圧力を受け止めて把持対象部品を把持するから、ロボットハンド本体に対する把持対象部品の位置出しが正確になされる。
また、ロボットハンド本体に対する把持対象部品の位置が、位置制御された一方のフィンガー(位置制御フィンガー)を基準として決められるもので、把持対象部品の種類の違いによる大きさの違い、同じ部品の製作誤差による大きさの誤差があっても、上記一方のフィンガーと把持対象部品との位置関係は一定に保たれる。
【0014】
【実施態様1】(請求項2に対応)
この実施態様1は上記解決手段1における、フィンガー開閉方向についてのロボットハンドと把持対象部品の相対的な位置精度を出したい部分に接触するフィンガーに位置制御動作を行わせ、その他のフィンガーに力制御動作を行わせることである。
【0015】
【作用】
把持対象部品の位置精度を出したい部分に接触する方のフィンガーが位置制御動作を行ない、他方のフィンガーが力制御動作を行うから、把持対象部品の位置精度を出したい部分のロボットハンドに対する位置関係が、把持対象部品の大きさの違い(製作誤差によるばらつき)、位置ずれの如何に関わらず、教示(ティーティング)での位置関係と常に一致する。
【0016】
【実施態様2】(請求項3に対応)
実施態様2は、解決手段1における位置制御動作及び力制御動作を適用するフィンガーの位置指令値及び力指令値をそれぞれ個別に設定することである。
【0017】
【作用】
位置制御動作及び力制御動作を適用するフィンガーの位置指令値及び力指令値をそれぞれ個別に設定するとき、全てのフィンガーから把持対象部品に作用する力の合力がゼロベクトルになるように、個々のフィンガーの作用力を調整することができる。したがって、把持対象部品がより安定的に把持される。
【0018】
【実施態様3】(請求項4に対応)
実施態様3は、上記実施態様1または実施態様2のロボットハンドの把持制御方法について、その位置制御動作を行うフィンガー(位置制御フィンガー)の位置保持力よりも、力制御動作を行うフィンガー(力制御フィンガー)から把持対象部品への印加力の合力を小さくすることである。
【0019】
【作用】
位置制御フィンガーへ作用する反力は力制御フィンガーからの作用力であり、当該作用力が位置制御フィンガーの保持力よりも小さいので、力制御フィンガーからの作用力によって、位置制御フィンガーの位置がずれることはない。
【0020】
【実施態様4】(請求項5に対応)
実施態様4は、上記解決手段1乃至実施対象3の把持制御方法によって挿入組立動作を行う場合の把持位置制御方法についての実施態様であって、次の(イ)〜(ホ)によるものである。
(イ)把持対象部品をそのテーパー状先端部から挿入する組立作業の場合で、把持した把持対象部品(STEP0)をロボットハンド自体を移動させることで把持対象部品のテーパ部のみを相手穴に挿入し(STEP1)、
(ロ)位置制御フィンガーの位置指令値を変化させる(STEP2)ことで、位置制御フィンガーと力制御フィンガーとを把持対象部品を把持したまま移動させ(STEP3)、
(ハ)上記移動時に、位置制御フィンガーと力制御フィンガーの間の距離を逐次検知して記憶し、
(ニ)上記移動時の両フィンガー間距離が最小距離のときの位置制御フィンガーの位置を新たな位置指令値として設定(STEP4)し、
(ホ)位置制御フィンガーと力制御フィンガーで把持対象部品を把持したままで、位置制御フィンガーを新たな設定位置へ移動させる(STEP5)こと。
なお、ステップ1乃至ステップ5については図11参照。
【0021】
【作用】
ロボットハンドを教示(ティーチング)どおりに移動させてから下降させて把持対象部品のテーパー状先端部を組み付け先部品に挿入するとき、その先端が組み付け先部品の角に当たると把持対象部品が傾き、この傾きによって両フィンガーに押し広げる方向の力が作用する。このとき、位置制御フィンガーは力制御フィンガーよりもその位置保持力が大きいので、力制御フィンガーだけが後退し、位置制御フィンガーの位置が設定位置に保持される。
次いで、ロボットハンド本体に対して両フィンガーを図11のステップ3のように移動させる。この間に、位置制御フィンガーと力制御フィンガーの移動に伴って把持対象部品の傾きが変化し、位置制御フィンガーと力制御フィンガー間の間隔(距離)が減少し、最小値を経て増大する。この位置制御フィンガーと力制御フィンガー間の間隔(距離)を逐次算出して記憶し、上記最小値を求める。上記距離最小のときの位置制御フィンガーの位置を求めて、当該位置に位置制御フィンガーの制御位置をあらたに設定して、当該設定位置に位置制御フィンガーを移動させる。このとき、力制御フィンガーは位置制御フィンガーに向かって付勢されているので、位置制御フィンガーの移動に伴って同じ方法に同じ距離移動する。
位置制御フィンガーと力制御フィンガー間の間隔が最小のときの位置が、把持対象部品の方向が組み付け先部品に対する挿入方向と一致した位置であるから、新たな位置でロボットハンドをさらに下降させることによって、把持対象部品が組み付け先部品にスムーズに挿入される。
【0022】
【実施態様5】(請求項6に対応)
実施態様5は、実施態様3のロボットハンドの把持制御方法について、力制御フィンガーから把持対象部品への印加力の指令値の上限を把持対象部品が損傷しない程度にして、上記指令値による印加力で持対象物を把持させることである。
【0023】
【実施態様6】(請求項7に対応)
実施態様6は、実施態様3のロボットハンドの把持制御方法について、把持対象部品の組み付け時又は分解時の把持対象部品に加わる組立又は分解反力以上の把持力が発揮できるように、力制御フィンガーの印加力の指令値を設定することである。
【0024】
【実施態様7】(請求項8に対応)
実施態様7は、実施態様5または実施態様6のロボットハンドの把持制御方法について、把持対象部品とロボットによる作業の如何に応じて、把持対象部品のどの部分にフィンガーを接触させるか、どのフィンガーを位置制御フィンガーとしあるいは力制御フィンガーとするかの把持条件を予め制御コントローラに記憶しておき、この把持条件に基づいて搬送時、組立時、分解時等の作業内容に応じて把持条件を適宜選択し、選択した把持条件によって各フィンガーによる把持制御を行うことである。
【0025】
【作用】
把持対象部品と作業の如何によって、フィンガーを把持対象部品に接触させる最適の位置が異なり、また、最適な位置制御フィンガーが異なる場合がある。
把持対象部品と作業とに応じて上記把持条件を設定してあるので、この把持条件を選択することによって、把持対象部品の種類及び作業状況に応じて、その作業が最も安全にかつ安定的に行われる。
【0026】
【実施例】
図1に基いて本実施例におけるロボットハンドのフィンガーの移動と移動方向の転換について説明する。
図1において、フィンガー1は移動手段2に連結されており直線状矢印の方向に直線移動する。移動手段2はハンド本体3に内蔵されている旋回手段に連結されており、図示の弧状矢印の方向に旋回方向に移動する。これにより、フィンガー1の直線移動の方向及び移動位置が適宜調整・変更される。
【0027】
次に、図2に基づいて本実施例の移動手段と旋回手段の機構を説明する。図2において、モータ4の出力トルクは伝達ギア5により回転シャフト6に伝達される。直線駆動用のピニオン7は回転シャフト6に対して回転自在であり、第1クラッチ8によって選択的に係脱される。同様に、旋回用のピニオン9は回転シャフト6に対して回転自在であり、第2クラッチ10により選択的に係脱される。移動手段はフィンガー1をハンド本体3の半径方向に案内するリニアガイド11と連結部材12とラックギア13とピニオン7と移動ブレーキ14と第1ベース15と第2ベース16から構成されている。連結部材12はフィンガー1から下方に延びていて第1ベース15の長孔15aを貫通しており、リニアガイド11のブロックが連結部材12によりラックギア13と連結される。
なお、移動ブレーキ14はリニアガイド11と共同してフィンガー1の直線移動を阻止して、フィンガー1を所定の位置に保持するものである。
直線駆動用のピニオン7の回転によりラックギア13が直線方向に駆動され、これによってフィンガー1がリニアガイド11に沿って直線移動する。回転シャフト6とピニオン7の連結が解除されたとき移動ブレーキ14が作動してフィンガー1の位置が保持される。
【0028】
第1ベース15および第2ベース16は第1ベアリング17と第2ベアリング18によって固定シャフト19に旋回自在に支持されており、旋回手段は本体ケース23に固定されている内歯車20と旋回用のピニオン9、旋回ブレーキ21、第3ベース22から構成されているものであり、第3ベース22は第3ベアリング24によって固定シャフト19に旋回自在に支持されている。内歯車20と旋回用のピニオン9が噛み合っており、旋回用のピニオン9が第2クラッチ10によって回転シャフト6に係合して回転駆動される。この旋回用ピニオン9の回転によって第3ベース22が固定シャフト19を中心として旋回方向に駆動される。
第3ベース22の旋回によって回転シャフト6とともに第1ベース15および第2ベース16も連れて旋回駆動される。回転シャフト6と旋回用ギア9との第2クラッチ10による係合が離脱したときは旋回ブレーキ21が作動して第3ベース22の旋回運動が阻止されてその位置に保持される。このように、第1クラッチ8、第2クラッチ10の動作を切り換えるとともにDCモータ4による直線駆動用のピニオン7と旋回用のピニオン9の回転駆動が切り換えられることで、フィンガー1が半径方向へ移動し、また、移動手段が旋回運動する。なお、ハンド本体3のハウジングと第1ベース15、第2ベース16上のDCモータ4、第1クラッチ等への給電回路の可動部(固定シャフト19と第1ベース15、第2ベース16間の可動部等)における電気的接続はスリップリング25によって行う。
【0029】
次に、図2及び図3に基づいて本実施例のロボットシステムについて説明する。ロボットシステムは架台28に内蔵されるコントローラにより、原点復帰後のフィンガー1の移動量の累積値と移動手段の旋回量の累積値やロボットハンド把持条件等が記憶され、DCモータ4、第1クラッチ8、第2クラッチ10、第1ブレーキ14、第2ブレーキ21、関節27等が制御される。ハンド本体3はアーム26の先端に固定されており、アームが移動することでハンド本体3が前後、左右、上下各方向に移動する。
【0030】
次に、本実施例におけるロボットハンドのフィンガーの位置制御方法及び力制御方法を説明する。
制御ドライバはコントローラ(制御装置)からの位置指令信号もしくは力指令信号と制御モード切換信号を受けて動作する。
図9に最も基本的な制御ドライバの構成の一例を模式的に示している。DCモータ4の回転数をタコメータ等の速度センサ48で監視し、速度センサ48の出力はフィンガーの速度を表す。また、DCモータ4の回転角度をエンコーダ等の位置センサ49で監視し、位置センサ49の出力はフィンガー1の開閉方向位置に対応する。
さらにDCモータ4に加える電力を電流センサ47で検出する。フィンガー1を開閉方向に位置制御する場合には、コントローラ(制御装置)は、制御モード切換信号を出力し制御モード切換スイッチ42を電流制限器40側へ切り換え、電流制限値信号を電流制限器40へ出力することで所望の位置保持力に対応するように予め実験等で求めた電流制限値に設定し、位置指令信号を位置指令器35に出力する。このとき制御ドライバは、誤差増幅器A36で指令した位置と位置センサ49による実際の位置との誤差を検出してこれを増幅し、位置制御器37で位置誤差を解消するための速度信号を発生する。位置制御器37からの上記速度指令と速度センサ48からの速度信号との差を誤差増幅器B38で検出してこれを増幅し、速度制御器39で電流指令信号に変換し、これを電流制限器40により制限し、制限した電流指令と電流センサ47からの電流信号との差を誤差増幅器C43で増幅してこれを電流制御器44に入力し、電源46からの電力を電流制御器44からの制御信号によって電力変換器45で制御し、電力変換器45で制御された電力をDCモータ4に加えてDCモータ4の回転角度を制御することにより、フィンガー1の開閉方向の位置制御を行う。
【0031】
また、フィンガー1を開閉方向に力制御する場合には、コントローラは制御モード切換信号を出力し、制御モード切換スイッチ42を電流指令器41側へ切り換え、個々の把持対象部品に対して所望の把持力を印加するのに必要な力(電流)指令信号として、実験等で予め求めた所要の電流値に対応する力(電流)指令信号を電流指令器41へ出力し、制御ドライバ(図9)は、この電流指令と電流センサ47からの電流信号との差を誤差増幅器C43で増幅してこれを電流制御器44に入力し、電源46からの電力を電力変換器45で制御し、電力変換器45で制御された電力をDCモータ4に加え、フィンガー1の開閉方向の力制御を行う。これらはサーボモータのフィードバック制御に関する一般的な構成である。
【0032】
次に、本実施例におけるロボットハンドの把持制御方法を説明する。
最初に、第1のフィンガー30と第2のフィンガー31の開閉方向が向き合い、第3のフィンガー32の開閉方向が第1のフィンガー30と第2のフィンガー31の開閉方向に対して90度の方向になるように各フィンガーの開閉方向を転換する(図4)。次に、第1のフィンガー30、第2のフィンガー31、第3のフィンガー32を位置制御して開方向に移動させ、アーム26の動作によりハンド本体3を把持対象部品29の把持位置へ移動させる(図5参照)。
【0033】
次に、第1のフィンガー30を位置制御により閉方向に移動させると同時に、第2のフィンガー31を力制御により閉方向に移動させる。このときの第2のフィンガー31の力制御による印加力の大きさの指令値は、把持対象部品29を把持したハンド本体3をアーム26により移動させ、所望の把持対象部品29の移送動作を行わせたときに第1のフィンガー30及び第2のフィンガー31と把持対象部品29との相対的位置関係がずれることがなく且つ、第2のフィンガー31から把持対象部品29への印加力は、それによって把持対象部品29が損傷することのない程度の大きさであり、さらに、第1のフィンガー30の位置制御における位置保持力の大きさは、第2のフィンガー31の力制御による印加力よりも大きいように制御され、この制御は、予めコントローラに指令印加力及び電流制限値を記憶しておき、これら値を基準にして行われる。これらの制御により、第1のフィンガー30及び第2のフィンガー31の開閉方向についてハンド本体3と把持対象部品29との相対的位置出しがなされた状態で第1のフィンガー30及び第2のフィンガー31の移動が停止される。
【0034】
次に、アーム26を駆動させて、把持対象部品(具体的には直径5mmのスナップピン)29を把持したハンド本体3を組み付け作業位置に移動させ(図6参照)、把持対象部品29のテーパー状先端を組み付け先部品(具体的には支持部材)34の溝34gに押し込んで組む動作の制御を行う。このときの、第2のフィンガー31の力の大きさは、把持対象部品29に組み付け反力(図7参照)が加わっても、第1のフィンガー30及び第2のフィンガー31と把持対象部品29との相対的位置関係がずれることがなく且つ、第2のフィンガー31から把持対象部品29への印加力により把持対象部品29に損傷を生じることのない程度であり、さらに、第1のフィンガー30の位置制御の位置保持力の大きさは、第2のフィンガー31の力よりも大きいように制御され、この制御は、指令印加力及び電流制限値をコントローラに予め記憶していて、この指令値に基づいて第1及び第2のフィンガー30,31を制御することによって行われる。これらの制御により、把持対象部品29は第1のフィンガー30及び第2のフィンガー31との相対位置がずれることなしに、組み付け先部品34の溝34gに押し込まれる。把持対象部品29が組み付け先部品34の溝34gに完全に押し込まれたとき(図8参照)、アーム26の組み付け動作は終了する。
【0035】
コントローラは、最後に第1及び第2のフィンガー30,31を開方向へ位置制御移動し、把持対象部品29を開放して、組み付け動作制御を終える。
教示操作(ティーチング)において、把持対象部品に対する個々のフィンガーの接触位置を指定して、第1のフィンガー、第2のフィンガーのいずれを位置制御フィンガーとし、いずれを力制御フィンガーとするかを指定し、さらに位置制御値、力制御値を指定して、コントローラのRAMに記憶させる。
作業においてCPUはRAMから所要の制御データを読み出して、ティーチングどおりに把持動作を制御し、ティーチングどおりに移送動作を制御し、解放動作を制御する。
【0036】
同じロボットアームによって多種類の部品を取り扱い、かつ多種類の作業を行う場合の制御データの設定は、個々の把持対象部品と作業種類との組み合わせ毎にティーチングを行って、第1のフィンガー30、第2のフィンガー31、第3のフィンガー32のスライド方向の固定軸19を中心とする中心角度、位置制御値、力制御値等の制御データをRAMに記憶させ、一群の制御データ毎に登録する。部品と作業との組み合わせに対応する制御データをRAMから読み出して制御メモリに記憶させ、これに基づいて所定の作業動作を制御する。
【0037】
次いで、実施態様4の一例を図6乃至図8に示す組み付け作業に基づいて説明する。
第1、第2のフィンガー30,31の内の第1のフィンガー30が位置制御フィンガーであり、フィンガー31が力制御フィンガーである。
フィンガー30,31のロボットのハンド本体3に対する位置はDCモータ4に設けた位置センサ49(図9)によって検出される。
そして、ハンド本体3に設けた位置センサによって個々のフィンガー30,31の位置を検出し、これをコントローラのCPUで読取り、フィンガー30,31間の距離をCPUで演算して、これを逐次RAMに記憶させる。
第1のフィンガー30を所定位置に移動させ、第2のフィンガー31を所定の力(設定値0.5Kg)で第1のフィンガー30の方へ移動させて、両フィンガーによって0.5Kgの力で把持させる。このときの第1のフィンガー30の位置保持力は1.0Kgに設定されている。
【0038】
把持動作時の把持対象部品29とハンド本体3との位置関係、組み付け位置における組み付け先部品34の溝34gとハンド本体3との位置関係とが、ティーチング時のそれと全く同じであれば、ハンド本体3を下降させることで、把持対象部品29が組み付け先部品34の溝34gに対してずれることはなく、したがって把持対象部品29が組み付け先部品34の溝34gにスムーズに押し込まれることになる。しかし、実際には上記位置関係に若干のずれがある場合が少なくなく、また、把持対象部品29の被把持部の成形誤差や、組み付け先部品34の溝34gの成形誤差があって、そのためにハンド本体を下降させたときの先部品34の溝34gに対する把持対象部品29の位置が許容限度を越えて左右いずれかの方向にずれることが少なくない。
【0039】
そこで、経験的に想定される最大ずれ量(例えば左右各0.8mm)よりも若干大きい、例えば1.0mmだけ第1のフィンガー30を左方へ移動させ、次いで右方へ2.0mm移動させる。この移動の間に第2のフィンガー31が把持対象部品29を把持した状態で第1のフィンガー30とともに移動する。そして、把持対象部品29が左方または右方に傾斜して第1のフィンガー30と第2のフィンガー31との間隔(距離)が増減する。
第1のフィンガー30と第2のフィンガー31の位置をハンド本体3に組み込んだ第1、第2のフィンガーの位置センサで逐次検出し、メモリに記憶させ、この位置情報によって第1のフィンガー30と第2のフィンガー31間の間隔の最小値を算定し、当該最小値における第1のフィンガーの位置を特定する。上記第1のフィンガー30と第2のフィンガー31間の間隔最小値に対応する上記第1のフィンガー30の位置を新たな第1のフィンガーの位置指令値とし、この新たな位置指令値に基づいて上記第1のフィンガー30を移動させ、その位置に把持対象部品を固定する。
【0040】
なお、上記制御における制御データを光ディスク等の記録媒体に記憶させておいて、これを読取装置で読み取ってコントローラのRAMに書き込むようにすることができる。1回の教示操作(ティーチング)等で作成された把持対象部品、作業種類毎の制御データを他の記録媒体に複製することができ、またこれを保存することができるので、何らかのトラブルでコントローラ内の制御データが損傷されても、簡単、迅速にこれを復旧させることができる。
【0041】
以上の制御装置の制御システムの一例は図12に示すとおりである。これは、制御データ等を記録媒体に記録し、これを読み取り装置で読み取ってRAMに格納し、位置検知センサーによって各フィンガーの位置を検出し、検出した位置情報をRAMに記憶させ、これに基づいて上記のとおりのフィンガーの位置制御を行うものである。
【0042】
以上は、左右の第1のフィンガーと第2のフィンガーとによって把持対象部品を把持して各種の作業を行う場合についてのものであるが、第3のフィンガー32をも用いる場合は、ティーチング(教示段階)において、把持対象部品の所定の面に当接するように、固定シャフト19を中心にした第1、第2、第3のフィンガーの回転方向の位置を決め、いずれか2つのフィンガーを位置制御フィンガーとし、残りを力制御フィンガーとすることで、ハンド本体3に対して所定の位置関係において3点で把持することができる。
この場合、3つのフィンガーから把持対象部品に作用する力の合力のベクトルがゼロベクトルになるように、その方向と力の大きさを調整することで、把持対象部品が最も安定するので、例えば嵌め合い作業等において把持対象部品がフィンガーに対して滑ってその位置やフィンガーに対する姿勢が変わることが確実に回避される。
【0043】
【変形例】
また、図11に示す実施態様4では、把持対象部品の位置の把持調整、すなわち、組み付け先部品との関係での位置調整の基準位置を両フィンガー間の間隔最小から、これに対応する位置制御フィンガーの位置を検出し、この位置を位置制御フィンガーの基準位置として再設定するが、次のようにすることもできる。
すなわち、ピックアップ完了時の両フィンガー間の間隔を検出してこれをメモリに記憶させ、組み付け作業工程において把持対象部品の先端を組み付け先部品の溝34gに嵌め合わせ、そのテーパー先端が上記溝34gの角に当接し、そのための両フィンガー間の距離が広がり、その拡大分が所定以上に達しない場合はその押し込み動作を続行し、所定以上に達したとき、上記実施例と同様に、両フィンガーを左方、右方に移動させて、この移動中の両フィンガー間の間隔を、上記の記憶した両フィンガー間の間隔(ピックアップ完了時の間隔)と常時比較して一致したところで、位置制御フィンガーの移動を停止し、この停止位置を基準位置として把持対象部品をハンド本体に固定することもできる。
【0044】
【発明の効果】
この発明の効果を各請求項の発明毎に整理すれば次のとおりである。
(1)請求項1の発明の効果
請求項1の発明の把持制御方法によれば、把持対象部品の種類の違いによる大きさのばらつきや教示段階での位置と把持時の位置のずれに関わらず、ロボットハンドと、把持対象部品と位置制御フィンガーとその接触部分との相対的位置関係を常に一定にして把持することができるので、組み立て、分解作業を教示段階(ティーチング)どおりに正確に行うことができる。
【0045】
(2)請求項2の発明の効果
請求項2の発明の把持制御方法によれば、把持対象部品の大きさのばらつきや、教示段階での位置とずれているにも関わらず、ロボットハンドと把持対象部品の所望部分との、フィンガー開閉方向の相対的位置関係での位置出しを正確に行うことができる。
【0046】
(3)請求項3の発明の効果
請求項3の発明の把持制御方法によれば、各フィンガーの相対的な位置が把持方向に移動し、把持対象部品を把持したときに、各フィンガーから把持対象部品へ加わる力ベクトルが、ゼロベクトルになるように調整することが可能であり、把持対象部品をより安定した状態で把持することができる。
【0047】
(4)請求項4の発明の効果
請求項4の発明の把持制御方法によれば、力制御するフィンガーの合力に負けない、位置制御するフィンガーによる適切な位置保持力を確保して、安定した位置関係で把持することができる。
【0048】
(5)請求項5の発明の効果
請求項5の発明の把持位置制御方法によれば、把持後の把持対象部品と挿入組付け先のフィンガー開閉方向の相対的な位置出しが可能となり、確実な挿入組立動作を実現することができる。
【0049】
(6)請求項6の発明の効果
請求項6の把持制御方法によれば、把持力が把持対象部品が損傷しない程度に抑えられるから、フィンガーによる把持力で把持対象部品が損傷を受けることはない。
【0050】
(7)請求項7の発明の効果
請求項7の把持制御方法によれば、組み立て及び分解作業時にもロボットハンドと被把持対象部品との間の、フィンガー開閉方向における相対的位置関係のずれを生じることがないので、より安定的に組み立て分解作業が行うことができる。
【0051】
(8)請求項8の発明の効果
請求項8の把持制御方法によれば、把持対象部品の種別及び作業状況に応じた最適な把持条件で把持させることができるので、組み立てや分解等の作業がより安定的に行われ、且つ、過剰な把持力がかかることを防止することにも繋がるので、フィンガー及びその駆動部の摩耗損傷を可及的に抑制してその耐久性を向上させることができる。
【0052】
(9)請求項9の発明の効果
請求項9の記録媒体を用いることにより、予めコントローラに記憶した把持条件に基づき、各フィンガーを把持対象部品の所定部分に接触させ、所定のフィンガーに位置の制御あるいは力の制御を施し、適切な位置保持力あるいは印加力で把持対象部品を把持させる制御データ及び制御プログラムを安全に保存することができるので、コントローラ内の制御データ等が損傷しても、上記記録媒体から読み込ませることによって直ちに復旧させることができる。
【0053】
(10)請求項10の発明の効果
請求項10の記録媒体によれば、把持対象部品の種別及び作業状況に応じて選択した適切な把持条件に基づいて各フィンガーの制御を行う制御プログラムを安全に保存することができ、制御装置内の制御データが損傷しても、記録媒体から再び読み込ませることによって、直ちに復旧させることができる。
【図面の簡単な説明】
【図1】はロボットハンドの外観の模式図である。
【図2】はロボットハンド機構を示す断面図である。
【図3】はロボットシステム全体の側面図である。
【図4】はハンド本体及びフィンガーの正面図である。
【図5】は把持対象部品の把持前の状態を模式的に示す側面図である。
【図6】は把持対象部品を組み付け先部品に組み付ける直前の状態を模式的に示す側面図である。
【図7】は組み付け動作初期の状態を模式的に示す側面図である。
【図8】は組み付け完了直後の状態を模式的に示す側面図である。
【図9】は制御ドライバの構成を示すブロック図である。
【図10】は解決手段の作用を模式的に示す説明図である。
【図11】は実施態様4の作用のSTEP0乃至STEP2を模式的に示す説明図である。
【図12】は実施態様4の作用のSTEP3乃至STEP5を模式的に示す説明図である。
【図13】は実施例の制御装置のブロック図である。
【符号の説明】
1:フィンガー
2:移動手段
3:ハンド本体
4:DCモータ
5:伝達ギア
6:回転シャフト
7:ピニオン
8:第1クラッチ
9:旋回用ギア
10:第2クラッチ
11:リニアガイド
12:連結部材
13:ラックギア
14:移動ブレーキ
15:第1ベース
16:第2ベース
17:第1ベアリング
18:第2ベアリング
19:固定シャフト
20:内歯車
21:旋回ブレーキ
22:第3ベース
23:本体ケース
24:第3ベアリング
25:スリップリング
26:アーム
27:関節
28:架台
29:把持対象部品
30:第1のフィンガー
31:第2のフィンガー
32:第3のフィンガー
33:部品供給台
34:組み付け先部品
34g:溝
35:位置指令器
36:誤差増幅器A
37:位置制御器
38:誤差増幅器B
39:速度制御器
40:電流制限器
41:電流指令器
42:制御モード切換スイッチ
43:誤差増幅器C
44:電流制御器
45:電力変換器
46:電源
47:電流センサ
48:速度センサ
49:位置センサ
【産業上の利用分野】
この発明は、各種機器の部品の位置決めや移送等に用いるロボットハンドの把持制御方法に関するものであって、把持対象部品が予め教示(ティーチング)された位置や大きさとは異なる場合であっても、適切な把持力で且つ、把持対象部品の基準面の位置出しをしながら、把持対象部品を把持することを可能にするものであり、ロボットハンドによる様々な形状の部品の把持制御に応用することができるものである。
【0002】
【従来の技術】
近年、コピー機やFAX等の各種の機器を組み立て、又は分解する作業においてはできるだけロボットを用いて行うようになっているが、その一部の工程で手作業によることが避けられない場合がある。この手作業が面倒でかつ多大な労力が費やされ、しかもその作業効率が悪いため、手作業に頼っていた作業工程についてもできるだけロボットを利用して自動化することが要請される。
ところで、ロボットに一定の動作をさせる場合は、予め動作順序及び動作内容を教示(ティーチング)して、制御装置の記憶装置に制御データを記憶させ、その記憶装置から記憶内容(制御データ)を順次読み出して、ティーチングによる作業を繰り返させる方法が一般的に採用されている。しかしながらロボットによる作業の対象物については、その存在位置や大きさ等が教示段階でのそれと必ずしも同じではなくて、幾分の誤差がある場合が多く、その上に、部品の組み付け位置のずれが製品品質に影響を与えることがあるため、作業対象物の存在位置や大きさにある程度の誤差がある場合でもこれに対応できる装置にしておくことが必要である。また、部品を把持して組み付ける動作をロボットハンドで行わせる場合、把持対象部品の種類及び把持力の如何によっては当該部品が傷付けられることがあり、他方、作業の如何及び把持力の如何によって、部品に対するロボットハンドの把持位置がずれてしまうという不具合があり、そのために部品が正確に組み付けられない場合もある。このような結果を招来することがないように、個々の把持対象部品(部品)に応じた把持力で適切に対応可能にすることがことが重要である。
【0003】
従来特許第2838582号公報に予め教示(ティーチング)した姿勢での把持対象部品の把持を可能とした発明が記載されているが、把持対象部品の大きさの製作上のばらつき(寸法誤差など)があると、ロボットハンドと把持後の把持対象部品との相対的な位置関係が同じである保証は必ずしもない。
以上のようなことから、この発明は所望の位置出しを行いながら、組み立てや分解等の作業状況に応じた適切な把持力で把持対象部品を把持できるようにすることをその目的とするものである。
【0004】
【発明が解決しようとする課題】
【課題1】
請求項1、請求項2の発明はロボットハンドの把持制御方法について、把持対象部品の大きさのばらつき、把持対象部品の位置が教示段階の位置と同一ではないにも関わらず、フィンガー開閉方向の相対的位置関係におけるロボットハンドと把持対象部品の所望部分との位置出しを可能にすることをその課題とするものである。
【0005】
【課題2】
請求項3の発明はロボットハンドの把持制御方法について、各フィンガーの相対的な位置が把持方向に移動し、把持対象部品を把持したときに、各フィンガーから把持対象部品へ加える力ベクトルがゼロベクトルになるように指令することを可能にすることにより、より安定的に把持できるようにすることをその課題とするものである。
【0006】
【課題3】
請求項4の発明は、ロボットハンドの把持制御方法について、力制御するフィンガー(力制御フィンガー)の合力に負けない位置制御をするフィンガー(位置制御フィンガー)の適切な位置保持力を確保し、安定的に把持できるようにすることをその課題とするものである。
【0007】
【課題4】
請求項5の発明は、ロボットハンドの把持制御方法について、確実な挿入組立動作を実現するため、把持した把持対象部品とハンド本体との挿入組み付け先でのフィンガー開閉方向における相対的位置の位置出しを可能にすることをその課題とするものである。
【0008】
【課題5】
請求項6の発明は、ロボットハンドの把持制御方法について、把持力を把持対象部品に傷が付かない程度に抑えて、把持動作による把持対象部品の損傷が防止されるようにすることをその課題とするものである。
【0009】
【課題6】
請求項7の発明は、ロボットハンドの把持制御方法について、組み立てや分解等の作業時にもロボットハンドと把持した把持対象部品とのフィンガー開閉方向の相対的位置関係の位置ずれを防止して、安定な組み立て及び分解作業を可能にすることをその課題とするものである。
【0010】
【課題7】
請求項8の発明は、ロボットハンドの把持制御方法について、把持対象部品の種類及び作業状況に応じた適切な把持条件を適用して把持を行うことで、組み立てや分解等の作業をより安定的に行うことと、過剰な把持力による把持を防止して、把持機構の摩耗損傷を可及的に低減し、その耐久性を向上させることをその課題とするものである。
【0011】
【課題解決のために講じた手段】
【解決手段1】(請求項1に対応)
上記課題1を解決するために講じた手段1は、ハンド本体に対して直線移動する2本以上のフィンガーを備え、各フィンガーを相対移動させることで把持対象部品を把持するロボットハンドの把持制御方法を前提として、次の(イ)(ロ)によって構成されるものである。
(イ)ロボットハンド自体を各フィンガーにより把持対象部品を挟持できる位置に移動し(STEP1)、各フィンガーを相対移動させ(STEP2)て、各フィンガーを把持対象部品に接触させ(STEP3)ること、
(ロ)一方のフィンガーをフィードバック制御によりフィンガー位置がフィンガー指令位置と一致するように動作させ(位置制御動作)、他方のフィンガーを、フィードバック制御によりフィンガー押圧力(印加力)がフィンガー押圧力指令値(印加力指令)と一致するように動作(力制御動作)させることで、上記各フィンガーの相対移動を行うこと。
なお、ステップ1乃至ステップ3については図10参照。
【0012】
【作用】
教示(ティーチング)されたところに従ってロボットハンド本体自体を、把持対象部品を挟持できる位置に移動させ、各フィンガーを移動させて把持対象部品に接触させる。このとき、一方のフィンガーをフィードバック制御によって教示位置に移動させて当該位置に位置決めし、他方のフィンガーによる把持対象部品に対する押圧力をフィードバック制御によりフィンガー押圧力指令(印加力指令)値に一致するように制御して、両フィンガーによって把持対象部品を把持するものであるから、ロボットハンド本体自体に対する把持対象部品の位置は、制御された上記一方のフィンガー(位置制御フィンガー)の位置によって正確に規定され、把持力は制御された他方のフィンガー(力制御フィンガー)の押圧力によって正確に規定される。
【0013】
作業時の把持対象部品の位置がティーチング時の把持対象部品の位置とは若干違っていても、両フィンガーで把持された状態で、上記一方のフィンガーの位置制御によって、把持対象部品の基準面とロボットハンド本体との位置関係、すなわち、ロボットハンド本体に対する把持対象部品の位置関係が正確に制御されて、その位置で他方のフィンガーの押圧力を受け止めて把持対象部品を把持するから、ロボットハンド本体に対する把持対象部品の位置出しが正確になされる。
また、ロボットハンド本体に対する把持対象部品の位置が、位置制御された一方のフィンガー(位置制御フィンガー)を基準として決められるもので、把持対象部品の種類の違いによる大きさの違い、同じ部品の製作誤差による大きさの誤差があっても、上記一方のフィンガーと把持対象部品との位置関係は一定に保たれる。
【0014】
【実施態様1】(請求項2に対応)
この実施態様1は上記解決手段1における、フィンガー開閉方向についてのロボットハンドと把持対象部品の相対的な位置精度を出したい部分に接触するフィンガーに位置制御動作を行わせ、その他のフィンガーに力制御動作を行わせることである。
【0015】
【作用】
把持対象部品の位置精度を出したい部分に接触する方のフィンガーが位置制御動作を行ない、他方のフィンガーが力制御動作を行うから、把持対象部品の位置精度を出したい部分のロボットハンドに対する位置関係が、把持対象部品の大きさの違い(製作誤差によるばらつき)、位置ずれの如何に関わらず、教示(ティーティング)での位置関係と常に一致する。
【0016】
【実施態様2】(請求項3に対応)
実施態様2は、解決手段1における位置制御動作及び力制御動作を適用するフィンガーの位置指令値及び力指令値をそれぞれ個別に設定することである。
【0017】
【作用】
位置制御動作及び力制御動作を適用するフィンガーの位置指令値及び力指令値をそれぞれ個別に設定するとき、全てのフィンガーから把持対象部品に作用する力の合力がゼロベクトルになるように、個々のフィンガーの作用力を調整することができる。したがって、把持対象部品がより安定的に把持される。
【0018】
【実施態様3】(請求項4に対応)
実施態様3は、上記実施態様1または実施態様2のロボットハンドの把持制御方法について、その位置制御動作を行うフィンガー(位置制御フィンガー)の位置保持力よりも、力制御動作を行うフィンガー(力制御フィンガー)から把持対象部品への印加力の合力を小さくすることである。
【0019】
【作用】
位置制御フィンガーへ作用する反力は力制御フィンガーからの作用力であり、当該作用力が位置制御フィンガーの保持力よりも小さいので、力制御フィンガーからの作用力によって、位置制御フィンガーの位置がずれることはない。
【0020】
【実施態様4】(請求項5に対応)
実施態様4は、上記解決手段1乃至実施対象3の把持制御方法によって挿入組立動作を行う場合の把持位置制御方法についての実施態様であって、次の(イ)〜(ホ)によるものである。
(イ)把持対象部品をそのテーパー状先端部から挿入する組立作業の場合で、把持した把持対象部品(STEP0)をロボットハンド自体を移動させることで把持対象部品のテーパ部のみを相手穴に挿入し(STEP1)、
(ロ)位置制御フィンガーの位置指令値を変化させる(STEP2)ことで、位置制御フィンガーと力制御フィンガーとを把持対象部品を把持したまま移動させ(STEP3)、
(ハ)上記移動時に、位置制御フィンガーと力制御フィンガーの間の距離を逐次検知して記憶し、
(ニ)上記移動時の両フィンガー間距離が最小距離のときの位置制御フィンガーの位置を新たな位置指令値として設定(STEP4)し、
(ホ)位置制御フィンガーと力制御フィンガーで把持対象部品を把持したままで、位置制御フィンガーを新たな設定位置へ移動させる(STEP5)こと。
なお、ステップ1乃至ステップ5については図11参照。
【0021】
【作用】
ロボットハンドを教示(ティーチング)どおりに移動させてから下降させて把持対象部品のテーパー状先端部を組み付け先部品に挿入するとき、その先端が組み付け先部品の角に当たると把持対象部品が傾き、この傾きによって両フィンガーに押し広げる方向の力が作用する。このとき、位置制御フィンガーは力制御フィンガーよりもその位置保持力が大きいので、力制御フィンガーだけが後退し、位置制御フィンガーの位置が設定位置に保持される。
次いで、ロボットハンド本体に対して両フィンガーを図11のステップ3のように移動させる。この間に、位置制御フィンガーと力制御フィンガーの移動に伴って把持対象部品の傾きが変化し、位置制御フィンガーと力制御フィンガー間の間隔(距離)が減少し、最小値を経て増大する。この位置制御フィンガーと力制御フィンガー間の間隔(距離)を逐次算出して記憶し、上記最小値を求める。上記距離最小のときの位置制御フィンガーの位置を求めて、当該位置に位置制御フィンガーの制御位置をあらたに設定して、当該設定位置に位置制御フィンガーを移動させる。このとき、力制御フィンガーは位置制御フィンガーに向かって付勢されているので、位置制御フィンガーの移動に伴って同じ方法に同じ距離移動する。
位置制御フィンガーと力制御フィンガー間の間隔が最小のときの位置が、把持対象部品の方向が組み付け先部品に対する挿入方向と一致した位置であるから、新たな位置でロボットハンドをさらに下降させることによって、把持対象部品が組み付け先部品にスムーズに挿入される。
【0022】
【実施態様5】(請求項6に対応)
実施態様5は、実施態様3のロボットハンドの把持制御方法について、力制御フィンガーから把持対象部品への印加力の指令値の上限を把持対象部品が損傷しない程度にして、上記指令値による印加力で持対象物を把持させることである。
【0023】
【実施態様6】(請求項7に対応)
実施態様6は、実施態様3のロボットハンドの把持制御方法について、把持対象部品の組み付け時又は分解時の把持対象部品に加わる組立又は分解反力以上の把持力が発揮できるように、力制御フィンガーの印加力の指令値を設定することである。
【0024】
【実施態様7】(請求項8に対応)
実施態様7は、実施態様5または実施態様6のロボットハンドの把持制御方法について、把持対象部品とロボットによる作業の如何に応じて、把持対象部品のどの部分にフィンガーを接触させるか、どのフィンガーを位置制御フィンガーとしあるいは力制御フィンガーとするかの把持条件を予め制御コントローラに記憶しておき、この把持条件に基づいて搬送時、組立時、分解時等の作業内容に応じて把持条件を適宜選択し、選択した把持条件によって各フィンガーによる把持制御を行うことである。
【0025】
【作用】
把持対象部品と作業の如何によって、フィンガーを把持対象部品に接触させる最適の位置が異なり、また、最適な位置制御フィンガーが異なる場合がある。
把持対象部品と作業とに応じて上記把持条件を設定してあるので、この把持条件を選択することによって、把持対象部品の種類及び作業状況に応じて、その作業が最も安全にかつ安定的に行われる。
【0026】
【実施例】
図1に基いて本実施例におけるロボットハンドのフィンガーの移動と移動方向の転換について説明する。
図1において、フィンガー1は移動手段2に連結されており直線状矢印の方向に直線移動する。移動手段2はハンド本体3に内蔵されている旋回手段に連結されており、図示の弧状矢印の方向に旋回方向に移動する。これにより、フィンガー1の直線移動の方向及び移動位置が適宜調整・変更される。
【0027】
次に、図2に基づいて本実施例の移動手段と旋回手段の機構を説明する。図2において、モータ4の出力トルクは伝達ギア5により回転シャフト6に伝達される。直線駆動用のピニオン7は回転シャフト6に対して回転自在であり、第1クラッチ8によって選択的に係脱される。同様に、旋回用のピニオン9は回転シャフト6に対して回転自在であり、第2クラッチ10により選択的に係脱される。移動手段はフィンガー1をハンド本体3の半径方向に案内するリニアガイド11と連結部材12とラックギア13とピニオン7と移動ブレーキ14と第1ベース15と第2ベース16から構成されている。連結部材12はフィンガー1から下方に延びていて第1ベース15の長孔15aを貫通しており、リニアガイド11のブロックが連結部材12によりラックギア13と連結される。
なお、移動ブレーキ14はリニアガイド11と共同してフィンガー1の直線移動を阻止して、フィンガー1を所定の位置に保持するものである。
直線駆動用のピニオン7の回転によりラックギア13が直線方向に駆動され、これによってフィンガー1がリニアガイド11に沿って直線移動する。回転シャフト6とピニオン7の連結が解除されたとき移動ブレーキ14が作動してフィンガー1の位置が保持される。
【0028】
第1ベース15および第2ベース16は第1ベアリング17と第2ベアリング18によって固定シャフト19に旋回自在に支持されており、旋回手段は本体ケース23に固定されている内歯車20と旋回用のピニオン9、旋回ブレーキ21、第3ベース22から構成されているものであり、第3ベース22は第3ベアリング24によって固定シャフト19に旋回自在に支持されている。内歯車20と旋回用のピニオン9が噛み合っており、旋回用のピニオン9が第2クラッチ10によって回転シャフト6に係合して回転駆動される。この旋回用ピニオン9の回転によって第3ベース22が固定シャフト19を中心として旋回方向に駆動される。
第3ベース22の旋回によって回転シャフト6とともに第1ベース15および第2ベース16も連れて旋回駆動される。回転シャフト6と旋回用ギア9との第2クラッチ10による係合が離脱したときは旋回ブレーキ21が作動して第3ベース22の旋回運動が阻止されてその位置に保持される。このように、第1クラッチ8、第2クラッチ10の動作を切り換えるとともにDCモータ4による直線駆動用のピニオン7と旋回用のピニオン9の回転駆動が切り換えられることで、フィンガー1が半径方向へ移動し、また、移動手段が旋回運動する。なお、ハンド本体3のハウジングと第1ベース15、第2ベース16上のDCモータ4、第1クラッチ等への給電回路の可動部(固定シャフト19と第1ベース15、第2ベース16間の可動部等)における電気的接続はスリップリング25によって行う。
【0029】
次に、図2及び図3に基づいて本実施例のロボットシステムについて説明する。ロボットシステムは架台28に内蔵されるコントローラにより、原点復帰後のフィンガー1の移動量の累積値と移動手段の旋回量の累積値やロボットハンド把持条件等が記憶され、DCモータ4、第1クラッチ8、第2クラッチ10、第1ブレーキ14、第2ブレーキ21、関節27等が制御される。ハンド本体3はアーム26の先端に固定されており、アームが移動することでハンド本体3が前後、左右、上下各方向に移動する。
【0030】
次に、本実施例におけるロボットハンドのフィンガーの位置制御方法及び力制御方法を説明する。
制御ドライバはコントローラ(制御装置)からの位置指令信号もしくは力指令信号と制御モード切換信号を受けて動作する。
図9に最も基本的な制御ドライバの構成の一例を模式的に示している。DCモータ4の回転数をタコメータ等の速度センサ48で監視し、速度センサ48の出力はフィンガーの速度を表す。また、DCモータ4の回転角度をエンコーダ等の位置センサ49で監視し、位置センサ49の出力はフィンガー1の開閉方向位置に対応する。
さらにDCモータ4に加える電力を電流センサ47で検出する。フィンガー1を開閉方向に位置制御する場合には、コントローラ(制御装置)は、制御モード切換信号を出力し制御モード切換スイッチ42を電流制限器40側へ切り換え、電流制限値信号を電流制限器40へ出力することで所望の位置保持力に対応するように予め実験等で求めた電流制限値に設定し、位置指令信号を位置指令器35に出力する。このとき制御ドライバは、誤差増幅器A36で指令した位置と位置センサ49による実際の位置との誤差を検出してこれを増幅し、位置制御器37で位置誤差を解消するための速度信号を発生する。位置制御器37からの上記速度指令と速度センサ48からの速度信号との差を誤差増幅器B38で検出してこれを増幅し、速度制御器39で電流指令信号に変換し、これを電流制限器40により制限し、制限した電流指令と電流センサ47からの電流信号との差を誤差増幅器C43で増幅してこれを電流制御器44に入力し、電源46からの電力を電流制御器44からの制御信号によって電力変換器45で制御し、電力変換器45で制御された電力をDCモータ4に加えてDCモータ4の回転角度を制御することにより、フィンガー1の開閉方向の位置制御を行う。
【0031】
また、フィンガー1を開閉方向に力制御する場合には、コントローラは制御モード切換信号を出力し、制御モード切換スイッチ42を電流指令器41側へ切り換え、個々の把持対象部品に対して所望の把持力を印加するのに必要な力(電流)指令信号として、実験等で予め求めた所要の電流値に対応する力(電流)指令信号を電流指令器41へ出力し、制御ドライバ(図9)は、この電流指令と電流センサ47からの電流信号との差を誤差増幅器C43で増幅してこれを電流制御器44に入力し、電源46からの電力を電力変換器45で制御し、電力変換器45で制御された電力をDCモータ4に加え、フィンガー1の開閉方向の力制御を行う。これらはサーボモータのフィードバック制御に関する一般的な構成である。
【0032】
次に、本実施例におけるロボットハンドの把持制御方法を説明する。
最初に、第1のフィンガー30と第2のフィンガー31の開閉方向が向き合い、第3のフィンガー32の開閉方向が第1のフィンガー30と第2のフィンガー31の開閉方向に対して90度の方向になるように各フィンガーの開閉方向を転換する(図4)。次に、第1のフィンガー30、第2のフィンガー31、第3のフィンガー32を位置制御して開方向に移動させ、アーム26の動作によりハンド本体3を把持対象部品29の把持位置へ移動させる(図5参照)。
【0033】
次に、第1のフィンガー30を位置制御により閉方向に移動させると同時に、第2のフィンガー31を力制御により閉方向に移動させる。このときの第2のフィンガー31の力制御による印加力の大きさの指令値は、把持対象部品29を把持したハンド本体3をアーム26により移動させ、所望の把持対象部品29の移送動作を行わせたときに第1のフィンガー30及び第2のフィンガー31と把持対象部品29との相対的位置関係がずれることがなく且つ、第2のフィンガー31から把持対象部品29への印加力は、それによって把持対象部品29が損傷することのない程度の大きさであり、さらに、第1のフィンガー30の位置制御における位置保持力の大きさは、第2のフィンガー31の力制御による印加力よりも大きいように制御され、この制御は、予めコントローラに指令印加力及び電流制限値を記憶しておき、これら値を基準にして行われる。これらの制御により、第1のフィンガー30及び第2のフィンガー31の開閉方向についてハンド本体3と把持対象部品29との相対的位置出しがなされた状態で第1のフィンガー30及び第2のフィンガー31の移動が停止される。
【0034】
次に、アーム26を駆動させて、把持対象部品(具体的には直径5mmのスナップピン)29を把持したハンド本体3を組み付け作業位置に移動させ(図6参照)、把持対象部品29のテーパー状先端を組み付け先部品(具体的には支持部材)34の溝34gに押し込んで組む動作の制御を行う。このときの、第2のフィンガー31の力の大きさは、把持対象部品29に組み付け反力(図7参照)が加わっても、第1のフィンガー30及び第2のフィンガー31と把持対象部品29との相対的位置関係がずれることがなく且つ、第2のフィンガー31から把持対象部品29への印加力により把持対象部品29に損傷を生じることのない程度であり、さらに、第1のフィンガー30の位置制御の位置保持力の大きさは、第2のフィンガー31の力よりも大きいように制御され、この制御は、指令印加力及び電流制限値をコントローラに予め記憶していて、この指令値に基づいて第1及び第2のフィンガー30,31を制御することによって行われる。これらの制御により、把持対象部品29は第1のフィンガー30及び第2のフィンガー31との相対位置がずれることなしに、組み付け先部品34の溝34gに押し込まれる。把持対象部品29が組み付け先部品34の溝34gに完全に押し込まれたとき(図8参照)、アーム26の組み付け動作は終了する。
【0035】
コントローラは、最後に第1及び第2のフィンガー30,31を開方向へ位置制御移動し、把持対象部品29を開放して、組み付け動作制御を終える。
教示操作(ティーチング)において、把持対象部品に対する個々のフィンガーの接触位置を指定して、第1のフィンガー、第2のフィンガーのいずれを位置制御フィンガーとし、いずれを力制御フィンガーとするかを指定し、さらに位置制御値、力制御値を指定して、コントローラのRAMに記憶させる。
作業においてCPUはRAMから所要の制御データを読み出して、ティーチングどおりに把持動作を制御し、ティーチングどおりに移送動作を制御し、解放動作を制御する。
【0036】
同じロボットアームによって多種類の部品を取り扱い、かつ多種類の作業を行う場合の制御データの設定は、個々の把持対象部品と作業種類との組み合わせ毎にティーチングを行って、第1のフィンガー30、第2のフィンガー31、第3のフィンガー32のスライド方向の固定軸19を中心とする中心角度、位置制御値、力制御値等の制御データをRAMに記憶させ、一群の制御データ毎に登録する。部品と作業との組み合わせに対応する制御データをRAMから読み出して制御メモリに記憶させ、これに基づいて所定の作業動作を制御する。
【0037】
次いで、実施態様4の一例を図6乃至図8に示す組み付け作業に基づいて説明する。
第1、第2のフィンガー30,31の内の第1のフィンガー30が位置制御フィンガーであり、フィンガー31が力制御フィンガーである。
フィンガー30,31のロボットのハンド本体3に対する位置はDCモータ4に設けた位置センサ49(図9)によって検出される。
そして、ハンド本体3に設けた位置センサによって個々のフィンガー30,31の位置を検出し、これをコントローラのCPUで読取り、フィンガー30,31間の距離をCPUで演算して、これを逐次RAMに記憶させる。
第1のフィンガー30を所定位置に移動させ、第2のフィンガー31を所定の力(設定値0.5Kg)で第1のフィンガー30の方へ移動させて、両フィンガーによって0.5Kgの力で把持させる。このときの第1のフィンガー30の位置保持力は1.0Kgに設定されている。
【0038】
把持動作時の把持対象部品29とハンド本体3との位置関係、組み付け位置における組み付け先部品34の溝34gとハンド本体3との位置関係とが、ティーチング時のそれと全く同じであれば、ハンド本体3を下降させることで、把持対象部品29が組み付け先部品34の溝34gに対してずれることはなく、したがって把持対象部品29が組み付け先部品34の溝34gにスムーズに押し込まれることになる。しかし、実際には上記位置関係に若干のずれがある場合が少なくなく、また、把持対象部品29の被把持部の成形誤差や、組み付け先部品34の溝34gの成形誤差があって、そのためにハンド本体を下降させたときの先部品34の溝34gに対する把持対象部品29の位置が許容限度を越えて左右いずれかの方向にずれることが少なくない。
【0039】
そこで、経験的に想定される最大ずれ量(例えば左右各0.8mm)よりも若干大きい、例えば1.0mmだけ第1のフィンガー30を左方へ移動させ、次いで右方へ2.0mm移動させる。この移動の間に第2のフィンガー31が把持対象部品29を把持した状態で第1のフィンガー30とともに移動する。そして、把持対象部品29が左方または右方に傾斜して第1のフィンガー30と第2のフィンガー31との間隔(距離)が増減する。
第1のフィンガー30と第2のフィンガー31の位置をハンド本体3に組み込んだ第1、第2のフィンガーの位置センサで逐次検出し、メモリに記憶させ、この位置情報によって第1のフィンガー30と第2のフィンガー31間の間隔の最小値を算定し、当該最小値における第1のフィンガーの位置を特定する。上記第1のフィンガー30と第2のフィンガー31間の間隔最小値に対応する上記第1のフィンガー30の位置を新たな第1のフィンガーの位置指令値とし、この新たな位置指令値に基づいて上記第1のフィンガー30を移動させ、その位置に把持対象部品を固定する。
【0040】
なお、上記制御における制御データを光ディスク等の記録媒体に記憶させておいて、これを読取装置で読み取ってコントローラのRAMに書き込むようにすることができる。1回の教示操作(ティーチング)等で作成された把持対象部品、作業種類毎の制御データを他の記録媒体に複製することができ、またこれを保存することができるので、何らかのトラブルでコントローラ内の制御データが損傷されても、簡単、迅速にこれを復旧させることができる。
【0041】
以上の制御装置の制御システムの一例は図12に示すとおりである。これは、制御データ等を記録媒体に記録し、これを読み取り装置で読み取ってRAMに格納し、位置検知センサーによって各フィンガーの位置を検出し、検出した位置情報をRAMに記憶させ、これに基づいて上記のとおりのフィンガーの位置制御を行うものである。
【0042】
以上は、左右の第1のフィンガーと第2のフィンガーとによって把持対象部品を把持して各種の作業を行う場合についてのものであるが、第3のフィンガー32をも用いる場合は、ティーチング(教示段階)において、把持対象部品の所定の面に当接するように、固定シャフト19を中心にした第1、第2、第3のフィンガーの回転方向の位置を決め、いずれか2つのフィンガーを位置制御フィンガーとし、残りを力制御フィンガーとすることで、ハンド本体3に対して所定の位置関係において3点で把持することができる。
この場合、3つのフィンガーから把持対象部品に作用する力の合力のベクトルがゼロベクトルになるように、その方向と力の大きさを調整することで、把持対象部品が最も安定するので、例えば嵌め合い作業等において把持対象部品がフィンガーに対して滑ってその位置やフィンガーに対する姿勢が変わることが確実に回避される。
【0043】
【変形例】
また、図11に示す実施態様4では、把持対象部品の位置の把持調整、すなわち、組み付け先部品との関係での位置調整の基準位置を両フィンガー間の間隔最小から、これに対応する位置制御フィンガーの位置を検出し、この位置を位置制御フィンガーの基準位置として再設定するが、次のようにすることもできる。
すなわち、ピックアップ完了時の両フィンガー間の間隔を検出してこれをメモリに記憶させ、組み付け作業工程において把持対象部品の先端を組み付け先部品の溝34gに嵌め合わせ、そのテーパー先端が上記溝34gの角に当接し、そのための両フィンガー間の距離が広がり、その拡大分が所定以上に達しない場合はその押し込み動作を続行し、所定以上に達したとき、上記実施例と同様に、両フィンガーを左方、右方に移動させて、この移動中の両フィンガー間の間隔を、上記の記憶した両フィンガー間の間隔(ピックアップ完了時の間隔)と常時比較して一致したところで、位置制御フィンガーの移動を停止し、この停止位置を基準位置として把持対象部品をハンド本体に固定することもできる。
【0044】
【発明の効果】
この発明の効果を各請求項の発明毎に整理すれば次のとおりである。
(1)請求項1の発明の効果
請求項1の発明の把持制御方法によれば、把持対象部品の種類の違いによる大きさのばらつきや教示段階での位置と把持時の位置のずれに関わらず、ロボットハンドと、把持対象部品と位置制御フィンガーとその接触部分との相対的位置関係を常に一定にして把持することができるので、組み立て、分解作業を教示段階(ティーチング)どおりに正確に行うことができる。
【0045】
(2)請求項2の発明の効果
請求項2の発明の把持制御方法によれば、把持対象部品の大きさのばらつきや、教示段階での位置とずれているにも関わらず、ロボットハンドと把持対象部品の所望部分との、フィンガー開閉方向の相対的位置関係での位置出しを正確に行うことができる。
【0046】
(3)請求項3の発明の効果
請求項3の発明の把持制御方法によれば、各フィンガーの相対的な位置が把持方向に移動し、把持対象部品を把持したときに、各フィンガーから把持対象部品へ加わる力ベクトルが、ゼロベクトルになるように調整することが可能であり、把持対象部品をより安定した状態で把持することができる。
【0047】
(4)請求項4の発明の効果
請求項4の発明の把持制御方法によれば、力制御するフィンガーの合力に負けない、位置制御するフィンガーによる適切な位置保持力を確保して、安定した位置関係で把持することができる。
【0048】
(5)請求項5の発明の効果
請求項5の発明の把持位置制御方法によれば、把持後の把持対象部品と挿入組付け先のフィンガー開閉方向の相対的な位置出しが可能となり、確実な挿入組立動作を実現することができる。
【0049】
(6)請求項6の発明の効果
請求項6の把持制御方法によれば、把持力が把持対象部品が損傷しない程度に抑えられるから、フィンガーによる把持力で把持対象部品が損傷を受けることはない。
【0050】
(7)請求項7の発明の効果
請求項7の把持制御方法によれば、組み立て及び分解作業時にもロボットハンドと被把持対象部品との間の、フィンガー開閉方向における相対的位置関係のずれを生じることがないので、より安定的に組み立て分解作業が行うことができる。
【0051】
(8)請求項8の発明の効果
請求項8の把持制御方法によれば、把持対象部品の種別及び作業状況に応じた最適な把持条件で把持させることができるので、組み立てや分解等の作業がより安定的に行われ、且つ、過剰な把持力がかかることを防止することにも繋がるので、フィンガー及びその駆動部の摩耗損傷を可及的に抑制してその耐久性を向上させることができる。
【0052】
(9)請求項9の発明の効果
請求項9の記録媒体を用いることにより、予めコントローラに記憶した把持条件に基づき、各フィンガーを把持対象部品の所定部分に接触させ、所定のフィンガーに位置の制御あるいは力の制御を施し、適切な位置保持力あるいは印加力で把持対象部品を把持させる制御データ及び制御プログラムを安全に保存することができるので、コントローラ内の制御データ等が損傷しても、上記記録媒体から読み込ませることによって直ちに復旧させることができる。
【0053】
(10)請求項10の発明の効果
請求項10の記録媒体によれば、把持対象部品の種別及び作業状況に応じて選択した適切な把持条件に基づいて各フィンガーの制御を行う制御プログラムを安全に保存することができ、制御装置内の制御データが損傷しても、記録媒体から再び読み込ませることによって、直ちに復旧させることができる。
【図面の簡単な説明】
【図1】はロボットハンドの外観の模式図である。
【図2】はロボットハンド機構を示す断面図である。
【図3】はロボットシステム全体の側面図である。
【図4】はハンド本体及びフィンガーの正面図である。
【図5】は把持対象部品の把持前の状態を模式的に示す側面図である。
【図6】は把持対象部品を組み付け先部品に組み付ける直前の状態を模式的に示す側面図である。
【図7】は組み付け動作初期の状態を模式的に示す側面図である。
【図8】は組み付け完了直後の状態を模式的に示す側面図である。
【図9】は制御ドライバの構成を示すブロック図である。
【図10】は解決手段の作用を模式的に示す説明図である。
【図11】は実施態様4の作用のSTEP0乃至STEP2を模式的に示す説明図である。
【図12】は実施態様4の作用のSTEP3乃至STEP5を模式的に示す説明図である。
【図13】は実施例の制御装置のブロック図である。
【符号の説明】
1:フィンガー
2:移動手段
3:ハンド本体
4:DCモータ
5:伝達ギア
6:回転シャフト
7:ピニオン
8:第1クラッチ
9:旋回用ギア
10:第2クラッチ
11:リニアガイド
12:連結部材
13:ラックギア
14:移動ブレーキ
15:第1ベース
16:第2ベース
17:第1ベアリング
18:第2ベアリング
19:固定シャフト
20:内歯車
21:旋回ブレーキ
22:第3ベース
23:本体ケース
24:第3ベアリング
25:スリップリング
26:アーム
27:関節
28:架台
29:把持対象部品
30:第1のフィンガー
31:第2のフィンガー
32:第3のフィンガー
33:部品供給台
34:組み付け先部品
34g:溝
35:位置指令器
36:誤差増幅器A
37:位置制御器
38:誤差増幅器B
39:速度制御器
40:電流制限器
41:電流指令器
42:制御モード切換スイッチ
43:誤差増幅器C
44:電流制御器
45:電力変換器
46:電源
47:電流センサ
48:速度センサ
49:位置センサ
Claims (14)
- 2本以上のフィンガーを備え、各フィンガーを相対移動させることで把持対象部品を把持するロボットハンドの把持制御方法において、
ロボットハンド自体を各フィンガーにより把持対象部品を挟持できる位置に移動し(STEP1)、各フィンガーを相対移動させ(STEP2)て、各フィンガーを把持対象部品に接触させる(STEP3)ものであって、
一つのフィンガーをフィードバック制御によりフィンガー位置がフィンガー指令位置と一致するように動作させ(位置制御動作)、他方のフィンガーを、フィードバック制御によりフィンガー発生力(印加力)がフィンガー発生力指令値(印加力指令、力指令)と一致するように動作(力制御動作)させることによって、上記各フィンガーの相対移動を行わせることを特徴とするロボットハンドの把持制御方法。 - フィンガー開閉方向についてのロボットハンドと把持対象部品の相対的な位置精度を出したい部分に接触するフィンガーに位置制御動作を行わせ、その他のフィンガーに力制御動作を行わせる請求項1のロボットハンドの把持制御方法。
- 位置制御フィンガー又は力制御フィンガーの位置指令値又は力指令値をそれぞれ個別に設定することを特徴とする請求項1のロボットハンドの把持制御方法。
- 位置制御フィンガーの位置保持力よりも、力制御フィンガーから把持対象部品への印加力の合力を小さくすることを特徴とする請求項2又は請求項3のロボットハンドの把持制御方法。
- 前記請求項1乃至請求項4の把持制御方法による把持対象部品の把持位置制御方法であって、
把持対象部品をそのテーパ状先端部から挿入する組立て作業の場合、把持した把持対象部品(STEP0)をロボットハンド自体を移動させることで把持対象部品のテーパ部のみを組み付け先部品に挿入し(STEP1)、位置制御フィンガーの位置指令値を変化させる(STEP2)ことで、位置制御フィンガーと力制御フィンガーを把持対象部品を把持したままで移動させ(STEP3)、同時に、位置制御フィンガーと力制御フィンガー間の距離を逐次検知して記憶し、その後、その記憶した距離が最小の時の位置制御フィンガーの位置を位置指令値としてあらたに設定(STEP4)し、位置制御フィンガーと力制御フィンガーで把持対象部品を把持したままで、あらたに設定した位置へ位置制御フィンガーを移動させて当該位置で停止(STEP5)させる、ロボットハンドによる把持対象部品の位置制御方法。 - 力制御フィンガーによる把持対象部品への印加力の指令値を把持対象部品を損傷しない程度の大きさに設定し、当該指令値で力制御フィンガーによる把持力を制御することを特徴とした請求項4のロボットハンドの把持制御方法。
- 把持対象部品の組み付け時又は分解時の把持対象部品に加わる組立又は分解反力以上の把持力が発揮されるように、力制御フィンガーによる印加力の指令値を設定する請求項4の把持制御方法。
- 把持対象部品のどの部分に各フィンガーをそれぞれ接触させるか、どのフィンガーを位置制御フィンガーとしあるいは力制御フィンガーとするかの把持条件を予め制御コントローラに記憶しておき、移送、組み立て、分解等の作業内容に応じて把持条件を適宜選択し、選択した把持条件に基づいて各フィンガーの制御を行うことを特徴とした請求項6乃至請求項7の把持制御方法。
- 請求項6乃至請求項7の把持制御方法をコンピュータに行わせる際に、ロボットハンドで把持する把持対象部品とロボットに行わせる作業の如何に応じて、把持対象部品のどの部分に各フィンガーを接触させるか、どのフィンガーを位置制御フィンガーとしあるいは力制御フィンガーとするかの把持条件を予め制御コントローラに記憶しておき、この把持条件に基づいて各フィンガーの制御を行うためのプログラムを記録した記憶媒体。
- 搬送、組み立て、分解等の作業内容に応じて上記把持条件を適宜選択し、選択した把持条件に基づいて各フィンガーの制御を行うための請求項9のプログラムを記録した記憶媒体。
- 2本以上のフィンガーを備え、各フィンガーを相対移動させることで把持対象部品を把持するロボットハンドであって、ハンド本体の固定シャフトを中心にして旋回方向の位置を調整自在のベースを2以上設け、それぞれのベースにその長手方向に移動自在に上記フィンガー、及び当該フィンガーを直線駆動する駆動機構をそれぞれ設け、
上記駆動機構がDCモータを備えていて当該DCモータの回転制御によって、それぞれのフィンガーの位置、位置保持力、移動力を制御装置で制御するロボットハンドの把持装置において、
上記制御装置によって一方のフィンガーの位置、位置保持力を制御し、他方のフィンガーの移動力を制御し、
上記一方のフィンガーの位置保持力を上記他方のフィンガーの移動力よりも大きくする制御データ、上記一方のフィンガーの停止位置を制御する制御データによって上記制御装置を駆動してハンド本体に対する把持対象物の位置決めを行うロボットハンドの把持装置。 - 上記フィンガーの上記ベース上の位置を、上記DCモータの回転数を計測することによって検出する請求項11のロボットハンドの把持装置。
- 上記制御装置が上記位置制御データを適宜変更することによってハンド本体に対する把持対処物の位置を適宜調整するプログラムを備えている、請求項11のロボットハンドの把持装置。
- 記憶媒体に記憶させた制御データ、制御プログラムを読み取る読み取り装置を備え、当該読取装置で読み取った制御データ、制御プログラムをコントローラのメモリに設定し、設定された制御データ、制御プログラムに基づいて、把持対象部品の把持動作、組み付け先部品への組み付け動作を上記コントローラで行う請求項11のロボットハンドの把持装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002208831A JP2004050321A (ja) | 2002-07-17 | 2002-07-17 | ロボットハンドの把持制御方法及び把持装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002208831A JP2004050321A (ja) | 2002-07-17 | 2002-07-17 | ロボットハンドの把持制御方法及び把持装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004050321A true JP2004050321A (ja) | 2004-02-19 |
Family
ID=31932872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002208831A Pending JP2004050321A (ja) | 2002-07-17 | 2002-07-17 | ロボットハンドの把持制御方法及び把持装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004050321A (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007030365A2 (en) * | 2005-09-07 | 2007-03-15 | The Boeing Company | Velocity feedforward compensation for force control systems |
JP2015515931A (ja) * | 2012-05-02 | 2015-06-04 | ジーエルピー システムズ ゲーエムベーハーGlp Systems Gmbh | グリッパ |
JP2015104776A (ja) * | 2013-11-29 | 2015-06-08 | キヤノン株式会社 | 部品供給方法及びロボットシステム |
JP2015120221A (ja) * | 2013-12-24 | 2015-07-02 | アズビル株式会社 | 部品組み立て装置 |
JP2019005875A (ja) * | 2017-06-27 | 2019-01-17 | 中村留精密工業株式会社 | 工作機械のローディングシステム |
CN110883773A (zh) * | 2019-11-20 | 2020-03-17 | 清华大学 | 一种用于二指机械手抓取操作的自适应控制方法 |
WO2020156751A1 (de) * | 2019-01-29 | 2020-08-06 | Extor Gmbh | Reifengreifer |
JP2020168686A (ja) * | 2019-04-04 | 2020-10-15 | キヤノン株式会社 | ロボットハンド、ロボット装置、生産システム、物品の製造方法、制御方法、および入力装置 |
CN115003459A (zh) * | 2020-01-30 | 2022-09-02 | 三菱电机株式会社 | 原点复位装置 |
JP7537230B2 (ja) | 2020-10-30 | 2024-08-21 | セイコーエプソン株式会社 | ハンドの駆動方法およびハンド |
-
2002
- 2002-07-17 JP JP2002208831A patent/JP2004050321A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007030365A2 (en) * | 2005-09-07 | 2007-03-15 | The Boeing Company | Velocity feedforward compensation for force control systems |
WO2007030365A3 (en) * | 2005-09-07 | 2007-05-03 | Boeing Co | Velocity feedforward compensation for force control systems |
US7281431B2 (en) | 2005-09-07 | 2007-10-16 | The Boeing Company | Velocity feedback compensation for force control systems |
US7493826B2 (en) | 2005-09-07 | 2009-02-24 | The Boeing Company | Velocity feedback compensation for force control systems |
JP2015515931A (ja) * | 2012-05-02 | 2015-06-04 | ジーエルピー システムズ ゲーエムベーハーGlp Systems Gmbh | グリッパ |
JP2015104776A (ja) * | 2013-11-29 | 2015-06-08 | キヤノン株式会社 | 部品供給方法及びロボットシステム |
JP2015120221A (ja) * | 2013-12-24 | 2015-07-02 | アズビル株式会社 | 部品組み立て装置 |
JP2019005875A (ja) * | 2017-06-27 | 2019-01-17 | 中村留精密工業株式会社 | 工作機械のローディングシステム |
WO2020156751A1 (de) * | 2019-01-29 | 2020-08-06 | Extor Gmbh | Reifengreifer |
JP2020168686A (ja) * | 2019-04-04 | 2020-10-15 | キヤノン株式会社 | ロボットハンド、ロボット装置、生産システム、物品の製造方法、制御方法、および入力装置 |
CN110883773A (zh) * | 2019-11-20 | 2020-03-17 | 清华大学 | 一种用于二指机械手抓取操作的自适应控制方法 |
CN110883773B (zh) * | 2019-11-20 | 2020-10-27 | 清华大学 | 一种用于二指机械手抓取操作的自适应控制方法 |
CN115003459A (zh) * | 2020-01-30 | 2022-09-02 | 三菱电机株式会社 | 原点复位装置 |
JP7537230B2 (ja) | 2020-10-30 | 2024-08-21 | セイコーエプソン株式会社 | ハンドの駆動方法およびハンド |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5176790B2 (ja) | ロボットの教示再生装置および教示再生方法 | |
JP5545534B2 (ja) | ロボットの教示再生装置、教示再生方法、及び教示データ作成方法 | |
JP6472214B2 (ja) | ロボット装置の制御方法及びロボット装置 | |
JP6584102B2 (ja) | ロボット装置、ロボット制御方法、プログラム、記録媒体、及び物品の製造方法 | |
JP2010142909A (ja) | ロボットの制御装置 | |
JP2004050321A (ja) | ロボットハンドの把持制御方法及び把持装置 | |
JP7020812B2 (ja) | ロボット装置、ロボット装置の制御方法、ロボット装置を用いた物品の組立方法、制御プログラムおよび記録媒体 | |
JP7336215B2 (ja) | ロボットシステム、制御方法、物品の製造方法、プログラム、及び記録媒体 | |
WO2006112069A1 (ja) | 産業用ロボットの原点調整方法 | |
JP6946057B2 (ja) | ロボットハンド、ロボットハンドの制御方法、ロボット装置 | |
WO2010004635A1 (ja) | ロボット及びその教示方法 | |
JP2014046449A (ja) | ロボットハンド制御方法、ロボットハンド制御装置及びロボット装置 | |
JP2019202406A (ja) | ロボットハンド、ロボットハンドの制御方法、ロボット装置、プログラム及び記録媒体 | |
JP5572994B2 (ja) | ロボット制御装置 | |
JP5488045B2 (ja) | 搬送装置及びその位置決め方法 | |
JP2009012132A (ja) | 多関節型ロボットおよびワーク受け渡し方法 | |
US20200298410A1 (en) | Robot hand controller | |
WO2019013259A1 (ja) | 把持システム | |
JP4873254B2 (ja) | ロボットの直接教示装置 | |
JPH0796427A (ja) | ロボットの制御装置 | |
JP2016209936A (ja) | ロボット装置、ロボット制御方法、プログラム及び記録媒体 | |
JP2019084650A (ja) | ロボット装置及び組立品の製造方法 | |
JP2017127932A (ja) | ロボット装置、ロボット制御方法、部品の製造方法、プログラム及び記録媒体 | |
JP5347705B2 (ja) | ロボット制御装置 | |
JP2922763B2 (ja) | 実装装置 |