JP2004045666A - 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法 - Google Patents

波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法 Download PDF

Info

Publication number
JP2004045666A
JP2004045666A JP2002201882A JP2002201882A JP2004045666A JP 2004045666 A JP2004045666 A JP 2004045666A JP 2002201882 A JP2002201882 A JP 2002201882A JP 2002201882 A JP2002201882 A JP 2002201882A JP 2004045666 A JP2004045666 A JP 2004045666A
Authority
JP
Japan
Prior art keywords
substrate
thin film
wavelength conversion
conversion element
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201882A
Other languages
English (en)
Other versions
JP3999589B2 (ja
Inventor
Masao Yube
遊部 雅生
Yoshiki Nishida
西田 好毅
Hiroshi Miyazawa
宮澤 弘
Osamu Tadanaga
忠永 修
Hiroyuki Suzuki
鈴木 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002201882A priority Critical patent/JP3999589B2/ja
Publication of JP2004045666A publication Critical patent/JP2004045666A/ja
Application granted granted Critical
Publication of JP3999589B2 publication Critical patent/JP3999589B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】大面積にわたって均一な組成と、膜厚を持つような波長変換素子用薄膜基板を再現性良く作成することができるようにしたこと。
【解決手段】基板11,12を、接着層13を介して貼り合わせ、第一の基板11に研磨加工を施した。第一の基板であるZn添加LiNbOの薄膜の残された面と第三の基板14を重ね合わせて仮接合し、基板を溶媒に浸漬してワックスを溶かし、第二の基板12を分離した。残された第三の基板14とZn添加LiNbOの薄膜が重なった基板を電気炉に入れて、高温でアニールして拡散接合を行った。Zn添加LiNbOの薄膜上に周期的な電極を形成した。このような工程により、Mg添加LiNbO基板上にZn添加LiNbOの薄膜が接合され、分極が周期的に反転された波長変換素子に好適な薄膜基板を作製できた。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法に関し、より詳細には、波長多重や時間多重を利用した光通信システムにおける光駆動型光回路装置、具体的には、非線形光学媒質中で生じる差周波発生効果を用いて信号光の波長を別の波長に変換する波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法に関する。
【0002】
【従来の技術】
近年、光通信システムの通信容量の増大を図るために、波長の異なる複数の光を多重化して伝送する波長分割多重(WDM)通信システムが積極的に導入されている。このようなWDM通信システムにおいては、限られた波長数を有効に利用するために、信号波長を任意の信号波長に変換する波長変換デバイスの実用化が求められている。
【0003】
従来、光の波長を変換する波長変換素子としては、半導体光増幅器を用いるもの、四光波混合を利用するもの等が知られている。しかしながら、これらの波長変換素子においては光通信システムにおいて求められる高効率、高速、広帯域、低ノイズ、偏波無依存などの条件を満足させることはできていなかった。
【0004】
一方、二次非線形効果の一種である擬似位相整合による差周波発生を利用した波長変換素子が知られている。
【0005】
図5は、従来の擬似位相整合型の波長変換素子の構成を示す概略図で、図中符号51は光導波路、52はLiNbO基板を示している。比較的小さな光強度を持つ信号光と、比較的大きな光強度を持つ励起光は合波器によって合波されて、分極反転構造をもった非線形導波路に入射される。導波路中で信号光は、別の波長を持つ差周波光へと変換され導波路から出射される。例えば、励起光の波長λ1=0.77μmとした場合、λ2=1.55μmの信号光を波長λ3=1.53μmの差周波光へと変換することができる。
【0006】
このような、擬似位相整合を利用した波長変換素子を作製する従来の方法においては、ニオブ酸リチウムなどの非線形光学結晶基板に周期分極反転構造を作製した後、プロトン交換導波路を作製することによって波長変換素子を作製していた。
【0007】
これに対して、導波路中への光閉じ込めを改善し、バルクもしくはバルクに近い非線形効果を利用した高効率な波長変換を実現するために、リッジ型の光導波路構造をもった波長変換素子が提案されている。
【0008】
リッジ型光導波路を持つような波長変換素子を作製するための従来の方法は、液相エピタキシャル法によって成長されたニオブ酸リチウムなどの単結晶膜に、通常のフォトリソグラフィによってエッチングマスクを作製し、それに続くドライエッチングプロセスにおいて、マスク部以外の単結晶膜を除去することによってリッジ型光導波路を作製していた。
【0009】
一方、これとは別にリッジ型光導波路を作製する方法として、Mg添加ニオブ酸リチウム基板に周期分極反転構造を作製した後、別に用意したニオブ酸リチウム基板に接着剤を用いて接着し、Mg添加ニオブ酸リチウム基板の基板厚さを平面研削加工によって薄くした後、ダイシングソーを用いた超精密研削加工によってリッジ型導波路を作製することが行われている(レーザ研究:第28巻第9号p601−603)
【0010】
【発明が解決しようとする課題】
しかしながら、プロトン交換導波路は、拡散型の屈折率分布をもち導波モードが非対称であること、また、プロトン交換処理によって基板表面が変質するため、導波路部分の非線形光学効果が劣化することなどが問題となっていた。
【0011】
また、液相エピタキシャル法による単結晶膜の作製は大面積化が難しく、例えば、3インチのウエハの面積にわたって均一な組成あるいは膜厚を持つような単結晶膜の作製は難しかった。
【0012】
さらに、単結晶膜と基板とを接着剤を用いて貼り合わせる方法は、接着剤と単結晶膜の熱膨張係数が異なるために、温度が変化した時に単結晶膜に割れが生じることが問題となることのほかに、導波路中に比較的短波長の光が伝播すると、その短波長光によって接着剤が劣化するため、動作中に導波路損失が増加し波長変換の効率が劣化することが問題となっていた。
【0013】
このような問題を解決する方法として、我々は非線形効果をもつ光学結晶からなる基板と熱膨張係数がおよそ一致するような、同種の非線形光学結晶、異種の光学結晶あるいはガラスなどを拡散による直接接合によって貼り合わせた後、非線形光学結晶基板を研削、研磨あるいはエッチングなどの方法によって1〜20μmの膜厚になるよう調整し、光導波路の作製に好適な非線形単結晶薄膜基板を作製する方法を見出し、特願2001−337313号として出願している。
【0014】
しかしながら、特に接合する2つの基板の屈折率差が小さい場合、非線形光学結晶基板を1〜20μmの膜厚になるよう調整する際の膜厚を光学的に評価することが困難となり、例えば、3ないし4インチウエハの全面に渡って再現性良く均一な膜厚を実現することが困難であるといった問題があった。
【0015】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、大面積にわたって均一な組成と、膜厚を持つような波長変換素子用薄膜基板を再現性良く作成することができるようにした波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びにこの薄膜基板を用いて分極反転構造を有する光導波路を作製し、もって高性能な波長変換素子を提供することである。
【0016】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、二次の非線形効果を有する第一の基板と、該第一の基板との屈折率の差が0.1〜3.0である接着層を介して第二の基板を貼り合わせる第一の工程と、前記第一の基板厚さを1〜20μmにする第二の工程と、表面層の屈折率が第一の基板より小さな第三の基板を第一の基板へ重ね合わせて仮接合する第三の工程と、前記接着層と第二の基板を除去する第四の工程と、前記第三と第一の基板を拡散接合によって接合する第五の工程と、前記第三の工程によって接合された第一の基板と第三の基板のうち、少なくとも第一の基板の非線形定数を周期的に変調する第六の工程とを備えたことを特徴とする。
【0017】
また、請求項2に記載の発明は、二次の非線形効果を有する第一の基板と、第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第一の工程と、前記第一の基板厚さを1〜20μmにする第二の工程と、表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を拡散接合によって第一の基板へ接合する第三工程と、前記接着層と第二の基板を除去する第四の工程と、前記第三工程によって接合された第一の基板と第三の基板のうち、少なくとも第一の基板の非線形定数を周期的に変調する第五の工程とを備えたことを特徴とする。
【0018】
また、請求項3に記載の発明は、二次の非線形効果を有する第一の基板の非線形定数を周期的に変調する第一の工程と、第一の基板と第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第二の工程と、前記第一の基板厚さを1〜20μmにする第三の工程と、表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を第一の基板へ重ね合わせて仮接合する第四の工程と、前記接着層と第二の基板を除去する第五の工程と、前記第三と第一の基板を拡散接合によって接合する第六の工程とを備えたことを特徴とする。
【0019】
また、請求項4に記載の発明は、二次の非線形効果を有する第一の基板の非線形定数を周期的に変調する第一の工程と、第一の基板と第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第二の工程と、前記第一の基板厚さを1〜20μmにする第三の工程と、表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を拡散接合によって第一の基板へ直接貼り合わせる第四の工程と、前記接着層と第二の基板を除去する第五の工程とを備えたことを特徴とする。
【0020】
また、請求項5に記載の発明は、請求項1乃至4いずれかに記載の発明において、前記第一の基板が、LiNbO、KNbO、LiTaO、LiNb(x)Ta(1−x)(0≦x≦1)、Li1−xTaNb1−y、KTiOPO或いは、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする。
【0021】
また、請求項6に記載の発明は、請求項1乃至5いずれかに記載の発明において、前記第二、第三の基板のうち、少なくとも第三の基板の熱膨張係数が、前記第一の基板の熱膨張係数にほぼ一致することを特徴とする。
【0022】
また、請求項7に記載の発明は、請求項1乃至6いずれかに記載の波長変換素子用薄膜基板の製造方法によって製造されたことを特徴とする。
【0023】
また、請求項8に記載の発明は、請求項1乃至6いずれかに記載の波長変換素子用薄膜基板の製造方法によって製造された薄膜基板中の第一の基板をリッジ状に加工して光導波路を作製する工程を備えたことを特徴とする。
【0024】
擬似位相整合を利用した波長変換素子の効率を改善するためには、変換効率が原理的に長さの2乗に比例することから、素子の長さを長くすること、すなわち、素子作製に用いる非線形光学結晶基板を大面積化すること、さらには、光導波路中での信号光と励起光の重なりを良くすることが重要である。このとき、入射された光は光導波路の基底モードを励振することが望ましく、かつ、導波路中で高いパワー密度が得られるようにするためには、光導波路すなわち非線形光学結晶膜の厚さがおよそ1〜20μmであることが望ましい。
【0025】
本発明者らは、このような長尺の波長変換素子の作製が可能となり、かつ、1〜20μmの膜厚をもつような、非線形光学結晶からなる薄膜基板の製造方法について鋭意検討した結果以下のような方法を発明するに至った。本発明では非線形効果をもつ光学結晶からなる第一の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介していったん第二の基板に貼り合わせた後、第一の基板を研削、研磨あるいはエッチングなどの方法によって膜厚をエリプソメータや干渉式膜厚測定器などの光学的方法によってモニタしながら1〜20μmの膜厚になるよう調整する。
【0026】
このことにより、非線形光学結晶を所望の膜厚に再現性良く加工することができる。その後、膜厚を調整した非線形結晶に非線形結晶と熱膨張係数がおよそ一致するような、同種の非線形光学結晶、異種の光学結晶あるいはガラスなどの第三の基板を清浄雰囲気中で直接重ね合わせて仮接合した後、接着層を除去することにより第二の基板を除去し、その後電気炉中でアニールすることによって第一と第三の基板を拡散接合し、光導波路の作製に好適な非線形単結晶薄膜基板を製造することができる。このとき仮接合においては主に基板表面のファンデルワールス力によって基板が接合され、拡散接合においてはアニールにより基板材料を形成している原子が再配列されて共有結合が生じることにより達成される。仮接合を強固なものにするために仮接合の段階で予備的なアニールを行うこともできる。
【0027】
また、接着層が拡散接合に伴う高温でのアニールによって変質しない場合は、第三の基板を清浄雰囲気中で直接重ね合わせて仮接合した後、電気炉中でアニールすることによって第一と第三の基板を拡散接合してから接着層を除去することにより第二の基板を除去し、薄膜基板を製造することもできる。
【0028】
波長変換素子の作製に必要な非線形定数の周期変調構造は、非線形光学結晶基板にあらかじめ周期分極反転を施しておくか、あるいは基板の拡散接合の後に周期分極反転を行うことで形成できる。
【0029】
また、引き続いて本発明の薄膜基板を用いて波長変換素子を作製する場合は、続く工程において、ダイシングソーを用いた超精密研削加工によってリッジ型の光導波路を作製することもできるし、ドライエッチングあるいはウエットエッチング法によってリッジ型の光導波路を作製することもできる。
【0030】
第二、第三の基板のうち、少なくとも第三の基板の熱膨張係数は、第一の基板の熱膨張係数にほぼ一致することが望ましい。このことにより温度が変化した時に単結晶膜に割れが生じることを防ぐことができ、さらに基板のそりなどを防止することができる。
【0031】
このように、本発明は、波長変換素子の製造に好適な薄膜基板を再現性良く製造する方法を提供するができ、例えば、3ないし4インチウエハの面積にわたって均一な組成、膜厚を持つような非線形光学結晶の薄膜基板を提供することができる。また、本発明の薄膜基板を用いて分極反転構造を有する光導波路を作製し、もって高性能な波長変換素子を提供することができる。
【0032】
以下、本発明の実施例を用いて説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
【0033】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
[実施例1]
本実施例においては、第一の基板としてZカットZn添加LiNbO基板を用い、第二の基板としてZカット無添加LiNbO基板を用い、第三の基板としてZカットMg添加LiNbO基板を用いて波長変換素子用薄膜基板を作製した。基板はいずれも両面が光学研磨されてある3インチウエハであり、基板厚さは300μmである。
【0034】
図1は、本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明するための工程図である。
まず、第一の工程において、用意した第一、第二の基板11,12の表面を洗浄した後、二つの基板11,12を清浄雰囲気中で接着層13を介して貼り合わせた。このとき第一の基板11の+Z面が接着面になるようにした。本実施例では、接着層13としてワックスを用いた。このワックスの屈折率は、約1.6であり、第一の基板11の屈折率は、約2.1なので両者の間には十分な屈折率差がある。
【0035】
次に、第二の工程において、研磨定盤の平坦度が管理された研磨装置を用いて、接着された基板のうち、第一の基板11の厚さが10μmになるまで研磨加工を施した。研磨加工の後に、ポリッシング加工を行うことにより鏡面の研磨表面を得ることができた。このとき研磨及びポリッシング加工の工程の途中で干渉式膜厚測定器を用いて膜厚を管理しながら加工することにより再現性良く均一な膜厚を得ることができた。
【0036】
次に、第三の工程において、研磨加工した基板と別に用意した第三の基板14の表面をそれぞれ洗浄した後、研磨加工した基板のうち第一の基板であるZn添加LiNbOの薄膜の残された面と第三の基板14を清浄雰囲気中で重ね合わせて仮接合した。本実施例の場合、室温での仮接合によりその後の基板の加工に十分な接合強度が得られた。
【0037】
次に、第四の工程において、仮接合した基板を溶媒に浸漬してワックスを溶かし、第二の基板12を分離した。
次に、第五の工程において、残された第三の基板14とZn添加LiNbOの薄膜が重なった基板を電気炉にいれ、高温でアニールして拡散接合を行った。拡散接合された基板はボイトフリーであり、室温に戻したときにおいてもクラックなどは発生しなかった。
【0038】
次に、第六の工程において、Zn添加LiNbOの薄膜上に周期的な電極を形成した。周期は18μmとした。次に基板の厚み方向に電界を印加して基板の分極を周期的に反転した。電界印加の結果、Zn添加LiNbOの薄膜とMg添加LiNbO基板との界面を突き抜けて分極反転を行うことができた。
【0039】
以上のような工程によって、Mg添加LiNbO基板上にZn添加LiNbOの薄膜が接合され、分極が周期的に反転された波長変換素子の作製に好適な薄膜基板を作製することができた。
【0040】
次に、第七の工程において、作製した薄膜基板を用い、また、導波路の作製手段としてはドライエッチングプロセスを用いて波長変換素子を作製した。薄膜基板表面に通常のフォトリソグラフィのプロセスによって導波路パターンを作製した後、ドライエッチング装置に基板をセットし、CFガスをエッチングガスとして基板表面をエッチングすることによりリッジ型光導波路を作製した。高さ7μmのリッジ型光導波路を作製することができた。導波路を基板から短冊状に切りだし、導波路端面を光学研磨することによって長さ50mmの波長変換素子を作製した。
【0041】
作製した波長変換素子に0.77μmの励起光と1.55μmの信号光を入射したところ、1.53μmに波長変換光が得られた高効率で波長変換を実現できた。
【0042】
[実施例2]
本実施例における基板の製造工程に関しては、第一実施例とほぼ同様であるが、本実施例においては接着層として多成分ガラスを用いた点が異なっている。
【0043】
図2は、本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明するための工程図である。
【0044】
まず、第一の工程において、第二の基板22上に接着層23として多成分ガラスをスパッタ法により、堆積したのちに第一の基板21の+Z面が接着面になるようにして清浄雰囲気中で重ね合わせた後電気炉にいれ、高温でアニールして拡散接合を行って第一と第二の基板21,22を接着した。接着層23に用いた多成分ガラスの屈折率は、約1.6であり、第一の基板21の屈折率は、約2.1なので両者の間には十分な屈折率差がある。第二の工程である研磨の工程に関しては、第一の実施例と同様の方法を用いた。
【0045】
次に、第三の工程において、研磨加工した基板と別に用意した第三の基板24を清浄雰囲気中で重ね合わせた。本実施例では接着層と第二の基板22を除去する前に基板を電気炉にいれ、高温でアニールして拡散接合を行った。
【0046】
次に、第四の工程において、その後にフッ酸とフッ化アンモニウムの混合液により接着層を除去することで第二の基板22を分離した。残された第三の基板24とZn添加LiNbOの薄膜が拡散接合された基板はボイドフリーであり、室温に戻したときにおいてもクラックなどは発生しなかった。
【0047】
次に、第五の工程である電界印加工程に関しては、第一の実施例と同様な工程を経ることにより、Mg添加LiNbO基板上にZn添加LiNbOの薄膜が接合され、分極が周期的に反転された波長変換素子の作製に好適な薄膜基板を作製することができた。
【0048】
さらに、第一の実施例と同様にこの薄膜基板を、ドライエッチングプロセスを用いてリッジ導波路化し波長変換素子を作製した結果、高効率の波長変換素子を実現できた。
【0049】
[実施例3]
本実施例における基板の製造工程に関しては、第一の実施例とほぼ同様であるが、本実施例においては第一の基板としてXカットZn添加LiNbO基板を用い、第二の基板としてXカット無添加LiNbO基板を用い、第三の基板としてXカットMg添加LiNbO基板を用いた点が異なっている。
【0050】
図3は、本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明するための工程図である。
【0051】
本実施例におけるは、Xカットの基板を用いているために第一の実施例とは異なり、第一の基板31と第二の基板32を接着する時の第一の基板31の接着面は、+X面でも−X面のどちらを用いても結果に変わりはなかった。なお、符号33は接着層、34は第三の基板を示している。
【0052】
本実施例においても、基板の接着(第一の工程)、研磨(第二の工程)、仮接合(第三の工程)、第二基板の除去(第四の工程)、拡散接合(第五の工程)までの工程に関しては、第一の実施例と同様な工程により、Mg添加LiNbO基板上に厚さ10μmのZn添加LiNbOの薄膜が接合された基板が得られた。
【0053】
次に、第六の工程において、Zn添加LiNbOの薄膜の上に周期18μmの周期状電極を形成し、基板のZ方向に電界を印加して基板の分極を周期的に反転した。
【0054】
以上のような工程によって、Mg添加LiNbO基板上にZn添加LiNbOの薄膜が接合され、分極が周期的に反転された波長変換素子の作製に好適な薄膜基板を作製することができた。
【0055】
第七の工程において、第一の実施例と同様に、この薄膜基板を、ドライエッチングプロセスを用いてリッジ導波路化し、波長変換素子を作製した結果、高効率の波長変換素子を実現できた。
【0056】
[実施例4]
本実施例においては、第一の基板41としてXカットMg添加LiNbO基板を用い、第二の基板42としてXカット無添加LiNbO基板を用い、第三の基板44として基板厚さが300μmのXカット無添加LiNbO基板の上に、50μmの低融点ガラス膜を貼り合わせた複合基板を用いて波長変換素子用薄膜基板を作製した。なお、符号43は接着層、44は第三の基板、44aは無添加LiNbO、44bは低融点ガラス膜を示している。
【0057】
本実施例の第三の基板に用いた低融点ガラスは、その熱膨張係数が、LiNbOにおよそ一致し、かつ屈折率はLiNbOの値より小さい値を持つようにガラス組成が調整されているので本発明の実施態様の一例として好適である。
【0058】
図4は、本発明における波長変換素子用薄膜基板の製造方法を説明するための工程図である。
まず、第一の工程において、第一の基板41上に周期18μmの周期状電極を形成し、基板のZ方向に電界を印加して基板の分極を周期的に反転した。
【0059】
その後の基板の接着(第二の工程)、研磨(第三の工程)、仮接合(第四の工程)、第二基板の除去(第五の工程)、拡散接合(第六の工程)までの工程に関しては、第一の実施例と同様な工程により、Xカット無添加LiNbO基板44aと低融点ガラス膜44bの複合基板上に、厚さ10μmの分極が周期的に反転されたMg添加LiNbOの薄膜が接合された波長変換素子の作製に好適な薄膜基板を作製することができた。
【0060】
第七の工程において、第一の実施例と同様に、この薄膜基板を、ドライエッチングプロセスを用いてリッジ導波路化し、波長変換素子を作製した結果、高効率の波長変換素子を実現できた。
【0061】
このほか、第一の基板としてMg添加LiNbOの他、Zn添加LiNbO、Sc添加LiNbO、In添加LiNbO、KNbO、LiTaO、LiNb(x)Ta(1−x)(0≦x≦1)、Li1−xTaNb1−y、KTiOPOなどを用いた場合においても、同様の波長変換素子用薄膜基板を作製することができる。
【0062】
【発明の効果】
以上説明したように本発明によれば、大面積にわたって均一な組成と、膜厚を持つような波長変換素子用薄膜基板を再現性良く作成することができる。従って、本発明の波長変換素子用薄膜基板を用いれば、長尺の波長変換素子の製造が可能となり波長変換効率の向上に効果がある。
【図面の簡単な説明】
【図1】
本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明す
るための工程図である。
【図2】
本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明す
るための工程図である。
【図3】
本発明における波長変換素子用薄膜基板及び波長変換素子の製造方法を説明す
るための工程図である。
【図4】
本発明における波長変換素子用薄膜基板の製造方法を説明するための工程図で
ある。
【図5】
従来の波長変換素子の動作を説明するための図である。
【符号の説明】
11,21,31,41 第一の基板
12,22,32,42 第二の基板
13,23,33,43 接着層
14,24,34,44 第四の基板
44a 無添加LiNbO
44b 低融点ガラス膜
51 光導波路
52 LiNbO基板

Claims (8)

  1. 二次の非線形効果を有する第一の基板と、該第一の基板との屈折率の差が0.1〜3.0である接着層を介して第二の基板を貼り合わせる第一の工程と、
    前記第一の基板厚さを1〜20μmにする第二の工程と、
    表面層の屈折率が第一の基板より小さな第三の基板を第一の基板へ重ね合わせて仮接合する第三の工程と、
    前記接着層と第二の基板を除去する第四の工程と、
    前記第三と第一の基板を拡散接合によって接合する第五の工程と、
    前記第三の工程によって接合された第一の基板と第三の基板のうち、少なくとも第一の基板の非線形定数を周期的に変調する第六の工程と
    を備えたことを特徴とする波長変換素子用薄膜基板の製造方法。
  2. 二次の非線形効果を有する第一の基板と、第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第一の工程と、
    前記第一の基板厚さを1〜20μmにする第二の工程と、
    表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を拡散接合によって第一の基板へ接合する第三工程と、
    前記接着層と第二の基板を除去する第四の工程と、
    前記第三工程によって接合された第一の基板と第三の基板のうち、少なくとも第一の基板の非線形定数を周期的に変調する第五の工程と
    を備えたことを特徴とする波長変換素子用薄膜基板の製造方法。
  3. 二次の非線形効果を有する第一の基板の非線形定数を周期的に変調する第一の工程と、
    第一の基板と第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第二の工程と、
    前記第一の基板厚さを1〜20μmにする第三の工程と、
    表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を第一の基板へ重ね合わせて仮接合する第四の工程と、
    前記接着層と第二の基板を除去する第五の工程と、
    前記第三と第一の基板を拡散接合によって接合する第六の工程と
    を備えたことを特徴とする波長変換素子用薄膜基板の製造方法。
  4. 二次の非線形効果を有する第一の基板の非線形定数を周期的に変調する第一の工程と、
    第一の基板と第二の基板を前記第一の基板との屈折率の差が0.1〜3.0である接着層を介して貼り合わせる第二の工程と、
    前記第一の基板厚さを1〜20μmにする第三の工程と、
    表面層の屈折率が第一の基板より小さな屈折率を有する第三の基板を拡散接合によって第一の基板へ直接貼り合わせる第四の工程と、
    前記接着層と第二の基板を除去する第五の工程と
    を備えたことを特徴とする波長変換素子用薄膜基板の製造方法。
  5. 前記第一の基板が、LiNbO、KNbO、LiTaO、LiNb(x)Ta(1−x)(0≦x≦1)、Li1−xTaNb1−y、KTiOPO或いは、それらにMg、Zn、Sc、Inからなる群から選ばれた少なくとも一種を添加物として含有していることを特徴とする請求項1乃至4いずれかに記載の波長変換素子用薄膜基板の製造方法。
  6. 前記第二、第三の基板のうち、少なくとも第三の基板の熱膨張係数が、前記第一の基板の熱膨張係数にほぼ一致することを特徴とする請求項1乃至5いずれかに記載の波長変換素子用薄膜基板の製造方法。
  7. 請求項1乃至6いずれかに記載の波長変換素子用薄膜基板の製造方法によって製造されたことを特徴とする波長変換素子用薄膜基板。
  8. 請求項1乃至6いずれかに記載の波長変換素子用薄膜基板の製造方法によって製造された薄膜基板中の第一の基板をリッジ状に加工して光導波路を作製する工程を備えたことを特徴とする波長変換素子の製造方法。
JP2002201882A 2002-07-10 2002-07-10 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法 Expired - Lifetime JP3999589B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201882A JP3999589B2 (ja) 2002-07-10 2002-07-10 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201882A JP3999589B2 (ja) 2002-07-10 2002-07-10 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004045666A true JP2004045666A (ja) 2004-02-12
JP3999589B2 JP3999589B2 (ja) 2007-10-31

Family

ID=31708275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201882A Expired - Lifetime JP3999589B2 (ja) 2002-07-10 2002-07-10 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法

Country Status (1)

Country Link
JP (1) JP3999589B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056830A1 (fr) * 2006-11-09 2008-05-15 Ngk Insulators, Ltd. Procédé de fabrication d'un substrat de guide d'onde optique
WO2008056829A1 (fr) * 2006-11-09 2008-05-15 Ngk Insulators, Ltd. Procédé de fabrication d'un substrat de guide d'onde optique
JP2021105658A (ja) * 2019-12-26 2021-07-26 住友大阪セメント株式会社 光導波路デバイス
WO2022215274A1 (ja) * 2021-04-09 2022-10-13 日本電信電話株式会社 光導波路形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418121A (en) * 1987-07-13 1989-01-20 Nippon Telegraph & Telephone Production of high-speed optical circuit parts
JPH08220578A (ja) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd 分極反転領域の製造方法ならびにそれを利用した光波長変換素子及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418121A (en) * 1987-07-13 1989-01-20 Nippon Telegraph & Telephone Production of high-speed optical circuit parts
JPH08220578A (ja) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd 分極反転領域の製造方法ならびにそれを利用した光波長変換素子及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPTICS LETTERS, vol. 24, no. 7, JPN4006013768, 1 April 1999 (1999-04-01), pages 481 - 483, ISSN: 0000760447 *
OPTICS LETTERS, vol. 24, no. 7, JPNX007042042, 1 April 1999 (1999-04-01), pages 481 - 483, ISSN: 0000880647 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056830A1 (fr) * 2006-11-09 2008-05-15 Ngk Insulators, Ltd. Procédé de fabrication d'un substrat de guide d'onde optique
WO2008056829A1 (fr) * 2006-11-09 2008-05-15 Ngk Insulators, Ltd. Procédé de fabrication d'un substrat de guide d'onde optique
JPWO2008056830A1 (ja) * 2006-11-09 2010-02-25 日本碍子株式会社 光導波路基板の製造方法
US7931831B2 (en) 2006-11-09 2011-04-26 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US8101099B2 (en) 2006-11-09 2012-01-24 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
JP5297197B2 (ja) * 2006-11-09 2013-09-25 日本碍子株式会社 光導波路基板の製造方法
KR101363782B1 (ko) 2006-11-09 2014-02-14 엔지케이 인슐레이터 엘티디 디바이스의 제조 방법
JP2021105658A (ja) * 2019-12-26 2021-07-26 住友大阪セメント株式会社 光導波路デバイス
US11656486B2 (en) 2019-12-26 2023-05-23 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
JP7380204B2 (ja) 2019-12-26 2023-11-15 住友大阪セメント株式会社 光導波路デバイス
WO2022215274A1 (ja) * 2021-04-09 2022-10-13 日本電信電話株式会社 光導波路形成方法

Also Published As

Publication number Publication date
JP3999589B2 (ja) 2007-10-31

Similar Documents

Publication Publication Date Title
JP3753236B2 (ja) 波長変換素子用薄膜基板の製造方法及び波長変換素子の製造方法
JP5083865B2 (ja) 光導波路基板および高調波発生デバイス
JP2008250352A (ja) 光学素子およびその製造方法
JP4174377B2 (ja) 光学素子
JP7062937B2 (ja) 光学素子およびその製造方法
JP4603020B2 (ja) 光導波路の製造方法
JP5358224B2 (ja) 波長変換素子の製造方法
JP3999589B2 (ja) 波長変換素子用薄膜基板の製造方法及び波長変換素子用薄膜基板並びに波長変換素子の製造方法
JP2014222331A (ja) 波長変換素子
JP6228507B2 (ja) 波長変換素子
JP2011064895A (ja) 波長変換デバイス及び波長変換装置
JP2014211539A (ja) 波長変換素子
JP3999748B2 (ja) 波長変換素子の製造方法
JP7295467B2 (ja) 光学素子及びその製造方法
JP5814183B2 (ja) 波長変換デバイス
JP2004020749A (ja) 波長変換素子用薄膜基板の製造方法及び波長変換素子の製造方法
US7589886B1 (en) Wavelength converter structure and method for preparing the same
JP2007316541A (ja) 光学素子の製造方法及び光学素子
JP3999732B2 (ja) 波長変換素子の製造方法
JP3736681B2 (ja) 波長変換素子の製造方法
JP7127472B2 (ja) 波長変換素子の作製方法
JP5181070B2 (ja) 波長変換素子およびその製造方法
JP2014211538A (ja) 波長変換素子
JP7138062B2 (ja) 導波路素子製造方法
WO2003029893A2 (en) Non-linear optical stacks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R151 Written notification of patent or utility model registration

Ref document number: 3999589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term