JP2004030768A - 磁気記録媒体 - Google Patents
磁気記録媒体 Download PDFInfo
- Publication number
- JP2004030768A JP2004030768A JP2002184657A JP2002184657A JP2004030768A JP 2004030768 A JP2004030768 A JP 2004030768A JP 2002184657 A JP2002184657 A JP 2002184657A JP 2002184657 A JP2002184657 A JP 2002184657A JP 2004030768 A JP2004030768 A JP 2004030768A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- powder
- magnetic layer
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
【課題】電磁変換特性、特にS/Nが改良された高密度記録用磁気記録媒体を提供すること。
【解決手段】支持体上に強磁性粉末及び結合剤を主体とする磁性層を有する磁気記記媒体において、該強磁性粉末は平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末であり、かつ磁性層厚みが0.01〜0.2μmであり、かつ磁場配向処理を施されることなくスムージング処理により配向が施されてなることを特徴とする磁気記録媒体。
【選択図】 なし
【解決手段】支持体上に強磁性粉末及び結合剤を主体とする磁性層を有する磁気記記媒体において、該強磁性粉末は平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末であり、かつ磁性層厚みが0.01〜0.2μmであり、かつ磁場配向処理を施されることなくスムージング処理により配向が施されてなることを特徴とする磁気記録媒体。
【選択図】 なし
Description
【0001】
【発明の属する技術分野】
本発明は塗布型の高記録密度の磁気記録媒体に関する。特に磁性層に強磁性金属粉末または六方晶系フェライト粉末を含む高密度記録用の磁気記録媒体に関するものである。
【0002】
【従来の技術】
磁気ディスクの分野において、Co変性酸化鉄を用いた2MBのMF−2HDフロッピーディスクがパーソナルコンピューターに標準搭載されようになった。しかし扱うデータ容量が急激に増加している今日において、その容量は十分とは言えなくなり、フロッピーディスクの大容量化が望まれていた。
また磁気テープの分野においても近年、ミニコンピューター、パーソナルコンピューター、ワークステーションなどのオフィスコンピューターの普及に伴って、外部記憶媒体としてコンピューターデータを記録するための磁気テープ(いわゆるバックアップテープ)の研究が盛んに行われている。このような用途の磁気テープの実用化に際しては、とくにコンピューターの小型化、情報処理能力の増大と相まって、記録の大容量化、小型化を達成するために、記録容量の向上が強く要求される。
【0003】
従来、磁気記録媒体には酸化鉄、Co変性酸化鉄、CrO2、強磁性金属粉末、六方晶系フェライト粉末を結合剤中に分散した磁性層を非磁性支持体に塗設したものが広く用いられる。近年、フレキシブル記録媒体を用いたシステムでもハードディスクで使われている磁気抵抗型ヘッド(MRヘッド)が用いられ始めている。MRヘッドは高感度なので充分な再生出力が得られるので、比較的飽和磁化σsが低くて微粒子の磁性体を用いると低ノイズ化によって高いC/N比が得られる。例えば、特開平10−302243号公報には、バリウムフェライト(BaFe)微粉末を用いてMRヘッドで再生した例が開示されている。
しかしながら、記録波長の低減により更に記録密度の向上を図るには更なる表面平滑化が必要となるが、その達成手段を見出せないでいた。
【0004】
【発明が解決しようとする課題】
本発明は電磁変換特性、特にS/Nが改良された高密度記録用磁気記録媒体を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、支持体上に強磁性粉末及び結合剤を主体とする磁性層を有する磁気記記媒体において、該強磁性粉末は平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末であり、かつ磁性層厚みが0.01〜0.2μmであり、かつ磁場配向処理を施されることなくスムージング処理により配向が施されてなることを特徴とする磁気記録媒体である。
【0006】
本発明の好ましい態様は以下の通りである。
(1)MRヘッド再生用である上記磁気記録媒体。
【0007】
【発明の実施の形態】
本発明は上記構成とすることにより従来の技術では得ることができなかった高密度記録領域でのSN比が格段に改良された磁気記録媒体が得られることを見いだしたものである。
本発明の磁気記録媒体は、磁場配向処理を施されることなくスムージング処理により配向が施されてなるものである。
ここで、スムージング処理とは、磁性層用塗布液を塗布後乾燥前に塗布層表面に部材を当てて塗布層に剪断をかける処理を意味し、本発明はこれにより強磁性粉末に配向処理を施すものである。
【0008】
上記部材としては、上記目的が達成できるものであればよく、板状、ロッド状等が挙げられる。
塗布層に剪断をかける方法としては、(1)上記部材を固定し、その表面を移動する塗布層表面に当てる方法、(2)(1)において、部材を回転(塗布層の移動方向と同方向または逆方向あるいは両者の組み合わせ)させる方法、(3)(1)または(2)において部材を移動可能とし、塗布層の移動速度と部材の移動速度または回転速度を調整する方法等が挙げられる。尚、塗布層に上記剪断をかけるタイミングは、塗布層の塗布後からその乾燥前の間であれば、任意であり、少なくとも1箇所または1回以上施すことができる。
【0009】
上記方法に用いる部材において、塗布層と接触する表面は、少なくとも所望の磁性層の表面粗さが得られる程度に平滑であることが好ましく、該磁性層の表面粗さ以下であることが好ましい。また、塗布層と接触する部材表面は、塗布層を吸着しない素材または撥塗布液性であることが好ましく、例えば、金属(アルミニウム、ステンレス等)、樹脂(PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PA(ポリアミド)等)等が挙げられる。
また、上記方法においては、有機溶媒が経時的に蒸発し、塗布層厚みも経時的に減少するために、塗布層と部材表面が接触する程度、即ち部材の先端が塗布層表面下に位置する深さを経時的に調整する制御機構を備えていることが好ましい。
【0010】
本発明において、磁性層に含まれる強磁性粉末は平均長軸長が25〜100nm、好ましくは、30〜60nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末である。上記サイズが小さすぎると熱揺らぎにより磁化が不安定となり、大きすぎるとS/Nが低下する。
【0011】
また、本発明において、磁性層厚みは0.01〜0.2μm、好ましくは、0.05〜0.1μmである。該厚み0.01μmは製造可能な下限であり、0.2μmより大きいとS/Nが改善されない。
【0012】
本発明では、スムージング処理により磁性層の表面性が確保されるのでC/Nの優れた磁気記録媒体を得ることができる。
【0013】
次に本発明の磁気記録媒体について詳述する。
[磁性層]
本発明の磁気記録媒体は、強磁性金属粉末または六方晶系フェライト粉末を有する磁性層を支持体の片面だけでも、両面に設けても良い。その片側に設けられている磁性層は単層でも互いに組成の異なる複層でもよい。また、磁性層は後述の下層上に設けてもよい。
【0014】
[強磁性金属粉末]
強磁性金属粉末は、Feを主成分としてCo、Ni、Mn、Zn、Ndなどを合金成分として含むものが好ましい。特にFe−Co合金は高い抗磁力Hcが得られる物質として知られている。
平均針状比{長軸長/短軸長}の算術平均)は、3〜8が好ましく、4〜7が更に好ましい。
強磁性金属粉末の飽和磁化σsは、通常、80〜140A・m2/kg、好ましくは90〜130A・m2/kgであり、Hcは通常、120〜360kA/m、好ましくは158〜350kA/mである。
【0015】
[六方晶系フェライト粉末]
六方晶系フェライト粉末としては、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等がある。具体的にはマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられ、その他所定の原子以外にAl、Si、S,Sc、Ti、V,Cr、Cu,Y,Mo,Rh,Pd,Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P,Co,Mn,Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでもかまわない。一般にはCo−Zn、Co−Ti,Co−Ti−Zr、Co−Ti−Zn,Ni−Ti−Zn,Nb−Zn−Co、SbーZn−Co、Nb−Zn等の元素を添加した物を使用することができる。原料・製法によっては特有の不純物を含有するものもある。
【0016】
本発明に用いる六方晶系フェライト粉末の平均板径は、15〜40nmである。ここで板径とは六方晶系フェライト磁性粉の六角柱底面の六角径の最大径を意味し、平均板径とはその算術平均である。
特にトラック密度を上げるため、磁気抵抗ヘッドで再生する場合は、低ノイズにする必要があり、板径は30nm以下が好ましいが、15nmより小さいと熱揺らぎのため安定な磁化が望めない。40nm超ではノイズが高く、いずれも高密度磁気記録には向かない。板状比(板径/板厚)は1〜5が望ましい。好ましくは1〜3である。板状比が小さいと磁性層中の充填性は高くなり好ましいが、十分な配向性が得られない。15より大きいと粒子間のスタッキングによりノイズが大きくなる。この粒子サイズ範囲のBET法による比表面積(SBET)は30〜200m2/gを示す。比表面積は概ね粒子板径と板厚からの算術計算値と符号する。粒子板径・板厚の分布は通常狭いほど好ましい。数値化は困難であるが粒子TEM写真より500粒子を無作為に測定する事で比較できる。分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すとσ/平均サイズ=0.1〜2.0である。粒子サイズ分布をシャープにするには粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。たとえば酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。磁性体で測定される抗磁力Hcは500Oe〜5000Oe(≒40〜400kA/m)程度まで作成できる。Hcは高い方が高密度記録に有利であるが、記録ヘッドの能力で制限される。Hcは粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。飽和磁化σsは30〜80A・m2/kgである。微粒子になるほど小さくなる傾向がある。製法では結晶化温度、または熱処理温度時間を小さくする方法、添加する化合物を増量する、表面処理量を多くする方法等がある。またW型六方晶系フェライト粉末を用いることも可能である。磁性体を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理材は無機化合物、有機化合物が使用される。主な化合物としてはSi、Al、P、等の酸化物または水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。量は磁性体に対して0.1〜10%である。磁性体のpHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜11程度が選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが通常0.01〜2.0%が選ばれる。六方晶系フェライト粉末の製法としては、▲1▼酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得ガラス結晶化法、▲2▼バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法、▲3▼バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。
【0017】
[下層]
次に下層に関する詳細な内容について説明する。下層としては非磁性無機粉末と結合剤を主体とするものが好ましい。下層に用いられる非磁性無機粉末としては、例えば、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物、等の無機質化合物から選択することができる。無機化合物としては例えばα化率90%以上のα−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、ヘマタイト、ゲータイト、コランダム、窒化珪素、チタンカ−バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二硫化モリブデンなどが単独または組み合わせで使用される。特に好ましいのは、粒度分布の小ささ、機能付与の手段が多いこと等から、二酸化チタン、酸化亜鉛、酸化鉄、硫酸バリウムであり、更に好ましいのは二酸化チタン、α酸化鉄である。これら非磁性無機粉末の平均粒子径は0.005〜2μmが好ましいが、必要に応じて平均粒子径の異なる非磁性無機粉末を組み合わせたり、単独の非磁性無機粉末でも粒径分布を広くして同様の効果をもたせることもできる。とりわけ好ましいのは非磁性無機粉末の平均粒子径は0.01μm〜0.2μmである。特に、非磁性無機粉末が粒状金属酸化物である場合は、平均粒子径0.08μm以下が好ましく、針状金属酸化物である場合は、平均長軸長が0.3μm以下が好ましく、0.2μm以下がさらに好ましい。タップ密度は通常、0.05〜2g/ml、好ましくは0.2〜1.5g/mlである。非磁性無機粉末の含水率は通常、0.1〜5質量%、好ましくは0.2〜3質量%、更に好ましくは0.3〜1.5質量%である。非磁性無機粉末のpHは通常、2〜11であるが、pHは5.5〜10の間が特に好ましい。非磁性無機粉末のSBETは通常、1〜100m2/g、好ましくは5〜80m2/g、更に好ましくは10〜70m2/gである。非磁性無機粉末の結晶子サイズは0.004μm〜1μmが好ましく、0.04μm〜0.1μmが更に好ましい。DBP(ジブチルフタレート)を用いた吸油量は通常、5〜100ml/100g、好ましくは10〜80ml/100g、更に好ましくは20〜60ml/100gである。比重は通常、1〜12、好ましくは3〜6である。形状は針状、球状、多面体状、板状のいずれでも良い。モース硬度は4以上、10以下のものが好ましい。非磁性無機粉末のSA(ステアリン酸)吸着量は1〜20μmol/m2、好ましくは2〜15μmol/m2、さらに好ましくは3〜8μmol/m2である。pHは3〜6の間にあることが好ましい。これらの非磁性無機粉末の表面には表面処理によりAl2O3、SiO2、TiO2、ZrO2、SnO2、Sb2O3、ZnO、Y2O3が存在するが好ましい。特に分散性に好ましいのはAl2O3、SiO2、TiO2、ZrO2であるが、更に好ましいのはAl2O3、SiO2、ZrO2である。これらは組み合わせて使用しても良いし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いても良いし、先ずアルミナを存在させた後にその表層をシリカを存在させる方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
【0018】
下層に用いられる非磁性粉末の具体的な例としては、昭和電工製ナノタイト、住友化学製HIT−100,ZA−G1、戸田工業社製αヘマタイトDPN−250,DPN−250BX,DPN−245,DPN−270BX,DPN−500BX、DBN−SA1,DBN−SA3、石原産業製酸化チタンTTO−51B,TTO−55A,TTO−55B,TTO−55C,TTO−55S,TTO−55D,SN−100、αヘマタイトE270,E271,E300,E303、チタン工業製酸化チタンSTT−4D,STT−30D,STT−30,STT−65C、αヘマタイトα−40、テイカ製MT−100S,MT−100T,MT−150W,MT−500B,MT−600B,MT−100F,MT−500HD、堺化学製FINEX−25,BF−1,BF−10,BF−20,ST−M、同和鉱業製DEFIC−Y,DEFIC−R、日本アエロジル製AS2BM,TiO2P25、宇部興産製100A,500A、及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
【0019】
下層にカーボンブラックを混合させて公知の効果である表面電気抵抗Rsを下げること、光透過率を小さくすることができるとともに、所望のマイクロビッカース硬度を得る事ができる。また、下層にカーボンブラックを含ませることで潤滑剤貯蔵の効果をもたらすことも可能である。カーボンブラックの種類はゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック、等を用いることができる。下層のカーボンブラックは所望する効果によって、以下のような特性を最適化すべきであり、併用することでより効果が得られることがある。
【0020】
下層のカーボンブラックのSBETは通常、100〜500m2/g、好ましくは150〜400m2/g、DBP吸油量は20〜400ml/100g、好ましくは30〜400ml/100gである。カーボンブラックの平均粒子径は通常、5nm〜80nm、好ましくは10〜50nm、さらに好ましくは10〜40nmである。平均粒子径が80nmより大きいカーボンブラックを少量含んでもかまわない。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。本発明に用いられるカ−ボンブラックの具体的な例としてはキャボット社製BLACKPEARLS 2000,1300,1000,900,800,880,700、VULCAN XC−72、三菱化成工業社製#3050B,#3150B,#3250B,#3750B,#3950B,#950,#650B,#970B,#850B,MA−600,MA−230,#4000,#4010、コンロンビアカ−ボン社製CONDUCTEX SC、RAVEN 8800,8000,7000,5750,5250,3500,2100,2000,1800,1500,1255,1250、アクゾー社製ケッチェンブラックECなどがあげられる。カ−ボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カ−ボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記非磁性無機粉末(カーボンブラックは包含しない)に対して50質量%を越えない範囲、非磁性層総質量の40%を越えない範囲で使用できる。これらのカ−ボンブラックは単独、または組合せで使用することができる。本発明で使用できるカ−ボンブラックは例えば「カ−ボンブラック便覧」(カ−ボンブラック協会編)を参考にすることができる。
【0021】
また下層には有機質粉末を目的に応じて、添加することもできる。例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は特開昭62−18564号、特開昭60−255827号に記されているようなものが使用できる。
【0022】
下層あるいは後述のバック層の結合剤樹脂、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は以下に記載する磁性層のそれが適用できる。特に、結合剤樹脂量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0023】
[結合剤]
本発明に使用される結合剤としては従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物が使用される。
熱可塑性樹脂としては、ガラス転移温度が−100〜150℃、数平均分子量が1,000〜200,000、好ましくは10,000〜100,000、重合度が約50〜1000程度のものである。
このような例としては、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラール、ビニルアセタール、ビニルエ−テル、等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、各種ゴム系樹脂がある。また、熱硬化性樹脂または反応型樹脂としてはフェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネートプレポリマーの混合物、ポリエステルポリオールとポリイソシアネートの混合物、ポリウレタンとポリイソシアネートの混合物等があげられる。これらの樹脂については朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を各層に使用することも可能である。これらの例とその製造方法については特開昭62−256219に詳細に記載されている。以上の樹脂は単独または組み合わせて使用できるが、好ましいものとして塩化ビニル樹脂、塩化ビニル酢酸ビニル共重合体、塩化ビニル酢酸ビニルビニルアルコール共重合体、塩化ビニル酢酸ビニル無水マレイン酸共重合体、から選ばれる少なくとも1種とポリウレタン樹脂の組み合わせ、またはこれらにポリイソシアネートを組み合わせたものがあげられる。
【0024】
ポリウレタン樹脂の構造はポリエステルポリウレタン、ポリエーテルポリウレタン、ポリエーテルポリエステルポリウレタン、ポリカーボネートポリウレタン、ポリエステルポリカーボネートポリウレタン、ポリカプロラクトンポリウレタンなど公知のものが使用できる。ここに示したすべての結合剤について、より優れた分散性と耐久性を得るためには必要に応じ、−COOM,−SO3M、−OSO3M、−P=O(OM)2、−O−P=O(OM)2、(以上につきMは水素原子、またはアルカリ金属塩基)、−NR2、−N+R3(Rは炭化水素基)、エポキシ基、−SH、−CN、などから選ばれる少なくともひとつ以上の極性基を共重合または付加反応で導入したものを用いることが好ましい。このような極性基の量は10−1〜10−8モル/gであり、好ましくは10−2〜10−6モル/gである。これら極性基以外にポリウレタン分子末端に少なくとも1個ずつ、合計2個以上のOH基を有することが好ましい。OH基は硬化剤であるポリイソシアネートと架橋して3次元の網状構造を形成するので、分子中に多数含むほど好ましい。特にOH基は分子末端にある方が硬化剤との反応性が高いので好ましい。ポリウレタンは分子末端にOH基を3個以上有することが好ましく、4個以上有することが特に好ましい。本発明において、ポリウレタンを用いる場合はガラス転移温度が通常、−50〜150℃、好ましくは0℃〜100℃、特に好ましくは30〜100℃、破断伸びが100〜2000%、破断応力は通常、0.05〜10Kg/mm2(≒0.49〜98MPa)、降伏点は0.05〜10Kg/mm2(≒0.49〜98MPa)が好ましい。このような物性を有することにより、良好な機械的特性を有する塗膜が得られる。
【0025】
本発明に用いられるこれらの結合剤の具体的な例としては塩化ビニル系共重合体としてユニオンカ−バイト社製VAGH、VYHH、VMCH、VAGF、VAGD,VROH,VYES,VYNC,VMCC,XYHL,XYSG,PKHH,PKHJ,PKHC,PKFE,日信化学工業社製、MPR−TA、MPR−TA5,MPR−TAL,MPR−TSN,MPR−TMF,MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80,DX81,DX82,DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、ポリウレタン樹脂として日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バ−ノックD−400、D−210−80、クリスボン6109,7209,東洋紡社製バイロンUR8200,UR8300、UR−8700、RV530,RV280、大日精化社製ポリカ−ボネートポリウレタン、ダイフェラミン4020,5020,5100,5300,9020,9022、7020,三菱化成社製ポリウレタン、MX5004,三洋化成社製ポリウレタン、サンプレンSP−150、旭化成社製ポリウレタン、サランF310,F210などが挙げられる。
【0026】
非磁性層に用いられる結合剤は非磁性無機粉末に対し、また磁性層に用いられる結合剤は強磁性粉末に対し、5〜50質量%の範囲、好ましくは10〜30質量%の範囲で用いられる。塩化ビニル系樹脂を用いる場合は5〜30質量%、ポリウレタン樹脂を用いる場合は2〜20質量%、ポリイソシアネートは2〜20質量%の範囲でこれらを組み合わせて用いることが好ましいが、例えば、微量の脱塩素によりヘッド腐食が起こる場合は、ポリウレタンのみまたはポリウレタンとイソシアネートのみを使用することも可能である。
【0027】
本発明の磁気記録媒体は二層以上から構成し得る。従って、結合剤量、結合剤中に占める塩化ビニル系樹脂、ポリウレタン樹脂、ポリイソシアネート、あるいはそれ以外の樹脂の量、磁性層を形成する各樹脂の分子量、極性基量、あるいは先に述べた樹脂の物理特性などを必要に応じ各層とで変えることはもちろん可能であり、むしろ各層で最適化すべきであり、多層磁性層に関する公知技術を適用できる。例えば、各層でバインダー量を変更する場合、磁性層表面の擦傷を減らすためには磁性層のバインダー量を増量することが有効であり、ヘッドに対するヘッドタッチを良好にするためには、非磁性層のバインダー量を多くして柔軟性を持たせることができる。
【0028】
本発明に用いられるポリイソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等が挙げられる。これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製、コロネートL、コロネートHL,コロネート2030、コロネート2031、ミリオネートMR,ミリオネートMTL、武田薬品社製、タケネートD−102,タケネートD−110N、タケネートD−200、タケネートD−202、住友バイエル社製、デスモジュールL,デスモジュールIL、デスモジュールN,デスモジュールHL,等がありこれらを単独または硬化反応性の差を利用して二つもしくはそれ以上の組み合わせで各層とも用いることができる。
【0029】
[カーボンブラック、研磨剤]
本発明の磁性層に使用されるカーボンブラックはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック、等を用いることができる。SBETは5〜500m2/g、DBP吸油量は10〜400ml/100g、平均粒子径は5nm〜300nm、pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/cc、が好ましい。本発明に用いられるカ−ボンブラックの具体的な例としてはキャボット社製、BLACKPEARLS 2000、1300、1000、900、905、800,700、VULCAN XC−72、旭カ−ボン社製、#80、#60,#55、#50、#35、三菱化成工業社製、#2400B、#2300、#900,#1000#30,#40、#10B、コロンビアンカ−ボン社製、CONDUCTEX SC、RAVEN 150、50,40,15、RAVEN−MT−P、日本EC社製、ケッチェンブラックEC、などがあげられる。カ−ボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カ−ボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカ−ボンブラックは単独、または組合せで使用することができる。カ−ボンブラックを使用する場合は磁性体に対する量の0.1〜30%でもちいることが好ましい。カ−ボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカ−ボンブラックにより異なる。従って本発明に使用されるこれらのカ−ボンブラックは上層磁性層、下層でその種類、量、組合せを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性をもとに目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。本発明の磁性層で使用できるカ−ボンブラックは例えば「カ−ボンブラック便覧」(カ−ボンブラック協会編)、WO98/35345に記載のものを参考にすることができる。
【0030】
本発明は研磨剤を磁性層等に用いることが好ましい。研磨剤としては例えば、α化率90%以上のα−アルミナ、β−アルミナ、ダイヤモンド、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、窒化珪素、炭化珪素チタンカ−バイト、酸化チタン、二酸化珪素、窒化ホウ素、など主としてモ−ス硬度6以上の公知の材料が単独または組合せで使用される。また、これらの研磨剤どうしの複合体(研磨剤を他の研磨剤で表面処理したもの)を使用してもよい。これらの研磨剤には主成分以外の化合物または元素が含まれる場合もあるが主成分が90%以上であれば効果にかわりはない。これら研磨剤の粒子サイズは0.01〜2μmが好ましく、特に電磁変換特性を高めるためには、その粒度分布が狭い方が好ましい。また耐久性を向上させるには必要に応じて粒子サイズの異なる研磨剤を組み合わせたり、単独の研磨剤でも粒径分布を広くして同様の効果をもたせることも可能である。タップ密度は0.3〜2g/cc、含水率は0.1〜5%、pHは2〜11、比表面積は1〜30m2/g、が好ましい。本発明に用いられる研磨剤の形状は針状、球状、サイコロ状、のいずれでも良いが、形状の一部に角を有するものが研磨性が高く好ましい。具体的には住友化学社製AKP−12、AKP−15、AKP−20、AKP−30、AKP−50、HIT20、HIT−30、HIT−55、HIT60、HIT70、HIT80、HIT100、レイノルズ社製、ERC−DBM、HP−DBM、HPS−DBM、不二見研磨剤社製、WA10000、上村工業社製、UB20、日本化学工業社製、G−5、クロメックスU2、クロメックスU1、戸田工業社製、TF100、TF140、イビデン社製、ベータランダムウルトラファイン、昭和鉱業社製、B−3などが挙げられる。これらの研磨剤は必要に応じ非磁性層に添加することもできる。非磁性層に添加することで表面形状を制御したり、研磨剤の突出状態を制御したりすることができる。これら磁性層、非磁性層の添加する研磨剤の粒径、量はむろん最適値に設定すべきものである。
【0031】
[添加剤]
本発明の磁性層、あるいは更に非磁性層に使用される、添加剤としては潤滑効果、帯電防止効果、分散効果、可塑効果、などをもつものが使用され、組み合わせることにより総合的な性能向上が図れる。潤滑効果を示すものとしては物質の表面同士の摩擦の際、生じる凝着を著しく作用を示す潤滑剤が使用される。潤滑剤には2つの型のものがある。磁気記録媒体に使用される潤滑剤は完全に流体潤滑か境界潤滑であるか判定することはできないが、一般的概念で分類すれば流体潤滑を示す高級脂肪酸エステル、流動パラフィン、シリコン誘導体などや境界潤滑を示す長鎖脂肪酸、フッ素系界面活性剤、含フッ素系高分子などに分類される。塗布型媒体では潤滑剤は結合剤に溶解した状態また一部は強磁性粉末表面に吸着した状態で存在するものであり、磁性層表面に潤滑剤が移行してくるが、その移行速度は結合剤と潤滑剤との相溶性の良否によって決まる。結合剤と潤滑剤との相溶性が高いときは移行速度が小さく、相溶性の低いときには早くなる。相溶性の良否に対する一つの考え方として両者の溶解パラメ−タ−の比較がある。流体潤滑には非極性潤滑剤が有効であり、境界潤滑には極性潤滑剤が有効である。
【0032】
本発明においてはこれら特性の異なる流体潤滑を示す高級脂肪酸エステルと境界潤滑を示す長鎖脂肪酸とを組み合わせることが好ましく、少なくとも3種組み合わせることが更に好ましい。これらに組み合わせて固体潤滑剤を使用することもできる。
固体潤滑剤としては例えば二硫化モリブデン、二硫化タングステングラファイト、窒化ホウ素、フッ化黒鉛などが使用される。境界潤滑を示す長鎖脂肪酸としては、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)、および、これらの金属塩(Li、Na、K、Cuなど)が挙げられる。フッ素系界面活性剤、含フッ素系高分子としてはフッ素含有シリコ−ン、フッ素含有アルコール、フッ素含有エステル、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩などが挙げられる。流体潤滑を示す高級脂肪酸エステルとしては、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)と炭素数2〜12の一価、二価、三価、四価、五価、六価アルコールのいずれか一つ(不飽和結合を含んでも、また分岐していてもかまわない)とからなるモノ脂肪酸エステルまたはジ脂肪酸エステルまたはトリ脂肪酸エステル、アルキレンオキシド重合物のモノアルキルエ−テルの脂肪酸エステルなどが挙げられる。また流動パラフィン、そしてシリコン誘導体としてジアルキルポリシロキサン(アルキルは炭素数1〜5個)、ジアルコキシポリシロキサン(アルコキシは炭素数1〜4個)、モノアルキルモノアルコキシポリシロキサン(アルキルは炭素数1〜5個、アルコキシは炭素数1〜4個)、フェニルポリシロキサン、フロロアルキルポリシロキサン(アルキルは炭素数1〜5個)などのシリコ−ンオイル、極性基をもつシリコ−ン、脂肪酸変性シリコ−ン、フッ素含有シリコ−ンなどが挙げられる。
【0033】
その他の潤滑剤として炭素数12〜22の一価、二価、三価、四価、五価、六価アルコール(不飽和結合を含んでも、また分岐していてもかまわない)、炭素数12〜22のアルコキシアルコール(不飽和結合を含んでも、また分岐していてもかまわない)、フッ素含有アルコールなどのアルコール、ポリエチレンワックス、ポリプロピレンなどのポリオレフィン、エチレングリコール、ポリエチレンオキシドワックスなどのポリグリコール、アルキル燐酸エステルおよびそのアルカリ金属塩、アルキル硫酸エステルおよびそのアルカリ金属塩、ポリフェニルエ−テル、炭素数8〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが挙げられる。
【0034】
帯電防止効果、分散効果、可塑効果などを示すものとしてフェニルホスホン酸、具体的には日産化学(株)社の「PPA」など、αナフチル燐酸、フェニル燐酸、ジフェニル燐酸、p−エチルベンゼンホスホン酸、フェニルホスフィン酸、アミノキノン類、各種シランカップリング剤、チタンカップリング剤、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩、などが使用できる。
【0035】
本発明において使用される潤滑剤は特に脂肪酸と脂肪酸エステルが好ましく、具体的にはWO98/35345に記載のものが挙げられる。これらに加えて別異の潤滑剤、添加剤も組み合わせて使用することができる。
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフェノールエチレンオキサイド付加体、等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルフォン酸、燐酸、硫酸エステル基、燐酸エステル基、などの酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸または燐酸エステル類、アルキルベダイン型、等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。これらの潤滑剤、帯電防止剤等は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。
【0036】
本発明は脂肪酸エステルとしてWO98/35345に記載のようにモノエステルとジエステルを組み合わせて使用することも好ましい。
本発明の磁気記録媒体、特にディスク状磁気記録媒体の磁性層表面のオージェ電子分光法によるC/Feピーク比は、好ましくは5〜100、特に好ましくは5〜80である。オージェ電子分光法の測定条件は、以下の通りである。
装置:Φ社製PHI−660型
測定条件:1次電子線加速電圧3KV
試料電流130nA
倍率250倍
傾斜角度30°
上記条件で、運動エネルギ−(Kinetic Energy)130〜730eVの範囲を3回積算し、炭素のKLLピークと鉄のLMMピークの強度を微分形で求め、C/Feの比をとることで求める。
【0037】
一方、本発明の磁気記録媒体の上層及び下層の各層に含まれる潤滑剤量は、それぞれ強磁性粉末又は非磁性無機粉末100質量部に対し5〜30質量部が好ましい。
【0038】
本発明で使用されるこれらの潤滑剤、界面活性剤は個々に異なる物理的作用を有するものであり、その種類、量、および相乗的効果を生み出す潤滑剤の併用比率は目的に応じ最適に定められるべきものである。非磁性層、磁性層で融点の異なる脂肪酸を用い表面への滲み出しを制御する、沸点、融点や極性の異なるエステル類を用い表面への滲み出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を中間層で多くして潤滑効果を向上させるなど考えられ、無論ここに示した例のみに限られるものではない。一般には潤滑剤の総量として強磁性粉末または非磁性粉末に対し、0.1質量%〜50質量%、好ましくは2〜25質量%の範囲で選択される。
【0039】
また本発明で用いられる添加剤のすべてまたはその一部は、磁性塗料、非磁性塗料製造のどの工程で添加してもかまわない、例えば、混練工程前に磁性体と混合する場合、磁性体と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。また、目的に応じて磁性層を塗布した後、同時または逐次塗布で、添加剤の一部または全部を塗布することにより目的が達成される場合がある。また、目的によってはカレンダーした後、またはスリット終了後、磁性層表面に潤滑剤を塗布することもできる。
【0040】
本発明で用いられる有機溶剤は公知のものが使用でき、例えば特開昭6−68453に記載の溶剤を用いることができる。
【0041】
[層構成]
本発明の磁気記録媒体の厚み構成は支持体が通常、2〜100μm、好ましくは2〜80μmである。コンピューターテープの支持体は、3.0〜6.5μm(好ましくは、3.0〜6.0μm、更に好ましくは、4.0〜5.5μm)の範囲の厚さのものが使用される。
支持体、好ましくは非磁性可撓性支持体と非磁性層または磁性層の間に密着性向上のための下塗り層を設けてもかまわない。本下塗層厚みは0.01〜0.5μm、好ましくは0.02〜0.5μmである。
帯電防止やカール補正などの効果を出すために磁性層が設けられている側と反対側の支持体にバック層を設けてもかまわない。この厚みは通常、0.1〜4μm、好ましくは0.3〜2.0μmである。これらの下塗層、バック層は公知のものが使用できる。
【0042】
本発明の磁性層の厚みは、前記の通りであり、用いるヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化される。下層の厚みは通常、0.2〜5.0μm、好ましくは0.3〜3.0μm、さらに好ましくは1.0〜2.5μmである。なお、下層は実質的に非磁性であればその効果を発揮するものであり、たとえば不純物としてあるいは意図的に少量の磁性粉を含んでもよい。実質的に非磁性層とは下層の残留磁束密度が10mT以下または抗磁力が100エルステッド(≒8kA/m)以下であることを示し、好ましくは残留磁束密度と抗磁力をもたないことを示す。又、下層に磁性粉を含む場合は、下層の全無機粉末の1/2未満含むことが好ましい。また、軟磁性粉末と結合剤を含む軟磁性層を形成してもよい。
【0043】
[バック層]
本発明の磁気記録媒体は、バック層を設けることができる。磁気ディスクでもバック層を設けることはできるが、一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して、繰り返し走行性が強く要求される。このような高い走行耐久性を維持させるために、バック層には、カーボンブラックと無機粉末が含有されていることが好ましい。
カーボンブラックは、平均粒子径の異なる二種類のものを組み合わせて使用することが好ましい。この場合、平均粒子径が10〜20nmの微粒子状カーボンブラックと平均粒子径が230〜300nmの粗粒子状カーボンブラックを組み合わせて使用することが好ましい。一般に、上記のような微粒子状のカーボンブラックの添加により、バック層の表面電気抵抗を低く設定でき、また光透過率も低く設定できる。磁気記録装置によっては、テープの光透過率を利用し、動作の信号に使用しているものが多くあるため、このような場合には特に微粒子状のカーボンブラックの添加は有効になる。また微粒子状カーボンブラックは一般に液体潤滑剤の保持力に優れ、潤滑剤併用時、摩擦係数の低減化に寄与する。一方、平均粒子径が230〜300nmの粗粒子状カーボンブラックは、固体潤滑剤としての機能を有しており、またバック層の表面に微小突起を形成し、接触面積を低減化して、摩擦係数の低減化に寄与する。
【0044】
本発明に用いられる微粒子状カーボンブラック及び粗粒子状カーボンブラックとして、市販のものを用いる場合、具体的な商品としては、WO98/35345に記載のものを挙げることができる。
【0045】
バック層において、平均粒子径の異なる二種類のものを使用する場合、10〜20nmの微粒子状カーボンブラックと230〜300nmの粗粒子状カーボンブラックの含有比率(質量比)は、前者:後者=98:2〜75:25の範囲にあることが好ましく、更に好ましくは、95:5〜85:15の範囲である。
バック層中のカーボンブラック(二種類のものを使用する場合には、その全量)の含有量は、結合剤100質量部に対して、通常30〜80質量部の範囲であり、好ましくは、45〜65質量部の範囲である。
【0046】
無機粉末は、硬さの異なる二種類のものを併用することが好ましい。
具体的には、モース硬度3〜4.5の軟質無機粉末とモース硬度5〜9の硬質無機粉末とを使用することが好ましい。
モース硬度が3〜4.5の軟質無機粉末を添加することで、繰り返し走行による摩擦係数の安定化を図ることができる。しかもこの範囲の硬さでは、摺動ガイドポールが削られることもない。またこの無機粉末の平均粒子径は、30〜50nmの範囲にあることが好ましい。
モース硬度が3〜4.5の軟質無機粉末としては、例えば、硫酸カルシウム、炭酸カルシウム、珪酸カルシウム、硫酸バリウム、炭酸マグネシウム、炭酸亜鉛、及び酸化亜鉛を挙げることができる。これらは、単独で、あるいは二種以上を組み合わせて使用することができる。
【0047】
バック層内の軟質無機粉末の含有量は、カーボンブラック100質量部に対して10〜140質量部の範囲にあることが好ましく、更に好ましくは、35〜100質量部である。
モース硬度が5〜9の硬質無機粉末を添加することにより、バック層の強度が強化され、走行耐久性が向上する。これらの無機粉末をカーボンブラックや前記軟質無機粉末と共に使用すると、繰り返し摺動に対しても劣化が少なく、強いバック層となる。またこの無機粉末の添加により、適度の研磨力が付与され、テープガイドポール等への削り屑の付着が低減する。特に軟質無機粉末と併用すると、表面の粗いガイドポールに対しての摺動特性が向上し、バック層の摩擦係数の安定化も図ることができる。
【0048】
硬質無機粉末の平均粒子径は80〜250nmが好ましく、100〜210nmの範囲にあることが更に好ましい。
モース硬度が5〜9の硬質無機質粉末としては、例えば、α−酸化鉄、α−アルミナ、及び酸化クロム(Cr2O3)を挙げることができる。これらの粉末は、それぞれ単独で用いても良いし、あるいは併用しても良い。これらの内では、α−酸化鉄又はα−アルミナが好ましい。硬質無機粉末の含有量は、カーボンブラック100質量部に対して通常3〜30質量部であり、好ましくは、3〜20質量部である。
【0049】
バック層に前記軟質無機粉末と硬質無機粉末とを併用する場合、軟質無機粉末と硬質無機粉末との硬さの差が、2以上(更に好ましくは、2.5以上、特に、3以上)であるように軟質無機粉末と硬質無機粉末とを選択して使用することが好ましい。
【0050】
バック層には、前記それぞれ特定の平均粒子径を有するモース硬度の異なる二種類の無機粉末と、前記平均粒子径の異なる二種類のカーボンブラックとが含有されていることが好ましい。
バック層には、潤滑剤を含有させることができる。潤滑剤は、前述した非磁性層、あるいは磁性層に使用できる潤滑剤として挙げた潤滑剤の中から適宜選択して使用できる。バック層において、潤滑剤は、結合剤100質量部に対して通常1〜5質量部の範囲で添加される。
【0051】
[支持体]
本発明に用いられる支持体は、非磁性可撓性支持体であることが好ましく、支持体の面内各方向に対し、100℃30分での熱収縮率が0.5%以下であり、80℃30分での熱収縮率が0.5%以下、更に好ましくは0.2%以下であることが好ましい。更に前記支持体の100℃30分での熱収縮率及び80℃30分での熱収縮率が前記支持体の面内各方向に対し、10%以内の差で等しいことが好ましい。支持体は非磁性であることが好ましい。これら支持体はポリエチレンテレフタレート、ポリエチレンナフタレート、等のポリエステル類、ポリオレフィン類、セルロ−ストリアセテート、ポリカ−ボネート、芳香族又は脂肪族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、ポリアラミド、ポリベンゾオキサゾールなどの公知のフィルムが使用できる。ポリエチレンナフタレート、ポリアミドなどの高強度支持体を用いることが好ましい。また必要に応じ、磁性面とベ−ス面の表面粗さを変えるため特開平3−224127に示されるような積層タイプの支持体を用いることもできる。これらの支持体にはあらかじめコロナ放電処理、プラズマ処理、易接着処理、熱処理、除塵処理、などをおこなっても良い。また本発明の支持体としてアルミまたはガラス基板を適用することも可能である。
【0052】
本発明の目的を達成するには、支持体としてWYKO社製の表面粗さ計TOPO−3Dで測定した中心面平均表面粗さRaは通常、8.0nm以下、好ましくは4.0nm以下、更に好ましくは2.0nm以下のものを使用することが好ましい。これらの支持体は単に中心面平均表面粗さが小さいだけではなく、0.5μm以上の粗大突起がないことが好ましい。また表面の粗さ形状は必要に応じて支持体に添加されるフィラーの大きさと量により自由にコントロールされるものである。これらのフィラーとしては一例としてはCa,Si、Tiなどの酸化物や炭酸塩の他、アクリル系などの有機粉末があげられる。支持体の最大高さRmaxは1μm以下、十点平均粗さRzは0.5μm以下、中心面山高さRpは0.5μm以下、中心面谷深さRvは0.5μm以下、中心面面積率Srは10%以上、90%以下、平均波長λaは5μm以上、300μm以下が好ましい。所望の電磁変換特性と耐久性を得るため、これら支持体の表面突起分布をフィラーにより任意にコントロールできるものであり、0.01〜1μmの大きさのもの各々を0.1mm2あたり0〜2000個の範囲でコントロールすることができる。
【0053】
本発明に用いられる支持体のF−5値は好ましくは5〜50Kg/mm2(≒49〜490MPa)、また、支持体の100℃30分での熱収縮率は好ましくは3%以下、さらに好ましくは1.5%以下、80℃30分での熱収縮率は好ましくは0.5%以下、さらに好ましくは0.1%以下である。破断強度は5〜100Kg/mm2(≒49〜980MPa)、弾性率は100〜2000Kg/mm2(≒0.98〜19.6GPa)が好ましい。温度膨張係数は10−4〜10−8/℃であり、好ましくは10−5〜10−6/℃である。湿度膨張係数は10−4/RH%以下であり、好ましくは10−5/RH%以下である。これらの熱特性、寸法特性、機械強度特性は支持体の面内各方向に対し10%以内の差でほぼ等しいことが好ましい。
【0054】
[製法]
本発明の磁気記録媒体の磁性塗料を製造する工程は、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上にわかれていてもかまわない。本発明に使用する磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニ−ダ、加圧ニ−ダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニ−ダを用いる場合は磁性粉末または非磁性粉末と結合剤のすべてまたはその一部(ただし全結合剤の30%以上が好ましい)および磁性粉末100部に対し15〜500部の範囲で混練処理される。これらの混練処理の詳細については特開平1−106338、特開平1−79274に記載されている。また、磁性層用塗布液および下層用塗布液を分散させるにはガラスビーズを用いることができるが、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
【0055】
本発明で重層構成の磁気記録媒体を塗布する場合、以下のような方式を用いることが好ましい。第一に磁性塗料の塗布で一般的に用いられるグラビア塗布、ロール塗布、ブレード塗布、エクストルージョン塗布装置等により、まず下層を塗布し、下層がウェット状態のうちに特公平1−46186や特開昭60−238179,特開平2−265672に開示されている支持体加圧型エクストルージョン塗布装置により上層を塗布する方法。第二に特開昭63−88080、特開平2−17971,特開平2−265672に開示されているような塗布液通液スリットを二つ内蔵する一つの塗布ヘッドにより上下層をほぼ同時に塗布する方法。第三に特開平2−174965に開示されているバックアップロール付きエクストルージョン塗布装置により上下層をほぼ同時に塗布する方法である。なお、磁性粒子の凝集による磁気記録媒体の電磁変換特性等の低下を防止するため、特開昭62−95174や特開平1−236968に開示されているような方法により塗布ヘッド内部の塗布液にせん断を付与することが望ましい。さらに、塗布液の粘度については、特開平3−8471に開示されている数値範囲を満足する必要がある。本発明の構成を実現するには下層を塗布し乾燥させたのち、その上に磁性層を設ける逐次重層塗布を用いてもむろんかまわず、本発明の効果が失われるものではない。
【0056】
上記塗布後、少なくとも磁性層の塗布層が湿潤状態の間に前記スムージング処理が施される必要がある。
ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、本発明によるスムージング処理を施すことにより配向を調整することができる。また、スピンコートを併用して円周配向してもよい。
磁気テープの場合は、スムージング処理により強磁性粉末を長手方向に配向する。塗布及びスムージング処理の間は、乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できる様にすることが好ましく、塗布速度は20m/分〜1000m/分、乾燥風の温度は60℃以上が好ましい。またスムージング処理に入る前に塗布層に対して適度の予備乾燥を行うこともできる。
【0057】
塗布層の乾燥後、通常、カレンダー処理が施されるが、カレンダー処理ロールとしてエポキシ、ポリイミド、ポリアミド、ポリイミドアミド等の耐熱性のあるプラスチックロールまたは金属ロールで処理するが、特に両面磁性層とする場合は金属ロール同志で処理することが好ましい。処理温度は、好ましくは50℃以上、さらに好ましくは100℃以上である。線圧力は好ましくは200kg/cm(≒196kN/m)以上、さらに好ましくは300kg/cm(≒294kN/m)以上である。
【0058】
カレンダー処理後、磁気記録媒体は所望の形状に打ち抜きまたは裁断される。必要に応じディスク形状に打ち抜いたあと高温でのサーモ処理(通常50℃〜90℃)を行ない塗布層の硬化処理を促進させる、研磨テープでバーニッシュ処理を行うことができる。また、磁気テープの場合、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレ−ドが磁性面に押し当たるように取り付け、テ−プクリ−ニング装置で磁性層の表面のクリ−ニングを行うことができる。
【0059】
[物理特性]
本発明になる磁気記録媒体の磁性層の飽和磁束密度は、好ましくは、100〜300mTである。抗磁力HcおよびHrは1800〜5000エルステッド(≒144〜400kA/m)が好ましく、1800〜3000エルステッド(≒144〜240kA/m)が更に好ましい。抗磁力の分布は狭い方が好ましく、SFD(スイッチング・フィールド・ディストリビューション)およびSFDrは0.6以下が好ましい。角形比SQはディスクの場合、通常、0.5〜0.95、好ましくは0.6〜0.85であり、テープの場合、角形比は、好ましくは0.6以上である。
【0060】
本発明の磁気記録媒体のヘッドに対する摩擦係数は温度−10〜40℃、湿度0〜95%の範囲において通常0.5以下、好ましくは0.3以下、表面固有抵抗は好ましくは磁性面104〜1012オ−ム/sq、帯電位は−500V〜+500Vが好ましい。磁性層の0.5%伸びでの弾性率は面内各方向で好ましくは100〜2000Kg/mm2(≒980〜19600N/mm2)、破断強度は好ましくは10〜70Kg/mm2(≒98〜686N/mm2)、磁気記録媒体の弾性率は面内各方向で好ましくは100〜1500Kg/mm2(≒980〜14700N/mm2)、残留のびは好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は好ましくは1%以下、さらに好ましくは0.5%以下、もっとも好ましくは0.1%以下である。磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失弾性率の極大点)は50℃以上120℃以下が好ましく、下層のそれは0℃〜100℃が好ましい。損失弾性率は1×103〜8×104N/cm2の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向で10%以内でほぼ等しいことが好ましい。磁性層中に含まれる残留溶媒は好ましくは100mg/m2以下、さらに好ましくは10mg/m2以下である。塗布層が有する空隙率は下層、上層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐久性は好ましいことが多い。
【0061】
磁性層の中心面平均表面粗さRaはWYCO社製TOPO−3Dを用いて約250μm×250μmの面積での測定で好ましくは3.5nm以下、さらに好ましくは2.5nm以下である。
磁性層の最大高さRmaxは0.5μm以下、十点平均粗さRzは0.3μm以下、中心面山高さRpは0.3μm以下、中心面谷深さRvは0.3μm以下、中心面面積率Srは20%以上、80%以下、平均波長λaは5μm以上、300μm以下が好ましい。磁性層の表面突起は0.01〜1μmの大きさのものを0〜2000個の範囲で任意に設定することが可能であり、これにより電磁変換特性、摩擦係数を最適化することが好ましい。これらは支持体のフィラ−による表面性のコントロールや磁性層に添加する粉体の粒径と量、カレンダー処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。本発明の磁気記録媒体は、重層構成とした場合には、目的に応じ下層と上層でこれらの物理特性を変えることができるのは容易に推定されることである。例えば、上層の弾性率を高くし走行耐久性を向上させると同時に下層の弾性率を上層より低くして磁気記録媒体のヘッドへの当りを良くするなどである。
【0062】
【実施例】
以下に、実施例を用いてさらに本発明を詳細に説明するが、本発明はこれに限定されるものではない。尚、「部」は「質量部」を示す。
実施例1〜8、比較例1〜9
上記塗料について、各成分をニ−ダで混練したのち、サンドミルをもちいて分散させた。得られた分散液に,1μmの平均孔径を有するフィルターを用いて濾過し、磁性層形成用塗布液を調製した。
磁性層の厚さが所定の厚み(表1記載)になるように、厚さ62μmで中心線平均表面粗さが3nmのポリエチレンテレフタレート支持体上に100m/分で塗布し、湿潤状態のうちにスムージング処理を施した。乾燥後、7段のカレンダで温度90℃、線圧300Kg/cm(294kN/m)にて処理を行い、3.8mm幅にスリットし、テープを得た。
【0063】
尚、比較例6及び7の場合は、上記スムージング処理の前段で0.6Tの対向Co磁石の中を通過させた。また、比較例8及び9は上記スムージング処理を行わなかった。
【0064】
上記で用いた強磁性粉末及び得られた試料を下記により評価し、表1に結果を示した。
(1)磁性体のサイズ
透過型電子顕微鏡(TEM)にて50万倍で粒子の写真を撮影し、画像解析装置で500個の粒子のサイズを計測した。MPのサイズは、強磁性金属粉末の平均長軸長、BaFeのサイズは六方晶系フェライト粉末の平均板径である。MP(強磁性金属粉末)組成は、Fe/Co/Al/Y=100/30/11/6(原子比)であり、SBETは70m2/gであり、結晶子サイズは120Åである。(2)強磁性粉末の磁気特性
SQ:振動試料型磁束計(東英工業社製)を用い、Hm796kA/m(10kOe)で測定した。
(3)磁性層厚み
媒体の切片を作成し、TEMにて磁性層の平均厚みを測定した。
(4)電磁変換特性
回転ドラムに巻き付けた磁気テープに磁気ヘッドを押し当てて測定した。
回転ドラムの直径は60mm、ヘッド/テープ相対速度は10m/secとした。
記録は飽和磁化1.4TのMIGヘッド(ギャップ長:0.2μm、トラック幅18μm)を使い記録電流は、各テープの最適記録電流に設定した。再生ヘッドには素子厚み25nmの異方性型MRヘッド(A−MR)を用いた。
S/N比:記録波長0.2μmの信号を記録し、再生信号をシバソク製のスペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力と、スペクトル全帯域の積分ノイズとの比をS/Nとした。
(5)中心面平均表面粗さ(Ra):WYKO社製TOPO3Dを用いて、約250μm×250μmの面積のRaを測定した。測定波長約650nmにて球面補正、円筒補正を加えている。本方式は光干渉にて測定する非接触表面粗さ計である。
【0065】
【表1】
【0066】
表1から本発明の要件を満足する実施例は、本発明の要件の何れかを満たさない比較例に比べてS/Nが格段に優れていることが分る。
【0067】
【発明の効果】
本発明は、平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末という微粒子を用い、かつ磁性層厚みが0.01〜0.2μmと薄層であっても、スムージング処理により配向が施されると表面性が改善し、ひいてはS/Nが優れた高密度記録用磁気記録媒体を提供することができる。
【発明の属する技術分野】
本発明は塗布型の高記録密度の磁気記録媒体に関する。特に磁性層に強磁性金属粉末または六方晶系フェライト粉末を含む高密度記録用の磁気記録媒体に関するものである。
【0002】
【従来の技術】
磁気ディスクの分野において、Co変性酸化鉄を用いた2MBのMF−2HDフロッピーディスクがパーソナルコンピューターに標準搭載されようになった。しかし扱うデータ容量が急激に増加している今日において、その容量は十分とは言えなくなり、フロッピーディスクの大容量化が望まれていた。
また磁気テープの分野においても近年、ミニコンピューター、パーソナルコンピューター、ワークステーションなどのオフィスコンピューターの普及に伴って、外部記憶媒体としてコンピューターデータを記録するための磁気テープ(いわゆるバックアップテープ)の研究が盛んに行われている。このような用途の磁気テープの実用化に際しては、とくにコンピューターの小型化、情報処理能力の増大と相まって、記録の大容量化、小型化を達成するために、記録容量の向上が強く要求される。
【0003】
従来、磁気記録媒体には酸化鉄、Co変性酸化鉄、CrO2、強磁性金属粉末、六方晶系フェライト粉末を結合剤中に分散した磁性層を非磁性支持体に塗設したものが広く用いられる。近年、フレキシブル記録媒体を用いたシステムでもハードディスクで使われている磁気抵抗型ヘッド(MRヘッド)が用いられ始めている。MRヘッドは高感度なので充分な再生出力が得られるので、比較的飽和磁化σsが低くて微粒子の磁性体を用いると低ノイズ化によって高いC/N比が得られる。例えば、特開平10−302243号公報には、バリウムフェライト(BaFe)微粉末を用いてMRヘッドで再生した例が開示されている。
しかしながら、記録波長の低減により更に記録密度の向上を図るには更なる表面平滑化が必要となるが、その達成手段を見出せないでいた。
【0004】
【発明が解決しようとする課題】
本発明は電磁変換特性、特にS/Nが改良された高密度記録用磁気記録媒体を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、支持体上に強磁性粉末及び結合剤を主体とする磁性層を有する磁気記記媒体において、該強磁性粉末は平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末であり、かつ磁性層厚みが0.01〜0.2μmであり、かつ磁場配向処理を施されることなくスムージング処理により配向が施されてなることを特徴とする磁気記録媒体である。
【0006】
本発明の好ましい態様は以下の通りである。
(1)MRヘッド再生用である上記磁気記録媒体。
【0007】
【発明の実施の形態】
本発明は上記構成とすることにより従来の技術では得ることができなかった高密度記録領域でのSN比が格段に改良された磁気記録媒体が得られることを見いだしたものである。
本発明の磁気記録媒体は、磁場配向処理を施されることなくスムージング処理により配向が施されてなるものである。
ここで、スムージング処理とは、磁性層用塗布液を塗布後乾燥前に塗布層表面に部材を当てて塗布層に剪断をかける処理を意味し、本発明はこれにより強磁性粉末に配向処理を施すものである。
【0008】
上記部材としては、上記目的が達成できるものであればよく、板状、ロッド状等が挙げられる。
塗布層に剪断をかける方法としては、(1)上記部材を固定し、その表面を移動する塗布層表面に当てる方法、(2)(1)において、部材を回転(塗布層の移動方向と同方向または逆方向あるいは両者の組み合わせ)させる方法、(3)(1)または(2)において部材を移動可能とし、塗布層の移動速度と部材の移動速度または回転速度を調整する方法等が挙げられる。尚、塗布層に上記剪断をかけるタイミングは、塗布層の塗布後からその乾燥前の間であれば、任意であり、少なくとも1箇所または1回以上施すことができる。
【0009】
上記方法に用いる部材において、塗布層と接触する表面は、少なくとも所望の磁性層の表面粗さが得られる程度に平滑であることが好ましく、該磁性層の表面粗さ以下であることが好ましい。また、塗布層と接触する部材表面は、塗布層を吸着しない素材または撥塗布液性であることが好ましく、例えば、金属(アルミニウム、ステンレス等)、樹脂(PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PA(ポリアミド)等)等が挙げられる。
また、上記方法においては、有機溶媒が経時的に蒸発し、塗布層厚みも経時的に減少するために、塗布層と部材表面が接触する程度、即ち部材の先端が塗布層表面下に位置する深さを経時的に調整する制御機構を備えていることが好ましい。
【0010】
本発明において、磁性層に含まれる強磁性粉末は平均長軸長が25〜100nm、好ましくは、30〜60nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末である。上記サイズが小さすぎると熱揺らぎにより磁化が不安定となり、大きすぎるとS/Nが低下する。
【0011】
また、本発明において、磁性層厚みは0.01〜0.2μm、好ましくは、0.05〜0.1μmである。該厚み0.01μmは製造可能な下限であり、0.2μmより大きいとS/Nが改善されない。
【0012】
本発明では、スムージング処理により磁性層の表面性が確保されるのでC/Nの優れた磁気記録媒体を得ることができる。
【0013】
次に本発明の磁気記録媒体について詳述する。
[磁性層]
本発明の磁気記録媒体は、強磁性金属粉末または六方晶系フェライト粉末を有する磁性層を支持体の片面だけでも、両面に設けても良い。その片側に設けられている磁性層は単層でも互いに組成の異なる複層でもよい。また、磁性層は後述の下層上に設けてもよい。
【0014】
[強磁性金属粉末]
強磁性金属粉末は、Feを主成分としてCo、Ni、Mn、Zn、Ndなどを合金成分として含むものが好ましい。特にFe−Co合金は高い抗磁力Hcが得られる物質として知られている。
平均針状比{長軸長/短軸長}の算術平均)は、3〜8が好ましく、4〜7が更に好ましい。
強磁性金属粉末の飽和磁化σsは、通常、80〜140A・m2/kg、好ましくは90〜130A・m2/kgであり、Hcは通常、120〜360kA/m、好ましくは158〜350kA/mである。
【0015】
[六方晶系フェライト粉末]
六方晶系フェライト粉末としては、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等がある。具体的にはマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられ、その他所定の原子以外にAl、Si、S,Sc、Ti、V,Cr、Cu,Y,Mo,Rh,Pd,Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P,Co,Mn,Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでもかまわない。一般にはCo−Zn、Co−Ti,Co−Ti−Zr、Co−Ti−Zn,Ni−Ti−Zn,Nb−Zn−Co、SbーZn−Co、Nb−Zn等の元素を添加した物を使用することができる。原料・製法によっては特有の不純物を含有するものもある。
【0016】
本発明に用いる六方晶系フェライト粉末の平均板径は、15〜40nmである。ここで板径とは六方晶系フェライト磁性粉の六角柱底面の六角径の最大径を意味し、平均板径とはその算術平均である。
特にトラック密度を上げるため、磁気抵抗ヘッドで再生する場合は、低ノイズにする必要があり、板径は30nm以下が好ましいが、15nmより小さいと熱揺らぎのため安定な磁化が望めない。40nm超ではノイズが高く、いずれも高密度磁気記録には向かない。板状比(板径/板厚)は1〜5が望ましい。好ましくは1〜3である。板状比が小さいと磁性層中の充填性は高くなり好ましいが、十分な配向性が得られない。15より大きいと粒子間のスタッキングによりノイズが大きくなる。この粒子サイズ範囲のBET法による比表面積(SBET)は30〜200m2/gを示す。比表面積は概ね粒子板径と板厚からの算術計算値と符号する。粒子板径・板厚の分布は通常狭いほど好ましい。数値化は困難であるが粒子TEM写真より500粒子を無作為に測定する事で比較できる。分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すとσ/平均サイズ=0.1〜2.0である。粒子サイズ分布をシャープにするには粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。たとえば酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。磁性体で測定される抗磁力Hcは500Oe〜5000Oe(≒40〜400kA/m)程度まで作成できる。Hcは高い方が高密度記録に有利であるが、記録ヘッドの能力で制限される。Hcは粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。飽和磁化σsは30〜80A・m2/kgである。微粒子になるほど小さくなる傾向がある。製法では結晶化温度、または熱処理温度時間を小さくする方法、添加する化合物を増量する、表面処理量を多くする方法等がある。またW型六方晶系フェライト粉末を用いることも可能である。磁性体を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理材は無機化合物、有機化合物が使用される。主な化合物としてはSi、Al、P、等の酸化物または水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。量は磁性体に対して0.1〜10%である。磁性体のpHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜11程度が選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが通常0.01〜2.0%が選ばれる。六方晶系フェライト粉末の製法としては、▲1▼酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得ガラス結晶化法、▲2▼バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法、▲3▼バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。
【0017】
[下層]
次に下層に関する詳細な内容について説明する。下層としては非磁性無機粉末と結合剤を主体とするものが好ましい。下層に用いられる非磁性無機粉末としては、例えば、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物、等の無機質化合物から選択することができる。無機化合物としては例えばα化率90%以上のα−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、ヘマタイト、ゲータイト、コランダム、窒化珪素、チタンカ−バイト、酸化チタン、二酸化珪素、酸化スズ、酸化マグネシウム、酸化タングステン、酸化ジルコニウム、窒化ホウ素、酸化亜鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二硫化モリブデンなどが単独または組み合わせで使用される。特に好ましいのは、粒度分布の小ささ、機能付与の手段が多いこと等から、二酸化チタン、酸化亜鉛、酸化鉄、硫酸バリウムであり、更に好ましいのは二酸化チタン、α酸化鉄である。これら非磁性無機粉末の平均粒子径は0.005〜2μmが好ましいが、必要に応じて平均粒子径の異なる非磁性無機粉末を組み合わせたり、単独の非磁性無機粉末でも粒径分布を広くして同様の効果をもたせることもできる。とりわけ好ましいのは非磁性無機粉末の平均粒子径は0.01μm〜0.2μmである。特に、非磁性無機粉末が粒状金属酸化物である場合は、平均粒子径0.08μm以下が好ましく、針状金属酸化物である場合は、平均長軸長が0.3μm以下が好ましく、0.2μm以下がさらに好ましい。タップ密度は通常、0.05〜2g/ml、好ましくは0.2〜1.5g/mlである。非磁性無機粉末の含水率は通常、0.1〜5質量%、好ましくは0.2〜3質量%、更に好ましくは0.3〜1.5質量%である。非磁性無機粉末のpHは通常、2〜11であるが、pHは5.5〜10の間が特に好ましい。非磁性無機粉末のSBETは通常、1〜100m2/g、好ましくは5〜80m2/g、更に好ましくは10〜70m2/gである。非磁性無機粉末の結晶子サイズは0.004μm〜1μmが好ましく、0.04μm〜0.1μmが更に好ましい。DBP(ジブチルフタレート)を用いた吸油量は通常、5〜100ml/100g、好ましくは10〜80ml/100g、更に好ましくは20〜60ml/100gである。比重は通常、1〜12、好ましくは3〜6である。形状は針状、球状、多面体状、板状のいずれでも良い。モース硬度は4以上、10以下のものが好ましい。非磁性無機粉末のSA(ステアリン酸)吸着量は1〜20μmol/m2、好ましくは2〜15μmol/m2、さらに好ましくは3〜8μmol/m2である。pHは3〜6の間にあることが好ましい。これらの非磁性無機粉末の表面には表面処理によりAl2O3、SiO2、TiO2、ZrO2、SnO2、Sb2O3、ZnO、Y2O3が存在するが好ましい。特に分散性に好ましいのはAl2O3、SiO2、TiO2、ZrO2であるが、更に好ましいのはAl2O3、SiO2、ZrO2である。これらは組み合わせて使用しても良いし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いても良いし、先ずアルミナを存在させた後にその表層をシリカを存在させる方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
【0018】
下層に用いられる非磁性粉末の具体的な例としては、昭和電工製ナノタイト、住友化学製HIT−100,ZA−G1、戸田工業社製αヘマタイトDPN−250,DPN−250BX,DPN−245,DPN−270BX,DPN−500BX、DBN−SA1,DBN−SA3、石原産業製酸化チタンTTO−51B,TTO−55A,TTO−55B,TTO−55C,TTO−55S,TTO−55D,SN−100、αヘマタイトE270,E271,E300,E303、チタン工業製酸化チタンSTT−4D,STT−30D,STT−30,STT−65C、αヘマタイトα−40、テイカ製MT−100S,MT−100T,MT−150W,MT−500B,MT−600B,MT−100F,MT−500HD、堺化学製FINEX−25,BF−1,BF−10,BF−20,ST−M、同和鉱業製DEFIC−Y,DEFIC−R、日本アエロジル製AS2BM,TiO2P25、宇部興産製100A,500A、及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
【0019】
下層にカーボンブラックを混合させて公知の効果である表面電気抵抗Rsを下げること、光透過率を小さくすることができるとともに、所望のマイクロビッカース硬度を得る事ができる。また、下層にカーボンブラックを含ませることで潤滑剤貯蔵の効果をもたらすことも可能である。カーボンブラックの種類はゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック、等を用いることができる。下層のカーボンブラックは所望する効果によって、以下のような特性を最適化すべきであり、併用することでより効果が得られることがある。
【0020】
下層のカーボンブラックのSBETは通常、100〜500m2/g、好ましくは150〜400m2/g、DBP吸油量は20〜400ml/100g、好ましくは30〜400ml/100gである。カーボンブラックの平均粒子径は通常、5nm〜80nm、好ましくは10〜50nm、さらに好ましくは10〜40nmである。平均粒子径が80nmより大きいカーボンブラックを少量含んでもかまわない。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。本発明に用いられるカ−ボンブラックの具体的な例としてはキャボット社製BLACKPEARLS 2000,1300,1000,900,800,880,700、VULCAN XC−72、三菱化成工業社製#3050B,#3150B,#3250B,#3750B,#3950B,#950,#650B,#970B,#850B,MA−600,MA−230,#4000,#4010、コンロンビアカ−ボン社製CONDUCTEX SC、RAVEN 8800,8000,7000,5750,5250,3500,2100,2000,1800,1500,1255,1250、アクゾー社製ケッチェンブラックECなどがあげられる。カ−ボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カ−ボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記非磁性無機粉末(カーボンブラックは包含しない)に対して50質量%を越えない範囲、非磁性層総質量の40%を越えない範囲で使用できる。これらのカ−ボンブラックは単独、または組合せで使用することができる。本発明で使用できるカ−ボンブラックは例えば「カ−ボンブラック便覧」(カ−ボンブラック協会編)を参考にすることができる。
【0021】
また下層には有機質粉末を目的に応じて、添加することもできる。例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は特開昭62−18564号、特開昭60−255827号に記されているようなものが使用できる。
【0022】
下層あるいは後述のバック層の結合剤樹脂、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は以下に記載する磁性層のそれが適用できる。特に、結合剤樹脂量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0023】
[結合剤]
本発明に使用される結合剤としては従来公知の熱可塑性樹脂、熱硬化性樹脂、反応型樹脂やこれらの混合物が使用される。
熱可塑性樹脂としては、ガラス転移温度が−100〜150℃、数平均分子量が1,000〜200,000、好ましくは10,000〜100,000、重合度が約50〜1000程度のものである。
このような例としては、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラール、ビニルアセタール、ビニルエ−テル、等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、各種ゴム系樹脂がある。また、熱硬化性樹脂または反応型樹脂としてはフェノール樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネートプレポリマーの混合物、ポリエステルポリオールとポリイソシアネートの混合物、ポリウレタンとポリイソシアネートの混合物等があげられる。これらの樹脂については朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を各層に使用することも可能である。これらの例とその製造方法については特開昭62−256219に詳細に記載されている。以上の樹脂は単独または組み合わせて使用できるが、好ましいものとして塩化ビニル樹脂、塩化ビニル酢酸ビニル共重合体、塩化ビニル酢酸ビニルビニルアルコール共重合体、塩化ビニル酢酸ビニル無水マレイン酸共重合体、から選ばれる少なくとも1種とポリウレタン樹脂の組み合わせ、またはこれらにポリイソシアネートを組み合わせたものがあげられる。
【0024】
ポリウレタン樹脂の構造はポリエステルポリウレタン、ポリエーテルポリウレタン、ポリエーテルポリエステルポリウレタン、ポリカーボネートポリウレタン、ポリエステルポリカーボネートポリウレタン、ポリカプロラクトンポリウレタンなど公知のものが使用できる。ここに示したすべての結合剤について、より優れた分散性と耐久性を得るためには必要に応じ、−COOM,−SO3M、−OSO3M、−P=O(OM)2、−O−P=O(OM)2、(以上につきMは水素原子、またはアルカリ金属塩基)、−NR2、−N+R3(Rは炭化水素基)、エポキシ基、−SH、−CN、などから選ばれる少なくともひとつ以上の極性基を共重合または付加反応で導入したものを用いることが好ましい。このような極性基の量は10−1〜10−8モル/gであり、好ましくは10−2〜10−6モル/gである。これら極性基以外にポリウレタン分子末端に少なくとも1個ずつ、合計2個以上のOH基を有することが好ましい。OH基は硬化剤であるポリイソシアネートと架橋して3次元の網状構造を形成するので、分子中に多数含むほど好ましい。特にOH基は分子末端にある方が硬化剤との反応性が高いので好ましい。ポリウレタンは分子末端にOH基を3個以上有することが好ましく、4個以上有することが特に好ましい。本発明において、ポリウレタンを用いる場合はガラス転移温度が通常、−50〜150℃、好ましくは0℃〜100℃、特に好ましくは30〜100℃、破断伸びが100〜2000%、破断応力は通常、0.05〜10Kg/mm2(≒0.49〜98MPa)、降伏点は0.05〜10Kg/mm2(≒0.49〜98MPa)が好ましい。このような物性を有することにより、良好な機械的特性を有する塗膜が得られる。
【0025】
本発明に用いられるこれらの結合剤の具体的な例としては塩化ビニル系共重合体としてユニオンカ−バイト社製VAGH、VYHH、VMCH、VAGF、VAGD,VROH,VYES,VYNC,VMCC,XYHL,XYSG,PKHH,PKHJ,PKHC,PKFE,日信化学工業社製、MPR−TA、MPR−TA5,MPR−TAL,MPR−TSN,MPR−TMF,MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80,DX81,DX82,DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、ポリウレタン樹脂として日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バ−ノックD−400、D−210−80、クリスボン6109,7209,東洋紡社製バイロンUR8200,UR8300、UR−8700、RV530,RV280、大日精化社製ポリカ−ボネートポリウレタン、ダイフェラミン4020,5020,5100,5300,9020,9022、7020,三菱化成社製ポリウレタン、MX5004,三洋化成社製ポリウレタン、サンプレンSP−150、旭化成社製ポリウレタン、サランF310,F210などが挙げられる。
【0026】
非磁性層に用いられる結合剤は非磁性無機粉末に対し、また磁性層に用いられる結合剤は強磁性粉末に対し、5〜50質量%の範囲、好ましくは10〜30質量%の範囲で用いられる。塩化ビニル系樹脂を用いる場合は5〜30質量%、ポリウレタン樹脂を用いる場合は2〜20質量%、ポリイソシアネートは2〜20質量%の範囲でこれらを組み合わせて用いることが好ましいが、例えば、微量の脱塩素によりヘッド腐食が起こる場合は、ポリウレタンのみまたはポリウレタンとイソシアネートのみを使用することも可能である。
【0027】
本発明の磁気記録媒体は二層以上から構成し得る。従って、結合剤量、結合剤中に占める塩化ビニル系樹脂、ポリウレタン樹脂、ポリイソシアネート、あるいはそれ以外の樹脂の量、磁性層を形成する各樹脂の分子量、極性基量、あるいは先に述べた樹脂の物理特性などを必要に応じ各層とで変えることはもちろん可能であり、むしろ各層で最適化すべきであり、多層磁性層に関する公知技術を適用できる。例えば、各層でバインダー量を変更する場合、磁性層表面の擦傷を減らすためには磁性層のバインダー量を増量することが有効であり、ヘッドに対するヘッドタッチを良好にするためには、非磁性層のバインダー量を多くして柔軟性を持たせることができる。
【0028】
本発明に用いられるポリイソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等が挙げられる。これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製、コロネートL、コロネートHL,コロネート2030、コロネート2031、ミリオネートMR,ミリオネートMTL、武田薬品社製、タケネートD−102,タケネートD−110N、タケネートD−200、タケネートD−202、住友バイエル社製、デスモジュールL,デスモジュールIL、デスモジュールN,デスモジュールHL,等がありこれらを単独または硬化反応性の差を利用して二つもしくはそれ以上の組み合わせで各層とも用いることができる。
【0029】
[カーボンブラック、研磨剤]
本発明の磁性層に使用されるカーボンブラックはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック、等を用いることができる。SBETは5〜500m2/g、DBP吸油量は10〜400ml/100g、平均粒子径は5nm〜300nm、pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/cc、が好ましい。本発明に用いられるカ−ボンブラックの具体的な例としてはキャボット社製、BLACKPEARLS 2000、1300、1000、900、905、800,700、VULCAN XC−72、旭カ−ボン社製、#80、#60,#55、#50、#35、三菱化成工業社製、#2400B、#2300、#900,#1000#30,#40、#10B、コロンビアンカ−ボン社製、CONDUCTEX SC、RAVEN 150、50,40,15、RAVEN−MT−P、日本EC社製、ケッチェンブラックEC、などがあげられる。カ−ボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カ−ボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカ−ボンブラックは単独、または組合せで使用することができる。カ−ボンブラックを使用する場合は磁性体に対する量の0.1〜30%でもちいることが好ましい。カ−ボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカ−ボンブラックにより異なる。従って本発明に使用されるこれらのカ−ボンブラックは上層磁性層、下層でその種類、量、組合せを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性をもとに目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。本発明の磁性層で使用できるカ−ボンブラックは例えば「カ−ボンブラック便覧」(カ−ボンブラック協会編)、WO98/35345に記載のものを参考にすることができる。
【0030】
本発明は研磨剤を磁性層等に用いることが好ましい。研磨剤としては例えば、α化率90%以上のα−アルミナ、β−アルミナ、ダイヤモンド、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、窒化珪素、炭化珪素チタンカ−バイト、酸化チタン、二酸化珪素、窒化ホウ素、など主としてモ−ス硬度6以上の公知の材料が単独または組合せで使用される。また、これらの研磨剤どうしの複合体(研磨剤を他の研磨剤で表面処理したもの)を使用してもよい。これらの研磨剤には主成分以外の化合物または元素が含まれる場合もあるが主成分が90%以上であれば効果にかわりはない。これら研磨剤の粒子サイズは0.01〜2μmが好ましく、特に電磁変換特性を高めるためには、その粒度分布が狭い方が好ましい。また耐久性を向上させるには必要に応じて粒子サイズの異なる研磨剤を組み合わせたり、単独の研磨剤でも粒径分布を広くして同様の効果をもたせることも可能である。タップ密度は0.3〜2g/cc、含水率は0.1〜5%、pHは2〜11、比表面積は1〜30m2/g、が好ましい。本発明に用いられる研磨剤の形状は針状、球状、サイコロ状、のいずれでも良いが、形状の一部に角を有するものが研磨性が高く好ましい。具体的には住友化学社製AKP−12、AKP−15、AKP−20、AKP−30、AKP−50、HIT20、HIT−30、HIT−55、HIT60、HIT70、HIT80、HIT100、レイノルズ社製、ERC−DBM、HP−DBM、HPS−DBM、不二見研磨剤社製、WA10000、上村工業社製、UB20、日本化学工業社製、G−5、クロメックスU2、クロメックスU1、戸田工業社製、TF100、TF140、イビデン社製、ベータランダムウルトラファイン、昭和鉱業社製、B−3などが挙げられる。これらの研磨剤は必要に応じ非磁性層に添加することもできる。非磁性層に添加することで表面形状を制御したり、研磨剤の突出状態を制御したりすることができる。これら磁性層、非磁性層の添加する研磨剤の粒径、量はむろん最適値に設定すべきものである。
【0031】
[添加剤]
本発明の磁性層、あるいは更に非磁性層に使用される、添加剤としては潤滑効果、帯電防止効果、分散効果、可塑効果、などをもつものが使用され、組み合わせることにより総合的な性能向上が図れる。潤滑効果を示すものとしては物質の表面同士の摩擦の際、生じる凝着を著しく作用を示す潤滑剤が使用される。潤滑剤には2つの型のものがある。磁気記録媒体に使用される潤滑剤は完全に流体潤滑か境界潤滑であるか判定することはできないが、一般的概念で分類すれば流体潤滑を示す高級脂肪酸エステル、流動パラフィン、シリコン誘導体などや境界潤滑を示す長鎖脂肪酸、フッ素系界面活性剤、含フッ素系高分子などに分類される。塗布型媒体では潤滑剤は結合剤に溶解した状態また一部は強磁性粉末表面に吸着した状態で存在するものであり、磁性層表面に潤滑剤が移行してくるが、その移行速度は結合剤と潤滑剤との相溶性の良否によって決まる。結合剤と潤滑剤との相溶性が高いときは移行速度が小さく、相溶性の低いときには早くなる。相溶性の良否に対する一つの考え方として両者の溶解パラメ−タ−の比較がある。流体潤滑には非極性潤滑剤が有効であり、境界潤滑には極性潤滑剤が有効である。
【0032】
本発明においてはこれら特性の異なる流体潤滑を示す高級脂肪酸エステルと境界潤滑を示す長鎖脂肪酸とを組み合わせることが好ましく、少なくとも3種組み合わせることが更に好ましい。これらに組み合わせて固体潤滑剤を使用することもできる。
固体潤滑剤としては例えば二硫化モリブデン、二硫化タングステングラファイト、窒化ホウ素、フッ化黒鉛などが使用される。境界潤滑を示す長鎖脂肪酸としては、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)、および、これらの金属塩(Li、Na、K、Cuなど)が挙げられる。フッ素系界面活性剤、含フッ素系高分子としてはフッ素含有シリコ−ン、フッ素含有アルコール、フッ素含有エステル、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩などが挙げられる。流体潤滑を示す高級脂肪酸エステルとしては、炭素数10〜24の一塩基性脂肪酸(不飽和結合を含んでも、また分岐していてもかまわない)と炭素数2〜12の一価、二価、三価、四価、五価、六価アルコールのいずれか一つ(不飽和結合を含んでも、また分岐していてもかまわない)とからなるモノ脂肪酸エステルまたはジ脂肪酸エステルまたはトリ脂肪酸エステル、アルキレンオキシド重合物のモノアルキルエ−テルの脂肪酸エステルなどが挙げられる。また流動パラフィン、そしてシリコン誘導体としてジアルキルポリシロキサン(アルキルは炭素数1〜5個)、ジアルコキシポリシロキサン(アルコキシは炭素数1〜4個)、モノアルキルモノアルコキシポリシロキサン(アルキルは炭素数1〜5個、アルコキシは炭素数1〜4個)、フェニルポリシロキサン、フロロアルキルポリシロキサン(アルキルは炭素数1〜5個)などのシリコ−ンオイル、極性基をもつシリコ−ン、脂肪酸変性シリコ−ン、フッ素含有シリコ−ンなどが挙げられる。
【0033】
その他の潤滑剤として炭素数12〜22の一価、二価、三価、四価、五価、六価アルコール(不飽和結合を含んでも、また分岐していてもかまわない)、炭素数12〜22のアルコキシアルコール(不飽和結合を含んでも、また分岐していてもかまわない)、フッ素含有アルコールなどのアルコール、ポリエチレンワックス、ポリプロピレンなどのポリオレフィン、エチレングリコール、ポリエチレンオキシドワックスなどのポリグリコール、アルキル燐酸エステルおよびそのアルカリ金属塩、アルキル硫酸エステルおよびそのアルカリ金属塩、ポリフェニルエ−テル、炭素数8〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが挙げられる。
【0034】
帯電防止効果、分散効果、可塑効果などを示すものとしてフェニルホスホン酸、具体的には日産化学(株)社の「PPA」など、αナフチル燐酸、フェニル燐酸、ジフェニル燐酸、p−エチルベンゼンホスホン酸、フェニルホスフィン酸、アミノキノン類、各種シランカップリング剤、チタンカップリング剤、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩、などが使用できる。
【0035】
本発明において使用される潤滑剤は特に脂肪酸と脂肪酸エステルが好ましく、具体的にはWO98/35345に記載のものが挙げられる。これらに加えて別異の潤滑剤、添加剤も組み合わせて使用することができる。
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフェノールエチレンオキサイド付加体、等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルフォン酸、燐酸、硫酸エステル基、燐酸エステル基、などの酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸または燐酸エステル類、アルキルベダイン型、等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。これらの潤滑剤、帯電防止剤等は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。
【0036】
本発明は脂肪酸エステルとしてWO98/35345に記載のようにモノエステルとジエステルを組み合わせて使用することも好ましい。
本発明の磁気記録媒体、特にディスク状磁気記録媒体の磁性層表面のオージェ電子分光法によるC/Feピーク比は、好ましくは5〜100、特に好ましくは5〜80である。オージェ電子分光法の測定条件は、以下の通りである。
装置:Φ社製PHI−660型
測定条件:1次電子線加速電圧3KV
試料電流130nA
倍率250倍
傾斜角度30°
上記条件で、運動エネルギ−(Kinetic Energy)130〜730eVの範囲を3回積算し、炭素のKLLピークと鉄のLMMピークの強度を微分形で求め、C/Feの比をとることで求める。
【0037】
一方、本発明の磁気記録媒体の上層及び下層の各層に含まれる潤滑剤量は、それぞれ強磁性粉末又は非磁性無機粉末100質量部に対し5〜30質量部が好ましい。
【0038】
本発明で使用されるこれらの潤滑剤、界面活性剤は個々に異なる物理的作用を有するものであり、その種類、量、および相乗的効果を生み出す潤滑剤の併用比率は目的に応じ最適に定められるべきものである。非磁性層、磁性層で融点の異なる脂肪酸を用い表面への滲み出しを制御する、沸点、融点や極性の異なるエステル類を用い表面への滲み出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を中間層で多くして潤滑効果を向上させるなど考えられ、無論ここに示した例のみに限られるものではない。一般には潤滑剤の総量として強磁性粉末または非磁性粉末に対し、0.1質量%〜50質量%、好ましくは2〜25質量%の範囲で選択される。
【0039】
また本発明で用いられる添加剤のすべてまたはその一部は、磁性塗料、非磁性塗料製造のどの工程で添加してもかまわない、例えば、混練工程前に磁性体と混合する場合、磁性体と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。また、目的に応じて磁性層を塗布した後、同時または逐次塗布で、添加剤の一部または全部を塗布することにより目的が達成される場合がある。また、目的によってはカレンダーした後、またはスリット終了後、磁性層表面に潤滑剤を塗布することもできる。
【0040】
本発明で用いられる有機溶剤は公知のものが使用でき、例えば特開昭6−68453に記載の溶剤を用いることができる。
【0041】
[層構成]
本発明の磁気記録媒体の厚み構成は支持体が通常、2〜100μm、好ましくは2〜80μmである。コンピューターテープの支持体は、3.0〜6.5μm(好ましくは、3.0〜6.0μm、更に好ましくは、4.0〜5.5μm)の範囲の厚さのものが使用される。
支持体、好ましくは非磁性可撓性支持体と非磁性層または磁性層の間に密着性向上のための下塗り層を設けてもかまわない。本下塗層厚みは0.01〜0.5μm、好ましくは0.02〜0.5μmである。
帯電防止やカール補正などの効果を出すために磁性層が設けられている側と反対側の支持体にバック層を設けてもかまわない。この厚みは通常、0.1〜4μm、好ましくは0.3〜2.0μmである。これらの下塗層、バック層は公知のものが使用できる。
【0042】
本発明の磁性層の厚みは、前記の通りであり、用いるヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化される。下層の厚みは通常、0.2〜5.0μm、好ましくは0.3〜3.0μm、さらに好ましくは1.0〜2.5μmである。なお、下層は実質的に非磁性であればその効果を発揮するものであり、たとえば不純物としてあるいは意図的に少量の磁性粉を含んでもよい。実質的に非磁性層とは下層の残留磁束密度が10mT以下または抗磁力が100エルステッド(≒8kA/m)以下であることを示し、好ましくは残留磁束密度と抗磁力をもたないことを示す。又、下層に磁性粉を含む場合は、下層の全無機粉末の1/2未満含むことが好ましい。また、軟磁性粉末と結合剤を含む軟磁性層を形成してもよい。
【0043】
[バック層]
本発明の磁気記録媒体は、バック層を設けることができる。磁気ディスクでもバック層を設けることはできるが、一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して、繰り返し走行性が強く要求される。このような高い走行耐久性を維持させるために、バック層には、カーボンブラックと無機粉末が含有されていることが好ましい。
カーボンブラックは、平均粒子径の異なる二種類のものを組み合わせて使用することが好ましい。この場合、平均粒子径が10〜20nmの微粒子状カーボンブラックと平均粒子径が230〜300nmの粗粒子状カーボンブラックを組み合わせて使用することが好ましい。一般に、上記のような微粒子状のカーボンブラックの添加により、バック層の表面電気抵抗を低く設定でき、また光透過率も低く設定できる。磁気記録装置によっては、テープの光透過率を利用し、動作の信号に使用しているものが多くあるため、このような場合には特に微粒子状のカーボンブラックの添加は有効になる。また微粒子状カーボンブラックは一般に液体潤滑剤の保持力に優れ、潤滑剤併用時、摩擦係数の低減化に寄与する。一方、平均粒子径が230〜300nmの粗粒子状カーボンブラックは、固体潤滑剤としての機能を有しており、またバック層の表面に微小突起を形成し、接触面積を低減化して、摩擦係数の低減化に寄与する。
【0044】
本発明に用いられる微粒子状カーボンブラック及び粗粒子状カーボンブラックとして、市販のものを用いる場合、具体的な商品としては、WO98/35345に記載のものを挙げることができる。
【0045】
バック層において、平均粒子径の異なる二種類のものを使用する場合、10〜20nmの微粒子状カーボンブラックと230〜300nmの粗粒子状カーボンブラックの含有比率(質量比)は、前者:後者=98:2〜75:25の範囲にあることが好ましく、更に好ましくは、95:5〜85:15の範囲である。
バック層中のカーボンブラック(二種類のものを使用する場合には、その全量)の含有量は、結合剤100質量部に対して、通常30〜80質量部の範囲であり、好ましくは、45〜65質量部の範囲である。
【0046】
無機粉末は、硬さの異なる二種類のものを併用することが好ましい。
具体的には、モース硬度3〜4.5の軟質無機粉末とモース硬度5〜9の硬質無機粉末とを使用することが好ましい。
モース硬度が3〜4.5の軟質無機粉末を添加することで、繰り返し走行による摩擦係数の安定化を図ることができる。しかもこの範囲の硬さでは、摺動ガイドポールが削られることもない。またこの無機粉末の平均粒子径は、30〜50nmの範囲にあることが好ましい。
モース硬度が3〜4.5の軟質無機粉末としては、例えば、硫酸カルシウム、炭酸カルシウム、珪酸カルシウム、硫酸バリウム、炭酸マグネシウム、炭酸亜鉛、及び酸化亜鉛を挙げることができる。これらは、単独で、あるいは二種以上を組み合わせて使用することができる。
【0047】
バック層内の軟質無機粉末の含有量は、カーボンブラック100質量部に対して10〜140質量部の範囲にあることが好ましく、更に好ましくは、35〜100質量部である。
モース硬度が5〜9の硬質無機粉末を添加することにより、バック層の強度が強化され、走行耐久性が向上する。これらの無機粉末をカーボンブラックや前記軟質無機粉末と共に使用すると、繰り返し摺動に対しても劣化が少なく、強いバック層となる。またこの無機粉末の添加により、適度の研磨力が付与され、テープガイドポール等への削り屑の付着が低減する。特に軟質無機粉末と併用すると、表面の粗いガイドポールに対しての摺動特性が向上し、バック層の摩擦係数の安定化も図ることができる。
【0048】
硬質無機粉末の平均粒子径は80〜250nmが好ましく、100〜210nmの範囲にあることが更に好ましい。
モース硬度が5〜9の硬質無機質粉末としては、例えば、α−酸化鉄、α−アルミナ、及び酸化クロム(Cr2O3)を挙げることができる。これらの粉末は、それぞれ単独で用いても良いし、あるいは併用しても良い。これらの内では、α−酸化鉄又はα−アルミナが好ましい。硬質無機粉末の含有量は、カーボンブラック100質量部に対して通常3〜30質量部であり、好ましくは、3〜20質量部である。
【0049】
バック層に前記軟質無機粉末と硬質無機粉末とを併用する場合、軟質無機粉末と硬質無機粉末との硬さの差が、2以上(更に好ましくは、2.5以上、特に、3以上)であるように軟質無機粉末と硬質無機粉末とを選択して使用することが好ましい。
【0050】
バック層には、前記それぞれ特定の平均粒子径を有するモース硬度の異なる二種類の無機粉末と、前記平均粒子径の異なる二種類のカーボンブラックとが含有されていることが好ましい。
バック層には、潤滑剤を含有させることができる。潤滑剤は、前述した非磁性層、あるいは磁性層に使用できる潤滑剤として挙げた潤滑剤の中から適宜選択して使用できる。バック層において、潤滑剤は、結合剤100質量部に対して通常1〜5質量部の範囲で添加される。
【0051】
[支持体]
本発明に用いられる支持体は、非磁性可撓性支持体であることが好ましく、支持体の面内各方向に対し、100℃30分での熱収縮率が0.5%以下であり、80℃30分での熱収縮率が0.5%以下、更に好ましくは0.2%以下であることが好ましい。更に前記支持体の100℃30分での熱収縮率及び80℃30分での熱収縮率が前記支持体の面内各方向に対し、10%以内の差で等しいことが好ましい。支持体は非磁性であることが好ましい。これら支持体はポリエチレンテレフタレート、ポリエチレンナフタレート、等のポリエステル類、ポリオレフィン類、セルロ−ストリアセテート、ポリカ−ボネート、芳香族又は脂肪族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、ポリアラミド、ポリベンゾオキサゾールなどの公知のフィルムが使用できる。ポリエチレンナフタレート、ポリアミドなどの高強度支持体を用いることが好ましい。また必要に応じ、磁性面とベ−ス面の表面粗さを変えるため特開平3−224127に示されるような積層タイプの支持体を用いることもできる。これらの支持体にはあらかじめコロナ放電処理、プラズマ処理、易接着処理、熱処理、除塵処理、などをおこなっても良い。また本発明の支持体としてアルミまたはガラス基板を適用することも可能である。
【0052】
本発明の目的を達成するには、支持体としてWYKO社製の表面粗さ計TOPO−3Dで測定した中心面平均表面粗さRaは通常、8.0nm以下、好ましくは4.0nm以下、更に好ましくは2.0nm以下のものを使用することが好ましい。これらの支持体は単に中心面平均表面粗さが小さいだけではなく、0.5μm以上の粗大突起がないことが好ましい。また表面の粗さ形状は必要に応じて支持体に添加されるフィラーの大きさと量により自由にコントロールされるものである。これらのフィラーとしては一例としてはCa,Si、Tiなどの酸化物や炭酸塩の他、アクリル系などの有機粉末があげられる。支持体の最大高さRmaxは1μm以下、十点平均粗さRzは0.5μm以下、中心面山高さRpは0.5μm以下、中心面谷深さRvは0.5μm以下、中心面面積率Srは10%以上、90%以下、平均波長λaは5μm以上、300μm以下が好ましい。所望の電磁変換特性と耐久性を得るため、これら支持体の表面突起分布をフィラーにより任意にコントロールできるものであり、0.01〜1μmの大きさのもの各々を0.1mm2あたり0〜2000個の範囲でコントロールすることができる。
【0053】
本発明に用いられる支持体のF−5値は好ましくは5〜50Kg/mm2(≒49〜490MPa)、また、支持体の100℃30分での熱収縮率は好ましくは3%以下、さらに好ましくは1.5%以下、80℃30分での熱収縮率は好ましくは0.5%以下、さらに好ましくは0.1%以下である。破断強度は5〜100Kg/mm2(≒49〜980MPa)、弾性率は100〜2000Kg/mm2(≒0.98〜19.6GPa)が好ましい。温度膨張係数は10−4〜10−8/℃であり、好ましくは10−5〜10−6/℃である。湿度膨張係数は10−4/RH%以下であり、好ましくは10−5/RH%以下である。これらの熱特性、寸法特性、機械強度特性は支持体の面内各方向に対し10%以内の差でほぼ等しいことが好ましい。
【0054】
[製法]
本発明の磁気記録媒体の磁性塗料を製造する工程は、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上にわかれていてもかまわない。本発明に使用する磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニ−ダ、加圧ニ−ダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニ−ダを用いる場合は磁性粉末または非磁性粉末と結合剤のすべてまたはその一部(ただし全結合剤の30%以上が好ましい)および磁性粉末100部に対し15〜500部の範囲で混練処理される。これらの混練処理の詳細については特開平1−106338、特開平1−79274に記載されている。また、磁性層用塗布液および下層用塗布液を分散させるにはガラスビーズを用いることができるが、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
【0055】
本発明で重層構成の磁気記録媒体を塗布する場合、以下のような方式を用いることが好ましい。第一に磁性塗料の塗布で一般的に用いられるグラビア塗布、ロール塗布、ブレード塗布、エクストルージョン塗布装置等により、まず下層を塗布し、下層がウェット状態のうちに特公平1−46186や特開昭60−238179,特開平2−265672に開示されている支持体加圧型エクストルージョン塗布装置により上層を塗布する方法。第二に特開昭63−88080、特開平2−17971,特開平2−265672に開示されているような塗布液通液スリットを二つ内蔵する一つの塗布ヘッドにより上下層をほぼ同時に塗布する方法。第三に特開平2−174965に開示されているバックアップロール付きエクストルージョン塗布装置により上下層をほぼ同時に塗布する方法である。なお、磁性粒子の凝集による磁気記録媒体の電磁変換特性等の低下を防止するため、特開昭62−95174や特開平1−236968に開示されているような方法により塗布ヘッド内部の塗布液にせん断を付与することが望ましい。さらに、塗布液の粘度については、特開平3−8471に開示されている数値範囲を満足する必要がある。本発明の構成を実現するには下層を塗布し乾燥させたのち、その上に磁性層を設ける逐次重層塗布を用いてもむろんかまわず、本発明の効果が失われるものではない。
【0056】
上記塗布後、少なくとも磁性層の塗布層が湿潤状態の間に前記スムージング処理が施される必要がある。
ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、本発明によるスムージング処理を施すことにより配向を調整することができる。また、スピンコートを併用して円周配向してもよい。
磁気テープの場合は、スムージング処理により強磁性粉末を長手方向に配向する。塗布及びスムージング処理の間は、乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できる様にすることが好ましく、塗布速度は20m/分〜1000m/分、乾燥風の温度は60℃以上が好ましい。またスムージング処理に入る前に塗布層に対して適度の予備乾燥を行うこともできる。
【0057】
塗布層の乾燥後、通常、カレンダー処理が施されるが、カレンダー処理ロールとしてエポキシ、ポリイミド、ポリアミド、ポリイミドアミド等の耐熱性のあるプラスチックロールまたは金属ロールで処理するが、特に両面磁性層とする場合は金属ロール同志で処理することが好ましい。処理温度は、好ましくは50℃以上、さらに好ましくは100℃以上である。線圧力は好ましくは200kg/cm(≒196kN/m)以上、さらに好ましくは300kg/cm(≒294kN/m)以上である。
【0058】
カレンダー処理後、磁気記録媒体は所望の形状に打ち抜きまたは裁断される。必要に応じディスク形状に打ち抜いたあと高温でのサーモ処理(通常50℃〜90℃)を行ない塗布層の硬化処理を促進させる、研磨テープでバーニッシュ処理を行うことができる。また、磁気テープの場合、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレ−ドが磁性面に押し当たるように取り付け、テ−プクリ−ニング装置で磁性層の表面のクリ−ニングを行うことができる。
【0059】
[物理特性]
本発明になる磁気記録媒体の磁性層の飽和磁束密度は、好ましくは、100〜300mTである。抗磁力HcおよびHrは1800〜5000エルステッド(≒144〜400kA/m)が好ましく、1800〜3000エルステッド(≒144〜240kA/m)が更に好ましい。抗磁力の分布は狭い方が好ましく、SFD(スイッチング・フィールド・ディストリビューション)およびSFDrは0.6以下が好ましい。角形比SQはディスクの場合、通常、0.5〜0.95、好ましくは0.6〜0.85であり、テープの場合、角形比は、好ましくは0.6以上である。
【0060】
本発明の磁気記録媒体のヘッドに対する摩擦係数は温度−10〜40℃、湿度0〜95%の範囲において通常0.5以下、好ましくは0.3以下、表面固有抵抗は好ましくは磁性面104〜1012オ−ム/sq、帯電位は−500V〜+500Vが好ましい。磁性層の0.5%伸びでの弾性率は面内各方向で好ましくは100〜2000Kg/mm2(≒980〜19600N/mm2)、破断強度は好ましくは10〜70Kg/mm2(≒98〜686N/mm2)、磁気記録媒体の弾性率は面内各方向で好ましくは100〜1500Kg/mm2(≒980〜14700N/mm2)、残留のびは好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は好ましくは1%以下、さらに好ましくは0.5%以下、もっとも好ましくは0.1%以下である。磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失弾性率の極大点)は50℃以上120℃以下が好ましく、下層のそれは0℃〜100℃が好ましい。損失弾性率は1×103〜8×104N/cm2の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向で10%以内でほぼ等しいことが好ましい。磁性層中に含まれる残留溶媒は好ましくは100mg/m2以下、さらに好ましくは10mg/m2以下である。塗布層が有する空隙率は下層、上層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐久性は好ましいことが多い。
【0061】
磁性層の中心面平均表面粗さRaはWYCO社製TOPO−3Dを用いて約250μm×250μmの面積での測定で好ましくは3.5nm以下、さらに好ましくは2.5nm以下である。
磁性層の最大高さRmaxは0.5μm以下、十点平均粗さRzは0.3μm以下、中心面山高さRpは0.3μm以下、中心面谷深さRvは0.3μm以下、中心面面積率Srは20%以上、80%以下、平均波長λaは5μm以上、300μm以下が好ましい。磁性層の表面突起は0.01〜1μmの大きさのものを0〜2000個の範囲で任意に設定することが可能であり、これにより電磁変換特性、摩擦係数を最適化することが好ましい。これらは支持体のフィラ−による表面性のコントロールや磁性層に添加する粉体の粒径と量、カレンダー処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。本発明の磁気記録媒体は、重層構成とした場合には、目的に応じ下層と上層でこれらの物理特性を変えることができるのは容易に推定されることである。例えば、上層の弾性率を高くし走行耐久性を向上させると同時に下層の弾性率を上層より低くして磁気記録媒体のヘッドへの当りを良くするなどである。
【0062】
【実施例】
以下に、実施例を用いてさらに本発明を詳細に説明するが、本発明はこれに限定されるものではない。尚、「部」は「質量部」を示す。
実施例1〜8、比較例1〜9
上記塗料について、各成分をニ−ダで混練したのち、サンドミルをもちいて分散させた。得られた分散液に,1μmの平均孔径を有するフィルターを用いて濾過し、磁性層形成用塗布液を調製した。
磁性層の厚さが所定の厚み(表1記載)になるように、厚さ62μmで中心線平均表面粗さが3nmのポリエチレンテレフタレート支持体上に100m/分で塗布し、湿潤状態のうちにスムージング処理を施した。乾燥後、7段のカレンダで温度90℃、線圧300Kg/cm(294kN/m)にて処理を行い、3.8mm幅にスリットし、テープを得た。
【0063】
尚、比較例6及び7の場合は、上記スムージング処理の前段で0.6Tの対向Co磁石の中を通過させた。また、比較例8及び9は上記スムージング処理を行わなかった。
【0064】
上記で用いた強磁性粉末及び得られた試料を下記により評価し、表1に結果を示した。
(1)磁性体のサイズ
透過型電子顕微鏡(TEM)にて50万倍で粒子の写真を撮影し、画像解析装置で500個の粒子のサイズを計測した。MPのサイズは、強磁性金属粉末の平均長軸長、BaFeのサイズは六方晶系フェライト粉末の平均板径である。MP(強磁性金属粉末)組成は、Fe/Co/Al/Y=100/30/11/6(原子比)であり、SBETは70m2/gであり、結晶子サイズは120Åである。(2)強磁性粉末の磁気特性
SQ:振動試料型磁束計(東英工業社製)を用い、Hm796kA/m(10kOe)で測定した。
(3)磁性層厚み
媒体の切片を作成し、TEMにて磁性層の平均厚みを測定した。
(4)電磁変換特性
回転ドラムに巻き付けた磁気テープに磁気ヘッドを押し当てて測定した。
回転ドラムの直径は60mm、ヘッド/テープ相対速度は10m/secとした。
記録は飽和磁化1.4TのMIGヘッド(ギャップ長:0.2μm、トラック幅18μm)を使い記録電流は、各テープの最適記録電流に設定した。再生ヘッドには素子厚み25nmの異方性型MRヘッド(A−MR)を用いた。
S/N比:記録波長0.2μmの信号を記録し、再生信号をシバソク製のスペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力と、スペクトル全帯域の積分ノイズとの比をS/Nとした。
(5)中心面平均表面粗さ(Ra):WYKO社製TOPO3Dを用いて、約250μm×250μmの面積のRaを測定した。測定波長約650nmにて球面補正、円筒補正を加えている。本方式は光干渉にて測定する非接触表面粗さ計である。
【0065】
【表1】
【0066】
表1から本発明の要件を満足する実施例は、本発明の要件の何れかを満たさない比較例に比べてS/Nが格段に優れていることが分る。
【0067】
【発明の効果】
本発明は、平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末という微粒子を用い、かつ磁性層厚みが0.01〜0.2μmと薄層であっても、スムージング処理により配向が施されると表面性が改善し、ひいてはS/Nが優れた高密度記録用磁気記録媒体を提供することができる。
Claims (1)
- 支持体上に強磁性粉末及び結合剤を主体とする磁性層を有する磁気記記媒体において、該強磁性粉末は平均長軸長が25〜100nmの強磁性金属粉末または平均板径が15〜40nmの六方晶系フェライト粉末であり、かつ磁性層厚みが0.01〜0.2μmであり、かつ磁場配向処理を施されることなくスムージング処理により配向が施されてなることを特徴とする磁気記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002184657A JP2004030768A (ja) | 2002-06-25 | 2002-06-25 | 磁気記録媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002184657A JP2004030768A (ja) | 2002-06-25 | 2002-06-25 | 磁気記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004030768A true JP2004030768A (ja) | 2004-01-29 |
Family
ID=31180524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002184657A Pending JP2004030768A (ja) | 2002-06-25 | 2002-06-25 | 磁気記録媒体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004030768A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1562183A2 (en) * | 2004-02-05 | 2005-08-10 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
-
2002
- 2002-06-25 JP JP2002184657A patent/JP2004030768A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1562183A2 (en) * | 2004-02-05 | 2005-08-10 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
EP1562183A3 (en) * | 2004-02-05 | 2006-06-07 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4365547B2 (ja) | 磁気記録再生方法 | |
JP4047735B2 (ja) | 磁気記録媒体 | |
JP2004005820A (ja) | 磁気記録媒体 | |
JP2005243063A (ja) | 磁気記録媒体 | |
JP2004318981A (ja) | 磁気記録媒体 | |
JP2002170217A (ja) | 磁気ディスク | |
JP2000011352A (ja) | 磁気記録媒体 | |
JP2002042325A (ja) | 磁気記録媒体 | |
JP4098848B2 (ja) | 磁気記録媒体 | |
US7264893B2 (en) | Magnetic recording medium | |
JP4037292B2 (ja) | 磁気記録媒体 | |
US6735057B2 (en) | Method of magnetic recording/reproducing | |
JP2007257713A (ja) | 磁気記録媒体 | |
JP2004152326A (ja) | 磁気ヘッドのクリーニング方法 | |
JP3949421B2 (ja) | 磁気記録媒体 | |
JP2005222609A (ja) | クリーニングテープ | |
JP4149649B2 (ja) | 磁気記録媒体 | |
JP2004030768A (ja) | 磁気記録媒体 | |
JP2004164770A (ja) | 磁気ディスク媒体 | |
JP4094651B2 (ja) | 磁気記録再生システム | |
JP2001331924A (ja) | 磁気記録媒体 | |
JP3859833B2 (ja) | 磁気記録媒体 | |
JP2005259249A (ja) | 磁気記録媒体 | |
JP2005092958A (ja) | 磁気記録媒体 | |
JP2004046963A (ja) | 磁気記録媒体 |