JP2004027961A - 火花点火式4サイクルエンジンの制御装置 - Google Patents

火花点火式4サイクルエンジンの制御装置 Download PDF

Info

Publication number
JP2004027961A
JP2004027961A JP2002185242A JP2002185242A JP2004027961A JP 2004027961 A JP2004027961 A JP 2004027961A JP 2002185242 A JP2002185242 A JP 2002185242A JP 2002185242 A JP2002185242 A JP 2002185242A JP 2004027961 A JP2004027961 A JP 2004027961A
Authority
JP
Japan
Prior art keywords
cylinder
fuel ratio
air
combustion
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002185242A
Other languages
English (en)
Other versions
JP3972744B2 (ja
Inventor
Mitsuo Hitomi
人見 光夫
Koji Sumita
住田 孝司
Yoshinori Hayashi
林 好徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002185242A priority Critical patent/JP3972744B2/ja
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to EP03703109A priority patent/EP1362176B1/en
Priority to US10/472,563 priority patent/US7219634B2/en
Priority to DE60300437T priority patent/DE60300437T2/de
Priority to DE60309098T priority patent/DE60309098T8/de
Priority to KR10-2003-7014141A priority patent/KR20040074591A/ko
Priority to KR10-2003-7014146A priority patent/KR20040074592A/ko
Priority to US10/472,523 priority patent/US7182050B2/en
Priority to CNB038024594A priority patent/CN100363609C/zh
Priority to CNB03802487XA priority patent/CN100368671C/zh
Priority to PCT/JP2003/000961 priority patent/WO2003064837A1/en
Priority to EP03703108A priority patent/EP1366279B1/en
Priority to PCT/JP2003/000962 priority patent/WO2003064838A1/en
Publication of JP2004027961A publication Critical patent/JP2004027961A/ja
Application granted granted Critical
Publication of JP3972744B2 publication Critical patent/JP3972744B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/125
    • Y02T10/144

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】リーン燃焼による燃費改善効果をもたせるとともに、一部の気筒では圧縮自己着火を効果的に行わせ、とくに広い運転域で効果的に圧縮自己着火による燃焼を行わせることができるようにし、燃費及びエミッションの改善効果を高める。
【解決手段】エンジンの部分負荷域で、排気行程と吸気行程が重なる一対の気筒間において排気行程側の先行気筒2A,2Dから排出される既燃ガスがそのまま吸気行程側の後続気筒2B,2Cに気筒間ガス通路22を介して導入されるように吸・排気の流通状態を制御する。そして、燃焼状態制御手段44により、後続気筒2B,2Cの空燃比を実質的に理論空燃比としつつ、後続気筒2B,2Cよりも先行気筒2A,2Dの燃料供給量を多くすることにより先行気筒2A,2Dの空燃比を理論空燃比の2倍より小さい値とするとともに、先行気筒2A,2Dでは強制点火、後続気筒2B,2Cでは圧縮自己着火とするように制御する。
【選択図】    図3

Description

【0001】
【発明の属する技術分野】
本発明は、火花点火式4サイクルエンジンの制御装置に関し、より詳しくは、多気筒のエンジンにおいて燃費改善及びエミッション向上のために各気筒の燃焼状態を制御する装置に関するものである。
【0002】
【従来の技術】
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、例えば特開平10−274085号公報に示されるように、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低回転低負荷域等では上記燃料噴射弁から圧縮行程で燃料を噴射することにより成層燃焼を行わせ、これによって超リーン燃焼を実現するようにしたものが知られている。
【0003】
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,CO及びNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時にNOxに対して充分な浄化性能が得られないため、上記公報にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行うリーンNOx触媒を設けている。そして、このようなリーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときは、例えば上記公報に示されるように主燃焼以外に膨張行程中に追加燃料を噴射することで排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
【0004】
【発明が解決しようとする課題】
上記のような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能の確保のために上記リーンNOx触媒が必要となってコスト的に不利である。また、上記リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量増大時にNOxの離脱、還元のため追加燃料の供給等による一時的な空燃比のリッチ化を行う必要があり、さらに、使用燃料が硫黄分を多く含む場合、上記リーンNOx触媒の硫黄被毒の解消のために触媒の加熱及び還元材供給等のリジェネレーション処理が必要となり、これらによって燃費改善効果が低下する。
【0005】
しかも、空燃比がある程度以上にリーンになると、燃焼速度が遅くなりすぎてその終期に近い燃焼が仕事に寄与しなくなるため、成層燃焼でのリーン化による燃費改善には限界があった。
【0006】
また、燃費改善のための別の手法として、圧縮自己着火が研究されており、この圧縮自己着火は、ディーゼルエンジンと同様に圧縮行程終期に燃焼室内を高温、高圧にして燃料を自己着火させるようにするものであり、空燃比が超リーンの状態や多量のEGRが導入されている状態でもこのような圧縮自己着火が行われれば燃焼室全体が一気に燃焼するため、仕事に寄与しない遅い燃焼が避けられ、燃費改善に有利となる。しかし、通常の火花点火式エンジン(ガソリンエンジン)では燃焼のために強制点火が必要であって、圧縮自己着火を行わせるためには燃焼室内の温度または圧力を大幅に高めるための格別の工夫が必要となり、高負荷域でのノッキングを避けつつ、燃費改善が要求される部分負荷域で圧縮自己着火を生じさせる程度まで燃焼室内の温度または圧力を高めることが困難であった。
【0007】
そこで、本出願人は、リーン燃焼と圧縮自己着火とを併用して大幅な燃費改善効果をもたせるべく、エンジンの部分負荷域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入される2気筒接続状態とするとともに、先行気筒では空燃比を理論空燃比よりも大きいリーン空燃比にして、強制点火により燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して圧縮自己着火により燃焼を行わせるようにした火花点火式エンジンの制御装置に関する技術を出願している(特願2002−29836号)。
【0008】
本発明は、このような技術に基づき、さらに広い運転域で効果的に後続気筒での圧縮自己着火による燃焼を行わせることができるようにし、燃費及びエミッションの改善効果を高めることができる火花点火式4サイクルエンジンの制御装置を提供するものである。
【0009】
【課題を解決するための手段】
請求項1に係る発明は、各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒の火花点火式4サイクルエンジンにおいて、エンジンの部分負荷域でエンジンの吸・排気及び燃焼状態についての制御モードを特殊運転モードとし、この特殊運転モードでは、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒では空燃比が理論空燃比よりも大きいリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して燃焼を行わせるようにした制御装置であって、上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、上記後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるようにしつつ、先行、後続の両気筒に対する燃料供給量を先行気筒の方が多くなるように制御することにより先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とするとともに、先行気筒では強制点火により燃焼を行わせ、後続気筒では圧縮自己着火により燃焼を行わせるように制御する燃焼状態制御手段を備えたことを特徴とするものである。
【0010】
この発明によると、上記特殊運転モードとされるとともに後続気筒で圧縮自己着火により燃焼が行われる場合に、上記先行気筒ではリーン燃焼による熱効率向上およびポンピングロス低減により燃費改善効果が得られ、後続気筒では圧縮自己着火による燃焼効率の向上及びポンピングロス低減により燃費改善効果が得られる。また、後続気筒から排気通路に排出されるガスは理論空燃比であるため、三元触媒だけで充分に排気ガスの浄化が達成される。
【0011】
また、先行気筒に対する燃料供給量が多くされて先行気筒の空燃比が理論空燃比の2倍より小さい値とされることにより、先行気筒から後続気筒へ導入されるガスの温度が高められて自己着火性が向上され、かつ、このガス中のEGRに相当する既燃ガス成分が増大する等によりノッキング抑制作用が高められる。
【0012】
この発明において、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすること(請求項2)が好ましい。このようにすると、上記中速域で燃費改善効果が高められる。
【0013】
このようにする場合に、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域よりも低速側の運転域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすれば(請求項3)、この低速側の運転域で自己着火性が向上される。
【0014】
また、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域よりも高速側の運転域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすれば(請求項4)、この高速側の運転域でのノッキングの発生が抑制される。
【0015】
また、本発明において、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中負荷域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすること(請求項5)が好ましい。あるいはまた、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速・中負荷域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすること(請求項6)が好ましい。
【0016】
このようにすると、上記中負荷域あるいは中速・中負荷域で燃費改善効果が高められる。
【0017】
また、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域において、低負荷側ほど、先行気筒における燃焼の際の空燃比を小さくすること(請求項7)が好ましい。このようにすると、低負荷側ほど圧縮自己着火が行われにくくなる傾向が補われる。
【0018】
なお、エンジン温度が低いときには、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域の全域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすること(請求項8)が好ましい。このようにすると、エンジン低温時にも圧縮自己着火が可能となる。
【0019】
また、請求項9に係る発明は、各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒の火花点火式4サイクルエンジンにおいて、エンジンの部分負荷域でエンジンの吸・排気及び燃焼状態についての制御モードを特殊運転モードとし、この特殊運転モードでは、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒では空燃比が理論空燃比よりも大きいリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して燃焼を行わせるようにした制御装置であって、上記特殊運転モードとされる運転領域のうちの少なくとも一部の領域で、上記後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるようにしつつ、先行気筒における燃焼の際の空燃比を、理論空燃比より大きくてその2倍以下となる範囲で、エンジン回転数が低いほど小さくするように、先行、後続の両気筒に対する燃料供給量を制御するとともに、先行気筒では強制点火により燃焼を行わせ、後続気筒では圧縮自己着火により燃焼を行わせるように制御する燃焼状態制御手段を備えたことを特徴とするものである。
【0020】
この発明によっても、特殊運転モードとされるとともに後続気筒で圧縮自己着火により燃焼が行われる場合に、上記先行気筒でリーン燃焼による熱効率向上およびポンピングロス低減により燃費改善効果が得られる一方、後続気筒で圧縮自己着火による燃焼効率の向上及びポンピングロス低減により燃費改善効果が得られ、また、排気通路において三元触媒だけで充分に排気ガスの浄化が達成される。
【0021】
また、エンジン回転数が低いほど、先行気筒の空燃比が小さくなるように燃料供給量が制御されることにより、先行気筒から後続気筒へ導入されるガスの温度が高められて自己着火性が向上される。
【0022】
この発明において、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速・中負荷域で、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、この領域から低速低負荷側または高速高負荷側へ遠ざかるほど、先行気筒における燃焼の際の空燃比を小さくすること(請求項10)が好ましい。
【0023】
このようにすると、低速低負荷側で自己着火性を高める作用、及び高速高負荷側でノッキングを抑制する作用が、良好に得られる。
【0024】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
【0025】
図1は本発明の一実施形態によるエンジンの概略構成を示し、図2はエンジン本体1の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0026】
各気筒2の燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
【0027】
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。なお、この燃料噴射弁9には図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。
【0028】
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
【0029】
そして、各気筒が所定の位相差をもって吸気、圧縮、膨張、排気の各行程からなるサイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図5に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって行われるようになっている。なお、図5において、EXは排気行程、INは吸気行程であり、また、Fは燃料噴射、Sは強制点火を表し、図中の星マークは圧縮自己着火が行われることを表している。
【0030】
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態の4気筒エンジンでは、図5に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、及び、4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒、2番気筒2B及び3番気筒2Cが後続気筒となる。
【0031】
各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路及び気筒間ガス通路は、具体的には次のように構成されている。
【0032】
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート32とが配設されている。
【0033】
図1に示す例では、1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の左半部側に並列的に設けられる一方、1番,4番気筒2A,2Dにおける第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室の右半部側に並列的に設けられている。
【0034】
1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動され、吸入空気量を調節するようになっている。なお、吸気通路15における集合部より上流の共通吸気通路には吸気流量を検出するエアフローセンサ19が設けられている。
【0035】
1番,4番気筒2A,2Dにおける第1排気ポート12aおよび2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間にそれぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端が接続されている。
【0036】
上記気筒間ガス通路22は、互いに隣接する気筒間を接続する比較的短い通路であり、先行気筒から排出されるガスがこの通路22を通る間の放熱は比較的小さく抑えられるようになっている。
【0037】
排気通路20における分岐排気通路21の下流の集合部には排気ガス中の酸素濃度を検出することにより空燃比を検出するOセンサ23が設けられている。さらにOセンサ23の下流の排気通路21には排気浄化のために三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λがλ=1)付近にあるときにHC,CO及びNOxに対して高い浄化性能を示す触媒である。
【0038】
各気筒の吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。
【0039】
1番,4番気筒2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒の吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。
【0040】
さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32b、第1吸気弁31a及び第2吸気弁31bに対しては、各弁を作動状態と停止状態とに切換える弁停止機構35が設けられている。この弁停止機構35は、従来から知られているため詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。
【0041】
上記第1排気弁32aの弁停止機構35と第1吸気弁31aの弁停止機構35とに対する作動油給排用の通路36には第1コントロール弁37が、また第2排気弁32bの弁停止機構35と第2吸気弁31bの弁停止機構35とに対する作動油給排用の通路38には第2コントロール弁39がそれぞれ設けられている(図3参照)。
【0042】
図3は駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19及びOセンサ23からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ47及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ48等からの信号も入力されている。また、このECU40から、各燃料噴射弁9と、多連スロットル弁17のアクチュエータ18と、上記第1,第2のコントロール弁39とに対して制御信号が出力されている。
【0043】
上記ECU40は、運転状態判別手段41、弁停止機構制御手段42、吸入空気量制御手段43及び燃焼状態制御手段44を備えている。
【0044】
運転状態判別手段41は、図4に示すようにエンジンの運転領域が低負荷低回転側の運転領域A(部分負荷域)と高負荷側ないし高回転側の運転領域Bとに分けられた制御用マップを有し、上記回転数センサ45及びアクセル開度センサ46等からの信号により調べられるエンジンの運転状態(エンジン回転数及びエンジン負荷)が上記運転領域A,Bのいずれの領域にあるかを判別する。そして、この判別に基づき、低負荷低回転側の運転領域Aでは、排気行程にある先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼させる特殊運転モードが選択され、高負荷側ないし高回転側の運転領域Bでは、各気筒をそれぞれ独立させ燃焼させる通常運転モードが選択されるようになっている。
【0045】
さらに運転状態判別手段41は、特殊運転モードが選択される運転領域Aにある場合に、この領域Aのうちの低速域A1、中速域A2、高速域A3のいずれにあるかを判別するようになっている。
【0046】
弁停止機構制御手段42は、特殊運転モードでは気筒間ガス通路22を介して先行気筒の既燃ガスを後続気筒に導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく弁停止機構制35を制御するもので、具体的には運転状態が運転領域A,Bのいずれにあるかに応じ、上記各コントロール弁37,39を制御することにより、各弁停止機構35を次のように制御する。
【0047】
Figure 2004027961
上記吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。この場合、特殊運転モードとされる運転領域Aでは、後続気筒(2番、3番気筒2B,2C)においては分岐吸気通路16からの吸気導入が遮断された状態で先行気筒から導入されるガス中の過剰空気と新たに供給される燃料との比がリーン空燃比とされつつ燃焼が行われるので、先行、後続の2気筒分の要求トルクに応じた燃料の燃焼に必要な量の空気(2気筒分の燃料の量に対して理論空燃比となる量の空気)が先行気筒(1番、4番気筒2A,2D)に供給されるように、スロットル開度が調節される。
【0048】
上記燃焼状態制御手段44は、燃料噴射制御手段45と点火制御手段46とからなっており、燃料噴射制御手段45により、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するとともに、点火制御手段46により運転状態に応じた点火時期の制御及び点火停止等の制御を行う。そして、特に運転状態が図4中の運転領域Aにある場合と運転領域Bにある場合とで燃焼状態の制御(燃料噴射の制御及び点火の制御)が変更される。
【0049】
すなわち、運転状態が低負荷低回転側の運転領域Aにある場合、特殊運転モードでの制御として、先行気筒(1番、4番気筒2A,2D)に対しては、空燃比を理論空燃比よりも大きいリーン空燃比とするように燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して混合気の成層化を行わせるように噴射タイミングを設定し、かつ、圧縮上死点付近で強制点火を行わせるように点火タイミングを設定する。一方、後続気筒(2番、3番気筒2B,2C)に対しては、先行気筒から導入されたリーン空燃比の既燃ガスに対して燃料を供給し、実質的に理論空燃比となるように燃料噴射量を制御するとともに、吸気行程で燃料を噴射するように噴射タイミングを設定し、かつ、圧縮自己着火を行わせるべく、強制点火を停止させる。
【0050】
さらにこの運転領域Aにおいて、一対の気筒の両方に対する燃料噴射量の和が先行気筒に導入される空気の量に対して理論空燃比となる量に調整されつつ、後続気筒での圧縮自己着火が良好に行われるように、先行気筒(1番、4番気筒2A,2D)に対する燃料噴射量と後続気筒(2番、3番気筒2B,2C)に対する燃料噴射量との割合が運転状態に応じて変更される。
【0051】
具体的には、この運転領域Aのうちの中速域A2では、先行気筒に対する燃料噴射量と後続気筒に対する燃料噴射量とを略同一に、ないしは後続気筒側の燃料噴射量を少し多くすることにより、先行気筒での燃焼の際の空燃比が理論空燃比の2倍程度(A/F≒30、空気過剰率λで表せばλ=2程度)ないしは理論空燃比の2倍より大(空気過剰率λがλ>2)となるようにする。また、運転領域Aのうちの低速域A1では先行気筒に対する燃料噴射量を後続気筒に対する燃料噴射量よりも多くすることにより、先行気筒での燃焼の際の空燃比が理論空燃比の2倍より小(空気過剰率λが1<λ<2)となるようにし、例えばA/F≒25となるようにする。一方、運転領域Aのうちの高速域A3でも、先行気筒に対する燃料噴射量を後続気筒に対する燃料噴射量よりも多くすることにより、先行気筒での燃焼の際の空燃比が理論空燃比の2倍より小(空気過剰率λが1<λ<2)となるようにし、例えばA/F≒25となるようにする。
【0052】
また、運転状態が高負荷側ないし高回転側の運転領域Bにある場合には、通常運転モードでの制御として、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えばこの運転領域Bのうちの大部分の領域において理論空燃比とし、全開負荷及びその付近の運転領域で理論空燃比よりリッチとする。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射して混合気を均一化するように噴射タイミングを設定し、かつ、各気筒2A〜2Dとも強制点火を行わせるようにする。
【0053】
以上のような当実施形態の装置の作用を、図5〜図7を参照しつつ説明する。
【0054】
低負荷低回転側の運転領域Aでは特殊運転モードとされ、前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図6に示すようになり、先行気筒(1番,4番気筒)2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒(2番,3番気筒)2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出されるガスのみが排気通路20に導かれるような2気筒接続状態とされる。
【0055】
この状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図6中の矢印a)、先行気筒2A,2Dでは空燃比が理論空燃比よりも大きくて、理論空燃比の略2倍ないしそれより小さい値となるように燃料噴射量が制御されつつ圧縮行程で燃料が噴射され、かつ、所定点火時期に点火が行われて、リーン空燃比での成層燃焼が行われる(図5参照)。
【0056】
それから、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が重なる期間に、先行気筒2A,2Dから排出された既燃ガスがガス通路22を通って後続気筒2B,2Cに導入される(図5中の白抜き矢印及び図6中の矢印b)。そして、後続気筒2B,2Cでは、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに燃料が供給されて、理論空燃比となるように燃料噴射量が制御されつつ、吸気行程で燃料が噴射された後、圧縮行程の上死点付近で燃焼室内の圧力、温度の上昇により圧縮自己着火が行われる。
【0057】
この場合、先行気筒2A,2Dから排出された高温の既燃ガスが短い気筒間ガス通路22を通って後続気筒2B,2Cに直ちに導入されるため、後続気筒2B,2Cでは吸気行程で燃焼室内の温度が高くなり、この状態からさらに圧縮行程で圧力、温度が上昇することにより、圧縮行程終期の上死点付近では混合気が自己着火し得る程度まで燃焼室内の温度が上昇する。しかも、上記既燃ガスは先行気筒2A,2Dから排出されて後続気筒2B,2Cに導入されるまでの間に充分にミキシングされて均一に分布し、さらに吸気行程で噴射された燃料も圧縮行程終期までの間に燃焼室全体に均一に分散するため、理想的な同時圧縮自己着火条件を満たすような均一な混合気分布状態が得られる。そして、同時圧縮自己着火により燃焼が急速に行われ、これにより熱効率が大幅に向上される。
【0058】
このように、先行気筒2A,2Dでは、リーンでの成層燃焼により熱効率が高められるとともに、成層燃焼を行わない通常のエンジンと比べて吸気負圧が小さくなることでポンピングロスが低減され、一方、後続気筒2B,2Cでは、空燃比が略理論空燃比とされつつ、均一な混合気分布状態で圧縮自己着火が行われることにより熱効率が高められるとともに、先行気筒2A,2Dから押出されたガスが送り込まれるため先行気筒2A,2Dよりもさらにポンピングロスが低減される。これらの作用により、燃費が大幅に改善される。
【0059】
しかも、後続気筒2B,2Cから排気通路20に排出されるガスは理論空燃比であるため、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなく、三元触媒24だけで充分に排気浄化性能が確保される。
【0060】
そして、リーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0061】
また、先行気筒2A,2Dでは理論空燃比の略2倍もしくはそれに近いリーン空燃比とされることでNOx発生量が比較的少なく抑えられる。一方、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで多量のEGRが行われているのと同等の状態となるとともに、同時圧縮自己着火による急速燃焼が行われると可及的に酸素と窒素との反応が避けられることから、NOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
【0062】
また、後続気筒2B,2Cでの圧縮自己着火が先行気筒2A,2Dから排出される既燃ガスの熱を利用して達成されるため、格別の加熱手段を用いたりエンジンの圧縮比を極端に高くしたりする必要がなく、容易に圧縮自己着火を達成することができる。とくに、特殊運転モードでの先行気筒(1番、4番気筒2A,2D)に対する燃料噴射量と後続気筒(2番、3番気筒2B,2C)に対する燃料噴射量との割合が運転状態に応じて前述のように調整されることにより、広い運転領域にわたり、有効に圧縮自己着火を行わせることができる。
【0063】
すなわち、特殊運転モードとされる運転領域Aのうちの低速域A1では、中・高速域A2,A3と比べると本来的に燃焼室内の温度が低いため圧縮自己着火が行われにくい条件下にあるが、この低速域A1では、後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるように調整されつつ、先行気筒に対する燃料噴射量が後続気筒より多くされて、先行気筒の空燃比が理論空燃比の2倍より小さい値となるように制御されているため、先行気筒の空燃比が理論空燃比の2倍(先行気筒と後続気筒とが同じ噴射量)とされる場合と比べ、先行気筒から後続気筒へ導かれるガスの温度が上昇する。このため、低速域A1でも効果的に圧縮自己着火が行われる。
【0064】
また、特殊運転モードとされる運転領域Aのうちの高速域A3では、燃焼温度が過度に上昇してノッキングが生じ易くなるが、この領域でも、先行気筒に対する燃料噴射量が後続気筒より多くされて、先行気筒の空燃比が理論空燃比の2倍より小さい値となるように制御される。これにより、先行気筒の空燃比が理論空燃比の2倍(先行気筒と後続気筒とが同じ噴射量)とされる場合と比べ、後続気筒に導入されるガスの温度は上昇するものの、後続気筒に導入されるガス中のEGRに相当する既燃ガス成分が増大するとともに、後続気筒に対する燃料噴射量が少なくなることによって後続気筒での燃焼により発生するエネルギーが小さくなるため、ノッキングが抑制される。
【0065】
このように、先行気筒に対する燃料噴射量が後続気筒より多くされて、先行気筒の空燃比が理論空燃比の2倍より小さい値となるように制御されると、先行気筒の空燃比が理論空燃比の2倍(先行気筒と後続気筒とが同じ噴射量)とされる場合と比べ、圧縮自己着火やノッキング抑制の面では有利となるが、その反面、先行気筒での成層リーンバーンによる燃費改善効果や先行、後続気筒のトルクバランスの面では多少不利となる。そこで、特殊運転モードにより後続気筒の圧縮自己着火が容易に可能で、かつノッキングが生じにくい中速域A2では、燃費改善効果やトルクバランスの面で有利なように、先行気筒の空燃比が理論空燃比の略2倍もしくはそれより大きい値となるように燃料噴射量が制御される。
【0066】
一方、高負荷側ないし高回転側の運転領域Bでは通常運転モードとされ、前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図7に示すようになり、各気筒2A〜2Dの吸気ポート31,31a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート31,31aに新気が導入されるとともに各気筒2A〜2Dの排気ポート31,31aから排気通路20に既燃ガスが排出される。そしてこの場合は、理論空燃比もしくはそれよりリッチとなるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0067】
なお、本発明の装置の具体的構成は上記実施形態に限定されず、種々変更可能である。他の実施形態を以下に説明する。
【0068】
▲1▼上記の基本実施形態では、特殊運転モードとされる運転領域Aを低速域A1、中速域A2及び高速域A3に分けて、先行気筒の空燃比(先行気筒に対する燃料噴射量と後続気筒に対する燃料噴射量との割合)を上記各域A1,A2,A3で変更しているが、図8に示すように、特殊運転モードとされる運転領域Aを低負荷域A11、中負荷域A12及び高負荷域A13に分けるようにしてもよい。この場合、上記中負荷域A12では先行気筒の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、上記低負荷域A11及び高負荷域A13では先行気筒の空燃比を理論空燃比の2倍より小さい値(例えばA/F≒25)とするように燃料噴射量を制御する。
【0069】
あるいは図9に示すように、特殊運転モードとされる運転領域Aのうち、中速中負荷域A20で先行気筒の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、それ以外の運転域で先行気筒の空燃比を理論空燃比の2倍より小さい値とするように制御してもよい。
【0070】
これらの例でも、特殊運転モードとされる運転領域Aのうちで燃焼室内の温度が比較的低い低負荷域等では、先行気筒から後続気筒へ導かれるガスの温度が上昇することで圧縮自己着火が可能となり、ノッキングが生じやすい高負荷域等では後続気筒の発生エネルギーが少なくなることでノッキングが抑制され、また、中負荷域A12または中速中負荷域A20では、燃費改善効果やトルクバランスに有利な状態となる。
【0071】
▲2▼上記の基本実施形態や図8、図9に示す例では、特殊運転モードとされる運転領域A内の複数の運転域で、先行気筒の空燃比を理論空燃比の略2倍もしくはそれより大きい値とそれより小さい値とに切換えているが、先行気筒の空燃比を、理論空燃比よりは大きくしつつ運転状態に応じて次第に変化させるようにしてもよい。
【0072】
この場合、運転領域Aのうちの少なくとも低負荷域で、低負荷側ほど、先行気筒における燃焼の際の空燃比を小さくする。あるいは、運転領域Aのうちの少なくとも低速域で、低速側ほど、先行気筒における燃焼の際の空燃比を小さくする。
【0073】
例えば、気筒間ガス通路22に冷却手段を設けることなどにより特殊運転モードとされる運転領域Aの高速高負荷側でもノッキングが生じにくくなっている場合は、図10に示すように、特殊運転モードとされる運転領域Aの高速高負荷側で先行気筒の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、エンジン回転数及び負荷が低くなるにつれて先行気筒の空燃比をリッチ側に変化させるようにすればよい。
【0074】
このようにすると、特殊運転モードとされる運転領域A内で、エンジン回転数(及び負荷)が低くなるにつれて後続気筒の燃焼室内の温度が低くなる傾向を補うように、先行気筒から後続気筒に導かれるガスの温度が高められ、圧縮自己着火可能な状態が確保される。
【0075】
また、図11に示すように、特殊運転モードとされる運転領域Aのうちの中速中負荷域A20で先行気筒の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、この領域から低速低負荷側(矢印a方向)または高速高負荷側(矢印b方向)へ遠ざかるほど、先行気筒における燃焼の際の空燃比を小さくするように制御してもよい。
【0076】
このようにすると、特殊運転モードとされる運転領域Aのうちの低速低負荷側において圧縮自己着火可能な状態を確保する作用、及び高速高負荷側においてノッキングを抑制する作用が、良好に得られる。
【0077】
▲3▼上記のような特殊運転モードとされる運転領域Aでの運転状態に応じた制御に加え、エンジンの温度状態に応じて先行気筒の空燃比を変更するようにしてもよい。例えば、エンジンの暖機後であってもエンジン温度が低いとき(エンジン冷却水の温度が所定温度以下のとき)には、特殊運転モードとされる運転領域A内の全域で、先行気筒の空燃比を理論空燃比の2倍より小さくすることが好ましい。このようにすれば、比較的エンジン温度が低いときにも、先行気筒から後続気筒へ導入されるガスの温度を高めて圧縮自己着火可能な状態を確保することができる。
【0078】
▲4▼上記各実施形態では、特殊運転モードとされる運転領域Aの全域で、後続気筒を圧縮自己着火により燃焼させるようにしているが、特殊運転モードとされる運転領域Aのうちの一部、例えば燃焼室内の温度、圧力が圧縮自己着火可能な状態に達しにくい極低速低負荷の領域では、後続気筒に対して所定の点火時期に点火プラグ7による点火を行わせ、強制点火により燃焼させるようにしてもよい。あるいはまた、エンジン温度が低いときに、後続気筒を強制点火により燃焼させるようにしてもよい。
【0079】
▲5▼基本実施形態では弁停止機構を用いて2気筒接続状態と各気筒独立状態とに吸・排気流通状態を切換可能としているが、吸・排気通路及び気筒間ガス通路に開閉弁を設けてこれらの通路の開閉により2気筒接続状態と各気筒独立状態とに切換え得るようにしておいてもよい。
【0080】
▲6▼本発明の装置は4気筒以外の多気筒エンジンにも適用可能である。そして、例えば6気筒等では1つの気筒の排気行程と別の気筒の吸気行程が完全に重なり合うことはないが、このような場合は、一方の気筒の排気行程が他方の気筒の吸気行程より先行するとともに、両行程が部分的に重なり合う2つの気筒を先行、後続の一対の気筒とすればよい。
【0081】
【発明の効果】
以上のように本発明の制御装置によると、特殊運転モードとされた場合に、排気行程と吸気行程が重なる一対の気筒のうちの先行気筒ではリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して、圧縮自己着火により燃焼を行わせるようにしているため、先行気筒ではリーン燃焼による熱効率向上およびポンピングロス低減により、また後続気筒では圧縮自己着火による燃焼効率の向上及びポンピングロス低減により、燃費を改善することができる。しかも、後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるようにしているため、排気通路での排気ガスの浄化を三元触媒だけで充分に行うことでき、リーンNOx触媒が不要となる。
【0082】
そして、特に本発明では、上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、先行、後続の両気筒に対する燃料供給量を先行気筒の方が多くなるように制御することにより先行気筒の空燃比を理論空燃比の2倍より小さい値としているため、先行気筒から後続気筒へ導入されるガスの温度を高めて後続気筒での自己着火性を向上し、かつ、このガス中のEGRに相当する既燃ガス成分の増大によりノッキングを抑制することができる。このため、圧縮自己着火領域を大幅に拡大することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による制御装置を備えたエンジン全体の概略平面図である。
【図2】エンジン本体等の概略断面図である。
【図3】制御系統のブロック図である。
【図4】運転状態に応じた制御を行うための運転領域設定の一例を示す説明図である。
【図5】各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図6】低負荷低回転時の実質的な新気およびガスの流通経路を示す説明図である。
【図7】高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。
【図8】運転状態に応じた制御を行うための運転領域設定についての第2の例を示す説明図である。
【図9】運転状態に応じた制御を行うための運転領域設定についての第3の例を示す説明図である。
【図10】運転状態に応じた制御を行うための運転領域設定についての第4の例を示す説明図である。
【図11】運転状態に応じた制御を行うための運転領域設定についての第5の例を示す説明図である。
【符号の説明】
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
11 吸気ポート
11a 第1吸気ポート
11b 第2吸気ポート
12 排気ポート
12a 第1排気ポート
12b 第2排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
35 弁停止機構
40 ECU
41 運転状態判別手段
42 弁停止機構制御手段
43 吸入空気量制御手段
44 燃焼状態制御手段

Claims (10)

  1. 各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒の火花点火式4サイクルエンジンにおいて、
    エンジンの部分負荷域でエンジンの吸・排気及び燃焼状態についての制御モードを特殊運転モードとし、この特殊運転モードでは、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒では空燃比が理論空燃比よりも大きいリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して燃焼を行わせるようにした制御装置であって、
    上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、上記後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるようにしつつ、先行、後続の両気筒に対する燃料供給量を先行気筒の方が多くなるように制御することにより先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とするとともに、先行気筒では強制点火により燃焼を行わせ、後続気筒では圧縮自己着火により燃焼を行わせるように制御する燃焼状態制御手段を備えたことを特徴とする火花点火式4サイクルエンジンの制御装置。
  2. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすることを特徴とする請求項1記載の火花点火式4サイクルエンジンの制御装置。
  3. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域よりも低速側の運転域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすることを特徴とする請求項2記載の火花点火式4サイクルエンジンの制御装置。
  4. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速域よりも高速側の運転域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすることを特徴とする請求項2又は3記載の火花点火式4サイクルエンジンの制御装置。
  5. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中負荷域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすることを特徴とする請求項1記載の火花点火式4サイクルエンジンの制御装置。
  6. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速・中負荷域では、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とすることを特徴とする請求項1記載の火花点火式4サイクルエンジンの制御装置。
  7. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域において、低負荷側ほど、先行気筒における燃焼の際の空燃比を小さくすることを特徴とする請求項1記載の火花点火式4サイクルエンジンの制御装置。
  8. エンジン温度が低いときには、上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域の全域で、先行気筒における燃焼の際の空燃比を理論空燃比の2倍より小さい値とすることを特徴とする請求項1乃至7のいずれかに記載の火花点火式4サイクルエンジンの制御装置。
  9. 各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒の火花点火式4サイクルエンジンにおいて、
    エンジンの部分負荷域でエンジンの吸・排気及び燃焼状態についての制御モードを特殊運転モードとし、この特殊運転モードでは、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒では空燃比が理論空燃比よりも大きいリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して燃焼を行わせるようにした制御装置であって、
    上記特殊運転モードとされる運転領域のうちの少なくとも一部の領域で、上記後続気筒における燃焼の際の空燃比が実質的に理論空燃比となるようにしつつ、先行気筒における燃焼の際の空燃比を、理論空燃比より大きくてその2倍以下となる範囲で、エンジン回転数が低いほど小さくするように、先行、後続の両気筒に対する燃料供給量を制御するとともに、先行気筒では強制点火により燃焼を行わせ、後続気筒では圧縮自己着火により燃焼を行わせるように制御する燃焼状態制御手段を備えたことを特徴とする火花点火式4サイクルエンジンの制御装置。
  10. 上記特殊運転モードで後続気筒が圧縮自己着火とされる運転領域のうちの中速・中負荷域で、先行気筒における燃焼の際の空燃比を理論空燃比の略2倍もしくはそれより大きい値とし、この領域から低速低負荷側または高速高負荷側へ遠ざかるほど、先行気筒における燃焼の際の空燃比を小さくすることを特徴とする請求項8記載の火花点火式4サイクルエンジンの制御装置。
JP2002185242A 2002-01-31 2002-06-25 火花点火式4サイクルエンジンの制御装置 Expired - Fee Related JP3972744B2 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2002185242A JP3972744B2 (ja) 2002-06-25 2002-06-25 火花点火式4サイクルエンジンの制御装置
PCT/JP2003/000961 WO2003064837A1 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine
DE60300437T DE60300437T2 (de) 2002-01-31 2003-01-31 Einrichtung zur regelung einer funkgezündeten brennkraftmaschine
DE60309098T DE60309098T8 (de) 2002-01-31 2003-01-31 Einrichtung zur regelung einer funkgezündeten brennkraftmaschine
KR10-2003-7014141A KR20040074591A (ko) 2002-01-31 2003-01-31 다기통 불꽃 점화 엔진용 제어 장치
KR10-2003-7014146A KR20040074592A (ko) 2002-01-31 2003-01-31 다기통 불꽃 점화 엔진용 제어 장치
EP03703109A EP1362176B1 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
CNB038024594A CN100363609C (zh) 2002-01-31 2003-01-31 火花点火发动机的控制装置
CNB03802487XA CN100368671C (zh) 2002-01-31 2003-01-31 火花点火发动机的控制装置
US10/472,563 US7219634B2 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
EP03703108A EP1366279B1 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine
PCT/JP2003/000962 WO2003064838A1 (en) 2002-01-31 2003-01-31 Spark ignition engine control device
US10/472,523 US7182050B2 (en) 2002-01-31 2003-01-31 Control device for spark-ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185242A JP3972744B2 (ja) 2002-06-25 2002-06-25 火花点火式4サイクルエンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2004027961A true JP2004027961A (ja) 2004-01-29
JP3972744B2 JP3972744B2 (ja) 2007-09-05

Family

ID=31180949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185242A Expired - Fee Related JP3972744B2 (ja) 2002-01-31 2002-06-25 火花点火式4サイクルエンジンの制御装置

Country Status (1)

Country Link
JP (1) JP3972744B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928980B2 (en) 2003-09-30 2005-08-16 Mazda Motor Corporation Control device for spark-ignition engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928980B2 (en) 2003-09-30 2005-08-16 Mazda Motor Corporation Control device for spark-ignition engine

Also Published As

Publication number Publication date
JP3972744B2 (ja) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3963144B2 (ja) 火花点火式エンジンの制御装置
JP3846393B2 (ja) 火花点火式エンジンの制御装置
JP2004132191A (ja) 火花点火式エンジンの制御装置
JP3711942B2 (ja) 過給機付エンジンの制御装置
JP4259255B2 (ja) 火花点火式エンジンの制御装置
JP3925379B2 (ja) 過給機付火花点火式エンジンの制御装置
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP3972744B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP4285091B2 (ja) 火花点火式エンジンの制御装置
JP4329446B2 (ja) 火花点火式エンジンの制御装置
JP3894083B2 (ja) 火花点火式エンジンの制御装置
JP4107180B2 (ja) 火花点火式エンジンの制御装置
JP3951855B2 (ja) 火花点火式エンジンの制御装置
JP3900072B2 (ja) 火花点火式エンジンの制御装置
JP3951829B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP4123102B2 (ja) 火花点火式エンジンの制御装置
JP2005016358A (ja) 火花点火式エンジンの制御装置
JP2004124761A (ja) 火花点火式エンジンの制御装置
JP4052214B2 (ja) 火花点火式エンジンの制御装置
JP2004011557A (ja) 火花点火式エンジンの制御装置
JP4158670B2 (ja) 火花点火式エンジンの制御装置
JP2005054678A (ja) 火花点火式エンジンの制御装置
JP2004068698A (ja) エンジンの制御装置
JP2004360647A (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees