JP2004011557A - 火花点火式エンジンの制御装置 - Google Patents
火花点火式エンジンの制御装置 Download PDFInfo
- Publication number
- JP2004011557A JP2004011557A JP2002167588A JP2002167588A JP2004011557A JP 2004011557 A JP2004011557 A JP 2004011557A JP 2002167588 A JP2002167588 A JP 2002167588A JP 2002167588 A JP2002167588 A JP 2002167588A JP 2004011557 A JP2004011557 A JP 2004011557A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- combustion
- fuel ratio
- operation mode
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
【課題】エンジンの運転状態に応じた燃焼制御をして燃費改善効果と排気浄化効果とを得る一方で、運転状態の変化に伴うトルクショックを緩和する。
【解決手段】各気筒2A〜2Dをそれぞれ独立させて燃焼させる通常運転モードと、排気行程にある先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼させる特殊運転モードとに切換可能に構成されるエンジンであって、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように構成されている。
【選択図】 図1
【解決手段】各気筒2A〜2Dをそれぞれ独立させて燃焼させる通常運転モードと、排気行程にある先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼させる特殊運転モードとに切換可能に構成されるエンジンであって、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように構成されている。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、火花点火式エンジンの制御装置に関し、より詳しくは、多気筒エンジンにおいて燃費改善及びエミッション向上のために各気筒の燃焼状態を制御する装置に関するものである。
【0002】
【従来の技術】
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、例えば特開平10−274085号公報に示されるように、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低回転低負荷域等では上記燃料噴射弁から圧縮行程で燃料を噴射することにより成層燃焼を行わせ、これによって超リーン燃焼を実現するようにしたものが知られている。
【0003】
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,CO及びNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時にNOxに対して充分な浄化性能が得られないため、上記公報にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行うリーンNOx触媒を設けている。そして、このようなリーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときは、例えば上記公報に示されるように主燃焼以外に膨張行程中に追加燃料を噴射することで排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
【0004】
【発明が解決しようとする課題】
上記のような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能の確保のために上記リーンNOx触媒を必要とする。そして、高負荷域等の理論空燃比で運転される領域での排気浄化のために三元触媒も必要であって、この三元触媒に加えて上記リーンNOx触媒が設けられ、かつ、このリーンNOx触媒はNOx吸着量をある程度確保するために比較的大容量が必要となり、また、三元触媒と比べて高価であるため、コスト的に不利である。
【0005】
しかも、上記リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量が増大するような所定の期間毎に、NOxの離脱、還元のため追加燃料の供給等による一時的な空燃比のリッチ化を行う必要があり、これにより、リーン燃焼による燃費改善効果が目減りしてしまうことになる。
【0006】
そこで、本願出願人は、かかる課題に鑑み、吸気、圧縮、膨張、排気の各行程からなるサイクルを行う多気筒エンジンにおいて、低負荷低回転域では、排気行程と吸気行程が重なる一対の気筒間において排気行程側の気筒である先行気筒から排出される既燃ガスをそのまま吸気行程側の気筒である後続気筒に導入し、この後続気筒から排出されるガスを三元触媒を備えた排気通路に導くようにするとともに、この2気筒接続状態にあるときに、上記先行気筒において理論空燃比よりも所定量大きいリーン空燃比とした状態で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせるように燃焼状態等を制御(特殊運転モードという)する一方、高負荷高回転域では、通常通り、各気筒毎を理論空燃比で燃焼を行わせるように燃焼状態等を制御(通常運転モードという)することを考えた(特願2002−024548号)。
【0007】
これによると、低負荷低回転域において特殊運転モードとされることにより、先行気筒ではリーン空燃比での燃焼が行われ、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、また、上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われて、ポンピングロス低減による燃費効果が得られる。しかも、後続気筒から排出される理論空燃比の既燃ガスのみが三元触媒を備えた排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保され、リーンNOx触媒も不要となる。
【0008】
ところで、上記のように各気筒の燃焼状態等を制御する場合には、低負荷回転域から高負荷回転域への移行時(特殊運転モードから通常運転モードへの切換え時)に吸気量の応答遅れが生じることが考えられ、そのため単純に通常モードに切換えるだけでは、この応答遅れに起因してトルクショック(一時的にトルクが高くなる状態)が生じ搭乗者に違和感を与えることが考えられる。すなわち、特殊運転モードでは、後続気筒分の吸気量を含む大量の吸気を先行気筒に導入すべくスロットル弁の開度(スロットル開度)が制御されている。そのため、その後、通常モードへの移行に伴いスロットル開度が絞られても、開度調整に応答遅れが生じて目標吸気量を超える量の吸気が行われることとが考えられ、この吸気量に基づいて理論空燃比とした状態で燃焼が行われることにより、一時的にトルクが高くなる状態が生じることが考えられる。
【0009】
そこで、トルクショックを緩和することが必要となり、例えば、一つの手法として、点火リタードを実行することが考えられる。しかし、この場合には燃費の低下を伴うこととなる。また、特殊運転モードから通常運転モードへの切換え時に噴射燃料を定量制御することも考えられるが、この場合には、NOxが発生し易い中間空燃比(A/F=16〜17)で燃焼が行われるおそれがあるため、三元触媒だけで排気浄化性能を確保するという所期の効果が損なわれることとなる。従って、何れの手法も事実上の実施は困難である。
【0010】
本発明は以上のような課題を考慮してなされたものであり、リーン燃焼による燃費改善効果をもたせつつ、リーンNOx触媒を必要とせず三元触媒を用いるだけで、排気浄化性能を向上することすることができ、しかもトルクショックを効果的に緩和することができる火花点火式エンジンの制御装置を提供するものである。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに運転モードを切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように前記空燃比制御手段が構成されているものである。
【0012】
この構成によると、例えばエンジンの低負荷低回転域において、2気筒接続状態で特殊運転モードの燃焼制御が実行されることにより、上記先行気筒ではリーン空燃比での燃焼が行われて、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、かつ上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われることにより、少なくともポンピングロス低減による燃費効果が得られる。また、後続気筒から排出される理論空燃比の既燃ガスのみが排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、モード切換後、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とされた状態で行われることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが緩和される。この際、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路の触媒を通過する既燃ガスが略理論空燃比のガスとなり、その結果、排気浄化性能も確保される。
【0013】
請求項2に係る発明は、各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように吸気量に応じて各気筒に対する燃焼噴射量を制御する燃料噴射制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え直前又は直後のタイミングで、特定の気筒に対する燃料供給を遮断するように前記燃料噴射制御手段が構成されているものである。
【0014】
この構成によると、請求項1の場合と同様に、低負荷低回転域において特殊運転モードの燃焼制御が実行されることにより燃費改善効果が得られ、また三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、該移行の直前又は直後に、特定の気筒に対する燃料供給が遮断されることによりトルクの急増が抑制され、その結果、吸気量の応答遅れに起因するトルクショックが緩和される。この際、燃料供給が遮断されるだけなので、排気浄化性能が損われることがない。
【0015】
この場合、具体的には、特殊運転モードから通常運転モードへの切換え前に燃焼行程を迎える気筒およびこの気筒と前記一対をなす気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成するか(請求項3)、あるいは、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成する(請求項4)のが有効である。
【0016】
請求項5に係る発明は、燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼行程を有する通常運転モードと、吸気行程と排気行程との間に2回の燃焼行程を有する特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先の燃焼では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後の燃焼では、先の燃焼によるリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、前記特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように前記空燃比制御手段が構成されているものである。
【0017】
この構成によれば、例えばエンジンの低負荷低回転域において、上記特殊運転モードの燃焼制御が実行されることにより、すなわち2回の燃焼に必要な空気が供給されてからリーン空燃比での先の燃焼と理論空燃比での後の燃焼とが行われることにより、熱効率が高められるとともにポンピングロスが低減され、その結果、大幅な燃費改善効果が得られる。また、既燃ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように各気筒での燃焼行程における空燃比が制御されるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、モード切換後、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とした状態で行われることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが緩和される。この際、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路に排出される既燃ガスが略理論空燃比のガスとなり、排気浄化性能も確保される。
【0018】
請求項6に係る発明は、燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼を行う通常運転モードと、吸気行程と排気行程との間に2回の燃焼を行う特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、排気通路に排出される既燃ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように、各運転モードでの各気筒に対する燃料噴射量を制御する燃料噴射制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え直前又は直後の何れかのタイミングで、特定の気筒に対する燃料供給を遮断するように前記燃料噴射制御手段が構成されているものである。
【0019】
この構成によると、請求項1の場合と同様に、特殊運転モードの燃焼制御が実行されることにより燃費改善効果が得られ、また三元触媒だけで充分に排気浄化性能が確保される。さらに、特殊運転モードから通常運転モードへの移行時には、その直前又は直後に特定の気筒に対する燃料供給が遮断されることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが有効に緩和される。この際、燃料供給が遮断されるだけなので、排気浄化性能が損われることもない。
【0020】
この場合、具体的には、特殊運転モードから通常運転モードへの切換え直前に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成するか(請求項7)、あるいは、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成する(請求項8)のが有効である。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明の第1の実施の形態について説明する。
【0022】
図1は本発明の一実施形態によるエンジンの概略構成を示し、図2はエンジン本体の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0023】
各気筒気筒2A〜2Dの燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
【0024】
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。なお、この燃料噴射弁9には、図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。
【0025】
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
【0026】
そして、各気筒2A〜2Dが所定の位相差をもって吸気、圧縮、膨張、排気の各行程からなる燃焼サイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図5に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって燃焼サイクルが行われるようになっている。なお、図5において、EXは排気行程、INは吸気行程、Fは燃料噴射、Sは点火をそれぞれ表している。
【0027】
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態では、図5に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、及び4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒、2番気筒2B及び3番気筒2Cが後続気筒となる。
【0028】
各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路及び気筒間ガス通路は、具体的には次のように構成されている。
【0029】
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート32とが配設されている。
【0030】
図1に示す例では、1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の左半部側に並列的に設けられる一方、1番,4番気筒2A,2Dにおける第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室の右半部側に並列的に設けられている。
【0031】
1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動され、吸入空気量を調節するようになっている。なお、吸気通路15における集合部より上流の共通吸気通路には吸気流量を検出するエアフローセンサ19が設けられている。
【0032】
1番,4番気筒2A,2Dにおける第1排気ポート12aおよび2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端が接続されている。
【0033】
排気通路20における分岐排気通路21の下流の集合部には理論空燃比検出用の排気ガス濃度検出手段であるO2センサ23が設けられ、さらにその下流の排気通路20には、排気浄化用の三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λがλ=1)付近にあるときにHC,CO及びNOxに対して高い浄化性能を示す触媒である。また、O2センサ23は、排気ガス中の酸素濃度を検出することにより空燃比を検出するもので、特に理論空燃比付近で出力が急変するλO2センサにより構成されている。
【0034】
上記気筒間ガス通路22には、排気ガス中の酸素濃度の変化(空燃比の変化)に対して出力がリニアに変化するリニアO2センサ25(リーン空燃比検出用の排気ガス濃度検出手段)が設けられている。
【0035】
各気筒の吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。すなわち、1番,4番気筒2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒の吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。
【0036】
さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32b、第1吸気弁31a及び第2吸気弁31bに対しては、各弁を作動状態と停止状態とに切換える弁停止機構35が設けられている。この弁停止機構35は、従来から知られているため詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。
【0037】
上記第1排気弁32aの弁停止機構35と第1吸気弁31aの弁停止機構35とに対する作動油給排用の通路36には第1コントロール弁37が、また第2排気弁32bの弁停止機構35と第2吸気弁31bの弁停止機構35とに対する作動油給排用の通路38には第2コントロール弁39がそれぞれ設けられている(図3参照)。
【0038】
図3はエンジンの駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19、O2センサ23及びリニアO2センサ25からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ45及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ46等からの信号も入力されている。また、このECU40から、各燃料噴射弁9と、多連スロットル弁17のアクチュエータ18と、上記第1,第2のコントロール弁37,39とに対して制御信号が出力されている。
【0039】
上記ECU40は、その機能構成として運転状態判別手段41、弁停止機構35弁停止機構制御手段42、吸入空気量制御手段43、燃料噴射制御手段44および経路判別手段51等を備えている。
【0040】
運転状態判別手段41は、上記回転数センサ45及びアクセル開度センサ46等からの信号によりエンジンの運転状態(エンジン回転数及びエンジン負荷)を調べ、運転状態が図4に示すような低負荷低回転側の運転領域Aと、高負荷側ないし高回転側の運転領域Bとのいずれの領域にあるかを判別する。
【0041】
弁停止機構制御手段42は、運転状態判別手段41において判別された運転領域A,Bに応じて、上記各コントロール弁37,39を制御することにより、各弁停止機構35を次のように制御する。
【0042】
運転領域A:第1排気弁32a及び第1吸気弁31aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
運転領域B:第1排気弁32a及び第1吸気弁31aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
つまり、運転領域Bでは、各気筒を独立状態としてそれぞれ気筒毎に燃焼を行わせる通常運転モードとし、運転領域Aでは、先行気筒(1番、4番気筒2A,2D)と後続気筒(2番、3番気筒2B,2C)とを気筒間ガス通路22を介して接続した2気筒接続状態とし、かつ先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとするようになっている。なお、当実施形態では、これら運転状態判別手段41及び弁停止機構制御手段42等により本発明のモード切換手段が構成されている。
【0043】
吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。特に、低負荷低回転側の運転領域A(特殊運転モード)では、後続気筒(2番、3番気筒2B,2C)に対する分岐吸気通路16からの吸気導入が遮断された状態で、先行気筒から導入されるガス中の過剰空気が燃焼に供せられるように、先行気筒と後続気筒との2気筒分に相当する燃料を燃焼させるのに必要な量の空気が前記先行気筒(1番、4番気筒2A,2D)に供給されるようにスロットル開度を調節する。
【0044】
上記燃料噴射制御手段44は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するもので、特に運転状態が図4中の運転領域A(特殊運転モード)と、運転領域B(通常運転モード)とに、燃料噴射の制御状態を変更するものであり、この燃料噴射制御手段44と前記運転状態判別手段41とにより本発明の空燃比制御手段が構成されている。
【0045】
すなわち、運転状態が低負荷低回転側の運転領域A(特殊運転モード)にある場合、先行気筒(1番、4番気筒2A,2D)に対しては、空燃比を理論空燃比よりも大きいリーン空燃比、好ましくは理論空燃比の略2倍もしくはそれ以上とするように燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して成層燃焼を行わせるように噴射タイミングを設定する。一方、後続気筒(2番、3番気筒2B,2C)に対しては、先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とするように燃料噴射量を制御するとともに、既燃ガスが多い状況下で着火、燃焼が可能なように噴射タイミングが設定され、例えば着火性確保のため圧縮行程で燃料が噴射される。
【0046】
上記燃料噴射量の制御は、エアフローセンサ19及びO2センサ23等からの出力に基づくフィードバック制御により行われる。具体的には、先行気筒で所定のリーン空燃比、後続気筒で理論空燃比となるように、エアフローセンサ19により検出される吸入空気量に応じてそれぞれの気筒に対する基本噴射量が演算されるとともに、気筒間ガス通路22に設けられたリニアO2センサ25からの出力に基づいて先行気筒に対する燃料噴射量がフィードバック補正され、さらに排気通路20に設けられたO2センサ23からの出力に基づいて後続気筒に対する燃料噴射量がフィードバック補正されるようになっている。
【0047】
また、運転状態が高負荷側ないし高回転側の運転領域B(通常運転モード)にある場合には、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えばこの運転領域Bのうちの大部分の領域において理論空燃比とし、全開負荷及びその付近の運転領域で理論空燃比よりリッチとする。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射することにより均一燃焼を行わせるように噴射タイミングを設定する。
【0048】
低負荷ないし低回転側の運転領域A(特殊運転モード)から高負荷ないし高回転側の運転領域B(通常運転モード)へ移行する場合には、移行後(モード切換後)、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように各気筒2A〜2Dに対する燃料噴射量を制御するように構成されている。
【0049】
上記経路判別手段51は、エアフローセンサ19により検出された吸気流量の変化状態と、回転数センサ45により検出されたエンジン回転数とに応じ、エンジンのクランク軸が一定角度だけ回転する間に発生する吸気脈動の回数を検出するとともに、この検出回数に基づいて吸気および排気の流通経路が上記各気筒独立状態にあるか2気筒接続状態にあるかを判別するように構成されている。すなわち、各気筒2A〜2Dにそれぞれ新気が導入される各気筒独立状態では、エンジンのクランク軸が1回転する間に、4回の吸気脈動が発生するのに対し、先行気筒2A,2Dのみに新気が導入される2気筒接続状態では、エンジンのクランク軸が1回転する間に、2回の吸気脈動が発生するだけであるため、この吸気脈動の検出回数を予め設定された基準回数と比較する等により、吸気および排気の流通経路が各気筒独立状態にあるか2気筒接続状態にあるかが判別されるようになっている。
【0050】
以上のような第1実施形態の装置の作用を、図5〜図9を参照しつつ説明する。
【0051】
低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図6に示すように、先行気筒(1番,4番気筒)2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒(2番,3番気筒)2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが三元触媒24を備えた排気通路20に導かれるような2気筒接続状態とされる。
【0052】
この状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図6中の矢印a)、先行気筒2A,2DではリニアO2センサ25により検出される空燃比が所定リーン空燃比となるように燃料噴射量がフィードバック制御されつつ圧縮行程で燃料が噴射され、かつ、所定点火時期に点火が行われて、リーン空燃比での成層燃焼が行われる(図5参照)。
【0053】
その後、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が重なる期間に、先行気筒2A,2Dから排出された既燃ガスがガス通路22を通って後続気筒2B,2Cに導入される(図5中の白抜き矢印及び図6中の矢印b)。そして、後続気筒2B,2Cでは、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比となるように、O2センサ23の出力に基いて燃料噴射量が制御されつつ、適当なタイミング(例えば圧縮行程)で燃料が噴射され、かつ、所定点火時期に点火が行われて燃焼が行われる(図5参照)。後続気筒2B,2Cでの燃焼後の既燃ガスは、三元触媒24を備えた排気通路20に排出される(図6中の矢印c)。
【0054】
このように、先行気筒2A,2Dではリーン空燃比での成層燃焼が行われることにより、熱効率が高められるとともにポンピングロスが低減され、これらの相乗効果で大幅に燃費が改善される。また、後続気筒2B,2Cでは空気過剰状態の既燃ガスに対し燃料が供給されて理論空燃比に制御されつつ燃焼が行われることにより、先行気筒2A,2Dのようにリーン空燃比で成層燃焼が行われるものと比べると熱効率では多少劣るものの、ポンピングロス低減による燃費改善効果が充分に得られる。
【0055】
しかも、後続気筒2B,2Cから排気通路20に排出される既燃ガスは理論空燃比に対応した値となるため、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなく、三元触媒24だけで充分に排気浄化性能が確保されることとなる。そして、このようにリーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0056】
また、先行気筒2A,2Dでは理論空燃比の略2倍もしくはそれ以上のリーン空燃比とされることでNOx発生量が比較的少なく抑えられ、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで多量のEGRが行われているのと同等の状態となることからNOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
【0057】
また、後続気筒2B,2Cには先行気筒2A,2Dからの既燃ガスが気筒間ガス通路22を介して導入されるが、この気筒間ガス通路22で通路長に応じて放熱量が変化するため、この通路長を適正値に設定することにより、後続気筒2B,2Cに導入される既燃ガスの温度を調整することができる。そして、このように既燃ガスの温度を調整するとともに、後続気筒2B,2Cに対する燃料噴射タイミングを適宜調整することにより、多量の既燃ガスが導入される後続気筒2B,2Cにおいても、着火、燃焼性を良好に保つことができる。
【0058】
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図7に示すようになり、実質的に各気筒2A〜2Dの吸気ポート31,31a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート31,31aに新気が導入されるとともに各気筒2A〜2Dの排気ポート31,31aから排気通路20に既燃ガスが排出される。そしてこの場合は、理論空燃比もしくはそれよりリッチ(λ≦1)となるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0059】
なお、低負荷低回転側の運転領域Aから高負荷側ないしは高回転側の運転領域Bへの移行時(特殊運転モードから通常運転モードへ切換時)には、上述のように、移行後、最初に燃焼行程を迎える気筒での燃焼がリーン空燃比で行われる一方、次に燃焼行程を迎える気筒での燃焼がリッチ空燃比で行われ、さらにこれら燃焼行程の平均空燃比が理論空燃比となるように燃料噴射量が制御される。
【0060】
具体的には、例えば、図8に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力されると、その後、一対の気筒の吸排気弁が共に閉弁状態となる時期に弁停止機構制御手段42が切換えられる。同図に示す例によると、1番気筒2Aと2番気筒2Bがそれぞれ最初に圧縮行程、膨張行程を迎える時点(図中▲2▼)で当該各気筒2A,2Bに対応する第1排気弁32a及び第1吸気弁31aが作動状態に切換えられ、また第2排気弁32b及び第2吸気弁31bが停止状態に切換えられ、さらにその後、3番気筒2Cと4番気筒2Dがそれぞれ圧縮行程、膨張行程を迎える時点(図中▲3▼)で当該各気筒2C,2Dに対応する第1排気弁32a及び第1吸気弁31aが作動状態に切換えられ、また第2排気弁32b及び第2吸気弁31bが停止状態に切換えられる。そして、特殊運転モードから通常運転モードへの切換えの完了が経路判別手段51により判別されると(図中▲3▼の時点)、その後、最初に燃焼行程を迎える気筒(当例では4番気筒2D)の該燃焼がリーン空燃比で行われるように燃料噴射量(図中F1で示す)が制御され、さらにその次に燃焼行程を迎える気筒(当例では2番気筒2B)の該燃焼がリッチ空燃比で行われるように燃料噴射量(図中F2で示す)が制御される。この際、4番気筒2Dと2番気筒2Bとの平均空燃比が理論空燃比となるように各燃料噴射量(F1,F2)が制御される。
【0061】
このようにモード切換時の各気筒2A〜2Dの空燃比が制御されることにより、モード切換えに伴うトルクショック(一時的にトルクが高くなる現象)が有効に緩和され、また、排気浄化性能も確保されることとなる。
【0062】
すなわち、特殊運転モードでは、先行気筒と後続気筒との2気筒分の燃焼に必要な空気を前記先行気筒(1番、4番気筒2A,2D)に供給すべくスロットル開度が制御されており、従って通常運転モードへの移行時にはスロットル開度が絞られることとなるが、このときスロットル弁17の作動の応答遅れおよび吸気流動の変化の遅れにより吸入空気量(吸気量という)の変化に図9に示すような応答遅れが生じ得る。一方、通常運転モードへの切換後は、気筒2A〜2D毎に略理論空燃比での燃焼が行われるように燃料噴射量がフィードバック制御される。従って、何ら対処がなければ、理論空燃比で燃焼が行われ得るように上記のような応答遅れが生じた吸気量に対応した燃料供給量に制御されることとなり、モード切換直後のトルクが図9の実線に示すように急増する(トルクショックが発生する)。これに対して、モード切換直後、上記のように最初に燃焼行程を迎える気筒についてリーン空燃比とした状態で燃焼が行われると、図9の一点鎖線に示すようにトルクの急増が抑えられ、その結果、トルクショックが緩和されることとなる。しかも、続いて燃焼行程を迎える気筒がリッチ空燃比とした状態で燃焼が行われ、これら連続して燃焼行程を迎える各気筒の平均空燃比が理論空燃比となるように燃焼噴射量が制御されることにより、排気通路20の三元触媒24を通過する既燃ガスも実際には理論空燃比に対応する値となる。従って、排気浄化性能も三元触媒24だけで良好に確保されることとなる。
【0063】
なお、第1の実施形態についての具体的構成は種々変更可能であり、例えば、変形例として以下のような構成を採用することも可能である。
【0064】
▲1▼上記の実施形態では、特殊運転モードから通常運転モードへの移行に伴うトルクショックを軽減するために、モード切換後(移行後)、最初に燃焼行程を迎える気筒での燃焼をリーン空燃比とするとともに、排気浄化性能への影響を回避するために、その次に燃焼行程を迎える気筒での燃焼をリッチ空燃比とした状態で行わせるようにしているが、例えば、特殊運転モードから通常運転モードへの切換直前に燃焼行程を迎える気筒およびこの気筒と前記一対の関係にある気筒(排気行程と吸気行程とが重なる気筒)に対する燃料供給を遮断(カット)するように構成してもよい。
【0065】
具体的には、例えば、図10に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力される場合には、全ての気筒2A〜2Dが特殊運転モードから通常運転モードに完全に切換る時点(図中▲3▼)の直前に燃焼行程を迎える1番気筒2Aの当該燃焼行程分の燃料(図中F1)をカットするとともに、これと前記一対の関係にある2番気筒2Bの燃焼行程分の燃料(図中F2)をカットする。
【0066】
このような制御によると、燃料がカットされることによりモード切換時の1番気筒2A及び2番気筒2Bの発生トルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。なお、この場合には、燃料がカットされるだけでるため、排気通路20には空気がそのまま排出されることになり、排気浄化性能へ影響を与えることもない。従って、上述した実施形態の制御と同様に、トルクショックを良好に緩和する一方で、排気浄化性能についても良好に確保することができる。
【0067】
▲2▼さらに、同様の効果を得るために、特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒に対する燃料供給を当該燃焼行程についてのみ遮断(カット)するように構成してもよい。
【0068】
例えば、図11に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力される場合には、全ての気筒2A〜2Dが特殊運転モードから通常運転モードに完全に切換る時点(図中▲3▼)の直後に燃焼行程を迎える4番気筒2Dの当該燃焼行程分の燃料(図中F1)をカットする。
【0069】
このような制御によれば、モード切換時の4番気筒2Dの発生トルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。また、この場合も、燃料がカットされているだけのため、排気通路20には空気がそのまま排出されることとなり排気浄化性能への影響もない。従って、上記実施形態および変形例▲1▼と同様の効果を得ることができる。
【0070】
次に本発明の第2の実施形態について説明する。
【0071】
図12および図13は、複数の気筒2A〜2Dを有し、各気筒2A〜2D内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼を行う通常運転モードと、吸気行程と排気行程との間に2回の燃焼を行う特殊運転モードとにエンジンの運転状態に応じて燃焼サイクルを切換えるとともに、排気通路20に排出される排気ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように上記吸気行程で各気筒2A〜2D内に導入される吸入空気量および上記2回の燃焼を行うための燃料噴射量を制御するように構成され、かつ排気通路20に三元触媒24が配設された火花点火式エンジンの制御装置を示している。
【0072】
上記各気筒2A〜2Dの燃焼室4に対してそれぞれ一対の吸気ポート11,11および排気ポート12,12が開口し、これらのポート11,11,12,12が吸気弁31,31および排気弁32,32により開閉されるようになっている。そして、各気筒2が所定の位相差、つまりクランク角で180°ずつの位相差をもって所定の順番で燃焼が行われるようになっている。
【0073】
上記吸・排気弁31,32は、それぞれ動弁機構53により駆動されるように構成されている。この動弁機構53は、図13に示すように、非磁性材料からなるハウジング54と、このハウジング54内に摺動自在に配設されるとともに、上記吸・排気弁31,32と一体に連結されたアーマチュア・コア55と、ハウジング34内の上下両端部に配設された一対の電磁石56,57および戻しばね58,59とを備えている。そして、上方の電磁石56に通電してアーマチュア・コア55を上方に吸引することにより、吸気弁31および排気弁32をそれぞれ所定のタイミングで開放状態とし、下方の電磁石57に通電してアーマチュア・コア55を下方に吸引することにより、吸気弁31および排気弁32をそれぞれ所定のタイミングで閉止状態とするようになっている。
【0074】
上記動弁機構53等を制御するマイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19、O2センサ23およびリニアO2センサ25からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ45およびアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ46等からの信号も入力されている。
【0075】
上記ECU40は、エンジンの運転状態を判別する運転状態判別手段41、上記吸気弁31および排気弁32の開閉タイミングを制御する弁開閉制御手段60と、エンジンの燃焼室4への吸入空気量を制御する吸入空気量制御手段43と、燃料の噴射状態を制御する燃料噴射制御手段44とを備えている。
【0076】
上記弁開閉制御手段60は、運転状態判別手段41において判別されたエンジンの運転状態が低負荷ないし低回転側の運転領域Aにある場合と、高負荷側ないし高回転側の運転領域Bにある場合とで、動弁機構53に出力される制御信号の出力タイミングを変化させて吸気弁31および排気弁32の開閉タイミングを次のように制御するように構成されている。
【0077】
高負荷側ないし高回転側の運転領域Bでは、図14(a)に示すように、燃料噴射を伴う吸気行程INと、後期に点火Sを伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程EXとからなる通常運転モード、つまり吸気行程INと排気行程EXとの間に一回の均一燃焼を行う一般的な4サイクルの燃焼制御を実行するように上記吸気弁31および排気弁32の開閉タイミングが設定される。なお、図14において、Tはピストン行程の上死点、Bは下死点である。
【0078】
低負荷側ないし低回転側の運転領域Aでは、図14(b)に示すように、吸気行程IN(第1行程)と、後期に燃料噴射Fおよび点火Sを伴う第1圧縮行程(第2行程)と、燃焼を伴い、かつ後期に燃料噴射Fを行う第1膨張行程(第3行程)と、後期に点火Sを伴う第2圧縮行程(第4行程)と、燃焼を伴う第2膨張行程(第5行程)と、排気行程EX(第6行程)とからなる特殊運転モード、つまり吸気行程INと排気行程EXとの間に二回の燃焼を行う6サイクルの燃焼制御を実行するように上記吸気弁31および排気弁32の開閉タイミングが設定される。なお、当実施形態では、前記運転状態判別手段41及び弁開閉制御手段60等により本発明のモード切換手段が構成されている。
【0079】
上記吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御するように構成されている。特に、低負荷・低回転側の運転領域Aにおいて実行される特殊運転モードでは、上記二回の燃焼後における排気行程EXで排気通路20に排出される排気ガスの既燃ガス濃度が、略理論空燃比の燃焼状態に対応した値となるようにスロットル開度が調節される。また、高負荷・高回転側の運転領域Bにおいて実行される通常運転モードでは、気筒2A〜2D内の空燃比がλ≦1となるようにスロットル開度が調節される。
【0080】
上記燃料噴射制御手段44は、各気筒2に設けられた燃料噴射弁9からの燃料噴射量および噴射タイミングをエンジンの運転状態に応じて制御するもので、特に運転状態が図4中の運転領域A(特殊運転モード)と、運転領域B(通常運転モード)とに、燃料噴射の制御状態を変更するものであり、この燃料噴射制御手段44と前記運転状態判別手段41とにより本発明の空燃比制御手段が構成されている。
【0081】
すなわち、低負荷・低回転側の運転領域A(特殊運転モード)では、図14(b)に示すように、第1膨張行程(第3行程)で行われる最初の燃焼が成層燃焼状態となるように、空燃比が理論空燃比よりも大きいリーン空燃比、好ましくは理論空燃比の略2倍もしくはそれ以上となるように第1圧縮行程(第2行程)の燃料噴射量を設定するとともに、燃料噴射Fのタイミングを設定する。また、上記最初の燃焼により生じたリーン空燃比の既燃ガス中に燃料を供給する(第3行程)ことにより、理論空燃比の条件下において第2膨張行程(第5行程)で2回目の燃焼が行われるように、燃料噴射量を制御するとともに、既燃ガスが多い状況下で着火、燃焼が可能なように燃料噴射Fのタイミングが設定され、例えば第1膨張行程(第3行程)の後期に燃料噴射Fが行われる。なお、上記燃料噴射量の制御は、エアフローセンサ19およびO2センサ23等からの出力に基づくフィードバック制御により行われる。
【0082】
また、運転状態が高負荷側ないし高回転側の運転領域Bにある場合には、各気筒2の空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えば上記運転領域Bの大部分の領域において理論空燃比とし、全開負荷およびその付近の運転領域で理論空燃比よりリッチとなるように燃料噴射量を制御する。
【0083】
なお、低負荷ないし低回転側の運転領域A(特殊運転モード)から高負荷ないし高回転側の運転領域B(通常運転モード)へ移行された場合には、移行後(モード切換後)、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように各気筒2A〜2Dに対する燃料噴射量を制御する。
【0084】
上記経路判別手段51および始動時判別手段52は、図3に示す実施形態の経路判別手段51および始動時制御手段52と同様に構成されたものであり、吸気通路15に配設されて吸気の脈動を検出する吸気脈動検出手段(エアフローセンサ19)から出力された検出信号に応じ、エンジンの始動時に、通常運転モードの制御状態にあるか、特殊運転モードの制御状態にあるかを上記経路判別手段51において判別し、かつこの経路判別手段51の判別結果に応じて特殊運転モードの制御状態にあることが確認された場合には、エンジン始動時おける最初の燃焼制御時において、第1回目に噴射された燃料の点火を禁止する等の制御を上記始動時制御手段52において実行するように構成されている。
【0085】
以上のような第2実施形態の装置によると、運転状態が低負荷側ないし低回転側の運転領域Aにある場合に、吸気行程と排気行程との間に二回の燃焼が行われる特殊運転モードとされ、第1膨張行程で行われる最初の燃焼がリーン空燃比での成層燃焼状態とされることにより、熱効率が高められるとともにポンピングロスが低減され、これらの相乗効果で大幅に燃費が改善される。また、上記最初の燃焼により生成された空気過剰状態の既燃ガス中に燃料を供給して理論空燃比に制御しつつ、第2膨張行程において2回目の燃焼を行わせることにより、通常のエンジンのようにリーン空燃比で成層燃焼させるものと比べると熱効率では劣るものの、ポンピングロス低減による燃費効果が得られることになる。
【0086】
しかも、上記2回目の燃焼が行われた後に、排出行程で排気通路20に排出される既燃ガスの濃度が理論空燃比に対応した値となるため、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなくなり、三元触媒24だけで充分に排気浄化性能が確保されることとなる。そして、このようにリーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量の増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0087】
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように吸気行程INと排気行程EXとの間に一回の均一燃焼を行う一般的な4サイクルの燃焼制御が実行され、かつ各気筒2A〜2D内の空燃比がλ≦1となるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0088】
なお、低負荷低回転側の運転領域Aから高負荷側ないしは高回転側の運転領域Bへの移行時(特殊運転モードから通常運転モードへ切換時)には、上述のように、移行後、最初に燃焼行程を迎える気筒での燃焼がリーン空燃比で行われるとともに、その次に燃焼行程を迎える気筒での燃焼がリッチ空燃比で行われ、さらにこれら燃焼行程の平均空燃比が理論空燃比となるように空燃比が制御される。具体的には、例えば、図15に示すように2番気筒2Bの吸気行程終了時点(図中▲1▼)でモード切換信号が出力されると、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ、このモード切換後、最初に燃焼行程を迎える気筒(当例では2番気筒2B)の該燃焼がリーン空燃比で行われるように燃料噴射量(図中F1で示す)が制御され、さらにその次に燃焼行程を迎える気筒(当例では1番気筒2A)の該燃焼がリッチ空燃比で行われるように燃料噴射量(図中F2で示す)が制御される。そして、このときの2番気筒2Bと1番気筒2Aとの平均空燃比が理論空燃比となるように燃料噴射量(F1,F2)が制御される。
【0089】
このようにモード切換時の各気筒2A〜2Dの空燃比が制御されることにより、第1の実施形態と同様に、モード切換えに伴うトルクショック(一時的にトルクが高くなる現象)が有効に緩和され、また、排気浄化性能も確保されることとなる。すなわち、特殊運手モードでは、上記のように二回の燃焼を行わせるのに必要な空気を吸気行程INにおいて導入すべくスロットル開度が制御されているので、通常運転モードへの移行に伴いスロットル開度が絞られることとなるが、このときスロットル弁17の作動の応答遅れおよび吸気流動の変化の遅れにより吸気量の変化に応答遅れが生じ得る(図9参照)。従って、理論空燃比で燃焼が行われ得るようにその吸気量(応答遅れが生じた吸気量)に対応した燃料が噴射されると、いきおいモード切換直後のトルクが急増する(トルクショックが発生する)こととなる。しかし、上記のように最初に燃焼行程を迎える2番気筒2Bにおいてリーン空燃比とした状態で燃焼が行われるとことにより、実際にはトルクの急増が抑えられ、その結果、トルクショックが緩和されることとなる。しかも、続いて燃焼行程を迎える1番気筒2Aがリッチ空燃比とした状態で燃焼が行われ、これら連続して燃焼行程を迎える各気筒2B,2Aの平均空燃比が理論空燃比となる状態で燃焼が行われることにより、排気通路20の三元触媒24を通過する既燃ガスも実際には理論空燃比に対応する値となり、排気浄化性能も三元触媒24だけで良好に確保されることとなる。
【0090】
なお、モード切換後、2番気筒2Bについては、同図に示すように吸気行程が終了するタイミングで燃料供給(F1)が行われるが、これは2番気筒2Bについては、吸気行程が終了するタイミングでモード切換えが行われ、吸気行程中に燃料を供給することができないため、モード切換後、可及的に早い時期に燃料を噴射させるようにしているものである。また、図17において、モード切換後、最初に燃焼行程を迎えるのは実際には4番気筒2Dであるが、4番気筒2Dについては、モード切換時点で既に燃料が噴射されており制御不可能である。つまり、ここでいう「モード切換後、最初に燃焼行程を迎える気筒」とは、あくまでも「モード切換後、最初に燃焼行程を迎える気筒であって、かつタイミング的に燃料の噴射量制御が可能な気筒」を意味する。
【0091】
なお、第2の実施形態についてもその具体的構成は種々変更可能であり、例えば、変形例として以下のような構成を採用することも可能である。
【0092】
▲1▼上記の実施形態では、特殊運転モードから通常運転モードへの移行に伴うトルクショックを軽減するために、モード切換後(移行後)、最初に燃焼行程を迎える気筒での燃焼をリーン空燃比とし、さらに排気浄化性能への影響を回避するために、その次に燃焼行程を迎える気筒での燃焼をリッチ空燃比とした状態で行わせるようにしているが、例えば、特殊運転モードから通常運転モードへの切換直前に燃焼行程を迎える気筒に対する燃料供給を遮断(カット)するように構成してもよい。
【0093】
具体的には、例えば、図16に示すように2番気筒2Bの吸気行程終了時点(図中▲1▼)でモード切換信号が出力され、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ場合には、該切換時点(図中▲1▼)の直前に燃焼行程を迎える3番気筒2Aの当該燃焼行程分の燃料(図中F1,F2)をカットする。
【0094】
このような制御によると、燃料がカットされることによりモード切換時の3番気筒2Cのトルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。また、この場合には、燃料がカットされているだけのため、排気通路20には空気がそのまま排出されるだけであって、排気浄化性能へ影響を与えることもない。従って、上述した第2の実施形態の制御と同様に、トルクショックを良好に緩和する一方で、排気浄化性能についても良好に確保することができる。
【0095】
なお、トルクショックを緩和させるだけの目的であれば、3番気筒2Aへの燃料供給のうち二回目分の燃料(図中F2)のみをカットするだけで効果を上げることが可能であるが、これに伴い二回目の燃焼が省略されると、排気通路20に排出される既燃ガスがリーン空燃比に対応する値となり排気浄化性能に悪影響を与えると考えられる。従って、燃料をカットする場合には、上述のように3番気筒2Aに対する全ての燃料(図中F1,F2)をカットする必要がある。
【0096】
▲2▼さらに、同様の作用効果を得るために、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を当該燃焼行程についてのみ遮断(カット)するように構成してもよい。
【0097】
例えば、図17に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力され、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ場合には、該切換時点(図中▲1▼)の後、最初に燃焼行程を迎える2番気筒2Bの当該燃焼行程分の燃料(図中F1)をカットする。
【0098】
このような制御によれば、2番気筒2Bの発生トルクが「0」となってモード切換時のトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。この場合は、2番気筒2Bの燃焼室4内の空気がそのまま排気通路20に排出されることになるので、排気浄化性能へ影響を与えることがない。従って、上記第2の実施形態および変形例▲1▼と同様の効果を得ることができる。
【0099】
▲3▼上記の実施形態では、特殊運転モードにおいて、吸気行程INと、第1圧縮行程と、燃焼を伴う第1膨張行程と、第2圧縮行程と、燃焼を伴う第2膨張行程と、排気行程EXとからなる6サイクルの燃焼制御を実行することにより、吸気行程INと排気行程EXとの間で2回の燃焼を行うように構成しているが(図14(b)参照)、図14(c)に示すように、吸気行程INと、第1圧縮行程と、燃焼を伴う第1膨張行程と、第2圧縮行程と、燃焼を伴わない第2膨張行程と、第3圧縮行程と、燃焼を伴う第3膨張行程と、排気行程EXとからなる8サイクルの燃焼制御を実行することにより、吸気行程と排気行程との間で2以下の燃焼を行うように構成してもよい。
【0100】
【発明の効果】
以上のように本発明の制御装置は、各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに切換え可能に構成され、例えば低負荷低回転の運転領域では特殊運転モードに設定されることにより、先行気筒ではリーン空燃比での燃焼が行われて、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、かつ上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われることにより、少なくともポンピングロス低減による燃費効果が得られる。また、後続気筒から排出される理論空燃比の既燃ガスのみが排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時には、移行後(モード切換後)、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とした状態で行われることによりトルクの急増が抑制されることより、吸気量の応答遅れに起因するトルクショックの発生が良好に緩和される。しかも、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路に排出される既燃ガスが実質的に理論空燃比に対応した値となり、その結果、排気浄化性能も確保されることとなる。
【図面の簡単な説明】
【図1】本発明に係る制御装置を備えたエンジン全体の概略平面図(第1の実施形態)である。
【図2】エンジン本体等の概略断面図である。
【図3】制御系統のブロック図である。
【図4】運転領域を示す説明図である。
【図5】各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図6】低負荷低回転時の実質的な新気およびガスの流通経路を示す説明図である。
【図7】高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。
【図8】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図9】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の吸入空気量、燃料噴射量、発生トルクの変化を示す図である。
【図10】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図11】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図12】本発明に係る制御装置を備えたエンジン全体の概略平面図(第2の実施形態)である。
【図13】動弁機構の構成と制御系統のブロック構成を示す図である。
【図14】第2の実施形態における気筒の燃焼サイクル、燃料噴射時期および点火時期等を示す説明図である。
【図15】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図16】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図17】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【符号の説明】
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
11 吸気ポート
11a 第1吸気ポート
11b 第2吸気ポート
12 排気ポート
12a 第1排気ポート
12b 第2排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
24 三元触媒
31 吸気弁
31a 第1吸気弁
31b 第2吸気弁
32 排気弁
32a 第1排気弁
32b 第2排気弁
35 弁停止機構
40 ECU
41 運転状態判別手段
42 弁停止機構制御手段
43 吸入空気量制御手段
44 燃料噴射制御手段
51 経路判別手段
【発明の属する技術分野】
本発明は、火花点火式エンジンの制御装置に関し、より詳しくは、多気筒エンジンにおいて燃費改善及びエミッション向上のために各気筒の燃焼状態を制御する装置に関するものである。
【0002】
【従来の技術】
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、例えば特開平10−274085号公報に示されるように、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低回転低負荷域等では上記燃料噴射弁から圧縮行程で燃料を噴射することにより成層燃焼を行わせ、これによって超リーン燃焼を実現するようにしたものが知られている。
【0003】
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,CO及びNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時にNOxに対して充分な浄化性能が得られないため、上記公報にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行うリーンNOx触媒を設けている。そして、このようなリーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときは、例えば上記公報に示されるように主燃焼以外に膨張行程中に追加燃料を噴射することで排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
【0004】
【発明が解決しようとする課題】
上記のような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能の確保のために上記リーンNOx触媒を必要とする。そして、高負荷域等の理論空燃比で運転される領域での排気浄化のために三元触媒も必要であって、この三元触媒に加えて上記リーンNOx触媒が設けられ、かつ、このリーンNOx触媒はNOx吸着量をある程度確保するために比較的大容量が必要となり、また、三元触媒と比べて高価であるため、コスト的に不利である。
【0005】
しかも、上記リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量が増大するような所定の期間毎に、NOxの離脱、還元のため追加燃料の供給等による一時的な空燃比のリッチ化を行う必要があり、これにより、リーン燃焼による燃費改善効果が目減りしてしまうことになる。
【0006】
そこで、本願出願人は、かかる課題に鑑み、吸気、圧縮、膨張、排気の各行程からなるサイクルを行う多気筒エンジンにおいて、低負荷低回転域では、排気行程と吸気行程が重なる一対の気筒間において排気行程側の気筒である先行気筒から排出される既燃ガスをそのまま吸気行程側の気筒である後続気筒に導入し、この後続気筒から排出されるガスを三元触媒を備えた排気通路に導くようにするとともに、この2気筒接続状態にあるときに、上記先行気筒において理論空燃比よりも所定量大きいリーン空燃比とした状態で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせるように燃焼状態等を制御(特殊運転モードという)する一方、高負荷高回転域では、通常通り、各気筒毎を理論空燃比で燃焼を行わせるように燃焼状態等を制御(通常運転モードという)することを考えた(特願2002−024548号)。
【0007】
これによると、低負荷低回転域において特殊運転モードとされることにより、先行気筒ではリーン空燃比での燃焼が行われ、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、また、上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われて、ポンピングロス低減による燃費効果が得られる。しかも、後続気筒から排出される理論空燃比の既燃ガスのみが三元触媒を備えた排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保され、リーンNOx触媒も不要となる。
【0008】
ところで、上記のように各気筒の燃焼状態等を制御する場合には、低負荷回転域から高負荷回転域への移行時(特殊運転モードから通常運転モードへの切換え時)に吸気量の応答遅れが生じることが考えられ、そのため単純に通常モードに切換えるだけでは、この応答遅れに起因してトルクショック(一時的にトルクが高くなる状態)が生じ搭乗者に違和感を与えることが考えられる。すなわち、特殊運転モードでは、後続気筒分の吸気量を含む大量の吸気を先行気筒に導入すべくスロットル弁の開度(スロットル開度)が制御されている。そのため、その後、通常モードへの移行に伴いスロットル開度が絞られても、開度調整に応答遅れが生じて目標吸気量を超える量の吸気が行われることとが考えられ、この吸気量に基づいて理論空燃比とした状態で燃焼が行われることにより、一時的にトルクが高くなる状態が生じることが考えられる。
【0009】
そこで、トルクショックを緩和することが必要となり、例えば、一つの手法として、点火リタードを実行することが考えられる。しかし、この場合には燃費の低下を伴うこととなる。また、特殊運転モードから通常運転モードへの切換え時に噴射燃料を定量制御することも考えられるが、この場合には、NOxが発生し易い中間空燃比(A/F=16〜17)で燃焼が行われるおそれがあるため、三元触媒だけで排気浄化性能を確保するという所期の効果が損なわれることとなる。従って、何れの手法も事実上の実施は困難である。
【0010】
本発明は以上のような課題を考慮してなされたものであり、リーン燃焼による燃費改善効果をもたせつつ、リーンNOx触媒を必要とせず三元触媒を用いるだけで、排気浄化性能を向上することすることができ、しかもトルクショックを効果的に緩和することができる火花点火式エンジンの制御装置を提供するものである。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに運転モードを切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように前記空燃比制御手段が構成されているものである。
【0012】
この構成によると、例えばエンジンの低負荷低回転域において、2気筒接続状態で特殊運転モードの燃焼制御が実行されることにより、上記先行気筒ではリーン空燃比での燃焼が行われて、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、かつ上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われることにより、少なくともポンピングロス低減による燃費効果が得られる。また、後続気筒から排出される理論空燃比の既燃ガスのみが排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、モード切換後、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とされた状態で行われることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが緩和される。この際、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路の触媒を通過する既燃ガスが略理論空燃比のガスとなり、その結果、排気浄化性能も確保される。
【0013】
請求項2に係る発明は、各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように吸気量に応じて各気筒に対する燃焼噴射量を制御する燃料噴射制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え直前又は直後のタイミングで、特定の気筒に対する燃料供給を遮断するように前記燃料噴射制御手段が構成されているものである。
【0014】
この構成によると、請求項1の場合と同様に、低負荷低回転域において特殊運転モードの燃焼制御が実行されることにより燃費改善効果が得られ、また三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、該移行の直前又は直後に、特定の気筒に対する燃料供給が遮断されることによりトルクの急増が抑制され、その結果、吸気量の応答遅れに起因するトルクショックが緩和される。この際、燃料供給が遮断されるだけなので、排気浄化性能が損われることがない。
【0015】
この場合、具体的には、特殊運転モードから通常運転モードへの切換え前に燃焼行程を迎える気筒およびこの気筒と前記一対をなす気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成するか(請求項3)、あるいは、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成する(請求項4)のが有効である。
【0016】
請求項5に係る発明は、燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼行程を有する通常運転モードと、吸気行程と排気行程との間に2回の燃焼行程を有する特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先の燃焼では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後の燃焼では、先の燃焼によるリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、前記特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように前記空燃比制御手段が構成されているものである。
【0017】
この構成によれば、例えばエンジンの低負荷低回転域において、上記特殊運転モードの燃焼制御が実行されることにより、すなわち2回の燃焼に必要な空気が供給されてからリーン空燃比での先の燃焼と理論空燃比での後の燃焼とが行われることにより、熱効率が高められるとともにポンピングロスが低減され、その結果、大幅な燃費改善効果が得られる。また、既燃ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように各気筒での燃焼行程における空燃比が制御されるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時(切換時)には、モード切換後、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とした状態で行われることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが緩和される。この際、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路に排出される既燃ガスが略理論空燃比のガスとなり、排気浄化性能も確保される。
【0018】
請求項6に係る発明は、燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼を行う通常運転モードと、吸気行程と排気行程との間に2回の燃焼を行う特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、排気通路に排出される既燃ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように、各運転モードでの各気筒に対する燃料噴射量を制御する燃料噴射制御手段とを備え、前記特殊運転モードから通常運転モードへの切換え直前又は直後の何れかのタイミングで、特定の気筒に対する燃料供給を遮断するように前記燃料噴射制御手段が構成されているものである。
【0019】
この構成によると、請求項1の場合と同様に、特殊運転モードの燃焼制御が実行されることにより燃費改善効果が得られ、また三元触媒だけで充分に排気浄化性能が確保される。さらに、特殊運転モードから通常運転モードへの移行時には、その直前又は直後に特定の気筒に対する燃料供給が遮断されることによりトルクの急増が抑制され、これにより吸気量の応答遅れに起因するトルクショックが有効に緩和される。この際、燃料供給が遮断されるだけなので、排気浄化性能が損われることもない。
【0020】
この場合、具体的には、特殊運転モードから通常運転モードへの切換え直前に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成するか(請求項7)、あるいは、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように前記燃料噴射制御手段を構成する(請求項8)のが有効である。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明の第1の実施の形態について説明する。
【0022】
図1は本発明の一実施形態によるエンジンの概略構成を示し、図2はエンジン本体の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0023】
各気筒気筒2A〜2Dの燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
【0024】
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。なお、この燃料噴射弁9には、図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。
【0025】
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
【0026】
そして、各気筒2A〜2Dが所定の位相差をもって吸気、圧縮、膨張、排気の各行程からなる燃焼サイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図5に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって燃焼サイクルが行われるようになっている。なお、図5において、EXは排気行程、INは吸気行程、Fは燃料噴射、Sは点火をそれぞれ表している。
【0027】
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態では、図5に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、及び4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒、2番気筒2B及び3番気筒2Cが後続気筒となる。
【0028】
各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路及び気筒間ガス通路は、具体的には次のように構成されている。
【0029】
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート32とが配設されている。
【0030】
図1に示す例では、1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の左半部側に並列的に設けられる一方、1番,4番気筒2A,2Dにおける第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室の右半部側に並列的に設けられている。
【0031】
1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動され、吸入空気量を調節するようになっている。なお、吸気通路15における集合部より上流の共通吸気通路には吸気流量を検出するエアフローセンサ19が設けられている。
【0032】
1番,4番気筒2A,2Dにおける第1排気ポート12aおよび2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端が接続されている。
【0033】
排気通路20における分岐排気通路21の下流の集合部には理論空燃比検出用の排気ガス濃度検出手段であるO2センサ23が設けられ、さらにその下流の排気通路20には、排気浄化用の三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λがλ=1)付近にあるときにHC,CO及びNOxに対して高い浄化性能を示す触媒である。また、O2センサ23は、排気ガス中の酸素濃度を検出することにより空燃比を検出するもので、特に理論空燃比付近で出力が急変するλO2センサにより構成されている。
【0034】
上記気筒間ガス通路22には、排気ガス中の酸素濃度の変化(空燃比の変化)に対して出力がリニアに変化するリニアO2センサ25(リーン空燃比検出用の排気ガス濃度検出手段)が設けられている。
【0035】
各気筒の吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。すなわち、1番,4番気筒2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒の吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。
【0036】
さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32b、第1吸気弁31a及び第2吸気弁31bに対しては、各弁を作動状態と停止状態とに切換える弁停止機構35が設けられている。この弁停止機構35は、従来から知られているため詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。
【0037】
上記第1排気弁32aの弁停止機構35と第1吸気弁31aの弁停止機構35とに対する作動油給排用の通路36には第1コントロール弁37が、また第2排気弁32bの弁停止機構35と第2吸気弁31bの弁停止機構35とに対する作動油給排用の通路38には第2コントロール弁39がそれぞれ設けられている(図3参照)。
【0038】
図3はエンジンの駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19、O2センサ23及びリニアO2センサ25からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ45及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ46等からの信号も入力されている。また、このECU40から、各燃料噴射弁9と、多連スロットル弁17のアクチュエータ18と、上記第1,第2のコントロール弁37,39とに対して制御信号が出力されている。
【0039】
上記ECU40は、その機能構成として運転状態判別手段41、弁停止機構35弁停止機構制御手段42、吸入空気量制御手段43、燃料噴射制御手段44および経路判別手段51等を備えている。
【0040】
運転状態判別手段41は、上記回転数センサ45及びアクセル開度センサ46等からの信号によりエンジンの運転状態(エンジン回転数及びエンジン負荷)を調べ、運転状態が図4に示すような低負荷低回転側の運転領域Aと、高負荷側ないし高回転側の運転領域Bとのいずれの領域にあるかを判別する。
【0041】
弁停止機構制御手段42は、運転状態判別手段41において判別された運転領域A,Bに応じて、上記各コントロール弁37,39を制御することにより、各弁停止機構35を次のように制御する。
【0042】
運転領域A:第1排気弁32a及び第1吸気弁31aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
運転領域B:第1排気弁32a及び第1吸気弁31aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
つまり、運転領域Bでは、各気筒を独立状態としてそれぞれ気筒毎に燃焼を行わせる通常運転モードとし、運転領域Aでは、先行気筒(1番、4番気筒2A,2D)と後続気筒(2番、3番気筒2B,2C)とを気筒間ガス通路22を介して接続した2気筒接続状態とし、かつ先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとするようになっている。なお、当実施形態では、これら運転状態判別手段41及び弁停止機構制御手段42等により本発明のモード切換手段が構成されている。
【0043】
吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。特に、低負荷低回転側の運転領域A(特殊運転モード)では、後続気筒(2番、3番気筒2B,2C)に対する分岐吸気通路16からの吸気導入が遮断された状態で、先行気筒から導入されるガス中の過剰空気が燃焼に供せられるように、先行気筒と後続気筒との2気筒分に相当する燃料を燃焼させるのに必要な量の空気が前記先行気筒(1番、4番気筒2A,2D)に供給されるようにスロットル開度を調節する。
【0044】
上記燃料噴射制御手段44は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するもので、特に運転状態が図4中の運転領域A(特殊運転モード)と、運転領域B(通常運転モード)とに、燃料噴射の制御状態を変更するものであり、この燃料噴射制御手段44と前記運転状態判別手段41とにより本発明の空燃比制御手段が構成されている。
【0045】
すなわち、運転状態が低負荷低回転側の運転領域A(特殊運転モード)にある場合、先行気筒(1番、4番気筒2A,2D)に対しては、空燃比を理論空燃比よりも大きいリーン空燃比、好ましくは理論空燃比の略2倍もしくはそれ以上とするように燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して成層燃焼を行わせるように噴射タイミングを設定する。一方、後続気筒(2番、3番気筒2B,2C)に対しては、先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とするように燃料噴射量を制御するとともに、既燃ガスが多い状況下で着火、燃焼が可能なように噴射タイミングが設定され、例えば着火性確保のため圧縮行程で燃料が噴射される。
【0046】
上記燃料噴射量の制御は、エアフローセンサ19及びO2センサ23等からの出力に基づくフィードバック制御により行われる。具体的には、先行気筒で所定のリーン空燃比、後続気筒で理論空燃比となるように、エアフローセンサ19により検出される吸入空気量に応じてそれぞれの気筒に対する基本噴射量が演算されるとともに、気筒間ガス通路22に設けられたリニアO2センサ25からの出力に基づいて先行気筒に対する燃料噴射量がフィードバック補正され、さらに排気通路20に設けられたO2センサ23からの出力に基づいて後続気筒に対する燃料噴射量がフィードバック補正されるようになっている。
【0047】
また、運転状態が高負荷側ないし高回転側の運転領域B(通常運転モード)にある場合には、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えばこの運転領域Bのうちの大部分の領域において理論空燃比とし、全開負荷及びその付近の運転領域で理論空燃比よりリッチとする。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射することにより均一燃焼を行わせるように噴射タイミングを設定する。
【0048】
低負荷ないし低回転側の運転領域A(特殊運転モード)から高負荷ないし高回転側の運転領域B(通常運転モード)へ移行する場合には、移行後(モード切換後)、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように各気筒2A〜2Dに対する燃料噴射量を制御するように構成されている。
【0049】
上記経路判別手段51は、エアフローセンサ19により検出された吸気流量の変化状態と、回転数センサ45により検出されたエンジン回転数とに応じ、エンジンのクランク軸が一定角度だけ回転する間に発生する吸気脈動の回数を検出するとともに、この検出回数に基づいて吸気および排気の流通経路が上記各気筒独立状態にあるか2気筒接続状態にあるかを判別するように構成されている。すなわち、各気筒2A〜2Dにそれぞれ新気が導入される各気筒独立状態では、エンジンのクランク軸が1回転する間に、4回の吸気脈動が発生するのに対し、先行気筒2A,2Dのみに新気が導入される2気筒接続状態では、エンジンのクランク軸が1回転する間に、2回の吸気脈動が発生するだけであるため、この吸気脈動の検出回数を予め設定された基準回数と比較する等により、吸気および排気の流通経路が各気筒独立状態にあるか2気筒接続状態にあるかが判別されるようになっている。
【0050】
以上のような第1実施形態の装置の作用を、図5〜図9を参照しつつ説明する。
【0051】
低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図6に示すように、先行気筒(1番,4番気筒)2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒(2番,3番気筒)2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが三元触媒24を備えた排気通路20に導かれるような2気筒接続状態とされる。
【0052】
この状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図6中の矢印a)、先行気筒2A,2DではリニアO2センサ25により検出される空燃比が所定リーン空燃比となるように燃料噴射量がフィードバック制御されつつ圧縮行程で燃料が噴射され、かつ、所定点火時期に点火が行われて、リーン空燃比での成層燃焼が行われる(図5参照)。
【0053】
その後、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が重なる期間に、先行気筒2A,2Dから排出された既燃ガスがガス通路22を通って後続気筒2B,2Cに導入される(図5中の白抜き矢印及び図6中の矢印b)。そして、後続気筒2B,2Cでは、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比となるように、O2センサ23の出力に基いて燃料噴射量が制御されつつ、適当なタイミング(例えば圧縮行程)で燃料が噴射され、かつ、所定点火時期に点火が行われて燃焼が行われる(図5参照)。後続気筒2B,2Cでの燃焼後の既燃ガスは、三元触媒24を備えた排気通路20に排出される(図6中の矢印c)。
【0054】
このように、先行気筒2A,2Dではリーン空燃比での成層燃焼が行われることにより、熱効率が高められるとともにポンピングロスが低減され、これらの相乗効果で大幅に燃費が改善される。また、後続気筒2B,2Cでは空気過剰状態の既燃ガスに対し燃料が供給されて理論空燃比に制御されつつ燃焼が行われることにより、先行気筒2A,2Dのようにリーン空燃比で成層燃焼が行われるものと比べると熱効率では多少劣るものの、ポンピングロス低減による燃費改善効果が充分に得られる。
【0055】
しかも、後続気筒2B,2Cから排気通路20に排出される既燃ガスは理論空燃比に対応した値となるため、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなく、三元触媒24だけで充分に排気浄化性能が確保されることとなる。そして、このようにリーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0056】
また、先行気筒2A,2Dでは理論空燃比の略2倍もしくはそれ以上のリーン空燃比とされることでNOx発生量が比較的少なく抑えられ、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで多量のEGRが行われているのと同等の状態となることからNOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
【0057】
また、後続気筒2B,2Cには先行気筒2A,2Dからの既燃ガスが気筒間ガス通路22を介して導入されるが、この気筒間ガス通路22で通路長に応じて放熱量が変化するため、この通路長を適正値に設定することにより、後続気筒2B,2Cに導入される既燃ガスの温度を調整することができる。そして、このように既燃ガスの温度を調整するとともに、後続気筒2B,2Cに対する燃料噴射タイミングを適宜調整することにより、多量の既燃ガスが導入される後続気筒2B,2Cにおいても、着火、燃焼性を良好に保つことができる。
【0058】
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図7に示すようになり、実質的に各気筒2A〜2Dの吸気ポート31,31a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート31,31aに新気が導入されるとともに各気筒2A〜2Dの排気ポート31,31aから排気通路20に既燃ガスが排出される。そしてこの場合は、理論空燃比もしくはそれよりリッチ(λ≦1)となるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0059】
なお、低負荷低回転側の運転領域Aから高負荷側ないしは高回転側の運転領域Bへの移行時(特殊運転モードから通常運転モードへ切換時)には、上述のように、移行後、最初に燃焼行程を迎える気筒での燃焼がリーン空燃比で行われる一方、次に燃焼行程を迎える気筒での燃焼がリッチ空燃比で行われ、さらにこれら燃焼行程の平均空燃比が理論空燃比となるように燃料噴射量が制御される。
【0060】
具体的には、例えば、図8に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力されると、その後、一対の気筒の吸排気弁が共に閉弁状態となる時期に弁停止機構制御手段42が切換えられる。同図に示す例によると、1番気筒2Aと2番気筒2Bがそれぞれ最初に圧縮行程、膨張行程を迎える時点(図中▲2▼)で当該各気筒2A,2Bに対応する第1排気弁32a及び第1吸気弁31aが作動状態に切換えられ、また第2排気弁32b及び第2吸気弁31bが停止状態に切換えられ、さらにその後、3番気筒2Cと4番気筒2Dがそれぞれ圧縮行程、膨張行程を迎える時点(図中▲3▼)で当該各気筒2C,2Dに対応する第1排気弁32a及び第1吸気弁31aが作動状態に切換えられ、また第2排気弁32b及び第2吸気弁31bが停止状態に切換えられる。そして、特殊運転モードから通常運転モードへの切換えの完了が経路判別手段51により判別されると(図中▲3▼の時点)、その後、最初に燃焼行程を迎える気筒(当例では4番気筒2D)の該燃焼がリーン空燃比で行われるように燃料噴射量(図中F1で示す)が制御され、さらにその次に燃焼行程を迎える気筒(当例では2番気筒2B)の該燃焼がリッチ空燃比で行われるように燃料噴射量(図中F2で示す)が制御される。この際、4番気筒2Dと2番気筒2Bとの平均空燃比が理論空燃比となるように各燃料噴射量(F1,F2)が制御される。
【0061】
このようにモード切換時の各気筒2A〜2Dの空燃比が制御されることにより、モード切換えに伴うトルクショック(一時的にトルクが高くなる現象)が有効に緩和され、また、排気浄化性能も確保されることとなる。
【0062】
すなわち、特殊運転モードでは、先行気筒と後続気筒との2気筒分の燃焼に必要な空気を前記先行気筒(1番、4番気筒2A,2D)に供給すべくスロットル開度が制御されており、従って通常運転モードへの移行時にはスロットル開度が絞られることとなるが、このときスロットル弁17の作動の応答遅れおよび吸気流動の変化の遅れにより吸入空気量(吸気量という)の変化に図9に示すような応答遅れが生じ得る。一方、通常運転モードへの切換後は、気筒2A〜2D毎に略理論空燃比での燃焼が行われるように燃料噴射量がフィードバック制御される。従って、何ら対処がなければ、理論空燃比で燃焼が行われ得るように上記のような応答遅れが生じた吸気量に対応した燃料供給量に制御されることとなり、モード切換直後のトルクが図9の実線に示すように急増する(トルクショックが発生する)。これに対して、モード切換直後、上記のように最初に燃焼行程を迎える気筒についてリーン空燃比とした状態で燃焼が行われると、図9の一点鎖線に示すようにトルクの急増が抑えられ、その結果、トルクショックが緩和されることとなる。しかも、続いて燃焼行程を迎える気筒がリッチ空燃比とした状態で燃焼が行われ、これら連続して燃焼行程を迎える各気筒の平均空燃比が理論空燃比となるように燃焼噴射量が制御されることにより、排気通路20の三元触媒24を通過する既燃ガスも実際には理論空燃比に対応する値となる。従って、排気浄化性能も三元触媒24だけで良好に確保されることとなる。
【0063】
なお、第1の実施形態についての具体的構成は種々変更可能であり、例えば、変形例として以下のような構成を採用することも可能である。
【0064】
▲1▼上記の実施形態では、特殊運転モードから通常運転モードへの移行に伴うトルクショックを軽減するために、モード切換後(移行後)、最初に燃焼行程を迎える気筒での燃焼をリーン空燃比とするとともに、排気浄化性能への影響を回避するために、その次に燃焼行程を迎える気筒での燃焼をリッチ空燃比とした状態で行わせるようにしているが、例えば、特殊運転モードから通常運転モードへの切換直前に燃焼行程を迎える気筒およびこの気筒と前記一対の関係にある気筒(排気行程と吸気行程とが重なる気筒)に対する燃料供給を遮断(カット)するように構成してもよい。
【0065】
具体的には、例えば、図10に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力される場合には、全ての気筒2A〜2Dが特殊運転モードから通常運転モードに完全に切換る時点(図中▲3▼)の直前に燃焼行程を迎える1番気筒2Aの当該燃焼行程分の燃料(図中F1)をカットするとともに、これと前記一対の関係にある2番気筒2Bの燃焼行程分の燃料(図中F2)をカットする。
【0066】
このような制御によると、燃料がカットされることによりモード切換時の1番気筒2A及び2番気筒2Bの発生トルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。なお、この場合には、燃料がカットされるだけでるため、排気通路20には空気がそのまま排出されることになり、排気浄化性能へ影響を与えることもない。従って、上述した実施形態の制御と同様に、トルクショックを良好に緩和する一方で、排気浄化性能についても良好に確保することができる。
【0067】
▲2▼さらに、同様の効果を得るために、特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒に対する燃料供給を当該燃焼行程についてのみ遮断(カット)するように構成してもよい。
【0068】
例えば、図11に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力される場合には、全ての気筒2A〜2Dが特殊運転モードから通常運転モードに完全に切換る時点(図中▲3▼)の直後に燃焼行程を迎える4番気筒2Dの当該燃焼行程分の燃料(図中F1)をカットする。
【0069】
このような制御によれば、モード切換時の4番気筒2Dの発生トルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。また、この場合も、燃料がカットされているだけのため、排気通路20には空気がそのまま排出されることとなり排気浄化性能への影響もない。従って、上記実施形態および変形例▲1▼と同様の効果を得ることができる。
【0070】
次に本発明の第2の実施形態について説明する。
【0071】
図12および図13は、複数の気筒2A〜2Dを有し、各気筒2A〜2D内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼を行う通常運転モードと、吸気行程と排気行程との間に2回の燃焼を行う特殊運転モードとにエンジンの運転状態に応じて燃焼サイクルを切換えるとともに、排気通路20に排出される排気ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように上記吸気行程で各気筒2A〜2D内に導入される吸入空気量および上記2回の燃焼を行うための燃料噴射量を制御するように構成され、かつ排気通路20に三元触媒24が配設された火花点火式エンジンの制御装置を示している。
【0072】
上記各気筒2A〜2Dの燃焼室4に対してそれぞれ一対の吸気ポート11,11および排気ポート12,12が開口し、これらのポート11,11,12,12が吸気弁31,31および排気弁32,32により開閉されるようになっている。そして、各気筒2が所定の位相差、つまりクランク角で180°ずつの位相差をもって所定の順番で燃焼が行われるようになっている。
【0073】
上記吸・排気弁31,32は、それぞれ動弁機構53により駆動されるように構成されている。この動弁機構53は、図13に示すように、非磁性材料からなるハウジング54と、このハウジング54内に摺動自在に配設されるとともに、上記吸・排気弁31,32と一体に連結されたアーマチュア・コア55と、ハウジング34内の上下両端部に配設された一対の電磁石56,57および戻しばね58,59とを備えている。そして、上方の電磁石56に通電してアーマチュア・コア55を上方に吸引することにより、吸気弁31および排気弁32をそれぞれ所定のタイミングで開放状態とし、下方の電磁石57に通電してアーマチュア・コア55を下方に吸引することにより、吸気弁31および排気弁32をそれぞれ所定のタイミングで閉止状態とするようになっている。
【0074】
上記動弁機構53等を制御するマイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19、O2センサ23およびリニアO2センサ25からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ45およびアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ46等からの信号も入力されている。
【0075】
上記ECU40は、エンジンの運転状態を判別する運転状態判別手段41、上記吸気弁31および排気弁32の開閉タイミングを制御する弁開閉制御手段60と、エンジンの燃焼室4への吸入空気量を制御する吸入空気量制御手段43と、燃料の噴射状態を制御する燃料噴射制御手段44とを備えている。
【0076】
上記弁開閉制御手段60は、運転状態判別手段41において判別されたエンジンの運転状態が低負荷ないし低回転側の運転領域Aにある場合と、高負荷側ないし高回転側の運転領域Bにある場合とで、動弁機構53に出力される制御信号の出力タイミングを変化させて吸気弁31および排気弁32の開閉タイミングを次のように制御するように構成されている。
【0077】
高負荷側ないし高回転側の運転領域Bでは、図14(a)に示すように、燃料噴射を伴う吸気行程INと、後期に点火Sを伴う圧縮行程と、燃焼を伴う膨張行程と、排気行程EXとからなる通常運転モード、つまり吸気行程INと排気行程EXとの間に一回の均一燃焼を行う一般的な4サイクルの燃焼制御を実行するように上記吸気弁31および排気弁32の開閉タイミングが設定される。なお、図14において、Tはピストン行程の上死点、Bは下死点である。
【0078】
低負荷側ないし低回転側の運転領域Aでは、図14(b)に示すように、吸気行程IN(第1行程)と、後期に燃料噴射Fおよび点火Sを伴う第1圧縮行程(第2行程)と、燃焼を伴い、かつ後期に燃料噴射Fを行う第1膨張行程(第3行程)と、後期に点火Sを伴う第2圧縮行程(第4行程)と、燃焼を伴う第2膨張行程(第5行程)と、排気行程EX(第6行程)とからなる特殊運転モード、つまり吸気行程INと排気行程EXとの間に二回の燃焼を行う6サイクルの燃焼制御を実行するように上記吸気弁31および排気弁32の開閉タイミングが設定される。なお、当実施形態では、前記運転状態判別手段41及び弁開閉制御手段60等により本発明のモード切換手段が構成されている。
【0079】
上記吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御するように構成されている。特に、低負荷・低回転側の運転領域Aにおいて実行される特殊運転モードでは、上記二回の燃焼後における排気行程EXで排気通路20に排出される排気ガスの既燃ガス濃度が、略理論空燃比の燃焼状態に対応した値となるようにスロットル開度が調節される。また、高負荷・高回転側の運転領域Bにおいて実行される通常運転モードでは、気筒2A〜2D内の空燃比がλ≦1となるようにスロットル開度が調節される。
【0080】
上記燃料噴射制御手段44は、各気筒2に設けられた燃料噴射弁9からの燃料噴射量および噴射タイミングをエンジンの運転状態に応じて制御するもので、特に運転状態が図4中の運転領域A(特殊運転モード)と、運転領域B(通常運転モード)とに、燃料噴射の制御状態を変更するものであり、この燃料噴射制御手段44と前記運転状態判別手段41とにより本発明の空燃比制御手段が構成されている。
【0081】
すなわち、低負荷・低回転側の運転領域A(特殊運転モード)では、図14(b)に示すように、第1膨張行程(第3行程)で行われる最初の燃焼が成層燃焼状態となるように、空燃比が理論空燃比よりも大きいリーン空燃比、好ましくは理論空燃比の略2倍もしくはそれ以上となるように第1圧縮行程(第2行程)の燃料噴射量を設定するとともに、燃料噴射Fのタイミングを設定する。また、上記最初の燃焼により生じたリーン空燃比の既燃ガス中に燃料を供給する(第3行程)ことにより、理論空燃比の条件下において第2膨張行程(第5行程)で2回目の燃焼が行われるように、燃料噴射量を制御するとともに、既燃ガスが多い状況下で着火、燃焼が可能なように燃料噴射Fのタイミングが設定され、例えば第1膨張行程(第3行程)の後期に燃料噴射Fが行われる。なお、上記燃料噴射量の制御は、エアフローセンサ19およびO2センサ23等からの出力に基づくフィードバック制御により行われる。
【0082】
また、運転状態が高負荷側ないし高回転側の運転領域Bにある場合には、各気筒2の空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えば上記運転領域Bの大部分の領域において理論空燃比とし、全開負荷およびその付近の運転領域で理論空燃比よりリッチとなるように燃料噴射量を制御する。
【0083】
なお、低負荷ないし低回転側の運転領域A(特殊運転モード)から高負荷ないし高回転側の運転領域B(通常運転モード)へ移行された場合には、移行後(モード切換後)、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように各気筒2A〜2Dに対する燃料噴射量を制御する。
【0084】
上記経路判別手段51および始動時判別手段52は、図3に示す実施形態の経路判別手段51および始動時制御手段52と同様に構成されたものであり、吸気通路15に配設されて吸気の脈動を検出する吸気脈動検出手段(エアフローセンサ19)から出力された検出信号に応じ、エンジンの始動時に、通常運転モードの制御状態にあるか、特殊運転モードの制御状態にあるかを上記経路判別手段51において判別し、かつこの経路判別手段51の判別結果に応じて特殊運転モードの制御状態にあることが確認された場合には、エンジン始動時おける最初の燃焼制御時において、第1回目に噴射された燃料の点火を禁止する等の制御を上記始動時制御手段52において実行するように構成されている。
【0085】
以上のような第2実施形態の装置によると、運転状態が低負荷側ないし低回転側の運転領域Aにある場合に、吸気行程と排気行程との間に二回の燃焼が行われる特殊運転モードとされ、第1膨張行程で行われる最初の燃焼がリーン空燃比での成層燃焼状態とされることにより、熱効率が高められるとともにポンピングロスが低減され、これらの相乗効果で大幅に燃費が改善される。また、上記最初の燃焼により生成された空気過剰状態の既燃ガス中に燃料を供給して理論空燃比に制御しつつ、第2膨張行程において2回目の燃焼を行わせることにより、通常のエンジンのようにリーン空燃比で成層燃焼させるものと比べると熱効率では劣るものの、ポンピングロス低減による燃費効果が得られることになる。
【0086】
しかも、上記2回目の燃焼が行われた後に、排出行程で排気通路20に排出される既燃ガスの濃度が理論空燃比に対応した値となるため、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなくなり、三元触媒24だけで充分に排気浄化性能が確保されることとなる。そして、このようにリーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量の増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0087】
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように吸気行程INと排気行程EXとの間に一回の均一燃焼を行う一般的な4サイクルの燃焼制御が実行され、かつ各気筒2A〜2D内の空燃比がλ≦1となるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保される。
【0088】
なお、低負荷低回転側の運転領域Aから高負荷側ないしは高回転側の運転領域Bへの移行時(特殊運転モードから通常運転モードへ切換時)には、上述のように、移行後、最初に燃焼行程を迎える気筒での燃焼がリーン空燃比で行われるとともに、その次に燃焼行程を迎える気筒での燃焼がリッチ空燃比で行われ、さらにこれら燃焼行程の平均空燃比が理論空燃比となるように空燃比が制御される。具体的には、例えば、図15に示すように2番気筒2Bの吸気行程終了時点(図中▲1▼)でモード切換信号が出力されると、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ、このモード切換後、最初に燃焼行程を迎える気筒(当例では2番気筒2B)の該燃焼がリーン空燃比で行われるように燃料噴射量(図中F1で示す)が制御され、さらにその次に燃焼行程を迎える気筒(当例では1番気筒2A)の該燃焼がリッチ空燃比で行われるように燃料噴射量(図中F2で示す)が制御される。そして、このときの2番気筒2Bと1番気筒2Aとの平均空燃比が理論空燃比となるように燃料噴射量(F1,F2)が制御される。
【0089】
このようにモード切換時の各気筒2A〜2Dの空燃比が制御されることにより、第1の実施形態と同様に、モード切換えに伴うトルクショック(一時的にトルクが高くなる現象)が有効に緩和され、また、排気浄化性能も確保されることとなる。すなわち、特殊運手モードでは、上記のように二回の燃焼を行わせるのに必要な空気を吸気行程INにおいて導入すべくスロットル開度が制御されているので、通常運転モードへの移行に伴いスロットル開度が絞られることとなるが、このときスロットル弁17の作動の応答遅れおよび吸気流動の変化の遅れにより吸気量の変化に応答遅れが生じ得る(図9参照)。従って、理論空燃比で燃焼が行われ得るようにその吸気量(応答遅れが生じた吸気量)に対応した燃料が噴射されると、いきおいモード切換直後のトルクが急増する(トルクショックが発生する)こととなる。しかし、上記のように最初に燃焼行程を迎える2番気筒2Bにおいてリーン空燃比とした状態で燃焼が行われるとことにより、実際にはトルクの急増が抑えられ、その結果、トルクショックが緩和されることとなる。しかも、続いて燃焼行程を迎える1番気筒2Aがリッチ空燃比とした状態で燃焼が行われ、これら連続して燃焼行程を迎える各気筒2B,2Aの平均空燃比が理論空燃比となる状態で燃焼が行われることにより、排気通路20の三元触媒24を通過する既燃ガスも実際には理論空燃比に対応する値となり、排気浄化性能も三元触媒24だけで良好に確保されることとなる。
【0090】
なお、モード切換後、2番気筒2Bについては、同図に示すように吸気行程が終了するタイミングで燃料供給(F1)が行われるが、これは2番気筒2Bについては、吸気行程が終了するタイミングでモード切換えが行われ、吸気行程中に燃料を供給することができないため、モード切換後、可及的に早い時期に燃料を噴射させるようにしているものである。また、図17において、モード切換後、最初に燃焼行程を迎えるのは実際には4番気筒2Dであるが、4番気筒2Dについては、モード切換時点で既に燃料が噴射されており制御不可能である。つまり、ここでいう「モード切換後、最初に燃焼行程を迎える気筒」とは、あくまでも「モード切換後、最初に燃焼行程を迎える気筒であって、かつタイミング的に燃料の噴射量制御が可能な気筒」を意味する。
【0091】
なお、第2の実施形態についてもその具体的構成は種々変更可能であり、例えば、変形例として以下のような構成を採用することも可能である。
【0092】
▲1▼上記の実施形態では、特殊運転モードから通常運転モードへの移行に伴うトルクショックを軽減するために、モード切換後(移行後)、最初に燃焼行程を迎える気筒での燃焼をリーン空燃比とし、さらに排気浄化性能への影響を回避するために、その次に燃焼行程を迎える気筒での燃焼をリッチ空燃比とした状態で行わせるようにしているが、例えば、特殊運転モードから通常運転モードへの切換直前に燃焼行程を迎える気筒に対する燃料供給を遮断(カット)するように構成してもよい。
【0093】
具体的には、例えば、図16に示すように2番気筒2Bの吸気行程終了時点(図中▲1▼)でモード切換信号が出力され、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ場合には、該切換時点(図中▲1▼)の直前に燃焼行程を迎える3番気筒2Aの当該燃焼行程分の燃料(図中F1,F2)をカットする。
【0094】
このような制御によると、燃料がカットされることによりモード切換時の3番気筒2Cのトルクが「0」となってトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。また、この場合には、燃料がカットされているだけのため、排気通路20には空気がそのまま排出されるだけであって、排気浄化性能へ影響を与えることもない。従って、上述した第2の実施形態の制御と同様に、トルクショックを良好に緩和する一方で、排気浄化性能についても良好に確保することができる。
【0095】
なお、トルクショックを緩和させるだけの目的であれば、3番気筒2Aへの燃料供給のうち二回目分の燃料(図中F2)のみをカットするだけで効果を上げることが可能であるが、これに伴い二回目の燃焼が省略されると、排気通路20に排出される既燃ガスがリーン空燃比に対応する値となり排気浄化性能に悪影響を与えると考えられる。従って、燃料をカットする場合には、上述のように3番気筒2Aに対する全ての燃料(図中F1,F2)をカットする必要がある。
【0096】
▲2▼さらに、同様の作用効果を得るために、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を当該燃焼行程についてのみ遮断(カット)するように構成してもよい。
【0097】
例えば、図17に示すように4番気筒2Dの圧縮行程終了時点(図中▲1▼)でモード切換信号が出力され、その後、各気筒2A〜2Dが順次特殊運転モード(6サイクル)から通常運転モード(4サイクル)に切換えられ場合には、該切換時点(図中▲1▼)の後、最初に燃焼行程を迎える2番気筒2Bの当該燃焼行程分の燃料(図中F1)をカットする。
【0098】
このような制御によれば、2番気筒2Bの発生トルクが「0」となってモード切換時のトルクの急増が抑えられ、その結果、トルクショックが良好に緩和されることとなる。この場合は、2番気筒2Bの燃焼室4内の空気がそのまま排気通路20に排出されることになるので、排気浄化性能へ影響を与えることがない。従って、上記第2の実施形態および変形例▲1▼と同様の効果を得ることができる。
【0099】
▲3▼上記の実施形態では、特殊運転モードにおいて、吸気行程INと、第1圧縮行程と、燃焼を伴う第1膨張行程と、第2圧縮行程と、燃焼を伴う第2膨張行程と、排気行程EXとからなる6サイクルの燃焼制御を実行することにより、吸気行程INと排気行程EXとの間で2回の燃焼を行うように構成しているが(図14(b)参照)、図14(c)に示すように、吸気行程INと、第1圧縮行程と、燃焼を伴う第1膨張行程と、第2圧縮行程と、燃焼を伴わない第2膨張行程と、第3圧縮行程と、燃焼を伴う第3膨張行程と、排気行程EXとからなる8サイクルの燃焼制御を実行することにより、吸気行程と排気行程との間で2以下の燃焼を行うように構成してもよい。
【0100】
【発明の効果】
以上のように本発明の制御装置は、各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに切換え可能に構成され、例えば低負荷低回転の運転領域では特殊運転モードに設定されることにより、先行気筒ではリーン空燃比での燃焼が行われて、熱効率が高められるとともにポンピングロスが低減されることにより大幅な燃費改善効果が得られ、かつ上記後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われることにより、少なくともポンピングロス低減による燃費効果が得られる。また、後続気筒から排出される理論空燃比の既燃ガスのみが排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保される。一方、高負荷・高回転の運転領域では、通常運転モードに設定されることにより出力性能が確保される。そして、特殊運転モードから通常運転モードへの移行時には、移行後(モード切換後)、最初に燃焼行程を迎える気筒での該燃焼がリーン空燃比とした状態で行われることによりトルクの急増が抑制されることより、吸気量の応答遅れに起因するトルクショックの発生が良好に緩和される。しかも、続いて燃焼行程を迎える気筒においてリッチ空燃比とした状態で燃焼が行われることにより、排気通路に排出される既燃ガスが実質的に理論空燃比に対応した値となり、その結果、排気浄化性能も確保されることとなる。
【図面の簡単な説明】
【図1】本発明に係る制御装置を備えたエンジン全体の概略平面図(第1の実施形態)である。
【図2】エンジン本体等の概略断面図である。
【図3】制御系統のブロック図である。
【図4】運転領域を示す説明図である。
【図5】各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図6】低負荷低回転時の実質的な新気およびガスの流通経路を示す説明図である。
【図7】高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。
【図8】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図9】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の吸入空気量、燃料噴射量、発生トルクの変化を示す図である。
【図10】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図11】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図12】本発明に係る制御装置を備えたエンジン全体の概略平面図(第2の実施形態)である。
【図13】動弁機構の構成と制御系統のブロック構成を示す図である。
【図14】第2の実施形態における気筒の燃焼サイクル、燃料噴射時期および点火時期等を示す説明図である。
【図15】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。
【図16】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【図17】低負荷低回転の運転領域から高負荷、高低回転側の運転領域へ移行される際の各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図(変形例)である。
【符号の説明】
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
11 吸気ポート
11a 第1吸気ポート
11b 第2吸気ポート
12 排気ポート
12a 第1排気ポート
12b 第2排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
24 三元触媒
31 吸気弁
31a 第1吸気弁
31b 第2吸気弁
32 排気弁
32a 第1排気弁
32b 第2排気弁
35 弁停止機構
40 ECU
41 運転状態判別手段
42 弁停止機構制御手段
43 吸入空気量制御手段
44 燃料噴射制御手段
51 経路判別手段
Claims (8)
- 各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに運転モードを切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、この空燃比制御手段は、前記特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように構成されていることを特徴とする火花点火式エンジンの制御装置。
- 各気筒にそれぞれ新気を導入する各気筒独立状態と、排気行程と吸気行程が重なる一対の気筒間において先行気筒の排気ガスを気筒間ガス通路を介して後続気筒に導入する2気筒接続状態とに吸気および排気の流通経路が切換え可能に構成され、かつ、この流通経路を前記各気筒独立状態として各気筒においてそれぞれ独立して燃焼を行わせる通常運転モードと、前記2気筒接続状態として先行気筒から排出される既燃ガスをそのまま吸気行程にある後続気筒に導入して燃焼を行わせる特殊運転モードとに切換え可能に構成される多気筒の火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先行気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後続気筒では、先行気筒から導出されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように吸気量に応じて各気筒に対する燃焼噴射量を制御する燃料噴射制御手段とを備え、この燃料噴射制御手段は、前記特殊運転モードから通常運転モードへの切換直前又直後のタイミングで、特定の気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式エンジンの制御装置。
- 請求項2記載の火花点火式エンジンの制御装置において、
前記燃料噴射制御手段は、特殊運転モードから通常運転モードへの切換え前に燃焼行程を迎える気筒およびこの気筒と前記一対をなす気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式エンジンの制御装置。 - 請求項2記載の火花点火式エンジンの制御装置において、
前記燃料噴射制御手段は、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式エンジンの制御装置。 - 燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼行程を有する通常運転モードと、吸気行程と排気行程との間に2回の燃焼行程を有する特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、前記特殊運転モードにあるときに、先の燃焼では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、かつ後の燃焼では、先の燃焼によるリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる一方、前記通常運転モードにあるときには、各気筒での空燃比を理論空燃比とした状態で燃焼を行わせるように各気筒での空燃比を制御する空燃比制御手段とを備え、この空燃比制御手段は、前記特殊運転モードから通常運転モードへの切換後、最初に燃焼行程を迎える気筒とその次に燃焼行程を迎える気筒との平均空燃比が理論空燃比となるように、前記最初に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ大きいリーン空燃比とした状態で燃焼を行わせ、その次に燃焼行程を迎える気筒では理論空燃比よりも所定量だけ小さいリッチ空燃比とした状態で燃焼を行わせるように構成されていることを特徴とする火花点火式エンジンの制御装置。
- 燃焼室内に燃料を直接噴射して吸気行程と排気行程との間に1回の燃焼を行う通常運転モードと、吸気行程と排気行程との間に2回の燃焼を行う特殊運転モードとに燃焼サイクルを切換え可能に構成される火花点火式エンジンの制御装置であって、エンジンの運転状態に応じて運転モードを前記通常運転モード又は特殊運転モードに切換えるモード切換手段と、排気通路に排出される既燃ガスの酸素濃度が略理論空燃比の燃焼状態に対応した値となるように、各運転モードでの各気筒に対する燃料噴射量を制御する燃料噴射制御手段とを備え、この燃料噴射制御手段は、前記特殊運転モードから通常運転モードへの切換え直前又は直後の何れかのタイミングで、特定の気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式エンジンの制御装置。
- 請求項6記載の火花点火式直噴エンジンの制御装置において、
前記燃料噴射制御手段は、特殊運転モードから通常運転モードへの切換え直前に燃焼行程を迎える気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式直噴エンジンの制御装置。 - 請求項6記載の火花点火式直噴エンジンの制御装置において、
前記燃料噴射制御手段は、特殊運転モードから通常運転モードへの切換え後、最初に燃焼行程を迎える気筒に対する燃料供給を遮断するように構成されていることを特徴とする火花点火式直噴エンジンの制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002167588A JP3826850B2 (ja) | 2002-06-07 | 2002-06-07 | 火花点火式エンジンの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002167588A JP3826850B2 (ja) | 2002-06-07 | 2002-06-07 | 火花点火式エンジンの制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004011557A true JP2004011557A (ja) | 2004-01-15 |
JP3826850B2 JP3826850B2 (ja) | 2006-09-27 |
Family
ID=30434791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002167588A Expired - Fee Related JP3826850B2 (ja) | 2002-06-07 | 2002-06-07 | 火花点火式エンジンの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3826850B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008096774A1 (ja) * | 2007-02-09 | 2008-08-14 | Koichi Hatamura | 4サイクルエンジン |
CN103216359A (zh) * | 2013-04-24 | 2013-07-24 | 优华劳斯汽车系统(上海)有限公司 | 一种持续燃烧的内燃机 |
-
2002
- 2002-06-07 JP JP2002167588A patent/JP3826850B2/ja not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008096774A1 (ja) * | 2007-02-09 | 2008-08-14 | Koichi Hatamura | 4サイクルエンジン |
JPWO2008096774A1 (ja) * | 2007-02-09 | 2010-05-20 | 耕一 畑村 | 4サイクルエンジン |
US8468800B2 (en) | 2007-02-09 | 2013-06-25 | Koichi Hatamura | Secondary air and exhaust gas recirculation for a four-stroke internal combustion engine |
CN103216359A (zh) * | 2013-04-24 | 2013-07-24 | 优华劳斯汽车系统(上海)有限公司 | 一种持续燃烧的内燃机 |
Also Published As
Publication number | Publication date |
---|---|
JP3826850B2 (ja) | 2006-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3963144B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3846393B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4259255B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3711939B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3826850B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3826858B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4045867B2 (ja) | 火花点火式エンジンの運転モード検出装置および同制御装置 | |
JP4285091B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4052215B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3711941B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4329446B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4052214B2 (ja) | 火花点火式エンジンの制御装置 | |
JP2005016358A (ja) | 火花点火式エンジンの制御装置 | |
JP2006283670A (ja) | 火花点火式エンジンの制御装置 | |
JP3972744B2 (ja) | 火花点火式4サイクルエンジンの制御装置 | |
JP3894083B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3951855B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4107180B2 (ja) | 火花点火式エンジンの制御装置 | |
JP4158670B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3951856B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3900072B2 (ja) | 火花点火式エンジンの制御装置 | |
JP3815402B2 (ja) | 火花点火式エンジンの制御装置 | |
JP2004076616A (ja) | 火花点火式エンジンの制御装置 | |
JP2004068698A (ja) | エンジンの制御装置 | |
JP2005016360A (ja) | 火花点火式エンジンの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060626 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |