JP2004124761A - 火花点火式エンジンの制御装置 - Google Patents

火花点火式エンジンの制御装置 Download PDF

Info

Publication number
JP2004124761A
JP2004124761A JP2002287904A JP2002287904A JP2004124761A JP 2004124761 A JP2004124761 A JP 2004124761A JP 2002287904 A JP2002287904 A JP 2002287904A JP 2002287904 A JP2002287904 A JP 2002287904A JP 2004124761 A JP2004124761 A JP 2004124761A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
air
fuel ratio
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002287904A
Other languages
English (en)
Inventor
Mitsuo Hitomi
人見 光夫
Koji Sumita
住田 孝司
Yoshinori Hayashi
林 好徳
Kazutoyo Watanabe
渡邉 一豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002287904A priority Critical patent/JP2004124761A/ja
Publication of JP2004124761A publication Critical patent/JP2004124761A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

【課題】ノッキングの発生を抑制しつつ、さらに広い運転領域で効果的に圧縮自己着火による燃焼を行わせることができるようにする。
【解決手段】エンジンの部分負荷領域で、先行気筒2A,2Dから排出される既燃ガスが後続気筒2B,2Cに導入されるように吸・排気の流通状態を制御する。そして、燃焼状態制御手段44により、上記特殊運転モードとされる運転領域のうちの少なくとも一部の運転領域で、後続気筒2B,2Cを圧縮自己着火により燃焼を行わせるとともに、この圧縮自己着火領域における高負荷側領域では、それよりも低負荷側の領域に比べて先行気筒2A,2Dの空燃比を相対的にリッチとし、かつ後続気筒2B,2C内に新気を導入する新気導入弁31aを開弁することにより、上記先行気筒2A,2Cから導出された既燃ガスに加えて新気を後続気筒2B,2C内に導入させるように制御する。
【選択図】    図4

Description

【0001】
【発明の属する技術分野】
本発明は、火花点火式エンジンの制御装置に関し、より詳しくは多気筒のエンジンにおいて燃費改善及びエミッション向上のために各気筒の燃焼状態を制御する制御装置に関するものである。
【0002】
【従来の技術】
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低回転低負荷領域等で上記燃料噴射弁から圧縮行程で燃料を噴射して成層燃焼を行わせことにより、超リーン燃焼を実現するようにしたものが知られている(例えば、特許文献1参照)。
【0003】
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,CO及びNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時にNOxに対して充分な浄化性能が得られないため、下記特許文献1にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行うリーンNOx触媒を設けている。そして、このようなリーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときは、例えば特許文献1に示されるように主燃焼以外に膨張行程中に追加燃料を燃焼室内に噴射して排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
【0004】
【特許文献1】
特開平10−29836号公報
【0005】
【発明が解決しようとする課題】
上記のような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能を確保するために、上記リーンNOx触媒を排気通路に設ける必要があるとともに、燃焼室内に燃料を直接噴射するように構成されているために、燃料の噴射圧力を加圧する高圧ポンプが必要であり、コスト的に不利である。
【0006】
また、上記リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量増大時にNOxの離脱、還元のため追加燃料の供給等による一時的な空燃比のリッチ化を行う必要がある。さらに、使用燃料が硫黄分を多く含む場合には、上記リーンNOx触媒の硫黄被毒を解消するための触媒の加熱処理及び還元材供給等のリジェネレーション処理が必要となり、これらによって燃費改善効果が低下する。しかも、混合気の空燃比がある程度以上にリーンになると、燃焼速度が遅くなりすぎてその終期に近い燃焼が仕事に寄与しなくなるため、成層燃焼でのリーン化による燃費改善には限界があった。
【0007】
なお、燃費改善のための別の手法として、圧縮自己着火が研究されており、この圧縮自己着火は、ディーゼルエンジンと同様に圧縮行程終期に燃焼室内を高温・高圧にして燃料を自己着火させるようにするものであり、空燃比が超リーンの状態や多量のEGRが導入されている状態でも、このような圧縮自己着火が行われれば燃焼室全体が一気に燃焼するため、仕事に寄与しない遅い燃焼が避けられて燃費改善に有利となる。
【0008】
しかし、通常の火花点火式ガソリンエンジンでは、燃焼のために強制点火が必要であって、圧縮上死点付近での燃焼室内の温度、圧力が圧縮自己着火を生じさせる程度までには高められず、圧縮自己着火を行わせるには燃焼室内の温度または圧力を大幅に高めるための格別の工夫が必要となるが、従来、高負荷領域でのノッキング(燃焼室内で火炎が伝播する前に混合気が自然着火することによる異常燃焼)を避けつつ、燃費改善が要求される部分負荷領域で圧縮自己着火を生じさせる程度まで燃焼室内の温度または圧力を高めることが困難であった。
【0009】
そこで、本出願人は、エンジンの低高低回転領域で、排気行程と吸気行程とが重なる一対の気筒間において排気行程にある先行気筒の既燃ガスをそのまま吸気行程にある後続気筒に導入させる2気筒接続状態とし、先行気筒の空燃比を理論空燃比よりもリーン空燃比として燃焼させるとともに、後続気筒では、先行気筒から排出されたリーン空燃比の既燃ガスに燃料を供給して燃焼を行わせることにより、リーン燃焼による燃費改善効果をもたせつつ、リーンNOx触媒を必要とせずに排気浄化性能を向上させることができる火花点火式エンジンの制御装置に関する技術を出願している(特願2002−024548号)。
【0010】
本発明は、このような技術に基づき、排気浄化性能を確保しつつ、簡単な構成でより効果的に燃費の改善効果を高めることができる火花点火式エンジンの制御装置を提供するものである。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、各気筒内に燃料を供給する燃料噴射弁が吸気導入経路に設けられるとともに、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出される既燃ガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒に導入されたリーン空燃比の既燃ガスに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、上記特殊運転モードの制御が実行される運転領域で、上記気筒間ガス通路内に先行気筒の既燃ガスを導入させる前に、後続気筒内に新気を導入する新気導入弁を開弁するとともに、上記燃料噴射弁から燃料を噴射し、かつ後続気筒から排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒の空燃比を制御する燃焼状態制御手段とを備えたものである。
【0012】
この発明によると、エンジンの部分負荷領域で上記特殊運転モードとして燃焼が行われる場合に、上記先行気筒ではリーン燃焼による熱効率向上及びポンピングロス低減による燃費改善効果が得られ、後続気筒ではポンピングロス低減による燃費改善効果が得られる。また、排気通路には理論空燃比で燃焼した後続気筒の排気ガスが導出されるため、リーンNOx触媒を必要とすることなく、三元触媒または酸化触媒により充分な排気浄化性能が得られることになる。そして、上記特殊燃焼モードの制御が実行されるエンジンの部分負荷領域では、後続気筒の新気導入弁が開弁状態となることにより導入された新気と、吸気導入経路に設けられた燃料噴射弁から噴射された燃料とが効果的に混合された状態で後続気筒内に供給された後、先行気筒の既燃ガスが気筒間ガス通路を介して導入されることにより、後続気筒の燃焼が適正に行われることになる。
【0013】
また、請求項2に係る発明は、上記請求項1記載の火花点火式エンジンの制御装置において、後続気筒に新気を導入する新気導入弁の開弁期間を切り換える切換手段を備え、特殊運転モードの制御が実行される部分負荷領域よりも高負荷ないし高回転側の運転領域では、上記部分負荷領域に比べて新気導入弁の開弁期間を長くするように切り換えることにより、先行気筒及び後続気筒をそれぞれ独立させて燃焼させる通常運転モードの制御を実行するものである。
【0014】
上記構成によれば、特殊運転モードの制御が実行される部分負荷領域よりも高負荷ないし高回転側の運転領域では、後続気筒の新気を導入する新気導入弁の開弁期間が長く設定されて、後続気筒内に充分な量の新気が導入された状態で、先行気筒及び後続気筒をそれぞれ独立させて燃焼させる通常運転モードの制御が実行されることにより、エンジン出力が充分に確保されることになる。
【0015】
また、請求項3に係る発明は、上記請求項2記載の火花点火式エンジンの制御装置において、特殊運転モードの制御が実行される運転領域では、少なくもと後続気筒を圧縮自己着火により燃焼を行わせるものである。
【0016】
上記構成によれば、特殊運転モードの制御が実行される運転領域では、少なくもと後続気筒が圧縮自己着火による燃焼が行われることにより、NOxの発生がさらに効果的に抑制されるとともに、燃費の改善効果が顕著に得られることになる。
【0017】
また、請求項4に係る発明は、吸気導入経路に設けられた燃料噴射弁から各気筒内に燃料を供給するとともに、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒及び後続気筒の空燃比を理論空燃比よりも大きいリーン空燃比として圧縮自己着火により燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、上記特殊運転モードの制御が実行される運転領域で、上記気筒間ガス通路内に先行気筒の既燃ガスを導入させる前に、後続気筒内に新気を導入する新気導入弁を開弁するとともに、上記燃料噴射弁から燃料を噴射させるように制御する燃焼状態制御手段とを備え、排気通路には三元触媒または酸化触媒の少なくとも一方が配設されたものである。
【0018】
上記構成によれば、エンジンの部分負荷領域で上記特殊運転モードとして燃焼が行われる場合に、上記先行気筒及び後続気筒の両方において、リーン燃焼による熱効率向上及びポンピングロス低減による燃費改善効果が得られることになる。そして、上記特殊燃焼モードの制御が実行されるエンジンの部分負荷領域では、後続気筒の新気導入弁が開弁状態となることにより導入された新気と、吸気導入経路に設けられた燃料噴射弁から噴射された燃料とが効果的に混合された状態で後続気筒内に供給された後、先行気筒の既燃ガスが気筒間ガス通路を介して導入されることにより、後続気筒の温度が高められるとともに、先行気筒の内部EGR量が増大されることにより、先行気筒の温度が高められた状態で圧縮自己着火が行われるため、この圧縮自己着火による燃焼効率の向上効果が得られるとともに、NOxの発生が抑制されることにより、リーンNOx触媒を必要とすることなく、三元触媒または酸化触媒の少なくとも一方により充分な排気浄化性能が得られることになる。
【0019】
また、請求項5に係る発明は、上記請求項4記載の火花点火式エンジンの制御装置において、特殊運転モードの制御が実行される運転領域で、過給機により加圧された吸気を各気筒に供給して各気筒の空燃比を理論空燃比よりも大きいリーン空燃比とするものである。
【0020】
上記構成によれば、エンジンの部分負荷領域で上記特殊運転モードとして燃焼が行われる場合に、先行気筒の内部EGR量が増大されることに起因した新気量の不足が上記過給機の過給作用により補われるとともに、この過給機による過給作用により新気が後続気筒内に短期間で効率よく供給されることになる。
【0021】
【発明の実施の形態】
図1は本発明の一実施形態によるエンジンの概略構成を示し、図2はエンジン本体1の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
【0022】
各気筒2A〜2Dに設けられた燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
【0023】
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
【0024】
そして、吸気、圧縮、膨張及び排気の各行程からなる燃焼サイクルが各気筒2A〜2D毎に所定の位相差をもって行われるように構成され、4気筒エンジンの場合に、気筒列方向の一端側から1番気筒2A、2番気筒2B、3番気筒2C及び4番気筒2Dと呼ぶと、図7に示すように、上記燃焼サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって行われるようになっている。なお、図7において、EXは排気行程、INは吸気行程であり、また、Fは燃料噴射、Sは強制点火を表し、図中の星マークは圧縮自己着火が行われることを表している。
【0025】
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態の4気筒エンジンでは、図7に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)とが重なるので、1番気筒2A及び2番気筒2Bと、4番気筒2D及び3番気筒2Cとがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒となり、かつ2番気筒2B及び3番気筒2Cが後続気筒となる。
【0026】
各気筒2A〜2Dの吸・排気ポートと、これに接続される吸気通路15、排気通路20及び気筒間ガス通路22は、具体的には次のように構成されている。
【0027】
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路20に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路20に送り出すための排気ポート12とが配設されている。
【0028】
図1に示す例では、1番,4番気筒(先行気筒)2A,2Dにおける吸気ポート11及び2番,3番気筒(後続気筒)2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の左半部側に並列的に設けられる一方、1番,4番気筒2A,2D(先行気筒)における第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒(後続気筒)2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室の右半部側に並列的に設けられている。
【0029】
1番,4番気筒2A,2Dにおける吸気ポート11及び2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動されることにより、吸入空気量を調節するようになっている。なお、吸気通路15における集合部よりも上流の共通吸気通路には、吸気流量を検出するエアフローセンサ19が設けられている。
【0030】
また、上記吸気ポート11及び第1吸気ポート11aからなる吸気導入経路には、各ポートの合流部に燃料を噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述の燃料噴射制御手段からパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。なお、この燃料噴射弁9には、図外の燃料ポンプ及び燃料供給通路等を介して、所定の圧力で燃料が供給されるように構成されている。
【0031】
1番,4番気筒2A,2Dにおける第1排気ポート12a及び2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられている。そして、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに、上記気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに、上記気筒間ガス通路22の下流端が接続されている。
【0032】
上記気筒間ガス通路22は、互いに隣接する気筒間を接続する比較的短い通路であり、先行気筒2A,2Dから排出されるガスがこの通路22を通る間における放熱量が比較的小さく抑えられるようになっている。
【0033】
排気通路20における分岐排気通路21の下流の集合部には排気ガス中の酸素濃度を検出することにより空燃比を検出するOセンサ23が設けられている。さらに、このOセンサ23の設置部の下流側における排気通路20には、排気浄化用の三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λ=1)付近にあるときにHC,CO及びNOxに対して高い浄化性能を示す触媒である。
【0034】
各気筒2A〜2Dの吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。
【0035】
1番,4番気筒(先行気筒)2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒(後続気筒)2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒2A〜2Dの吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等を備えた動弁機構により所定のタイミングで開閉するように駆動される。
【0036】
さらに、上記吸・排気弁のうちで第1排気弁32a、第2排気弁32b及び第2吸気弁31bの動弁機構には、各弁を作動状態と停止状態とに切り換える第1切換手段35aが設けられている。また、上記吸・排気弁のうちで第1吸気弁31aの動弁機構には、その開弁期間を切り換える第2切換手段35bが設けられている。
【0037】
上記第1切換機構35aは、図3に示すように、第1排気弁32a、第2排気弁32b及び第2吸気弁31bの上方に配設されたカムシャフト34と、このカムシャフト34と上記各弁との間に配設されたロッカシャフト55と、このロッカシャフト55に支持された第1〜第3ロッカアーム56〜58とを有している。また、上記カムシャフト34には、円形の外周面を有する弁停止用の第1カム52と、弁駆動用の突部(カムノーズ)を有する第2,第3カム53,54とが一体に形成されている。この第2,第3カム53,54は、同一形状を有し、上記第1カム52を挟むようにその左右に配設されている。
【0038】
上記第1ロッカアーム56は、第1カム52に対応した位置に配設されるとともに、その先端部には上記第1排気弁32a、第2排気弁32bまたは第2吸気弁31bの弁軸上端に当接する当接部60が設けられている。一方、上記第2,第3ロッカアーム58,59は、第1ロッカアーム57を挟むようにその両側方に配設されるとともに、第1ロッカアーム57とは切り離された状態で、図外の付勢手段により、それぞれ上記第2,第3カム53,54に圧接されるように付勢されている。
【0039】
また、第2,第3ロッカアーム58,59は、上記第1ロッカアーム57と連結可能に構成されている。具体的には、上記第2,第3ロッカアーム58,59に設けられたプランジャー(図示せず)が、後述する第1,第2作動油給排通路36,38から供給された作動油により駆動され、その先端部が上記第1ロッカアーム57に形成された連結孔(図示せず)内に挿入される等により、上記第1ロッカアーム57と第2,第3ロッカアーム58,59とが一体に連結された状態で揺動変位するようになっている。
【0040】
すなわち、上記第1,第2作動油給排通路36,38に設けられた第1,第2コントロール弁37,39により上記第1,第2作動油給排通路36,38からの作動油の給排を制御して第1ロッカアーム57と第2,第3ロッカアーム58,59とを一体に連結することにより、上記第2,第3カム53,54により駆動される第1,第2ロッカアーム58,59の駆動力が第1ロッカアーム57に伝達されて上記第1排気弁32a、第2排気弁32bまたは第2吸気弁31bが開閉駆動されることになる。
【0041】
一方、第1ロッカアーム57と第2,第3ロッカアーム58,59との連結状態が解除されると、第2,第3ロッカアーム58,59から第1ロッカアーム57への駆動力の伝達が遮断され、カムシャフト34が回転しても第1ロッカアーム57が揺動変位することなく、上記第1排気弁32a、第2排気弁32bまたは第2吸気弁31bが閉弁状態に維持されるようになっている。
【0042】
また、第1吸気弁31aの動弁機構に設けられた第2切換手段35bは、上記第2カム53のカムノーズと、第3カム54のカムノーズとが異なる形状に形成されるとともに、上記第1ロッカアーム57が第2ロッカアーム58に連結された状態と、上記第1ロッカアーム57が第3ロッカアーム59に連結された状態とに切り換えられることにより、上記カムシャフト33に設けられた第2,第3カム53,54により駆動される第1吸気弁31aの開弁期間が切り換えられるように構成された点を除き、上記第1切換手段35aと同様に構成されている。
【0043】
図4は、駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19及びOセンサ23からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ47及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ48等からの信号も入力されている。また、上記ECU40から、各燃料噴射弁9と、多連スロットル弁17のアクチュエータ18と、上記第1,第2のコントロール弁39とに対して制御信号が出力されるようになっている。
【0044】
また、上記ECU40には、エンジンの運転状態を判別する運転状態判別手段41と、上記第1,第2切換手段35a,35bに設けられたカムの作動状態を切り換えるカム切換制御手段42と、各気筒2A〜2Dに対する吸気の流入量を制御する吸入空気量制御手段43と、燃料噴射弁9の作動状態を制御する燃料噴射制御手段44と、点火プラグ7の作動状態を制御する点火制御手段45とが設けられている。
【0045】
運転状態判別手段41は、図5に示すようにエンジンの運転領域が低負荷低回転側の運転領域A(部分負荷領域)と、高負荷側ないし高回転側の運転領域Bとに分けられた制御用マップを有し、上記回転数センサ45及びアクセル開度センサ46等からの信号により調べられるエンジンの運転状態(エンジン回転数及びエンジン負荷)が上記運転領域A,Bのいずれの領域にあるかを判別する。そして、この判別結果に基づき、低負荷低回転側の運転領域Aでは、排気行程にある先行気筒2A,2Dから排出される既燃ガスを、そのまま吸気行程にある後続気筒2B,2Cに導入して燃焼させる特殊運転モードが選択され、高負荷側ないし高回転側の運転領域Bでは、各気筒2A〜2Dをそれぞれ独立させて燃焼させる通常運転モードが選択されるようになっている。
【0046】
カム切換制御手段42は、上記特殊運転モードでは気筒間ガス通路22を介して先行気筒の既燃ガスを後続気筒に導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく第1,第2切換手段35a,35bを制御するもので、具体的には運転状態が運転領域A,Bのいずれにあるかに応じ、上記各コントロール弁37,39を制御することにより、原則として第1,第2切換手段35a,35bのカムを切り換えて吸・排気弁を次のように制御する。
【0047】
運転領域A:第1排気弁32aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
第1吸気弁31aの開弁期間を短く設定(図6の実線参照)
運転領域B:第1排気弁32aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
第1吸気弁31aの開弁期間を長く設定(図6の破線参照)
【0048】
上記吸入空気量制御手段43は、アクチュエータ18を制御することによってスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。この場合、上記特殊運転モードとされる運転領域(部分負荷領域)Aでは、先行気筒2A,2Dの空燃比をリーン空燃比とするのに必要な量の空気が先行気筒2A,2Dに供給されるとともに、後続気筒2B,2Cにおいて、分岐吸気通路16から導入される新気と、先行気筒2A,2Dから導入されるガス中の過剰空気と、燃料噴射弁9から新たに供給される燃料との比が理論空燃比となるようにスロットル開度が調節される。
【0049】
上記燃料噴射制御手段44は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するように構成されている。また、上記点火制御手段45は、運転状態に応じた点火時期の制御及び点火停止等の制御を行うように構成されている。そして、特に運転状態が図4中の運転領域Aにある場合と運転領域Bにある場合とで燃焼状態の制御(燃料噴射の制御及び点火の制御)が変更されるようになっている。
【0050】
すなわち、運転状態が低負荷低回転側の運転領域Aにある場合、特殊運転モードでの制御状態として、先行気筒2A,2Dに対しては、空燃比を理論空燃比よりも大きいリーン空燃比とするように燃料噴射量を制御するとともに、吸気行程の前期またはそれ以前に燃料噴射弁9から吸気ポート11に燃料を噴射するように噴射タイミングを設定し、かつ、圧縮上死点付近で強制点火を行わせるように点火タイミングを設定する燃焼状態制御手段が、上記吸入空気量制御手段43、燃料噴射制御手段44及び点火制御手段45により構成されている。
【0051】
また、後続気筒2B,2Cに対しては、先行気筒2A,2Dから導入された既燃ガス中の酸素濃度を考慮しつつ、分岐吸気通路16から導入される新気に対して燃料を供給することにより、後続気筒2B,2Cの空燃比が実質的に理論空燃比となるように燃料噴射量を制御するとともに、吸気行程の前期またはそれ以前に燃料を噴射するように噴射タイミングを設定し、かつ、圧縮自己着火を行わせるべく、強制点火を停止させる制御が上記燃焼状態制御手段により実行されるようになっている。
【0052】
一方、エンジンの運転状態が高負荷側ないし高回転側の運転領域Bにある場合には、通常運転モードの制御として、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御し、例えばこの運転領域Bにおける大部分の領域で理論空燃比とし、全開負荷及びその付近の運転領域で理論空燃比よりリッチとする。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射して混合気を均一化するように噴射タイミングを設定し、かつ、各気筒2A〜2Dとも強制点火を行わせるように制御する。
【0053】
以上のような当実施形態の装置の作用を、図6〜図9を参照しつつ説明する。低負荷低回転側の運転領域Aでは、上記第1,第2切換手段35a,35b及びカム切換制御手段42等からなる運転モード制御手段により、特殊運転モードの制御が実行され、前述のように第1排気弁32aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態と、第1吸気弁31aの開弁期間が短い作動状態とされることにより、実質的な新気及びガスの流通経路は図8に示すようになり、先行気筒(1番,4番気筒)2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒(2番,3番気筒)2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出されるガスのみが排気通路20に導かれるような2気筒接続状態とされる。
【0054】
この状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図8中の矢印a)、先行気筒2A,2Dでは空燃比が理論空燃比よりも大きい値となるように燃料噴射量が制御されつつ、吸気行程の前期またはそれ以前に燃料が噴射され、かつ、所定時期に点火が行われて、リーン空燃比での燃焼が行われる。
【0055】
また、後続気筒2B,2Cにおいては、図6の実線で示すように、第1吸気弁31aが後続気筒2B,2Cの吸気上死点ITDよりも少し前から吸気行程の途中まで開弁状態となることにより、図8中の矢印dに示すように、後続気筒2B,2C内の新気が導入されるとともに、上記第1吸気弁31aが閉弁状態となる少し前の吸気行程途中で第2吸気弁3bが開状態となることにより、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が重なる期間に、先行気筒2A,2Dから導出された既燃ガスが、ガス通路22を通って後続気筒2B,2Cに導入される(図7中の白抜き矢印及び図8中の矢印b)。
【0056】
そして、後続気筒2B,2Cでは、吸気通路15から供給された新気と、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスと、上記吸気ポート11aに噴射された燃料とが混合されて、理論空燃比の混合気が生成されるように燃料噴射量が制御されるとともに、吸気行程の前期またはそれ以前に燃料が噴射されるように燃料噴射時期が制御されることにより、圧縮行程の上死点付近で燃焼室内の圧力、温度の上昇に応じて圧縮自己着火が行われる。
【0057】
この場合、先行気筒2A,2Dから排出された高温の既燃ガスが気筒間ガス通路22を通って後続気筒2B,2Cに導入されるため、後続気筒2B,2Cでは吸気行程で燃焼室内の温度が高くなり、この状態からさらに圧縮行程で圧力、温度が上昇することにより、圧縮行程終期の上死点付近では混合気が自己着火し得る程度まで燃焼室内の温度が上昇する。しかも、上記既燃ガスは先行気筒2A,2Dから排出されて後続気筒2B,2Cに導入されるまでの間に充分にミキシングされて均一に分布し、さらに吸気行程で燃料噴射弁9から吸気ポート11aに噴射された燃料も圧縮行程終期までの間に燃焼室全体に均一に分散するため、理想的な同時圧縮自己着火条件を満たすような均一な混合気の分布状態が得られる。したがって、後続気筒2B,2Dで同時圧縮自己着火により燃焼が急速に行われ、これにより熱効率が大幅に向上することになる。
【0058】
このように、先行気筒2A,2Dでは、リーン空燃比での燃焼により熱効率が高められるとともに、通常のエンジンと比べて吸気負圧が小さくなることでポンピングロスが低減され、一方、後続気筒2B,2Cでは、空燃比が略理論空燃比とされつつ、均一な混合気分布状態で圧縮自己着火が行われることにより熱効率が高められるとともに、先行気筒2A,2Dから押出された既燃ガスが送り込まれるため先行気筒2A,2Dよりもさらにポンピングロスが低減される。これらの作用により、燃費が大幅に改善される。
【0059】
また、先行気筒2A,2Dでは理論空燃比よりも大幅なリーン空燃比とすることで、NOx発生量が比較的少なく抑えられる。一方、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで、多量のEGRが行われているのと同等の状態となるとともに、同時圧縮自己着火による急速燃焼が行われると可及的に酸素と窒素との反応が避けられることから、NOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
【0060】
そして、上記のように特殊運転モードの制御が実行される運転領域Aで、上記気筒間ガス通路22内に先行気筒2A,2Dの既燃ガスを導入させる前に、後続気筒2B,2C内に新気を導入する新気導入弁(第1吸気弁31a)を開弁するとともに、上記燃料噴射弁9から吸気ポート11aからなる吸気導入経路に燃料を噴射し、かつ後続気筒2B,2Cから排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒2B,2Cの空燃比を制御するように構成したため、排気浄化性能を維持しつつ、簡単な構成で効果的に燃費の改善効果を高めることができる。
【0061】
すなわち、エンジンの燃焼室内に直接燃料を噴射するように構成した場合のように、燃圧を顕著に高める高圧ポンプ等を必要とすることなく、上記特殊運転モードの制御を実行することができるため、簡単な構成で、上記ポンピングロスの低減作用等による燃費の改善効果が得られることになる。また、上記運転領域Aで、後続気筒2B,2Cから排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒2B,2Cの空燃比を制御するように構成したため、先行気筒2A,2Dでリーンな空燃比で燃焼が行われつつ、理論空燃比で燃焼した後続気筒2B,2Cの既燃ガスのみが排気通路20に導出されることになる(図8中の矢印c)。
【0062】
したがって、従来のリーンバーンエンジンのようにリーンNOx触媒を設ける必要がなく、三元触媒24だけで充分に排気浄化性能が確保される。そして、リーンNOx触媒を設ける必要がないことから、リーンNOx触媒のNOx吸蔵量増大時におけるNOxの放出、還元のための一時的な空燃比のリッチ化を行う必要がなく、燃費改善の目減りが避けられる。さらに、リーンNOx触媒の硫黄被毒の問題が生じることもない。
【0063】
また、先行気筒2A,2Dから排出された多量の既燃ガスが後続気筒2B,2Cに導入されるため、そのEGR効果によって後続気筒2B,2Cのノッキングを効果的に防止することができる。しかも、上記既燃ガスが導入される前に、新気導入弁(第2吸気弁31b)を開弁して後続気筒2B,2Cに新気を導入させることにより、後続気筒2B,2Cの新気不足を解消することができるため、上記特殊運転モードの制御を実行できる運転領域Aを効果的に拡大することができる。
【0064】
特に、上記実施形態に示すように、先行気筒2A,2Dから排出される既燃ガスの熱を利用して後続気筒2B,2Cでの圧縮自己着火が達成されるように構成した場合には、格別の加熱手段を用いたりエンジンの圧縮比を極端に高くしたりする等の手段を講じることなく、上記圧縮自己着火を容易に達成して上記燃費の改善効果とエミッションの向上作用とが得られるという利点がある。
【0065】
また、上記実施形態では、特殊運転モードの制御が実行される運転領域Aにおいて、図6に示すように、先行気筒2A,2Dから導出された既燃ガスを後続気筒2B,2C内に導入させる第2吸気弁31bを閉弁状態に維持しつつ、後続気筒2B,2Cの新気導入弁(第1吸気弁31a)を、後続気筒2B,2Cの吸気上死点付近(ITDC)で開弁状態とするように構成したため、後続気筒2B,2C内に比較的温度の低い新気を効率よく導入させることができる。しかも、上記新気導入弁(第1吸気弁31a)を、後続気筒2B,2Cの吸気行程途中で閉弁状態とすることにより、後続気筒2B,2C内に新気を効率よく導入させた後に、この新気の導入を停止させることにより、先行気筒2A,2Cから導出された既燃ガスを後続気筒2B,2C内にスムーズに導入させることができる。
【0066】
一方、上記通常運転モードの制御が実行される高負荷側ないし高回転側の運転領域Bでは、上記第1切換手段35aにより前述のように第1排気弁32a及び第1吸気弁31aを作動状態、第2排気弁32b及び第2吸気弁31bを停止状態に維持しつつ、第2切換手段35bにより後続気筒2B,2Cの新気導入弁(第1吸気弁31a)の開弁期間を長くするように切り換えることにより、実質的な新気及びガスの流通経路が図9に示すようになり、各気筒2A〜2Dの吸気ポート11,11a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11,11aに新気が導入されるとともに、各気筒2A〜2Dの排気ポート12,12aから排気通路20に既燃ガスが排出される。そして、上記の場合において各気筒2A〜2Dの空燃比が理論空燃比もしくはそれよりリッチとなるように吸入空気量及び燃料噴射量が制御されることにより、出力性能が確保されることになる。
【0067】
なお、上記実施形態では、特殊運転モードの制御が実行される低負荷低回転の運転領域(部分負荷領域)Aで、後続気筒2B,2Cから排出される排気ガス中の酸素濃度が理論空燃比に対応した値となるように後続気筒2B,2Cの空燃比を制御するように構成した例について説明したが、先行気筒2A,2D及び後続気筒2B,2Cの空燃比を理論空燃比よりも大きいリーン空燃比として圧縮自己着火により燃焼を行わせる特殊運転モードの制御を実行するように構成してもよい。
【0068】
すなわち、上記のように吸気導入経路(吸気ポート11,11a)に設けられた燃料噴射弁9から各気筒2A〜2D内に燃料を供給するとともに、各気筒2A〜2Dの燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、エンジンの部分負荷領域で、先行気筒2A,2Dから排出される既燃ガスがそのまま後続気筒2B,2Cに気筒間ガス通路22を介して導入され、この後続気筒2B,2Cから排出されるガスが排気通路20に導かれるような2気筒接続状態としつつ、上記気筒間ガス通路22内に先行気筒2A,2Dの既燃ガスを導入させる前に、後続気筒2B,2C内に新気を導入する新気導入弁(第1吸気弁31)を開弁するとともに、上記燃料噴射弁9から燃料を噴射させる特殊運転モードの制御を実行することにより、先行気筒2A,2Dの内部EGR量を増大させるとともに、後続気筒2B,2Cを効果的に加熱して、先行気筒2A,2D及び後続気筒2B,2Cの両方を圧縮自己着火させることができる。
【0069】
そして、上記のように先行気筒2A,2D及び後続気筒2A,2Dにおいて圧縮自己着火が行われることにより、酸素と窒素との反応が抑制されてNOxの発生量が効果的に低減されることになるため、先行気筒2A,2C及び後続気筒2B,2Cの空燃比を理論空燃比よりも大きいリーン空燃比として燃焼させた場合においても、NOxの発生を効果的に抑制することができ、排気通路20にNOx触媒を配設することなく、三元触媒24または酸化触媒の少なくとも一方を設けるだけで、排気浄化性能を向上させることができる。そして、上記圧縮自己着火を行うことによる燃費改善効果と、リーン空燃比として燃焼させることによる燃費改善効果とが同時に得られるという利点がある。
【0070】
また、エンジンの部分負荷領域で各気筒2A〜2Dの空燃比を理論空燃比よりも大きいリーン空燃比として燃焼させる上記特殊運転モードの制御を実行する場合には、図10に示すように、各気筒2A〜2Dに供給される吸気を加圧するターボ過給機61等からなる過給機を設け、先行気筒2A,2Dの内部EGR量が増大されることに起因した新気量の不足を上記過給機61の過給作用により補うとともに、この過給機61による過給作用により新気を後続気筒2B,2C内に短期間で効率よく供給できるように構成することが望ましい。
【0071】
なお、本発明の装置は4気筒以外の多気筒エンジンにも適用可能である。そして、例えば6気筒等では1つの気筒の排気行程と別の気筒の吸気行程が完全に重なり合うことはないが、このような場合は、一方の気筒の排気行程が他方の気筒の吸気行程より先行するとともに、両行程が部分的に重なり合う2つの気筒を先行、後続の一対の気筒とすればよい。
【0072】
【発明の効果】
以上のように請求項1に係る発明の制御装置によると、特殊運転モードとされた場合に、排気行程と吸気行程が重なる両気筒のうちの先行気筒ではリーン空燃比で燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比で燃焼を行わせるようにしているため、先行気筒ではリーン燃焼による熱効率向上及びポンピングロス低減により、また後続気筒ポンピングロス低減により、燃費を改善することができる。また、排気通路には理論空燃比で燃焼した後続気筒の排気ガスを導出させるように構成したため、リーンNOx触媒を必要とすることなく、三元触媒または酸化触媒により充分な排気浄化性能が得られるという利点がある。そして、上記特殊燃焼モードの制御が実行されるエンジンの部分負荷領域では、後続気筒の新気導入弁が開弁状態となることにより導入された新気と、吸気導入経路に設けられた燃料噴射弁から噴射された燃料とを効果的に混合した状態で後続気筒内に供給した後、先行気筒の既燃ガスを導入させることにより、簡単な構成でノッキングを効果的に防止して後続気筒の燃焼を適正に行わせることができる。
【0073】
また、請求項4に係る発明の制御装置によると、エンジンの部分負荷領域で上記特殊運転モードとして燃焼が行われる場合に、後続気筒の新気導入弁を開弁状態とすることにより導入された新気と、吸気導入経路に設けられた燃料噴射弁から噴射された燃料とを効果的に混合した状態で後続気筒内に供給した後、先行気筒の既燃ガスを後続気筒に導入し、先行気筒及び後続気筒の空燃比を理論空燃比よりも大きいリーン空燃比として圧縮自己着火により燃焼を行わせることにより、簡単な構成で熱効率を大幅に向上させることができるとともに、NOxの発生を抑制して三元触媒または酸化触媒の少なくとも一方により充分な排気浄化性能を得ることができるという利点がある。
【図面の簡単な説明】
【図1】本発明の一実施形態による制御装置を備えたエンジン全体の概略平面図である。
【図2】エンジン本体等の概略断面図である。
【図3】切換手段の具体的構成を示す斜視図である。
【図4】制御系統のブロック図である。
【図5】運転状態に応じた制御を行うための運転領域設定の一例を示す説明図である。
【図6】先行気筒及び後続気筒の燃焼サイクル及び開弁タイミング等を示す説明図である。
【図7】各気筒の排気行程、吸気行程、燃料噴射時期及び点火時期等を示す図である。
【図8】低負荷低回転時の実質的な新気及びガスの流通経路を示す説明図である。
【図9】高負荷、高低回転側の運転領域にある時の実質的な新気及びガスの流通経路を示す説明図である。
【図10】ターボ過給機を備えた実施形態を示す説明図である。
【符号の説明】
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
15 吸気通路
20 排気通路
22 気筒間ガス通路
24 三元触媒
35a,35b 切換手段(運転モード制御手段)
31a 第1吸気弁(新気導入弁)
42 カム切換制御手段(運転モード制御手段)
43 吸入空気量制御手段(燃焼状態制御手段)
44 燃焼状態制御手段(燃焼状態制御手段)
61 過給機

Claims (5)

  1. 各気筒内に燃料を供給する燃料噴射弁が吸気導入経路に設けられるとともに、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、
    エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出される既燃ガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒に導入されたリーン空燃比の既燃ガスに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、
    上記特殊運転モードの制御が実行される運転領域で、上記気筒間ガス通路内に先行気筒の既燃ガスを導入させる前に、後続気筒内に新気を導入する新気導入弁を開弁するとともに、上記燃料噴射弁から燃料を噴射し、かつ後続気筒から排出される排気ガス中の酸素濃度が、理論空燃比の燃焼状態に対応した値となるように後続気筒の空燃比を制御する燃焼状態制御手段とを備えたことを特徴とする火花点火式エンジンの制御装置。
  2. 後続気筒に新気を導入する新気導入弁の開弁期間を切り換える切換手段を備え、特殊運転モードの制御が実行される部分負荷領域よりも高負荷ないし高回転側の運転領域では、上記部分負荷領域に比べて新気導入弁の開弁期間を長くするように切り換えることにより、先行気筒及び後続気筒をそれぞれ独立させて燃焼させる通常運転モードの制御を実行することを特徴とする請求項1記載の火花点火式エンジンの制御装置。
  3. 特殊運転モードの制御が実行される運転領域では、少なくとも後続気筒を圧縮自己着火により燃焼を行わせることを特徴とする請求項1記載の火花点火式エンジンの制御装置。
  4. 吸気導入経路に設けられた燃料噴射弁から各気筒内に燃料を供給するとともに、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、
    エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒及び後続気筒の空燃比を理論空燃比よりも大きいリーン空燃比として圧縮自己着火により燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、
    上記特殊運転モードの制御が実行される運転領域で、上記気筒間ガス通路内に先行気筒の既燃ガスを導入させる前に、後続気筒内に新気を導入する新気導入弁を開弁するとともに、上記燃料噴射弁から燃料を噴射させるように制御する燃焼状態制御手段とを備え、
    排気通路には三元触媒または酸化触媒の少なくとも一方が配設されたことを特徴とする火花点火式エンジンの制御装置。
  5. 特殊運転モードの制御が実行される運転領域で、過給機により加圧された吸気を各気筒に供給して各気筒の空燃比を理論空燃比よりも大きいリーン空燃比とすることを特徴とする請求項4記載の火花点火式エンジンの制御装置。
JP2002287904A 2002-09-30 2002-09-30 火花点火式エンジンの制御装置 Pending JP2004124761A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287904A JP2004124761A (ja) 2002-09-30 2002-09-30 火花点火式エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287904A JP2004124761A (ja) 2002-09-30 2002-09-30 火花点火式エンジンの制御装置

Publications (1)

Publication Number Publication Date
JP2004124761A true JP2004124761A (ja) 2004-04-22

Family

ID=32280549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287904A Pending JP2004124761A (ja) 2002-09-30 2002-09-30 火花点火式エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP2004124761A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140036A1 (ja) * 2007-05-09 2008-11-20 Cd-Adapco Japan Co., Ltd. 4サイクルエンジン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140036A1 (ja) * 2007-05-09 2008-11-20 Cd-Adapco Japan Co., Ltd. 4サイクルエンジン
JP4987076B2 (ja) * 2007-05-09 2012-07-25 株式会社畑村エンジン研究事務所 4サイクルエンジン
US8534261B2 (en) 2007-05-09 2013-09-17 Hatamura Engine Research Office Ltd. Four-cycle engine

Similar Documents

Publication Publication Date Title
JP3963144B2 (ja) 火花点火式エンジンの制御装置
JP3846393B2 (ja) 火花点火式エンジンの制御装置
JP2004132191A (ja) 火花点火式エンジンの制御装置
JP3711942B2 (ja) 過給機付エンジンの制御装置
JP4259255B2 (ja) 火花点火式エンジンの制御装置
JP3925379B2 (ja) 過給機付火花点火式エンジンの制御装置
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP4285091B2 (ja) 火花点火式エンジンの制御装置
JP3972744B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP2004124761A (ja) 火花点火式エンジンの制御装置
JP4107180B2 (ja) 火花点火式エンジンの制御装置
JP2006009656A (ja) ディーゼルエンジン
JP4052215B2 (ja) 火花点火式エンジンの制御装置
JP4123102B2 (ja) 火花点火式エンジンの制御装置
JP3894083B2 (ja) 火花点火式エンジンの制御装置
JP4329446B2 (ja) 火花点火式エンジンの制御装置
JP4158670B2 (ja) 火花点火式エンジンの制御装置
JP3951855B2 (ja) 火花点火式エンジンの制御装置
JP3900072B2 (ja) 火花点火式エンジンの制御装置
JP4052214B2 (ja) 火花点火式エンジンの制御装置
JP2005016358A (ja) 火花点火式エンジンの制御装置
JP3951829B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP2004360647A (ja) 火花点火式エンジンの制御装置
JP2005016360A (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904