JP2006009656A - ディーゼルエンジン - Google Patents

ディーゼルエンジン Download PDF

Info

Publication number
JP2006009656A
JP2006009656A JP2004186652A JP2004186652A JP2006009656A JP 2006009656 A JP2006009656 A JP 2006009656A JP 2004186652 A JP2004186652 A JP 2004186652A JP 2004186652 A JP2004186652 A JP 2004186652A JP 2006009656 A JP2006009656 A JP 2006009656A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
fuel
operation mode
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186652A
Other languages
English (en)
Other versions
JP4274060B2 (ja
Inventor
Mitsuo Hitomi
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004186652A priority Critical patent/JP4274060B2/ja
Publication of JP2006009656A publication Critical patent/JP2006009656A/ja
Application granted granted Critical
Publication of JP4274060B2 publication Critical patent/JP4274060B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 エンジンの低負荷側運転領域における燃費を良好なまま維持しつつ、NOxを低減することによりエミッション性を向上させることができる。
【解決手段】 エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒2A,2Dから排出される既燃ガスが吸気行程にある後続気筒2B,2Cに導入され、この後続気筒2B,2Cから排出されるガスが排気通路に導かれるような2気筒接続状態とされる。先行気筒2A,2Dでは、燃焼を行わせ、その既燃ガスに新たに燃料を供給して後続気筒2B,2Cの燃焼を行わせる特殊運転モードの制御を実行する。特殊運転モードにおいては燃料噴射制御手段によって後続気筒分の燃料噴射を制御し、この燃料噴射制御手段は、特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域で、先行気筒2A,2Dで後続気筒分の燃料を噴射するように制御するとともにその噴射開始時期を先行気筒2A,2Dの膨張行程後半における所定時期に設定する。
【選択図】 図6

Description

本発明は、ディーゼルエンジンに関し、より詳しくは、多気筒ディーゼルエンジンにおいて燃費改善およびエミッション向上のために各気筒の燃焼状態を制御するディーゼルエンジンに関するものである。
従来から、ディーゼルエンジンにおいて、燃費を改善しつつエミッション性を向上させるために、燃料の主噴射の前に予備噴射を行って当該予備噴射燃料を燃焼室内に均一に拡散させ、主噴射燃料を核としてこの均一に拡散された予備噴射燃料を一気に燃焼させる技術、いわゆる予混合燃焼に関する技術は一般的に知られている。例えば、特許文献1に示されるように、吸気行程初期に燃料を噴射する予備噴射を実行し、圧縮行程終期および膨張行程初期における所定時期に2回にわたって予備噴射燃料による希薄混合気中に主噴射を実行して燃焼を一気に行わせるディーゼルエンジンが知られている。
また、この特許文献1に記載のディーゼルエンジンでは、吸気温度を上昇させるべく外部EGR通路(排気ガス還流通路)を設け、エンジンの運転状態に応じて外部EGR量を変化させることにより安定燃焼させてエミッション性を向上させたり、シリンダライナの壁面への燃料の付着を防止すべく燃料噴射ノズルを調整して、HCの排出を抑制する等、燃費を改善しつつエミッション性を向上するための種々の工夫が提案されている。
特開2002−322922号公報
ここで、出力を確保しつつエミッション性を向上させるため、特に窒素酸化物(NOx)の生成を抑制するためには、噴射燃料を同時多点着火により一気に燃焼させることが好ましい。従って、圧縮行程の後半に燃料を噴射させて噴射燃料を順次燃焼させるいわゆる拡散燃焼よりも特許文献1に開示されるような上記予混合燃焼、より好ましくは特許文献1に示される予混合燃焼よりも一歩進んで当該予備噴射時期に相当する時期などに全燃料を噴射させて燃料を均一に分散させて燃焼させる燃焼形態を採用するのが好ましい。
ところが、ディーゼルエンジンにおいては軽油等の気化温度の高い燃料が一般的に使用されることから、特許文献1に示されるようなディーゼルエンジンでは、エンジンの運転状態によっては、特にエンジンの低負荷側運転領域においては筒内温度が低いため、燃料の予備噴射時期に全ての燃料を噴射すると全燃料が適正に気化せず、シリンダ壁面に付着して燃費が悪化したり、すすが生じたり等の不具合を生じる。この不具合は、上記特許文献1に示されるような外部EGRや燃料噴射ノズルの改良によっても十分に改善することができない。
本発明は、このような技術に基づき、特にエンジンの低負荷側運転領域における燃費を良好なまま維持しつつ、NOxを低減することによりエミッション性を向上させることができるディーゼルエンジンを提供するものである。
ここで、本願出願人は、鋭意研究の結果、先に出願した火花点火式エンジンの制御装置に関する技術(特開2003−227377号)、すなわちエンジンの部分負荷域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入される2気筒接続状態とするとともに、先行気筒では空燃比を理論空燃比よりも大きいリーン空燃比にして、強制点火により燃焼を行わせ、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して圧縮自己着火により燃焼を行わせるようにした火花点火式エンジンの制御装置に関する技術を応用することを知見するに至り、そして、気化温度の高いディーゼルエンジンの燃料の気化を促すべくさらに改良を加え、燃料を均質に分布させて一気に燃焼させることにより燃費を悪化させることなく、エミッション性を向上させるようにしたものである。
すなわち、本願請求項1に係る発明は、各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒のディーゼルエンジンにおいて、エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒で燃焼を行わせ、この先行気筒における既燃ガスに新たに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、この特殊運転モードにおける後続気筒分の燃料噴射を制御する燃料噴射制御手段とを備え、この燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域では、先行気筒で後続気筒分の燃料を噴射するように制御するとともにその噴射開始時期を上記先行気筒の膨張行程後半における所定時期に設定することを特徴とするものである。
この発明によれば、先行気筒での燃焼終了後における膨張行程後半でこの既燃ガスに対して後続気筒分の燃料の噴射が開始されるので、気化温度の高い燃料でも燃焼終了直後の高温の既燃ガスにより供給燃料の気化が促進される。また、膨張行程後半時に噴射された燃料が例えシリンダの壁面に付着したとしても、膨張行程から排気行程へ移行されるまでに充分に気化時間があり、またこの行程の移行に伴って壁面の燃料がピストンによって掻き落とされ、出力に寄与しない無駄な燃料消費を抑制して燃費の悪化を回避することができるとともにすすの発生を可及的に抑制することができる。そして、この混合気が先行気筒から後続気筒に気筒間ガス通路を介して導入され、後続気筒での吸気行程を経る間に燃料が充分に気化して空気とミキシングされ、また後続気筒の燃焼室内に均一に拡散されるので、同時多点圧縮自己着火によって燃焼室全体にわたり一気に燃焼させることができ、これにより酸素と窒素との反応を可及的に回避して窒素酸化物(NOx)の発生を抑制することができる。また、後続気筒では先行気筒からの既燃ガスが導入されることにより多量のEGR(排気再循環)が行われているのと同等の状態となることからNOxの発生を十分に抑制して排気ガスの浄化に寄与することになる。
上記先行気筒から排出される既燃ガスは先行気筒の排気通路を利用してこの排気通路と後続気筒の吸気通路とを接続し、当該先行気筒の排気通路に経路切換手段を設け、この経路切換手段を切り換えることにより、上記既燃ガスが排気通路を通じて排気される経路とこの排気通路を通じて後続気筒の吸気通路に接続される経路とを切換可能に構成されるものであってもよいが、この先行気筒の既燃ガスが気筒間ガス通路を介して上記後続気筒に導入されるものが好ましい(請求項2)。
このように構成すれば、気筒のポート同士を直接結ぶ気筒間ガス通路という専用の通路を設けることにより気筒間ガス通路を短く設定することができ、従って既燃ガスの温度低下を可及的に抑制しつつこの既燃ガスを後続気筒に導入させることができ、供給燃料を適正に気化させることができる。
上記特殊運転モードとされる運転領域のうち高負荷側の運転領域における燃料噴射時期は膨張行程の後半であっても良いが、特に限定するものではなく、例えば上記燃料噴射制御手段は、エンジンの負荷が増大して上記特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行するに従って、先行気筒での後続気筒分の燃料の噴射開始時期を排気行程前半までの所定時期に遅らせるものとしてもよい(請求項3)。
すなわち、エンジンの負荷が増大して特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行すると、燃料の噴射量が増加して気筒内温度が上昇する。先行気筒の筒内温度が上昇すると先行気筒で噴射された後続気筒分の燃料が先行気筒で一部熱エネルギーに変換され、後続気筒の仕事に寄与せず燃費が悪化する虞がある。従って、上記のように構成すれば、気化温度の高い燃料の気化を促進させつつ、該燃料の一部が気化後に先行気筒において熱エネルギーに変換される(燃焼される)のを効果的に抑制することができ、これにより燃費を良好に維持しつつエミッション性を向上させることができる。
この特殊運転モードとされる運転領域よりも高負荷側の運転領域において運転モード制御手段により制御される燃焼形態や燃料噴射形態等を特に限定するものではないが、上記運転モード制御手段は、上記特殊運転モードとされる運転領域よりも高負荷側の運転領域で、各気筒にそれぞれ新気を導入させて各気筒を独立状態で燃焼させる通常運転モードの制御を実行するように構成され、上記燃料噴射制御手段は、この通常運転モードにおいて各気筒に対して燃料を噴射するように制御するとともにその燃料噴射時期を各気筒の圧縮行程に設定するのが好ましい(請求項4)。
このように構成すれば、低負荷運転領域では燃費およびエミッションの改善が図られる一方、高負荷側運転領域では出力性能が確保される。
また、この発明において、上記運転モード制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御するのが好ましい(請求項5)。
すなわち、特殊運転モードでは先行気筒における高温の既燃ガスを後続気筒に導入するので、特殊運転モードとされる運転領域のうち高負荷側の運転領域では後続気筒で過早着火の発生が懸念される。従って、上記のように構成すれば、後続気筒内に新気を導入する新気導入用吸気弁をさらに設けて、この吸気弁を開弁することにより既燃ガスに加えて新気を後続気筒内に導入させて、既燃ガス温度の上昇を抑制することにより過早着火を効果的に防止することができる。
さらに、上記燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち高負荷側の運転領域において後続気筒分の燃料を一括して噴射するものであってもよいが、例えば、後続気筒分の燃料の噴射を先行気筒での前期噴射と後続気筒での後期噴射とに分割して行うように設定するとともに、この分割噴射時における燃料の後期噴射時期を当該後続気筒の圧縮行程後半に設定するのが好ましい(請求項6)。
上記したように、特殊運転モードとされる運転領域のうち高負荷側の運転領域では後続気筒で過早着火の発生が懸念されるが、上記のように構成すれば、燃料噴射制御手段により後続気筒分の燃料を分割して噴射するように設定され、この分割噴射時における後期噴射時期を後続気筒における圧縮行程の後半に噴射するように制御するので、エンジンの出力を確保しつつ、後期噴射分の燃料の気化潜熱を利用して後続気筒での温度および圧力を低下させ、かつ、後期噴射分の燃料の活性化を抑制して、過早着火の発生を効果的に防止することができる。
また、この発明において、上記先行気筒に吸気を過給する過給機をさらに備えるのが好ましい(請求項7)。
このように構成すれば、先行気筒にも充分に空気を吸気させることができ、先行気筒での窒素酸化物の発生を効果的に抑制することができる。ここで、特殊運転モードとされる運転領域のうち低負荷側の運転領域では、特に過給機を設けている場合には、過剰空気によって既燃ガスの温度が高負荷側の温度よりも低くなるため供給燃料の気化が問題となるが、本発明では上記したように後続気筒分の燃料を先行気筒の膨張行程の後半、言い換えると先行気筒の燃焼終了直後に噴射しているので、気化効率がよく、供給燃料が充分にミキシングして後続気筒で一気に燃焼させることができ、窒化酸化物の発生を抑制してエミッション性を向上させることができる。
本発明のディーゼルエンジンによれば、特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域において、気化温度がガソリンよりも比較的高い燃料についても効果的に気化させることができ、この気化した燃料を空気と充分にミキシングさせつつ後続気筒の燃焼室内に均質拡散させ、後続気筒で一気に燃焼させることができるという利点がある。従って、窒素と酸素の反応を可及的に抑制して窒素酸化物の生成を可及的に抑制することができ、エミッション性を向上させることができる。しかも、例え後続気筒分の燃料の噴射によって先行気筒のシリンダの壁面に燃料が付着したとしても、膨張行程から排気行程への移行期間に充分に気化させることができ、また壁面に付着した燃料をピストンによって掻き上げて効率的に燃料を気化させることができ、これにより燃費を良好なまま維持しつつ、すすの発生を効果的に抑制することができる。
以下、図面に基づいて本発明の実施の形態について説明する。
(第1実施形態)
図1は本発明の第1実施形態によるディーゼルエンジンの概略構成を示し、図2はディーゼルエンジン本体の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射手段としての燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁及びソレノイドを内蔵し、後述のパルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。この燃料噴射弁9には、図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ、圧縮行程での燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
そして、各気筒2A〜2Dが所定の位相差をもって吸気、圧縮、膨張、排気の各行程からなる燃焼サイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図5に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって燃焼サイクルが行われるようになっている。なお、図5において、EXは排気行程、INは吸気行程、Fは燃料噴射を表し、図中の星マークは圧縮着火が行われることを表している。また、同図の燃料噴射Fについては、先行気筒分の燃料はF1、後続気筒用の燃料はF2で示している。
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)へ既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態では、図5に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、及び4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2A及び4番気筒2Dが先行気筒、2番気筒2B及び3番気筒2Cが後続気筒となる。
各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路及び気筒間ガス通路は、具体的には次のように構成されている。
先行気筒である1番気筒2A及び4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2B及び3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート12とが配設されている。
図1に示す例では、1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室4の一方側半部に並列的に設けられる一方、1番,4番気筒2A,2Dにおける第1排気ポート12a及び第2排気ポート12bならびに2番,3番気筒2B,2Cにおける第2吸気ポート11b及び排気ポート12が、燃焼室4の他方側半部に並列的に設けられている。
1番,4番気筒2A,2Dにおける吸気ポート11および2番,3番気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。
1番,4番気筒2A,2Dにおける第1排気ポート12aおよび2番,3番気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端が接続されている。また、1番気筒2Aと2番気筒2Bとの間及び3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端が接続されている。
上記気筒間ガス通路22には、後続気筒2B,2Cに導入される既燃ガス温度を検出するための既燃ガス温度センサ25が設けられ、このセンサ25の検出結果が後述するECU40に送信されるようになっている。
排気通路20における分岐排気通路21は下流で集合し、さらにその下流の排気通路20には酸化触媒24が設けられている。この酸化触媒24は、一般的に知られているように、各気筒2A〜2Dから排気された排気ガス中に炭化水素や一酸化炭素を触媒活性化温度のもと酸化するための触媒である。
この分岐排気通路21の集合部と酸化触媒24との間には、過給機27のタービン28が配設されている。この過給機27は、先行気筒2A,2Dに対して吸気を補助するものであり、本実施形態ではターボ過給機が設けられている。また、過給機27は、本実施形態では、後述する特殊運転モードでも通常運転モードでも、先行気筒2A,2Dの吸気を補助するように駆動されるが、場合によっては運転状態に応じて過給を制限するものであっても良い。
具体的には、この過給機27は、分岐排気通路21を介して各排気ポート12,12a,12bに連通する排気通路20に設けられたタービン28と各吸気ポート11,11a,11bに連通する吸気通路15に設けられ上記タービン28に連動するコンプレッサ29とを有し、排気通路20を流通する排気ガスのエネルギーでタービン28が回転し、このタービン28の回転に連動してコンプレッサ29も回転し、このコンプレッサ29の回転により吸気を過給するものとなされている。なお、過給機としては、上記ターボ過給機27に限定されるものではなく、機械式過給機等であっても良いが、ターボ過給機27を設けることにより、排圧が高くなるため、先行気筒2A,2Dに既燃ガスを残存させやすくなり、この残存既燃ガスによって先行気筒2A,2Dでの既燃ガス温度が一層高温となり、ガソリンよりも気化温度の高い燃料(例えば軽油)の気化が促進される点で有利である。なお、過給機27によって過給される吸気温度を下げるためのインタークラー26がコンプレッサ29の下流側の吸気通路15に設けられている。
各気筒の吸・排気ポートを開閉する吸・排気弁とこれらに対する動弁機構は、次のようになっている。すなわち、1番,4番気筒2A,2Dにおける吸気ポート11、第1排気ポート12a及び第2排気ポート12bにはそれぞれ吸気弁31、第1排気弁32a及び第2排気弁32bが設けられ、また、2番,3番気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11b及び排気ポート12にはそれぞれ第1吸気弁31a、第2吸気弁31b及び排気弁32が設けられている。そして、各気筒の吸気行程や排気行程が上述のような所定の位相差をもって行われるように、これら吸・排気弁がそれぞれカムシャフト33,34等からなる動弁機構により所定のタイミングで開閉するように駆動される。
さらに、これらの吸・排気弁のうちで第1排気弁32a、第2排気弁32bに対しては、各弁を作動状態と停止状態とに切り換える弁停止機構35aが設けられている。この弁停止機構35aは、従来から知られているため、詳しい図示は省略するが、例えば、カムシャフト33,34のカムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムの作動が弁に伝えられなくなることで弁が停止されるようになっている。
一方、、吸・排気弁のうちで第1吸気弁31a及び第2吸気弁31bに対しては、作動状態と停止状態とに切り換えるだけでなく、作動状態においても複数段階(当実施形態では2段階)にわたってバルブタイミングを切り換えるバルブタイミング切換機構35b,35cが設けられている。すなわち、バルブタイミング切換機構35b,35cは、各後続気筒2B,2Cの吸・排気行程に開弁する通常の開弁動作に加えて、後述する特殊運転モードとされる運転領域Aのうち高負荷側の運転領域A2では、後続気筒2B,2Cの吸気行程初期において第1吸気弁31aが開弁されるように構成されるとともに、第2吸気弁31bの開弁時期を遅らせ、かつ開弁期間が短くなるように構成されている(図6の点線または図12の弁動作参照)。従って、これらの各吸気弁31a,31bについての上記カムは、弁停止用のカムと、高負荷側の運転領域A2用のカムと、通常の弁作動用のカムの3種類設けられている。なお、これらのカム切換機構は従来からよく知られているので、ここでは図示を省略している。
上記第1排気弁32aの弁停止機構35aと第1吸気弁31aの弁停止機構35bとに対する作動油給排用の通路36には第1コントロール弁37が、また第2排気弁32bの弁停止機構35aと第2吸気弁31bのバルブタイミング切換機構35cとに対する作動油給排用の通路38には第2コントロール弁39がそれぞれ設けられている(図3参照)。特に、第1吸気弁31aおよび第2吸気弁31bのバルブタイミング切換機構35b、35cには作動油給排用の通路36,38にも接続されている。
図3はエンジンの駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、既燃ガス温度センサ25からの信号が入力されるとともに、エンジンの冷却水温度を検出する水温センサ51からの信号が入力され、さらに運転状態を判別するためにエンジン回転数を検出する回転数センサ52及びアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ53等からの信号も入力されている。また、このECU40から、各燃料噴射弁9と、上記第1,第2のコントロール弁37,39とに対して制御信号が出力されている。
上記ECU40は、その機能構成として運転状態判別手段41、モード設定手段42、弁開閉制御手段43および燃料噴射制御手段44等を備えている。
運転状態判別手段41は、図4に示すようにエンジンの運転領域が低速低負荷側の領域Aと高速側ないし高負荷側の領域Bとに分けられた制御用マップを有し、上記回転数センサ52及びアクセル開度センサ53等からの信号より調べられるエンジンの運転状態(エンジン回転数及びエンジン負荷)が上記領域A,Bのいずれにあるかを判別する。また、運転状態判別手段41は、運転状態が特殊運転モード領域Aにある場合に、この領域Aのうちの低負荷側運転領域A1と高負荷側運転領域A2のいずれにあるかを判別するようになっている。
モード設定手段42は、運転状態判別手段41の判別に基づき、低負荷低回転側の運転領域Aでは、排気行程にある先行気筒2A,2Dから排出される既燃ガスをそのまま吸気行程にある後続気筒2B,2Cに導入して燃焼させる特殊運転モードを選択し、高負荷側ないし高回転側の運転領域Bでは、各気筒をそれぞれ独立させ燃焼させる通常運転モードを選択するようになっている。
弁開閉制御手段43は、モード設定手段42によるモードの設定に応じ、特殊運転モードでは気筒間ガス通路22を介して先行気筒(1番、4番気筒)2A,2Dの既燃ガスを後続気筒(2番、3番気筒)2B,2Cに導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく弁停止機構35aやバルブタイミング切換機構35b,35cを制御するもので、具体的には、運転状態が領域A,Bのいずれかにあるかに応じ、上記コントロール弁37,39を制御することにより、原則として各弁停止機構35a等を次のように制御する。
領域A:(特殊運転モード)
第1排気弁32a及び第1吸気弁31aを停止状態
第2排気弁32b及び第2吸気弁31bを作動状態
領域B:(通常運転モード)
第1排気弁32a及び第1吸気弁31aを作動状態
第2排気弁32b及び第2吸気弁31bを停止状態
また、この弁開閉制御手段43は、特殊運転モードが選択されている場合であって、上記運転状態判別手段41の判別に基づきエンジンの運転状態が高負荷側の運転領域A2にある場合に、後続気筒2B,2C内に新気を導入する新気導入用吸気弁(第1吸気弁31a)を一時的に開弁するようにバルブタイミング切換機構35bを制御する。具体的には、弁開閉制御手段43は、運転領域A2にある場合に、停止状態にある第1吸気弁31aを後続気筒2B,2Cの吸気上死点付近から吸気行程の途中に至る所定期間開弁させるべくバルブタイミング切換機構35bを制御して当該切換機構35bのカムを切り換えるとともに、作動状態にある第2吸気弁31bの開弁時期を遅らせるべくバルブタイミング切換機構35cを制御して当該切換機構35cのカムを切り換えるように構成されている。
燃料噴射制御手段44は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量及び噴射タイミングをエンジンの運転状態に応じて制御するものであり、運転状態判別手段41からの判別結果に基づいて燃料の制御が変更される。
すなわち、特殊運転モードが設定された場合には、先行気筒2A,2Dに対しては、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御するとともに、圧縮行程で燃料を噴射して拡散燃焼を行わせるように噴射時期を設定している。一方、後続気筒2B,2Cに対しては、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御するとともに、この燃料を当該先行気筒2A,2Dで供給するように、すなわち、後続気筒分の燃料を先行気筒2A,2Dの燃料噴射弁9によって直接燃焼室4内に噴射するように燃料噴射時期を設定するとともに燃料噴射弁9を選択し、当該後続気筒2B,2Cでは均質圧縮着火を行わせる。
ここで、後続気筒分の具体的燃料噴射時期は、運転状態判別手段41による判別に基づいて、特殊運転モードとされる運転領域Aのうち低負荷側の運転領域A1にあるか、高負荷側の運転領域A2にあるかで異なる。すなわち、燃料噴射制御手段44は、低負荷側の運転領域A1にある場合には、図6に示すように、先行気筒2A,2Dの膨張行程後半から後続気筒分の燃料の噴射が開始され(開始時点TFS)、該膨張行程後半で全噴射量が噴射されるように(終了時点TFE)設定する一方、高負荷側の運転領域A2にある場合には、図示していないが、低負荷側の運転領域A1にある場合に比べて燃料の噴射時期を遅らせて、後続気筒分の燃料を先行気筒2A,2Dの排気行程前半で噴射するように設定する。そして、先行気筒2A,2Dで噴射された後続気筒分の燃料は既燃ガスとともに気筒間ガス通路22を通って後続気筒2B,2Cに導入される。
また、通常運転モードが選択された場合には、燃料噴射制御手段44は、アクセル開度センサ53からの入力に基づいて燃料噴射量を制御し、各気筒2A〜2Dに設けられた燃料噴射弁9により圧縮行程後半で各気筒2A〜2Dの燃料を噴射するように設定することにより、各気筒2A〜2Dで拡散燃焼を行わせるようにしている。
次に、以上のような実施形態の装置の作用を、図5〜図8を参照しつつ説明する。
低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが停止状態、第2排気弁32b及び第2吸気弁31bが作動状態とされることにより、実質的な新気及びガスの流通経路は図7に示すように、先行気筒2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが排気通路20に導かれるような2気筒接続状態とされる。
この状態において、過給機27によって吸気を過給されながら先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図7中の矢印a)、アクセル開度センサ53からの検出に基づき燃料噴射量が制御されつつ圧縮行程の後半で燃料が噴射され(図5および図6中のF1)、これにより先行気筒2A,2Dにおいて拡散燃焼が行われる(図5参照)。
この拡散燃焼が終了すると、すなわちエンジンの運転状態が運転領域A1にある場合には先行気筒2A,2Dの膨張行程後半に、一方運転領域A2にある場合には先行気筒2A,2Dの排気行程前半に、後続気筒用の燃料が先行気筒2A,2Dの燃焼室4内に直接噴射される(図5および図6中のF2)。
そして、この先行気筒2A,2Dの排気行程と後続気筒2B,2Cの吸気行程が重なる期間に、この燃料を含んだ既燃ガスが先行気筒2A,2Dから排出されつつ気筒間ガス通路22を通って後続気筒2B,2Cに導入される(図5、図6中の白抜き矢印及び図7中の矢印b)。そして、後続気筒2B,2Cにおいて、圧縮行程の上死点付近で燃焼室4内の圧力、温度の上昇により圧縮自己着火が行われる。
この場合、先行気筒2A,2Dで燃焼された直後の高温の既燃ガスに軽油等の気化温度が比較的高い燃料が噴射され、しかもこの噴射後、後続気筒2B,2Cで燃焼が行われるまでの間に充分な気化時間があることから、先行気筒2A,2Dで噴射された後続気筒分の燃料は適正に気化し、後続気筒2B,2Cでの燃焼は燃焼室4の略全体に燃料が拡散された均質混合気中で行われることになり同時多点着火により燃焼室4全体に一気に拡がる。
そして、後続気筒2B,2Cでの燃焼後の既燃ガスは、排気通路20に排出されることとなる(図7中の矢印c)。
このように、先行気筒2A,2Dでは通常のディーゼルエンジンと同様の燃焼が行われるものの、この先行気筒2A,2Dでの燃焼終了後にこの既燃ガスに対して後続気筒分の燃料の噴射が開始されるので、軽油等気化温度の高い燃料でも燃焼終了直後の高温の既燃ガスにより供給燃料の気化が促進される。特に、低負荷側の運転領域A1では、筒内温度が低いことも多く、通常のディーゼルエンジンによれば均質燃焼させるべく予め燃料を噴射しても高圧で噴射された燃料はその多くがシリンダ壁面に付着して燃焼エネルギーに寄与しないばかりか、燃えかすがすすとなって排出されるのに対し、当実施形態のディーゼルエンジンによれば、燃焼終了直後の膨張行程の後半で極めて高温の既燃ガス中に燃料が噴射されることからその気化が促進されるとともに、例え壁面に付着したとしても先行気筒2A,2Dのピストン3が膨張行程から排気行程に移行されるに伴い、付着した燃料が掻き上げられ、かつ充分な気化時間もあり、これによりその燃料の気化も促進される。従って、出力に寄与しない無駄な燃料消費を抑制して燃費の悪化を回避することができるとともにすすの発生を可及的に抑制することができる。
そして、この混合気が先行気筒2A,2Dから後続気筒2B,2Cに気筒間ガス通路22を介して導入され、後続気筒2B,2Cでの吸気行程を経る間に燃料が充分に気化して既燃ガス等とミキシングされ、その燃焼室4内に均一に拡散されるので、多点圧縮自己着火によって燃焼室4全体にわたり一気に燃焼させることができ、これにより酸素と窒素との反応を可及的に回避して窒素酸化物(NOx)の発生を抑制することができる。また、後続気筒では先行気筒からの既燃ガスが導入されることにより多量のEGR(排気再循環)が行われているのと同等の状態となり、これによってもNOxの発生を十分に抑制して排気ガスの浄化に寄与することになる。
しかも、気筒間ガス通路22が隣接する気筒間に各ポートを直接連結するように配置されるので、気筒間ガス通路22も短く形成することができ、これにより先行気筒2A,2Dから排出される既燃ガスの温度低下を可及的に抑制して、気化した供給燃料の再液化を効果的に防止することができ、NOxおよびすすの発生を効果的に抑制することができる。
また、燃料噴射制御手段44は、気筒内温度の低いことが多い低負荷側運転領域A1では、先行気筒2A,2Dの燃焼終了後の膨張行程後半に燃料の噴射を開始してその気化を促進させるとともに、エンジンの負荷が増大して高負荷側の運転領域A2に移行した場合には、極めて高温の既燃ガス中に燃料を噴射してこの燃料の一部が先行気筒2A,2Dで熱エネルギーに変換され、燃費が悪化することを回避すべく、その噴射タイミングを先行気筒2A,2Dの排気行程前半に変更する。
特に、当実施形態では、先行気筒2A,2Dに吸気を過給する過給機27が設けられているので、既燃ガス温度の低下が懸念されるが、上記したように、先行気筒2A,2Dの燃焼終了直後に燃料が噴射されるので、後続気筒分の燃料が気化せず燃費が悪化するという事態を効果的に防止することができる。また、過給機27により先行気筒2A,2Dに充分に空気を吸気させてリーン度合を高めることにより、先行気筒2A,2Dの窒素酸化物(NOx)の発生を抑制することができ、エミッション性を向上させることもできる。
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1排気弁32a及び第1吸気弁31aが作動状態、第2排気弁32b及び第2吸気弁31bが停止状態とされることにより、実質的な新気及びガスの流通経路は図8に示すようになり、実質的に各気筒2A〜2Dの吸気ポート11,11a及び排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11,11aに新気が導入されるとともに各気筒2A〜2Dの排気ポート12,12aから排気通路20に既燃ガスが排出される。
(第2実施形態)
図9は本発明の第2実施形態によるディーゼルエンジンの概略構成を示している。この第2実施形態は、先行気筒2A,2Dの既燃ガスを後続気筒2B,2Cに導入するための通路の具体的構成において異なり、これに伴ってECU40の機能も若干異なっている。以下、この異なっている点を重点的に説明し、その他の点は図面に同一符号を付してその説明を省略する。
すなわち、上記第1実施形態では、先行気筒2A,2Dと後続気筒2B,2Cとを各々専用の気筒間ガス通路22で接続し、先行気筒2A,2Dの既燃ガスをこの気筒間ガス通路22を通して後続気筒2B,2Cに導入するものとなされていたが、当第2実施形態では、上記先行気筒2A,2Dの各分岐排気通路210が合流した合流排気通路210aで後続気筒2B,2Cの分岐吸気通路161に接続通路220を介して接続されるとともに、この第1および第4気筒2A,2Dから排出された既燃ガスの経路を特殊運転モード時に接続通路220側に切り換え、かつ、通常モード時に排気通路20に切り換える経路切換手段(当実施形態では切替弁)19a,19b,19cとが設けられている。
具体的には、吸気通路15は、各気筒2A〜2Dの吸気ポート11に至るまでの所定部分で3方向に分岐し、中央の連通路160aを挟んだ両側の通路が先行気筒用分岐吸気通路160として構成され、この先行気筒用分岐吸気通路160の下流端に先行気筒2A,2Dの吸気ポート11が接続されている。一方、上記中央の連通路160aは、その下流側でさらに3方向に分岐し、中央の通路が接続通路220として構成されているとともに、この接続通路220を挟んだ両側が後続気筒用分岐吸気通路161として構成され、この後続気筒用分岐吸気通路161の下流端に後続気筒2B,2Cの吸気ポート11が接続されている。
一方、上流端が先行気筒2A,2Dの排気ポート12に接続された後続気筒用分岐排気通路210はその下流側で合流して先行気筒用合流排気通路210aが構成され、この合流部分には上記接続通路220が接続されている。そして、この合流排気通路210aの下流側には、上流端が後続気筒2B,2Cの排気ポート12に接続された後続気筒用分岐排気通路211が両側から合流して排気通路20に連通するものとなされている。
そして、吸気通路15から分岐した中央連通路160aと、接続通路220と、先行気筒用合流排気通路210aには、それぞれ各通路を開閉することによりガス経路を切り換える第1ないし第3切替弁19a,19b,19cが設けられている。この切替弁19a,19b,19cのアクチュエータ(図示せず)はECU40に接続され、ECU40の弁開閉制御手段43によって開閉制御が実行されるようになっている(図3参照)。なお、図3は上記第1実施形態に係るECU40等について図示されているが、第2実施形態においてもECU40についての構成図は変わらないため、これを援用して説明する。
すなわち、ECU40は、上記第1実施形態と同様に、運転状態判別手段41、モード設定手段42、弁開閉制御手段43、燃料噴射制御手段44とを備える。弁開閉制御手段43をのぞく構成は、上記第1実施形態と同様であるので、ここではその説明を省略する。
弁開閉制御手段43は、モード設定手段42によるモードの設定に応じ、特殊運転モードでは気筒間ガス通路22を介して先行気筒(1番、4番気筒)2A,2Dの既燃ガスを後続気筒(2番、3番気筒)2B,2Cに導入させる2気筒接続状態とし、通常運転モードでは各気筒にそれぞれ新気を導入させる各気筒独立状態とするように吸・排気流通状態を変更すべく切替弁19a,19b,19cのアクチュエータを制御するもので、具体的には、運転状態が領域A,Bのいずれかにあるかに応じて上記各アクチュエータ等を次のように制御する。
領域A:(特殊運転モード)
第1切替弁19a、第3切替弁19cを閉塞状態
第2切換弁19bを開放状態
領域B:(通常運転モード)
第1切換弁19a及び第3切換弁19cを開放状態
第2切換弁19bを閉塞状態
なお、この弁開閉制御手段43について、特殊運転モードが選択されている場合であって、上記運転状態判別手段41の判別に基づきエンジンの運転状態が高負荷側の運転領域A2にある場合に、第2切替弁19bを開放する前に第1切替弁19aを開放し、後続気筒2B,2Cに新気を導入するようにしてもよい。このように新気を後続気筒2B,2Cに導入することにより、後続気筒2B,2C内の温度上昇を抑制することができ、当該後続気筒2B,2Cでの不測の早期着火を防止することができ、また、後続気筒2B,2Cでの燃焼のための燃料を増量することができて出力性能を向上させることができる。
次に、以上のような実施形態の装置の作用を、図10、図11を参照しつつ説明する。
低負荷低回転側の運転領域Aでは、特殊運転モードとされ前述のように第1切替弁19aおよび第3切替弁19cが開放状態、第2切替弁19bが閉塞状態とされることにより、実質的な新気およびガスの流通経路は図10に示すように、先行気筒2A,2Dから排出される既燃ガスがそのまま接続通路220を介して後続気筒2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される既燃ガスのみが排気通路20に導かれるような2気筒接続状態とされる。
この状態において、過給機27によって吸気を過給されながら先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から先行気筒用分岐吸気通路160に各々分岐して新気が導入され(図10中矢印d,e)、アクセル開度センサ53からの検出に基づき燃料噴射量が制御されつつ圧縮行程の後半で燃料が噴射され(図5および図6中のF1)、これにより先行気筒2A,2Dにおいて拡散燃焼が行われる(図5参照)。
この拡散燃焼が終了すると、すなわちエンジンの運転状態が運転領域A1にある場合には先行気筒2A,2Dの膨張行程後半に、一方運転領域A2にある場合には先行気筒2A,2Dの排気行程前半に、後続気筒用の燃料が先行気筒2A,2Dの燃焼室4内に直接噴射される(図5および図6中のF2)。
そして、この先行気筒2A,2Dの排気行程と後続気筒2B,2Cの吸気行程が重なる期間に、この燃料を含んだ既燃ガスが先行気筒2A,2Dから排出されつつ先行気筒用分岐排気通路210、接続通路220、後続気筒用分岐吸気通路161を通って後続気筒2B,2Cに導入される(図5、図6中の白抜き矢印及び図10中の矢印f、g、h)。そして、後続気筒2B,2Cにおいて、圧縮行程の上死点付近で燃焼室内の圧力、温度の上昇により圧縮自己着火が行われる。
この場合、先行気筒2A,2Dで燃焼された直後の高温の既燃ガスに軽油等の気化温度が比較的高い燃料が噴射され、しかもこの噴射後、後続気筒2B,2Cで燃焼が行われるまでの間に充分な気化時間があることから、先行気筒2A,2Dで噴射された後続気筒分の燃料は適正に気化し、後続気筒2B,2Cでの燃焼は燃焼室4の略全体に燃料が拡散された均質混合気中で行われることになり燃焼室4全体に一気に拡がる。
そして、後続気筒2B,2Cでの燃焼後の既燃ガスは、排気通路20に排出されることとなる(図10中の矢印j、k)。
一方、高負荷側ないし高回転側の運転領域Bでは、通常運転モードとされ前述のように第1切換弁19a及び第3切換弁19cが開放状態、第2切換弁19bが閉塞状態とされることにより、実質的な新気及びガスの流通経路は図11に示すようになり、実質的に各気筒2A〜2Dの吸気ポート11及び排気ポート12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11に新気が導入されるとともに各気筒2A〜2Dの排気ポート12から排気通路20に既燃ガスが排出される。
なお、本発明の装置の具体的構成は、上記第1および第2実施形態に限定されず、種々変更可能であり、その例を以下に説明する。
(1)上記実施形態では、膨張行程分の燃料を先行気筒2A,2Dで一挙に供給するものとなされているが、特殊運転モードとされる運転領域Aのうち一部運転領域、特に高負荷側の運転領域A2で膨張行程分の燃料を分割して噴射するように燃料噴射制御手段を設定してもよい。例えば、図12に示すように、分割噴射時における燃料の前期噴射時期を先行気筒2A,2Dの膨張行程後半で噴射するように設定する(図12中のF20)とともに、後期噴射を後続気筒2B,2Cで噴射するように燃料噴射弁9を設定し、かつこの後期噴射時期を後続気筒の圧縮行程後半に設定する(図12中のF21)ものとしてもよい。
このように構成すれば、エンジンの出力を確保しつつ、後期噴射分の燃料の気化潜熱を利用して後続気筒2B,2Cでの温度および圧力を低下させ、かつ、後期噴射分の燃料の活性化を抑制して、過早着火の発生を効果的に防止することができる。
また、先行気筒2A,2Dで一括して後続気筒分の燃料を噴射する場合でも、上記第1実施形態のように膨張行程の後半にその噴射を完了するものでなくてもよく、例えば図13に示すように、先行気筒2A,2Dの膨張行程後半に後続気筒分の燃料の噴射を開始して(図13中の開始時点TFS)、その噴射完了(図13中の完了時点TFE)が排気行程の前半にかかるものであってもよい。
なお、図13では、第1実施形態における場合と異なり、後続気筒2B,2Cには既燃ガスだけを導入するように構成され、新気は導入されないものとなっている。
(2)上記第1実施形態では特殊運転モードの制御が実行されている場合に、後続気筒分の燃料噴射時期をエンジンの負荷に応じて噴射時期を2段階(複数段)に変更するものとなされているが、これに限定するものではなく、この燃料噴射時期をエンジンの負荷に応じて連続的に遅らせていくものであってもよい。
(3)上記第1実施形態では、弁動作機構としてカムを用いた機械式弁開閉機構が用いられているが、このカム等を用いる機械式弁開閉機構に代えて、例えば電磁弁を用いた電気式弁開閉機構を用いるものであってもよい。
本発明に係るディーゼルエンジン全体の概略平面図である。 エンジン本体等の概略断面図である。 制御系統のブロック図である。 運転領域を示す説明図である。 各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。 一対の先行・後続気筒の各行程、燃料噴射時期および点火時期等を示す図である。 低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。 高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。 本発明に係るディーゼルエンジンの第2実施形態を示す概略平面図である。 低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。 高負荷、高低回転側の運転領域にある時の実質的な新気およびガスの流通経路を示す説明図である。 第2実施形態における低負荷、低回転時の実質的な新気およびガスの流通経路を示す説明図である。 第2実施形態における高負荷高回転時の実質的な新気およびガスの流通経路を示す説明図である。
符号の説明
1 エンジン本体
2A〜2D 気筒
9 燃料噴射弁
11 吸気ポート
11a 第1吸気ポート
11b 第2吸気ポート
12 排気ポート
12a 第1排気ポート
12b 第2排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
31 吸気弁
31a 第1吸気弁
31b 第2吸気弁
32 排気弁
32a 第1排気弁
32b 第2排気弁
35 弁停止機構
40 ECU
41 運転状態判別手段
43 弁開閉構制御手段
44 燃料噴射制御手段

Claims (7)

  1. 各気筒の燃焼サイクルが所定の位相差をもって行われるようになっている多気筒のディーゼルエンジンにおいて、
    エンジンの部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に導入され、この後続気筒から排出されるガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒で燃焼を行わせ、この先行気筒における既燃ガスに新たに燃料を供給して後続気筒の燃焼を行わせる特殊運転モードの制御を実行する運転モード制御手段と、この特殊運転モードにおける後続気筒分の燃料噴射を制御する燃料噴射制御手段とを備え、
    この燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうち少なくとも低負荷側の運転領域では、先行気筒で後続気筒分の燃料を噴射するように制御するとともにその噴射開始時期を上記先行気筒の膨張行程後半における所定時期に設定することを特徴とするディーゼルエンジン。
  2. 上記先行気筒から排出される既燃ガスが気筒間ガス通路を介して上記後続気筒に導入されることを特徴とする請求項1に記載のディーゼルエンジン。
  3. 上記燃料噴射制御手段は、エンジンの負荷が増大して上記特殊運転モードとされる運転領域のうち低負荷側の運転領域から高負荷側の運転領域に移行するに従って、先行気筒での後続気筒分の燃料の噴射開始時期を排気行程前半までの所定時期に遅らせることを特徴とする請求項1または請求項2記載のディーゼルエンジン。
  4. 上記運転モード制御手段は、上記特殊運転モードとされる運転領域よりも高負荷側の運転領域で、各気筒にそれぞれ新気を導入させて各気筒を独立状態で燃焼させる通常運転モードの制御を実行するように構成され、上記燃料噴射制御手段は、この通常運転モードにおいて各気筒に対して燃料を噴射するように制御するとともにその燃料噴射時期を各気筒の圧縮行程に設定することを特徴とする請求項1ないし請求項3のいずれか1項に記載のディーゼルエンジン。
  5. 上記運転モード制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒内に新気を導入する新気導入用吸気弁を開弁することにより、上記先行気筒から導出された既燃ガスに加えて新気を後続気筒内に導入させるように制御することを特徴とする請求項1ないし請求項4のいずれか1項に記載のディーゼルエンジン。
  6. 上記燃料噴射制御手段は、上記特殊運転モードとされる運転領域のうちの高負荷側の運転領域で、後続気筒分の燃料の噴射を先行気筒での前期噴射と後続気筒での後期噴射とに分割して行うように設定するとともに、この分割噴射時における燃料の後期噴射時期を当該後続気筒の圧縮行程後半に設定することを特徴とする請求項1ないし請求項5のいずれか1項に記載のディーゼルエンジン。
  7. 上記先行気筒に吸気を過給する過給機をさらに備えることを特徴とする請求項1ないし請求項6のいずれか1項に記載のディーゼルエンジン。
JP2004186652A 2004-06-24 2004-06-24 ディーゼルエンジン Expired - Fee Related JP4274060B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186652A JP4274060B2 (ja) 2004-06-24 2004-06-24 ディーゼルエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186652A JP4274060B2 (ja) 2004-06-24 2004-06-24 ディーゼルエンジン

Publications (2)

Publication Number Publication Date
JP2006009656A true JP2006009656A (ja) 2006-01-12
JP4274060B2 JP4274060B2 (ja) 2009-06-03

Family

ID=35777175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186652A Expired - Fee Related JP4274060B2 (ja) 2004-06-24 2004-06-24 ディーゼルエンジン

Country Status (1)

Country Link
JP (1) JP4274060B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011371A1 (en) * 2012-07-13 2014-01-16 General Electric Company Method and system for matching air flow in an exhaust gas recirculation system
CN104234852A (zh) * 2013-06-11 2014-12-24 福特环球技术公司 专用egr汽缸的后燃烧喷射
CN105089826A (zh) * 2014-05-06 2015-11-25 福特环球技术公司 用于改善高稀释发动机的运转的系统和方法
CN107882645A (zh) * 2012-06-28 2018-04-06 康明斯有限公司 用于控制专用egr发动机的技术
WO2018113930A1 (en) * 2016-12-20 2018-06-28 Volvo Truck Corporation A method for controlling an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107882645A (zh) * 2012-06-28 2018-04-06 康明斯有限公司 用于控制专用egr发动机的技术
WO2014011371A1 (en) * 2012-07-13 2014-01-16 General Electric Company Method and system for matching air flow in an exhaust gas recirculation system
US10550777B2 (en) 2012-07-13 2020-02-04 Transportation Ip Holdings, Llc Method and system for matching air flow in an exhaust gas recirculation system
US11028791B2 (en) 2012-07-13 2021-06-08 Transportation Ip Holdings, Llc Method and system for matching air flow in an exhaust gas recirculation system
CN104234852A (zh) * 2013-06-11 2014-12-24 福特环球技术公司 专用egr汽缸的后燃烧喷射
CN105089826A (zh) * 2014-05-06 2015-11-25 福特环球技术公司 用于改善高稀释发动机的运转的系统和方法
WO2018113930A1 (en) * 2016-12-20 2018-06-28 Volvo Truck Corporation A method for controlling an internal combustion engine
CN110234860A (zh) * 2016-12-20 2019-09-13 沃尔沃卡车集团 用于控制内燃发动机的方法
US10760504B2 (en) 2016-12-20 2020-09-01 Volvo Truck Corporation Method for controlling an internal combustion engine
CN110234860B (zh) * 2016-12-20 2022-03-01 沃尔沃卡车集团 用于控制内燃发动机的方法

Also Published As

Publication number Publication date
JP4274060B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5392293B2 (ja) 自動車搭載用ディーゼルエンジン及びディーゼルエンジンの制御方法
JP2004132191A (ja) 火花点火式エンジンの制御装置
KR20040074591A (ko) 다기통 불꽃 점화 엔진용 제어 장치
US8769927B2 (en) EGR control in engine equipped with cylinders having dual exhaust valves
JP4259255B2 (ja) 火花点火式エンジンの制御装置
JP3711942B2 (ja) 過給機付エンジンの制御装置
JP4274060B2 (ja) ディーゼルエンジン
JP4924280B2 (ja) ディーゼルエンジンの制御装置。
JP2004176637A (ja) 火花点火式エンジンの制御装置
JP2005054676A (ja) 火花点火式エンジン
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP3885702B2 (ja) 火花点火式エンジンの制御装置
JP4123122B2 (ja) 火花点火式エンジンの制御装置
JP3972744B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP4123102B2 (ja) 火花点火式エンジンの制御装置
JP4107180B2 (ja) 火花点火式エンジンの制御装置
JP3951855B2 (ja) 火花点火式エンジンの制御装置
JP3922153B2 (ja) 火花点火式エンジンの制御装置
JP3894083B2 (ja) 火花点火式エンジンの制御装置
JP2004124761A (ja) 火花点火式エンジンの制御装置
JP3900072B2 (ja) 火花点火式エンジンの制御装置
JP4269158B2 (ja) 多気筒内燃エンジン
JP4052214B2 (ja) 火花点火式エンジンの制御装置
JP4158670B2 (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees