JP2004025038A - Liquid treatment method of substrate - Google Patents

Liquid treatment method of substrate Download PDF

Info

Publication number
JP2004025038A
JP2004025038A JP2002185210A JP2002185210A JP2004025038A JP 2004025038 A JP2004025038 A JP 2004025038A JP 2002185210 A JP2002185210 A JP 2002185210A JP 2002185210 A JP2002185210 A JP 2002185210A JP 2004025038 A JP2004025038 A JP 2004025038A
Authority
JP
Japan
Prior art keywords
ejection
substrate
liquid
base material
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002185210A
Other languages
Japanese (ja)
Other versions
JP3689390B2 (en
Inventor
Masakazu Aoi
青井 応和
Koji Sato
佐藤 光司
Katsutoshi Hirose
広瀬 克敏
Daiki Ogose
生越 大樹
Kimitaka Suzuki
鈴木 公貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Panasonic Electric Works Co Ltd
Original Assignee
Nippon CMK Corp
CMK Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp, Matsushita Electric Works Ltd filed Critical Nippon CMK Corp
Priority to JP2002185210A priority Critical patent/JP3689390B2/en
Publication of JP2004025038A publication Critical patent/JP2004025038A/en
Application granted granted Critical
Publication of JP3689390B2 publication Critical patent/JP3689390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Nozzles (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid treatment method of substrate wherein, in a liquid treatment of the upper surface of a substrate by spraying, a liquid supplied to the surface can be quickly renewed, enabling the liquid treatment to be efficiently carried out. <P>SOLUTION: In this method, a substrate 1 for producing a wiring board is subjected to a liquid treatment by spraying a liquid 3 on its upper surface under transport. The liquid 3 is sprayed so that a plurality of spray zones 2 on the upper surface of the substrate 1, on which the liquid 3 is directly sprayed, are arranged with some distances between them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、配線板製造用の基材に対して水等の液体を噴射して水洗処理等の液処理を行う基材の液処理方法に関し、特に基材の上面における液処理に適用して液処理を効率良く行うようにするための方法に関するものである。
【0002】
【従来の技術】
従来、プリント配線板を製造する装置の内、表面研磨装置、エッチング装置、現像装置、めっき装置等では、配線板製造用の基材をコンベアーで搬送しながら、処理液で処理を行った後、水洗により基材表面の不要な処理液を取り除いている。
【0003】
このような液処理は、スプレーノズル4から水や酸性水溶液、アルカリ性水溶液、洗浄液等の液体3を噴出する方法が採られており、一般にスプレーノズル4が、図6や図7に示すように2〜5列に並んで配列した一つの液処理ゾーン7が形成され、この液処理ゾーン7が基材1の搬送方向に沿って2〜5個配設されている。また液処理として水洗処理を行う場合には、液処理ゾーン7の下流側に乾燥機8が配設されている。
【0004】
【発明が解決しようとする課題】
しかしながら、このように基材1を液処理するにあたっては、特に基材1の上面における洗浄効率が低いものであった。
【0005】
この原因は、図8に示すように、基材1の上面では、基材1に供給した液体3が排除されにくく、残りやすいため、この残存する液体3が膜を形成して基材1の上面を覆うことにより、スプレーノズル4から噴射された新しい液体3が基材1の上面に直接あたりにくくなるのに対して、基材1の下面では供給された液体3が直ぐに落ちて排除されて残りにくいものであり、スプレーノズル4から噴射された新しい液体3が基材1に直接当たりやすくなるからである。
【0006】
本発明は上記の点に鑑みてなされたものであり、スプレー噴射により基材上面の液処理を行うにあたり、基材表面に供給された液体を速やかに更新して効率よく液処理を行うことができる基材の液処理方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の請求項1に係る基材の液処理方法は、配線板製造用の基材1を搬送しながらその上面に液体3をスプレー噴射して液処理を行う基材の液処理方法において、基材1上面における液体3が直接噴射される複数の噴射領域2の形状を、基材1の搬送方向を横切る方向に長い形状とし、基材1の搬送方向と直交する方向に隣り合う噴射領域2同士が間隔をあけて配置されるように液体3をスプレー噴射することを特徴とするものである。
【0008】
また請求項2の発明は、基材1上面に、複数の噴射領域2が基材1の搬送方向を横切る方向に配列した噴射列5を配置すると共に、この噴射列5を基材1の搬送方向に沿って複数列配置し、搬送される基材1の上面が一つの噴射列5を通過した際に噴射領域2を通過しなかった基材1上の領域が、次列の噴射列1を通過する際に噴射領域2と重なるようにして、基材1上面の任意の点が少なくとも一つの噴射領域2を通過するように液体3をスプレー噴射することを特徴とするものである。
【0009】
また請求項3の発明は、基材1上面に、複数の噴射領域2が基材1の搬送方向と直交する方向に定ピッチで配列した噴射列5を配置して、噴射列5中で隣り合う噴射領域2の中心間の寸法をPとし、この噴射列5を基材1の搬送方向に沿って複数列配置し、基材1の搬送方向に隣り合う任意の噴射列5間において、一方の噴射列5における任意の噴射領域2の中心を搬送方向に移動すると共に搬送方向と直交する方向に一定寸法だけ移動した位置に、他方の噴射列5における噴射領域2の中心が配置されるようにして、この一定寸法をZとし、P及びZの値が、
P/8≦Z≦P/2
の関係を満たすようにすることを特徴とするものである。
【0010】
また請求項4の発明は、噴射領域2の長手方向寸法をA、短手方向寸法をBとした場合に、AとBの値が、
2×B≦A≦12×B
の関係を満たすようにすることを特徴とするものである。
【0011】
また請求項5の発明は、基材1上面に、複数の噴射領域2が基材1の搬送方向を横切る方向に配列した噴射列5を配置すると共に、この噴射列5を基材1の搬送方向に沿って複数列配置し、噴射列5の配列方向における各噴射領域2の寸法をC、噴射列5における隣り合う噴射領域2の中心間の寸法をPとした場合に、CとPの値が、
1.1×C≦P≦2.0×C
の関係を満たすようにすることを特徴とするものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0013】
本発明は、プリント配線板製造用の積層板等の基材1の表面に対して、水や薬液等を噴射して表面研磨、エッチング、現像、水洗等の液処理を行う場合に適用できるが、水洗、酸洗、及び中性の水溶液処理、特に基材1に対して表面研磨、エッチング、現像、めっき等の処理が施された後の水洗処理工程において好適に用いられる。以下、本発明をこのような基材1の水洗工程に適用した例を挙げて、説明する。
【0014】
基材1としては、積層板等が用いられ、この基材1が搬送用の複数のローラ上に配置されるなどして、一方向に搬送される。このとき基材1としては、長尺なものを長手方向に沿って連続的に搬送しても良く、また短尺なもの(枚葉状のもの)を順次搬送しても良い。
【0015】
この基材1の搬路の上方には、図6及び7に示すように、複数のスプレーノズル4が配設されて、液処理ゾーン(水洗ゾーン)7が形成されている。また、液処理ゾーン7の下流側に乾燥機8が配設されている。
【0016】
スプレーノズル4の個数は適宜設定されるが、例えば複数のスプレーノズル4を基材1の搬送方向と直交する方向に2〜5列に配設して一つの液処理ゾーン7を形成し、この液処理ゾーン7が基材1の搬送方向に沿って2〜5個配設する。
【0017】
各スプレーノズル4は、基材1の上面に向けて液体(水)3をスプレー噴射するように形成される。基材1上面における、液体3が直接噴射される領域を、以下、噴射領域2という。ここで「直接噴射される領域」とは、スプレーノズル4から噴射された液体3が基材1表面にはじめて到達した領域を意味するものであり、基材1表面で液体3が流動により移動して到達した領域は含まないものである。
【0018】
ここで、複数のスプレーノズル4から基材1上面に向けて液体3を噴射するものであるから、基材1上面には複数の噴射領域2が形成される。このとき、図1(a)或いは図5に示すように、基材1上面において、基材1を横切る方向に隣り合う噴射領域2同士が互いに重ならず、複数の噴射領域2が、横方向に互いに間隔をあけて配置されるようにする。このようにすると、基材1の上面に噴射された液体3は噴射領域2に到達した後、流動することにより噴射領域2間の隙間に達し、この噴射領域2間の隙間に沿って流動することにより基材1の外縁から流下することとなり、この結果、基材1上面において液体3が順次更新されて、基材1の液処理効率(水洗効率)が向上するものである。
【0019】
これに対して、従来は図1(b)に示すように、基材1上面において複数の噴射領域2が互いに重なりあいながら配置されていたものであり、このため、基材1の上面には全面に亘って液体3の膜が形成されて、液体3が流出する流路が形成されず、液体3の更新が効率良くなされなくなって、液処理効率が悪いものであった。
【0020】
以下に、更に具体的な実施形態を説明する。
【0021】
本発明では、スプレーノズル4として、液体3を扇状に広がるように噴射するもの、すなわち噴射領域2の形状が長円状等のように一方向に長い形状となるものが用いられる。このとき、噴射領域2は、図2及び図5に示すように、基材1の搬送方向を横切る方向に長い形状となるようにスプレーノズル4を設けるものであり、好ましくは、噴射領域2が、基材1の搬送方向と直交する方向に長い形状となるようにする。図5中の実線矢印は、基材1の搬送方向を示す。このようにすれば、液体3を円錐状に広がるように噴射する場合と比べると、スプレーノズル4からの液体3の噴射量及び噴射領域2の搬送方向と直交する方向の幅寸法が同一である場合の、液体3の面積当たりの噴射流量が多くなり、基材1の上面に液体3が更に溜まりにくくなって、液処理の効率が更に向上するものである。
【0022】
このとき、噴射領域2は、長手方向寸法をA、短手方向寸法をBとした場合に、AとBの値が、
2×B≦A≦12×B
の関係、すなわち、
A/B=2〜12
の関係を満たすようにすることが好ましく、この範囲において、液体3の流量を充分に確保して、良好な液処理効率を維持することが可能となる。このときA/Bの値が2に満たないと、液体3の噴射形状が円錐状に近づいて噴射流量が低減してしまうものであり、またこの値が12を超える場合も噴射流量が小さくなってしまって、高い液処理効率を維持することが困難な場合がある。
【0023】
ところで、液体3を扇状に噴射するスプレーノズル4では、噴射領域2の短手方向には液体3が殆ど広がらず、噴射方向の長手方向に液体3が広がるように液体3を噴射するものであるから、基材1とスプレーノズル4との間の距離が変化すると、噴射領域2の短手方向の寸法は殆ど変化せずに、長手方向の寸法が変化する。このため、スプレーノズル4の配置高さを調節することで、上記のAとBの値の関係を設定することができる。このとき、図3に示すように、スプレーノズル4の、噴射領域2の長手方向の噴角(噴射角度)をθ、スプレーノズル4と基材1との間の距離をKとすると、噴射領域2の長手方向の寸法Aは、
A=tan(θ/2)×K×2
の式で導出される。
【0024】
ここで、スプレーノズル4は、その噴射領域2の長手方向の噴角(噴射角度)が65°〜20°のものを用いることが好ましい。
【0025】
また、スプレーノズル4は、既述のように、基材1の搬路の上方に複数個設けられるが、このとき、複数のスプレーノズル4を基材1の搬送方向を横切る方向に配列して設置すると共に、このようなスプレーノズル4の列を基材1の搬送方向に沿って複数列並べて配設することが好ましい。図4は基材1の搬送方向と直交する方向に配列したスプレーノズル4の列を示すものであり、符号6は搬送ロールを示す。このとき、基材1上面においては、図5に示すように、複数の噴射領域2が基材1の搬送方向を横切る方向に配列し(以下、この一列の噴射領域2を「噴射列5」という)、この噴射列5が基材1の搬送方向に沿って複数列配置される。
【0026】
このとき、噴射列5の配列方向における各噴射領域2の寸法をC、噴射列5における隣り合う噴射領域2の中心間の寸法(スプレーノズル4の列内の隣り合うスプレーノズル4間の寸法)をPとした場合に、CとPの値が、
1.1×C≦P≦2.0×C
の関係、すなわち、
P/C=1.1〜2.0
の関係を満たすようにすることが好ましい。このとき、噴射領域2の長手方向と噴射列5の配列方向とが一致する場合は、上記の噴射領域2の長手方向寸法Aと、噴射列5の配列方向における噴射領域2の寸法Cとは、一致する。このようにすると、噴射列5中における噴射領域2の間に十分な隙間が形成されて、この隙間を液体3が流通し、基材1上面で液体3が効率よく更新されて液処理効率が更に向上する。このときP/Cの値が1.1に満たないと噴射領域2間の隙間が狭くなって、この隙間における液体3の流通量が低減し、液体3を効率よく更新することが困難となるものであり、またこの値が2.0を超えると、基材1上の噴射領域2の総面積が小さくなって、基材1に噴射される液体3の量が低減し、効率良く液処理を行うことが困難となるおそれがある。
【0027】
また、基材1の上面が一つの噴射列5を通過した際には、隣り合う噴射領域2の隙間を通過する部分には液体3が直接噴射されないが、この噴射領域2を通過しなかった基材1上の領域(未噴射領域)が次列の噴射列5を通過する際には、この未噴射領域と、次列の噴射列5の噴射領域2とが重なるようにして、複数の噴射列5を通過した際に基材1上面の任意の点が少なくとも一つの噴射領域2を通過するようにすることが好ましい。このとき、一つの噴射列5を通過する際に液体3が噴射されなかった未噴射領域の全面が、次列において噴射領域2と重なる必要は必ずしもなく、部分的に重なっていても良いものであり、複数列の噴射列5を通過する際に最終的に未噴射領域の全面が噴射領域2を通過するようにすれば良い。
【0028】
このようにすれば、基材1上面の任意の点が少なくとも一つの噴射領域2を通過することとなり、基材1の上面全面が、噴射領域2を通過することとなって、噴射領域2の間に隙間が形成されるようになっているにもかかわらず、基材1の上面全面が液体3の噴射を直接受けることとなって、更に効率よく液処理を行うことができる。
【0029】
このとき、複数列のスプレーノズル4は、隣り合うスプレーノズル4の列間において、スプレーノズル4の配置位置が基材1の搬送方向を横切る方向にずれるように配設することが好ましい。すなわち、まず第一列目においては、複数のスプレーノズル4を基材1を横切る方向に等間隔で配列する。次の列では、複数のスプレーノズル4を、前列と同一の間隔で複数個等間隔に配列するが、このとき、スプレーノズル4の列全体を、前列に対して基材1を横切る方向に移動した位置に配置する。このとき第一列目の隣り合うスプレーノズル4間の一点を基材1の搬送方向に移動した位置に、第二列目におけるスプレーノズル4が配置されるようにする。そして、同様にして、複数列のスプレーノズル4を、基材1の搬送方向を横切る方向でのスプレーノズル4の配置位置を順次ずらして配設するものである。
【0030】
このとき、基材1の搬送方向に隣り合う任意の噴射列5間において、一方の噴射列5における隣り合う任意の噴射領域2の中心間の一点を基材1の搬送方向に移動した位置に、他方の噴射列5における噴射領域2の中心が配置されるようになり、隣り合う噴射列5間において噴射領域2の配置位置が基材1の搬送方向を横切る方向にずれるようになる。
【0031】
このようにすると、基材1を搬送しながらスプレーノズル4から液体3を基材1に噴射した場合、基材1が噴射列5を通過するごとに、噴射領域2の位置が搬送方向を横切る方向に順次ずれることになり、これにより、一つの噴射列5を通過する際には噴射領域2間の隙間に配置されて液体3が直接噴射されなかった部分が、基材1が複数列の噴射列5を通過することによって噴射領域2を通過することとなって、基材1の上面全面が、噴射領域2を通過することとなる。
【0032】
上記のようにスプレーノズル4の配置位置を列ごとにずらす場合、すなわち、隣り合う噴射列5間において噴射領域2の配置位置が基材1の搬送方向を横切る方向にずれるようにする場合には、好ましくは、基材1上面に、複数の各噴射列5において、噴射領域2を基材1の搬送方向と直交する方向に定ピッチで配列する。このときの噴射列5中で隣り合う噴射領域2の中心間の寸法をPとする。また、複数の噴射列5は、噴射領域2の配置位置が、基材1の搬送方向と直交する方向に一定長さだけ順次ずれるように配置されるようにする。このずれ寸法をZとする。すなわち、基材1の搬送方向に隣り合う任意の噴射列5間において、一方の噴射列5における任意の噴射領域2の中心を搬送方向に移動すると共に搬送方向と直交する方向に一定寸法Zだけ移動した位置に、他方の噴射列5における噴射領域2の中心が配置されるようにする。
【0033】
そして、このときのP及びZの値が、
P/8≦Z≦P/2
の関係、すなわち
Z/P=0.125〜0.5
の関係を満たすようにするものである。このようにすると、基材1の上面全面が液体3の噴射を直接受けるようにすると共に基材1の上面における液体3の更新を確保して、更に高い効率で液処理を行うことが可能となる。このときZ/Pの値が0.125に満たないと、噴射列5間の噴射領域2のずらし量が小さくなることから、基材1の上面に液体3が直接噴射されるようにするためには多数の噴射列5を設けることが必要となってしまい、基材1の上面全面を高効率で液処理することが困難となる。また、噴射列5中の噴射領域2間の隙間によって、図5中の符号9を付した矢印に示すような、噴射列5を横切る液体3の流路が形成されるが、Z/Pの値が0.5を超えて噴射列5間の噴射領域2のずらし量が大きくなると、この噴射列5を横切る流路の、噴射列5に対する角度が大きくなって、この流路の実質的な幅が小さくなり、この経路を流通する液体3の量が低減して基材1の上面における液体3の更新が充分になされなくなるおそれがある。
【0034】
以上では、特に水洗工程の場合における例を説明したが、基材1に対して表面研磨、エッチング、現像、薬剤洗浄等の処理を行う場合においても、同様に液体3として適宜の薬液を噴射するスプレーノズル4を配設して噴射領域2を上記のように配置することにより、各種の液処理を効率良く行うようにすることが可能となる。
【0035】
【実施例】
以下、本発明を実施例によって詳述する。
(実施例1〜12、比較例1,2)
液処理工程として、搬送ロールからなるコンベアにて構成される基材1の搬路に、図6に示すように三つの液処理ゾーン7と、乾燥機8とを順次設けた水洗工程を準備した。各液処理ゾーン7には、基材1の搬送方向と直交する方向に等ピッチで八個のスプレーノズル4を配設したスプレーノズル4の列を、基材1の搬送方向に沿って三列設置した。このとき、各スプレーノズル4は、搬路を搬送される基材1の上面から150mm上方の位置に設置し、また基材1の搬送方向におけるスプレーノズル4の列の設置間隔は120mmとした。
【0036】
また、スプレーノズル4の種類と、列間のスプレーノズル4のずらし量は、各実施例及び比較例につき変動させた。このときの、「スプレーノズル4の種類」、「噴射領域2の長手方向寸法(搬送方向と直交する方向の寸法)A」、「列中での噴射領域2の中心間距離P」、「列間の噴射領域2のずれ量Z」、「噴射領域2の長手方向寸法(搬送方向と直交する方向の寸法)と短手方向寸法(搬送方向の寸法)との比A/B」、「列中での噴射領域2の中心間距離と噴射領域2の長手方向寸法(搬送方向と直交する方向の寸法)との比P/A」、並びに「列間の噴射領域2のずれ量と列中での噴射領域2の中心間距離との比Z/P」の値を、表1〜4に示す。
【0037】
また基材1としては、500mm×500mm×0.2mmの寸法の全面銅張積層板を用いた。
【0038】
そして、各実施例及び比較例につき、上記の基材1を50枚用意して、5%塩酸に10秒浸漬した後、これを順次搬路にて2.5m/分のラインスピードで搬送して、水洗工程を通過させ、液処理ゾーン7にて水洗した後乾燥機8にて完全に水分を除去した。そして、処理後の基材1を23℃、65%(温度、湿度共に誤差±10%)の環境で、3日間放置し、外観を評価した。外観評価の判断基準は、次の通りである。
【0039】
×:放置2日目までで錆発生
△:放置3日目で錆発生
○:3日間放置で錆発生なし
以上の結果を、表1〜4に併せて示す。
【0040】
【表1】

Figure 2004025038
【0041】
【表2】
Figure 2004025038
【0042】
【表3】
Figure 2004025038
【0043】
【表4】
Figure 2004025038
【0044】
表1に示す結果から明らかなように、噴射領域2の間に隙間が形成されないようにした比較例1よりも、隙間を形成した実施例1〜3では洗浄効率が向上し、特に、P/Aの値を1.1〜2.0の範囲となるようにした実施例1,2では、洗浄効率がより優れたものとなった。
【0045】
また表2に示す結果から明らかなように、円錐状に水を噴射した比較例1よりも、扇状の水を噴射した実施例4の方が、洗浄効率がより優れたものとなった。
【0046】
また表3に示す結果から明らかなように、A/Bの値が2〜12の範囲となる実施例6,7では、A/Bの値が小さい実施例5や、A/Bの値が大きい実施例8と比べて、洗浄効率がより優れたものとなった。
【0047】
更に表4に示す結果から明らかなように、Z/Pの値が0.125〜0.5の範囲となるようにした実施例10,11では、Z/Pの値が小さい実施例9及びZ/Pの値が大きい実施例12と比べて、洗浄効率がより優れたものとなった。
【0048】
【発明の効果】
上記のように本発明の請求項1に係る基材の液処理方法は、配線板製造用の基材を搬送しながらその上面に液体をスプレー噴射して液処理を行う基材の液処理方法において、基材上面における液体が直接噴射される複数の噴射領域の形状を、基材の搬送方向を横切る方向に長い形状とし、基材の搬送方向と直交する方向に隣り合う噴射領域同士が間隔をあけて配置されるように液体をスプレー噴射するため、基材の上面に噴射された液体は噴射領域に到達した後、流動することにより噴射領域間の隙間に達し、この噴射領域間の隙間に沿って流動することにより基材の外縁から流下することとなり、この結果、基材上面において液体が順次更新されて、基材の液処理効率を向上することができ、しかも液体の噴射量及び噴射領域の搬送方向と直交する方向の幅寸法が同一である場合の、液体の面積当たりの噴射流量が多くなり、基材の上面に液体が更に溜まりにくくなって、液処理の効率が更に向上するものである。
【0049】
また請求項2の発明は、基材上面に、複数の噴射領域が基材の搬送方向を横切る方向に配列した噴射列を配置すると共に、この噴射列を基材の搬送方向に沿って複数列配置し、搬送される基材の上面が一つの噴射列を通過した際に噴射領域を通過しなかった基材上の領域が、次列の噴射列を通過する際に噴射領域と重なるようにして、基材上面の任意の点が少なくとも一つの噴射領域を通過するように液体をスプレー噴射するため、一つの噴射列を通過する際には噴射領域間の隙間に配置されて水が直接噴射されなかった部分が、基材が複数列の噴射列を通過することによって噴射領域を通過することとなって、基材の上面全面が噴射領域を通過することとなり、この結果、噴射領域の間に隙間が形成されるようになっているにもかかわらず、基材の上面全面が液体の噴射を直接受けることとなって、更に効率よく液処理を行うことができるものである。
【0050】
また請求項3の発明は、基材上面に、複数の噴射領域が基材の搬送方向と直交する方向に定ピッチで配列した噴射列を配置して、噴射列中で隣り合う噴射領域の中心間の寸法をPとし、この噴射列を基材の搬送方向に沿って複数列配置し、基材の搬送方向に隣り合う任意の噴射列間において、一方の噴射列における任意の噴射領域の中心を搬送方向に移動すると共に搬送方向と直交する方向に一定寸法だけ移動した位置に、他方の噴射列における噴射領域の中心が配置されるようにして、この一定寸法をZとし、P及びZの値が、
P/8≦Z≦P/2
の関係を満たすようにするため、基材の上面全面が高効率で液体の噴射を直接受けるようにすると共に基材の上面における液体の更新を確保して、更に高い効率で液処理を行うことができるものである。
【0051】
また請求項4の発明は、噴射領域の形状を、基材の搬送方向を横切る方向に長い形状とし、噴射領域の長手方向寸法をA、短手方向寸法をBとした場合に、AとBの値が、
2×B≦A≦12×B
の関係を満たすようにするため、液体の噴射流量を充分に確保して、良好な液処理効率を維持することができるものである。
【0052】
また請求項5の発明は、基材上面に、複数の噴射領域が基材の搬送方向を横切る方向に配列した噴射列を配置すると共に、この噴射列を基材の搬送方向に沿って複数列配置し、噴射列の配列方向における各噴射領域の寸法をC、噴射列における隣り合う噴射領域の中心間の寸法をPとした場合に、CとPの値が、
1.1×C≦P≦2.0×C
の関係を満たすようにするため、噴射列中における噴射領域の間に十分な隙間が形成されて、この隙間を液体が流通し、基材上面で液体が効率よく更新されて液処理効率を更に向上することができるものである。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態の一例を示す概略の正面図、(b)は従来技術を示す概略の正面図である。
【図2】噴射領域の形状の一例を示す平面図である。
【図3】スプレーノズルの噴角、配置位置並びに噴射領域の寸法の関係を説明する正面図である。
【図4】スプレーノズルの配置位置を示す平面図である。
【図5】スプレーノズル及び噴射領域の位置関係を示す平面図である。
【図6】実施例にて用いた液処理工程の構成を示す概略図である。
【図7】液処理工程の構成を示す概略図である。
【図8】従来技術を示す正面図である。
【符号の説明】
1 基材
2 噴射領域
3 液体
5 噴射列[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid processing method for a substrate for performing a liquid treatment such as a water washing treatment by spraying a liquid such as water onto a substrate for manufacturing a wiring board, and is particularly applied to a liquid treatment on the upper surface of the substrate. The present invention relates to a method for performing liquid treatment efficiently.
[0002]
[Prior art]
Conventionally, in a device for manufacturing a printed wiring board, in a surface polishing device, an etching device, a developing device, a plating device, and the like, after performing a process with a processing liquid while transporting a substrate for manufacturing a wiring board on a conveyor, Unnecessary treatment liquid on the substrate surface is removed by washing with water.
[0003]
Such a liquid treatment employs a method in which a liquid 3, such as water, an acidic aqueous solution, an alkaline aqueous solution, or a cleaning liquid, is ejected from a spray nozzle 4. Generally, the spray nozzle 4 is used as shown in FIGS. One liquid processing zone 7 arranged in up to five rows is formed, and two to five liquid processing zones 7 are provided along the transport direction of the substrate 1. In the case of performing a water washing process as a liquid process, a dryer 8 is provided downstream of the liquid processing zone 7.
[0004]
[Problems to be solved by the invention]
However, when the substrate 1 is subjected to the liquid treatment as described above, the cleaning efficiency particularly on the upper surface of the substrate 1 is low.
[0005]
This is because, as shown in FIG. 8, on the upper surface of the substrate 1, the liquid 3 supplied to the substrate 1 is difficult to be removed and is likely to remain. By covering the upper surface, it becomes difficult for the new liquid 3 ejected from the spray nozzle 4 to directly hit the upper surface of the substrate 1, whereas on the lower surface of the substrate 1, the supplied liquid 3 drops immediately and is removed. This is because it is difficult to remain, and the new liquid 3 ejected from the spray nozzle 4 easily hits the substrate 1 directly.
[0006]
The present invention has been made in view of the above points, and in performing the liquid treatment on the upper surface of the substrate by spraying, it is possible to efficiently update the liquid supplied to the surface of the substrate by quickly updating the liquid. It is an object of the present invention to provide a method for treating a base material that can be performed.
[0007]
[Means for Solving the Problems]
The liquid treatment method for a base material according to claim 1 of the present invention is a liquid treatment method for a base material that performs liquid treatment by spraying a liquid 3 onto an upper surface thereof while transporting the base material 1 for manufacturing a wiring board. The plurality of ejection regions 2 on the upper surface of the substrate 1 where the liquid 3 is directly ejected have a shape that is long in a direction crossing the transport direction of the substrate 1 and the ejection regions adjacent to each other in a direction orthogonal to the transport direction of the substrate 1 It is characterized in that the liquid 3 is spray-sprayed so that the two are arranged at intervals.
[0008]
According to the second aspect of the present invention, an ejection row 5 in which a plurality of ejection regions 2 are arranged in a direction crossing the conveyance direction of the base material 1 is disposed on the upper surface of the base material 1, and the ejection row 5 is transported to the base material 1. A plurality of rows are arranged along the direction, and when the upper surface of the base material 1 to be conveyed passes through one ejection row 5, the area on the base material 1 that has not passed through the ejection area 2 is the next ejection row 1 The liquid 3 is spray-sprayed so that an arbitrary point on the upper surface of the substrate 1 passes through at least one spraying area 2 so as to overlap with the spraying area 2 when passing through.
[0009]
According to the third aspect of the present invention, on the upper surface of the base material 1, a plurality of spray areas 2 are arranged at a constant pitch in a direction perpendicular to the direction of transport of the base material 1, and the jet rows 5 are arranged adjacent to each other in the jet row 5. The dimension between the centers of the matching ejection regions 2 is defined as P, and the ejection rows 5 are arranged in a plurality of rows along the transport direction of the base material 1, and one of the ejection rows 5 adjacent to each other in the transport direction of the base material 1 The center of the ejection area 2 in the other ejection row 5 is arranged at a position where the center of an arbitrary ejection area 2 in the ejection row 5 is moved in the transport direction and is moved by a certain dimension in a direction orthogonal to the transport direction. And this constant dimension is Z, and the values of P and Z are
P / 8 ≦ Z ≦ P / 2
Is satisfied.
[0010]
Further, according to the invention of claim 4, when the longitudinal dimension of the injection region 2 is A and the lateral dimension is B, the values of A and B are:
2 × B ≦ A ≦ 12 × B
Is satisfied.
[0011]
According to a fifth aspect of the present invention, an ejection line 5 in which a plurality of ejection regions 2 are arranged in a direction crossing the conveyance direction of the substrate 1 is disposed on the upper surface of the substrate 1, and the ejection line 5 is transported to the substrate 1. When a plurality of rows are arranged along the direction, and the dimension of each ejection area 2 in the arrangement direction of the ejection rows 5 is C and the dimension between the centers of the adjacent ejection areas 2 in the ejection row 5 is P, C and P value,
1.1 × C ≦ P ≦ 2.0 × C
Is satisfied.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0013]
The present invention can be applied to a case where the surface of a substrate 1 such as a laminated board for manufacturing a printed wiring board is sprayed with water or a chemical solution to perform a liquid treatment such as surface polishing, etching, development, and washing with water. , Water washing, pickling, and neutral aqueous solution treatment, particularly in a water washing treatment process after the substrate 1 is subjected to treatments such as surface polishing, etching, development, and plating. Hereinafter, an example in which the present invention is applied to the step of washing the substrate 1 with water will be described.
[0014]
As the substrate 1, a laminated plate or the like is used, and the substrate 1 is conveyed in one direction by being arranged on a plurality of rollers for conveyance. At this time, as the substrate 1, a long one may be continuously conveyed along the longitudinal direction, or a short one (sheet-like one) may be sequentially conveyed.
[0015]
As shown in FIGS. 6 and 7, a plurality of spray nozzles 4 are provided above the carrying path of the substrate 1 to form a liquid treatment zone (washing zone) 7. Further, a dryer 8 is provided downstream of the liquid processing zone 7.
[0016]
The number of the spray nozzles 4 is appropriately set. For example, a plurality of spray nozzles 4 are arranged in two to five rows in a direction orthogonal to the direction of transport of the substrate 1 to form one liquid processing zone 7. Two to five liquid treatment zones 7 are provided along the transport direction of the substrate 1.
[0017]
Each spray nozzle 4 is formed so as to spray and spray the liquid (water) 3 toward the upper surface of the substrate 1. The area on the upper surface of the substrate 1 where the liquid 3 is directly ejected is hereinafter referred to as an ejection area 2. Here, the “region directly ejected” means an area where the liquid 3 ejected from the spray nozzle 4 reaches the surface of the substrate 1 for the first time. It does not include the area that has reached.
[0018]
Here, since the liquid 3 is ejected from the plurality of spray nozzles 4 toward the upper surface of the substrate 1, a plurality of ejection regions 2 are formed on the upper surface of the substrate 1. At this time, as shown in FIG. 1A or FIG. 5, on the upper surface of the substrate 1, the ejection regions 2 adjacent to each other in the direction crossing the substrate 1 do not overlap with each other, and the plurality of ejection regions 2 At a distance from each other. In this way, the liquid 3 ejected on the upper surface of the base material 1 reaches the ejection region 2 and then flows to reach the gap between the ejection regions 2 and flows along the gap between the ejection regions 2. As a result, the liquid 3 flows down from the outer edge of the substrate 1, and as a result, the liquid 3 is sequentially updated on the upper surface of the substrate 1, and the liquid treatment efficiency (washing efficiency) of the substrate 1 is improved.
[0019]
On the other hand, in the related art, as shown in FIG. 1B, a plurality of ejection regions 2 are arranged on the upper surface of the substrate 1 while overlapping each other. A film of the liquid 3 was formed over the entire surface, a flow path for the liquid 3 to flow out was not formed, and the liquid 3 could not be efficiently updated, resulting in poor liquid treatment efficiency.
[0020]
Hereinafter, more specific embodiments will be described.
[0021]
In the present invention, a spray nozzle that sprays the liquid 3 so as to spread in a fan shape, that is, a spray nozzle that has a shape that is long in one direction, such as an oval shape, is used as the spray nozzle 4. At this time, as shown in FIG. 2 and FIG. 5, the spray region 2 is provided with the spray nozzle 4 so as to have a long shape in a direction crossing the transport direction of the base material 1. In this case, the shape is long in a direction perpendicular to the transport direction of the substrate 1. The solid line arrows in FIG. 5 indicate the transport direction of the substrate 1. In this way, compared to the case where the liquid 3 is ejected so as to spread in a conical shape, the ejection amount of the liquid 3 from the spray nozzle 4 and the width dimension in the direction orthogonal to the transport direction of the ejection area 2 are the same. In this case, the jet flow per area of the liquid 3 is increased, and the liquid 3 is less likely to accumulate on the upper surface of the substrate 1, thereby further improving the efficiency of the liquid treatment.
[0022]
At this time, when the length in the longitudinal direction is A and the length in the short direction is B, the values of A and B are:
2 × B ≦ A ≦ 12 × B
Relationship, that is,
A / B = 2-12
In this range, it is possible to secure a sufficient flow rate of the liquid 3 and maintain good liquid processing efficiency. At this time, if the value of A / B is less than 2, the injection shape of the liquid 3 approaches a conical shape and the injection flow rate decreases, and when this value exceeds 12, the injection flow rate decreases. As a result, it may be difficult to maintain high liquid treatment efficiency.
[0023]
By the way, in the spray nozzle 4 for ejecting the liquid 3 in a fan shape, the liquid 3 is ejected so that the liquid 3 hardly spreads in the short direction of the ejection area 2 but spreads in the longitudinal direction of the ejection direction. Therefore, when the distance between the base material 1 and the spray nozzle 4 changes, the dimension of the ejection region 2 in the short direction hardly changes, and the size in the long direction changes. Therefore, the relationship between the values of A and B can be set by adjusting the arrangement height of the spray nozzles 4. At this time, as shown in FIG. 3, when the spray angle (spray angle) of the spray nozzle 4 in the longitudinal direction of the spray area 2 is θ, and the distance between the spray nozzle 4 and the base material 1 is K, the spray area 2, the dimension A in the longitudinal direction is
A = tan (θ / 2) × K × 2
Is derived by the following equation.
[0024]
Here, it is preferable that the spray nozzle 4 has a spray angle (spray angle) in the longitudinal direction of the spray area 2 of 65 ° to 20 °.
[0025]
Further, as described above, a plurality of spray nozzles 4 are provided above the transport path of the substrate 1, but at this time, the plurality of spray nozzles 4 are arranged in a direction crossing the transport direction of the substrate 1. At the same time, it is preferable that a plurality of such rows of the spray nozzles 4 are arranged in the transport direction of the substrate 1. FIG. 4 shows a row of spray nozzles 4 arranged in a direction perpendicular to the direction of transport of the substrate 1, and reference numeral 6 denotes a transport roll. At this time, on the upper surface of the substrate 1, as shown in FIG. 5, the plurality of ejection regions 2 are arranged in a direction crossing the transport direction of the substrate 1 (hereinafter, this one line of ejection regions 2 is referred to as “injection line 5”). That is, a plurality of the ejection rows 5 are arranged along the transport direction of the substrate 1.
[0026]
At this time, the dimension of each ejection area 2 in the direction of arrangement of the ejection rows 5 is C, the dimension between the centers of the adjacent ejection areas 2 in the ejection row 5 (the dimension between the adjacent spray nozzles 4 in the row of the spray nozzles 4). Is P, the values of C and P are
1.1 × C ≦ P ≦ 2.0 × C
Relationship, that is,
P / C = 1.1-2.0
Is preferably satisfied. At this time, if the longitudinal direction of the ejection region 2 matches the arrangement direction of the ejection rows 5, the above-described longitudinal dimension A of the ejection region 2 and the dimension C of the ejection region 2 in the arrangement direction of the ejection rows 5 are: , Matches. In this way, a sufficient gap is formed between the ejection regions 2 in the ejection row 5, the liquid 3 flows through the gap, and the liquid 3 is efficiently updated on the upper surface of the substrate 1, and the liquid treatment efficiency is improved. Further improve. At this time, if the value of P / C is less than 1.1, the gap between the ejection regions 2 becomes narrow, the flow rate of the liquid 3 in this gap decreases, and it becomes difficult to efficiently update the liquid 3. When the value exceeds 2.0, the total area of the ejection region 2 on the substrate 1 is reduced, and the amount of the liquid 3 ejected to the substrate 1 is reduced, so that the liquid treatment is efficiently performed. May be difficult to perform.
[0027]
Further, when the upper surface of the base material 1 passes through one ejection row 5, the liquid 3 is not directly ejected to a portion passing through a gap between the adjacent ejection areas 2, but does not pass through the ejection area 2. When the area (unsprayed area) on the base material 1 passes through the next row of the jet row 5, the unsprayed area and the jet area 2 of the next row of the jet row 5 are overlapped so that a plurality of It is preferable that any point on the upper surface of the substrate 1 pass through at least one ejection area 2 when passing through the ejection row 5. At this time, the entire surface of the non-ejection area where the liquid 3 has not been ejected when passing through one ejection row 5 does not necessarily have to overlap the ejection area 2 in the next row, and may partially overlap. That is, when passing through the plurality of injection rows 5, the entire surface of the non-injection area may finally pass through the injection area 2.
[0028]
In this way, an arbitrary point on the upper surface of the substrate 1 passes through at least one ejection region 2, and the entire upper surface of the substrate 1 passes through the ejection region 2, and Despite the formation of a gap between the substrates, the entire upper surface of the substrate 1 is directly subjected to the injection of the liquid 3, so that the liquid processing can be performed more efficiently.
[0029]
At this time, it is preferable that the spray nozzles 4 in a plurality of rows are arranged such that the arrangement position of the spray nozzles 4 is shifted in a direction crossing the transport direction of the base material 1 between the rows of the adjacent spray nozzles 4. That is, in the first row, a plurality of spray nozzles 4 are arranged at regular intervals in a direction crossing the base material 1. In the next row, a plurality of spray nozzles 4 are arranged at equal intervals at the same interval as the previous row, but at this time, the entire row of spray nozzles 4 is moved in a direction crossing the base material 1 with respect to the front row. Place it in the position you specified. At this time, the spray nozzles 4 in the second row are arranged at a position where one point between the adjacent spray nozzles 4 in the first row is moved in the transport direction of the substrate 1. Similarly, a plurality of rows of spray nozzles 4 are arranged in such a manner that the arrangement positions of the spray nozzles 4 in the direction crossing the transport direction of the substrate 1 are sequentially shifted.
[0030]
At this time, a point between the centers of adjacent ones of the ejection regions 2 in one of the ejection rows 5 is moved in the conveyance direction of the base 1 between the arbitrary ejection rows 5 adjacent to each other in the transport direction of the substrate 1. Then, the center of the ejection area 2 in the other ejection row 5 is arranged, and the arrangement position of the ejection area 2 between the adjacent ejection rows 5 is shifted in a direction crossing the transport direction of the substrate 1.
[0031]
In this way, when the liquid 3 is sprayed onto the substrate 1 from the spray nozzle 4 while transporting the substrate 1, the position of the ejection region 2 crosses the transport direction every time the substrate 1 passes through the ejection row 5. In this way, when passing through one ejection row 5, the portion where the liquid 3 is not directly ejected when passing through one ejection row 2 and the liquid 3 is not directly ejected is divided into a plurality of rows of the base material 1. By passing through the ejection row 5, it passes through the ejection area 2, and the entire upper surface of the base material 1 passes through the ejection area 2.
[0032]
When the arrangement position of the spray nozzles 4 is shifted for each row as described above, that is, when the arrangement position of the ejection area 2 is shifted between the adjacent ejection rows 5 in a direction crossing the transport direction of the substrate 1. Preferably, on the upper surface of the substrate 1, the ejection regions 2 are arranged at a constant pitch in a direction orthogonal to the transport direction of the substrate 1 in each of the plurality of ejection rows 5. The dimension between the centers of the adjacent ejection regions 2 in the ejection row 5 at this time is P. In addition, the plurality of ejection rows 5 are arranged such that the arrangement positions of the ejection areas 2 are sequentially shifted by a certain length in a direction orthogonal to the transport direction of the substrate 1. This displacement dimension is denoted by Z. That is, between the arbitrary ejection rows 5 adjacent to the transport direction of the base material 1, the center of the arbitrary ejection area 2 in one of the ejection rows 5 is moved in the transport direction and the fixed dimension Z is set in the direction orthogonal to the transport direction. The center of the ejection area 2 in the other ejection row 5 is arranged at the moved position.
[0033]
Then, the values of P and Z at this time are
P / 8 ≦ Z ≦ P / 2
, That is, Z / P = 0.125 to 0.5
In order to satisfy the relationship. In this way, the entire upper surface of the substrate 1 can be directly subjected to the injection of the liquid 3 and the renewal of the liquid 3 on the upper surface of the substrate 1 can be ensured, so that the liquid processing can be performed with higher efficiency. Become. At this time, if the value of Z / P is less than 0.125, the displacement amount of the ejection region 2 between the ejection rows 5 becomes small, so that the liquid 3 is directly ejected onto the upper surface of the substrate 1. It is necessary to provide a large number of spray rows 5 in the above, and it becomes difficult to perform liquid treatment on the entire upper surface of the base material 1 with high efficiency. The gap between the ejection areas 2 in the ejection row 5 forms a flow path of the liquid 3 that crosses the ejection row 5 as shown by an arrow 9 in FIG. When the value exceeds 0.5 and the shift amount of the injection region 2 between the injection rows 5 increases, the angle of the flow path that crosses the injection row 5 with respect to the injection row 5 increases, and the substantial flow path The width becomes small, and the amount of the liquid 3 flowing through this path is reduced, so that the liquid 3 on the upper surface of the substrate 1 may not be sufficiently renewed.
[0034]
In the above, the example in the case of the water washing step has been particularly described. However, also in the case of performing processing such as surface polishing, etching, development, and chemical cleaning on the substrate 1, an appropriate chemical liquid is similarly sprayed as the liquid 3. By disposing the spray nozzle 4 and disposing the ejection area 2 as described above, it is possible to efficiently perform various liquid treatments.
[0035]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
(Examples 1 to 12, Comparative Examples 1 and 2)
As a liquid treatment step, a water washing step was provided in which three liquid treatment zones 7 and a dryer 8 were sequentially provided as shown in FIG. . Each of the liquid treatment zones 7 includes three rows of spray nozzles 4 each having eight spray nozzles 4 arranged at equal pitches in a direction orthogonal to the direction in which the substrate 1 is transported. installed. At this time, each spray nozzle 4 was installed at a position 150 mm above the upper surface of the substrate 1 to be transported on the transport path, and the interval between the rows of the spray nozzles 4 in the transport direction of the substrate 1 was 120 mm.
[0036]
Further, the type of the spray nozzles 4 and the shift amount of the spray nozzles 4 between the rows were varied for each of the examples and the comparative examples. At this time, “type of spray nozzle 4”, “longitudinal dimension of ejection area 2 (dimension in a direction orthogonal to the transport direction) A”, “center-to-center distance P of ejection area 2 in row”, “row Deviation ratio Z of the ejection region 2 between "", "the ratio A / B between the longitudinal dimension (dimension in the direction perpendicular to the transport direction) of the ejection region 2 and the lateral dimension (dimension in the transport direction)", "column Ratio P / A between the center-to-center distance of the ejection area 2 and the longitudinal dimension of the ejection area 2 (dimension in the direction perpendicular to the transport direction), and the "shift amount of the ejection area 2 between rows and Are shown in Tables 1 to 4.
[0037]
Further, as the substrate 1, a full-surface copper-clad laminate having a size of 500 mm x 500 mm x 0.2 mm was used.
[0038]
Then, for each Example and Comparative Example, 50 sheets of the above-described base material 1 were prepared, immersed in 5% hydrochloric acid for 10 seconds, and sequentially conveyed at a line speed of 2.5 m / min on a conveyance path. After passing through a water washing step and washing in a liquid treatment zone 7, water was completely removed by a dryer 8. Then, the substrate 1 after the treatment was left for 3 days in an environment of 23 ° C. and 65% (errors of both temperature and humidity were ± 10%), and the appearance was evaluated. The criteria for the appearance evaluation are as follows.
[0039]
×: Rust generated up to the second day of standing Δ: Rust generated on the third day of standing ○: No rust generated after left for 3 days The results above are also shown in Tables 1-4.
[0040]
[Table 1]
Figure 2004025038
[0041]
[Table 2]
Figure 2004025038
[0042]
[Table 3]
Figure 2004025038
[0043]
[Table 4]
Figure 2004025038
[0044]
As is clear from the results shown in Table 1, the cleaning efficiency is improved in Examples 1 to 3 in which the gap is formed, and in particular, P / P is higher than that in Comparative Example 1 in which the gap is not formed between the injection regions 2. In Examples 1 and 2 in which the value of A was in the range of 1.1 to 2.0, the cleaning efficiency was more excellent.
[0045]
Further, as is clear from the results shown in Table 2, the cleaning efficiency of Example 4 in which the fan-shaped water was jetted was better than that of Comparative Example 1 in which the water was jetted in a conical shape.
[0046]
As is clear from the results shown in Table 3, in Examples 6 and 7 in which the value of A / B is in the range of 2 to 12, Example 5 in which the value of A / B is small, and As compared with the large example 8, the cleaning efficiency was more excellent.
[0047]
Further, as is clear from the results shown in Table 4, in Examples 10 and 11 in which the value of Z / P was in the range of 0.125 to 0.5, Examples 9 and The cleaning efficiency was more excellent as compared with Example 12 having a large value of Z / P.
[0048]
【The invention's effect】
As described above, the liquid processing method for a substrate according to claim 1 of the present invention is a liquid processing method for a substrate in which a liquid is spray-sprayed on an upper surface of a substrate for carrying a wiring board while the liquid is being conveyed. In the above, the shape of the plurality of ejection areas where the liquid is directly ejected on the upper surface of the base material is long in a direction crossing the transport direction of the substrate, and the ejection areas adjacent to each other in the direction orthogonal to the transport direction of the substrate are spaced apart from each other. The liquid ejected onto the upper surface of the base material reaches the gap between the ejection areas by flowing and then reaches the gap between the ejection areas, and the gap between the ejection areas. Will flow down from the outer edge of the substrate by flowing along, as a result, the liquid is sequentially updated on the upper surface of the substrate, it is possible to improve the liquid treatment efficiency of the substrate, and moreover, the liquid ejection amount and The transport direction of the injection area When the width dimension of the interlinking direction is identical, the injection flow rate per area of the liquid is increased, so the upper surface of the base material hardly liquid further reservoir, efficiency of the liquid treatment is to further improve.
[0049]
The invention according to claim 2 is characterized in that, on the upper surface of the substrate, a plurality of ejection regions are arranged in a direction crossing the transport direction of the substrate, and the ejection columns are arranged along the transport direction of the substrate. Arranged so that the area on the substrate that did not pass through the ejection area when the upper surface of the substrate to be conveyed passed through one ejection row overlaps with the ejection area when passing through the next ejection row. The liquid is spray-sprayed so that any point on the upper surface of the base material passes through at least one ejection area, so that when passing through one ejection row, it is arranged in a gap between the ejection areas and water is directly ejected. The part that was not performed passes through the ejection area by the base material passing through the plurality of ejection rows, and the entire upper surface of the base material passes through the ejection area, and as a result, between the ejection areas Although a gap is formed in the Become the entire upper surface of the base material is subjected to injection of liquid directly, but can be further efficiently performed liquid treatment.
[0050]
Further, according to the invention of claim 3, an ejection row in which a plurality of ejection areas are arranged at a constant pitch in a direction orthogonal to the transport direction of the base material is disposed on the upper surface of the base material, and a center of the ejection areas adjacent to each other in the ejection row is arranged. The dimension between them is P, and a plurality of the ejection rows are arranged along the transport direction of the base material, and the center of an arbitrary ejection area in one of the ejection rows is located between any of the adjacent ejection rows in the transport direction of the base material. Is moved in the transport direction and the center of the ejection area in the other ejection row is arranged at a position moved by a certain dimension in a direction orthogonal to the transport direction. value,
P / 8 ≦ Z ≦ P / 2
In order to satisfy the relationship, the entire upper surface of the base material should be directly subjected to liquid ejection with high efficiency, and the renewal of the liquid on the upper surface of the base material should be ensured, and the liquid treatment should be performed with higher efficiency Can be done.
[0051]
The invention according to claim 4 is characterized in that, when the shape of the ejection area is long in a direction crossing the transport direction of the base material, the longitudinal dimension of the ejection area is A, and the short dimension is B, A and B Is the value of
2 × B ≦ A ≦ 12 × B
In order to satisfy the relationship, the liquid ejection flow rate can be sufficiently ensured, and good liquid processing efficiency can be maintained.
[0052]
The invention according to claim 5 is characterized in that, on the upper surface of the base material, a plurality of jetting regions are arranged in a direction crossing the conveying direction of the base material, and the jetting lines are arranged in a plurality of rows along the conveying direction of the base material. When the size of each ejection area in the direction of arrangement of the ejection rows is C and the dimension between the centers of adjacent ejection areas in the ejection row is P, the values of C and P are:
1.1 × C ≦ P ≦ 2.0 × C
In order to satisfy the relationship, a sufficient gap is formed between the ejection regions in the ejection row, the liquid flows through this gap, the liquid is efficiently updated on the upper surface of the base material, and the liquid treatment efficiency is further improved. It can be improved.
[Brief description of the drawings]
FIG. 1A is a schematic front view showing an example of an embodiment of the present invention, and FIG. 1B is a schematic front view showing a conventional technique.
FIG. 2 is a plan view showing an example of a shape of an ejection area.
FIG. 3 is a front view illustrating the relationship among the spray angle, arrangement position, and size of a spray area of a spray nozzle.
FIG. 4 is a plan view showing an arrangement position of a spray nozzle.
FIG. 5 is a plan view showing a positional relationship between a spray nozzle and an ejection area.
FIG. 6 is a schematic diagram showing a configuration of a liquid processing step used in an example.
FIG. 7 is a schematic view showing a configuration of a liquid processing step.
FIG. 8 is a front view showing a conventional technique.
[Explanation of symbols]
1 base material 2 spray area 3 liquid 5 spray train

Claims (5)

配線板製造用の基材を搬送しながらその上面に液体をスプレー噴射して液処理を行う基材の液処理方法において、基材上面における液体が直接噴射される複数の噴射領域の形状を、基材の搬送方向を横切る方向に長い形状とし、基材の搬送方向と直交する方向に隣り合う噴射領域同士が間隔をあけて配置されるように液体をスプレー噴射することを特徴とする基材の液処理方法。In the substrate liquid processing method of performing liquid processing by spraying a liquid onto the upper surface while transporting the substrate for wiring board production, the shape of a plurality of injection regions where the liquid on the upper surface of the substrate is directly injected, A base material having a shape that is long in a direction crossing the base material conveyance direction, and spraying a liquid so that jet regions adjacent to each other in a direction orthogonal to the base material conveyance direction are arranged at intervals. Liquid treatment method. 基材上面に、複数の噴射領域が基材の搬送方向を横切る方向に配列した噴射列を配置すると共に、この噴射列を基材の搬送方向に沿って複数列配置し、搬送される基材の上面が一つの噴射列を通過した際に噴射領域を通過しなかった基材上の領域が、次列の噴射列を通過する際に噴射領域と重なるようにして、基材上面の任意の点が少なくとも一つの噴射領域を通過するように液体をスプレー噴射することを特徴とする請求項1に記載の基材の液処理方法。On the upper surface of the base material, a plurality of ejection regions are arranged in a direction crossing the transport direction of the base material, and a plurality of ejection rows are arranged along the transport direction of the base material. The area on the substrate that did not pass through the ejection area when the upper surface of the substrate passed through one ejection row was overlapped with the ejection area when passing through the next row of ejection rows. The method according to claim 1, wherein the liquid is sprayed so that the points pass through at least one spraying area. 基材上面に、複数の噴射領域が基材の搬送方向と直交する方向に定ピッチで配列した噴射列を配置して、噴射列中で隣り合う噴射領域の中心間の寸法をPとし、この噴射列を基材の搬送方向に沿って複数列配置し、基材の搬送方向に隣り合う任意の噴射列間において、一方の噴射列における任意の噴射領域の中心を搬送方向に移動すると共に搬送方向と直交する方向に一定寸法だけ移動した位置に、他方の噴射列における噴射領域の中心が配置されるようにして、この一定寸法をZとし、P及びZの値が、
P/8≦Z≦P/2
の関係を満たすようにすることを特徴とする請求項2に記載の基材の液処理方法。
On the upper surface of the substrate, a plurality of ejection regions are arranged at a constant pitch in a direction perpendicular to the direction of transport of the substrate, and an ejection row is arranged. The dimension between the centers of the adjacent ejection regions in the ejection row is P. A plurality of ejection rows are arranged along the transport direction of the base material, and the center of an arbitrary ejection area in one of the ejection rows is moved in the transport direction and transported between any one of the adjacent injection rows in the transport direction of the substrate. In a position shifted by a certain dimension in a direction perpendicular to the direction, the center of the injection region in the other injection row is arranged so that the certain dimension is Z, and the values of P and Z are:
P / 8 ≦ Z ≦ P / 2
The method according to claim 2, wherein the relationship is satisfied.
噴射領域の長手方向寸法をA、短手方向寸法をBとした場合に、AとBの値が、
2×B≦A≦12×B
の関係を満たすようにすることを特徴とする請求項1乃至3のいずれかに記載の基材の液処理方法。
When the longitudinal dimension of the injection area is A and the transverse dimension is B, the values of A and B are:
2 × B ≦ A ≦ 12 × B
The method according to any one of claims 1 to 3, wherein the following relationship is satisfied.
基材上面に、複数の噴射領域が基材の搬送方向を横切る方向に配列した噴射列を配置すると共に、この噴射列を基材の搬送方向に沿って複数列配置し、噴射列の配列方向における各噴射領域の寸法をC、噴射列における隣り合う噴射領域の中心間の寸法をPとした場合に、CとPの値が、
1.1×C≦P≦2.0×C
の関係を満たすようにすることを特徴とする請求項1乃至4のいずれかに記載の基材の液処理方法。
On the upper surface of the base material, a plurality of ejection regions are arranged in a direction crossing the transport direction of the substrate, and a plurality of ejection regions are arranged along the transport direction of the substrate. When the dimension of each ejection area in is C and the dimension between the centers of adjacent ejection areas in the ejection row is P, the values of C and P are:
1.1 × C ≦ P ≦ 2.0 × C
The method for treating a substrate according to any one of claims 1 to 4, wherein the following relationship is satisfied.
JP2002185210A 2002-06-25 2002-06-25 Substrate liquid treatment method Expired - Fee Related JP3689390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185210A JP3689390B2 (en) 2002-06-25 2002-06-25 Substrate liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185210A JP3689390B2 (en) 2002-06-25 2002-06-25 Substrate liquid treatment method

Publications (2)

Publication Number Publication Date
JP2004025038A true JP2004025038A (en) 2004-01-29
JP3689390B2 JP3689390B2 (en) 2005-08-31

Family

ID=31180928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185210A Expired - Fee Related JP3689390B2 (en) 2002-06-25 2002-06-25 Substrate liquid treatment method

Country Status (1)

Country Link
JP (1) JP3689390B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289240A (en) * 2005-04-08 2006-10-26 Shibaura Mechatronics Corp Treatment apparatus and treatment method of substrate
JP2011054790A (en) * 2009-09-02 2011-03-17 Shibaura Mechatronics Corp Device and method for processing substrate
WO2011055502A1 (en) * 2009-11-03 2011-05-12 荒川化学工業株式会社 Electronic component cleaning device and cleaning method
WO2024161541A1 (en) * 2023-02-01 2024-08-08 旭サナック株式会社 High-pressure cleaning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289240A (en) * 2005-04-08 2006-10-26 Shibaura Mechatronics Corp Treatment apparatus and treatment method of substrate
JP2011054790A (en) * 2009-09-02 2011-03-17 Shibaura Mechatronics Corp Device and method for processing substrate
WO2011055502A1 (en) * 2009-11-03 2011-05-12 荒川化学工業株式会社 Electronic component cleaning device and cleaning method
CN102574167A (en) * 2009-11-03 2012-07-11 荒川化学工业株式会社 Electronic component cleaning device and cleaning method
CN102574167B (en) * 2009-11-03 2014-08-20 荒川化学工业株式会社 Electronic component cleaning device and cleaning method
JP5742721B2 (en) * 2009-11-03 2015-07-01 荒川化学工業株式会社 Electronic component cleaning apparatus and cleaning method
TWI508795B (en) * 2009-11-03 2015-11-21 Arakawa Chem Ind Cleaning device for electronic parts and cleaning method
KR101825231B1 (en) * 2009-11-03 2018-02-02 아라까와 가가꾸 고교 가부시끼가이샤 Electronic component cleaning device and cleaning method
WO2024161541A1 (en) * 2023-02-01 2024-08-08 旭サナック株式会社 High-pressure cleaning device

Also Published As

Publication number Publication date
JP3689390B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US7951244B2 (en) Liquid cleaning apparatus for cleaning printed circuit boards
EP0820351B1 (en) Fluid delivery apparatus and method
JP2001314789A (en) Surface treating device for thin plate
JP2004025038A (en) Liquid treatment method of substrate
KR20060050162A (en) A cleaning method and a cleaning apparatus for performing the method
WO2002049087A1 (en) Oscillating shower transfer type substrate treatment device
JP4352194B2 (en) Substrate drying apparatus and substrate drying method
CN104246988A (en) Chemical solution treatment device
JP3622842B2 (en) Transport type substrate processing equipment
JP2573396B2 (en) Etching and developing method
JP4046697B2 (en) Double-sided etching system
JP2003045844A (en) Substrate treatment apparatus
JP2003068702A (en) Substrate processing apparatus
JP3113192B2 (en) Liquid jet device for liquid crystal substrate
JP3452895B2 (en) Substrate processing equipment
JP3987761B2 (en) Transported substrate processing method
TWI841216B (en) High pressure cleaning device
WO2024161541A1 (en) High-pressure cleaning device
JP4598911B2 (en) Method and apparatus for removing processing liquid from substrate
JP2006239501A (en) Chemical treatment device
JPH06260412A (en) Shower type single sheet processing developing device
JP4005462B2 (en) Transport type substrate processing equipment
KR200295029Y1 (en) Apparatus for cleaning a panel
JP2013524007A (en) Apparatus and method for spraying substrate surface
KR100771297B1 (en) Air injection type etching system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3689390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees