JP2004023851A - Dc−dcコンバータ付ブースタケーブル - Google Patents

Dc−dcコンバータ付ブースタケーブル Download PDF

Info

Publication number
JP2004023851A
JP2004023851A JP2002173099A JP2002173099A JP2004023851A JP 2004023851 A JP2004023851 A JP 2004023851A JP 2002173099 A JP2002173099 A JP 2002173099A JP 2002173099 A JP2002173099 A JP 2002173099A JP 2004023851 A JP2004023851 A JP 2004023851A
Authority
JP
Japan
Prior art keywords
battery
voltage
converter
cable
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002173099A
Other languages
English (en)
Inventor
Hiromichi Imai
今井 裕道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002173099A priority Critical patent/JP2004023851A/ja
Publication of JP2004023851A publication Critical patent/JP2004023851A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】電池同士を接続して、端子間電圧の関係に係わらず双方向に電力を供給しあうことができるDC−DCコンバータ付ブースタケーブルを提供する。
【解決手段】高電圧側ケーブル4を36[V]バッテリへ接続し、低電圧側ケーブル7を12[V]バッテリへ接続する。36[V]バッテリから12[V]バッテリへ電力を供給する場合は、通電方向切り替えスイッチ15の選択により、スイッチング素子10aのスイッチングとインダクタンス12の逆起電力、及び寄生ダイオード11bの整流作用により、36[V]を12[V]へ変換する。また、それとは逆に電力を供給する場合は、スイッチング素子10bのスイッチングとインダクタンス12の逆起電力、及び寄生ダイオード11aの整流作用により、12[V]を36[V]へ変換する。なお、同じ電圧のバッテリ同士の場合は、バイパススイッチ16によりバッテリ間を短絡させて使用する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電池同士を接続して、一方の電池からもう一方の電池へ電力を供給するためのDC−DCコンバータ付ブースタケーブルに関する。
【0002】
【従来の技術】
従来、例えば自車両に搭載されたバッテリ(蓄電池)の電力が放電してしまい、該車両のエンジンを始動するためのスタータモータに電力を供給できないような場合、他車両のバッテリと自車両のバッテリとをブースタケーブルによって接続することにより、他車両のバッテリの電力によって自車両のスタータモータを駆動して自車両のエンジンを始動したり、他車両のバッテリの電力によって自車両のバッテリを充電したりすることがある。
このような場合、例えば公称電圧12[V]のバッテリを搭載した車両同士の接続においては、前述のブースタケーブルは流れる電流に耐えることができる電線(導体)であれば良い。
【0003】
しかし、例えば公称電圧が12[V]のバッテリを搭載した車両と、公称電圧が36[V]のバッテリを搭載した車両とを接続する場合、前述のブースタケーブルは流れる電流に耐えることができるだけでなく、2個のバッテリ間の端子間電圧の違いを吸収して、一方のバッテリからもう一方のバッテリへ電力を供給する必要がある。このような機能を備えたブースタケーブルには、例えば特開2000−245069号公報に記載のものがある。
同公報によると、このブースタケーブルは、昇圧動作を行うDC−DCコンバータを備え、端子間電圧が小さいバッテリを搭載した車両から端子間電圧が大きいバッテリを搭載した車両への電力の供給を可能としている。
【0004】
【発明が解決しようとする課題】
しかし、従来のDC−DCコンバータを備えたブースタケーブルは、端子間電圧が異なるバッテリ間を接続し、一方の車両からもう一方の車両へ電力の供給が行えるものの、端子間電圧が小さいバッテリを搭載した車両から端子間電圧が大きいバッテリを搭載した車両への電力の供給しか行えないため、利用できる状況が限られてしまい、使い勝手が良くないという問題があった。
【0005】
すなわち、従来のDC−DCコンバータを備えたブースタケーブルは、例えば公称電圧36[V]等の端子間電圧が大きいバッテリを搭載した車両の普及台数が少ない状況を想定して考案されたものであって、端子間電圧が大きいバッテリを搭載した車両の普及台数が少ない時には、公称電圧12[V]等の端子間電圧が小さいバッテリを搭載した車両から端子間電圧が大きいバッテリを搭載した車両に電力を供給する状況の方が発生しやすいと考えられていたため、従来のDC−DCコンバータを備えたブースタケーブルはこのような状況に対応し、十分にその目的を果たしていた。
【0006】
しかし、今後、端子間電圧が大きいバッテリを搭載した車両の普及台数が増えるに従い、端子間電圧が小さいバッテリを搭載した車両の普及台数よりも多くなる可能性もあり、端子間電圧が大きいバッテリを搭載した車両から端子間電圧が小さいバッテリを搭載した車両に電力を供給する状況も多く発生すると考えられる。そのため、従来のDC−DCコンバータを備えたブースタケーブルでは、このような状況に対応できずに利用者の利便性を損なう場合があるという問題があった。
また、従来のDC−DCコンバータを備えたブースタケーブルでは、端子間電圧が等しいバッテリを搭載した車両同士では、電力を供給できないという問題があった。
【0007】
本発明は、上記課題に鑑みてなされたもので、電池同士を接続して、端子間電圧の関係に係わらず双方向に電力を供給しあうことができるDC−DCコンバータ付ブースタケーブルを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明に係るDC−DCコンバータ付ブースタケーブルは、第1の電池に接続される正極及び負極の端子(例えば実施の形態の高電圧側正極クリップ2と高電圧側負極クリップ3)を有する第1のケーブル(例えば実施の形態の高電圧側ケーブル4)と、前記第1の電池より端子間電圧が小さい第2の電池に接続される正極及び負極の端子(例えば実施の形態の低電圧側正極クリップ5と低電圧側負極クリップ6)を有する第2のケーブル(例えば実施の形態の低電圧側ケーブル7)と、前記第1及び第2のケーブル間に接続されると共に、前記第1の電池の直流電圧を前記第2の電池の直流電圧に変換する降圧動作と、前記第2の電池の直流電圧を前記第1の電池の直流電圧に変換する昇圧動作とを切り替え可能な双方向のDC−DCコンバータ(例えば実施の形態のDC−DCコンバータ1)とを備えたことを特徴とする。
以上の構成を備えたDC−DCコンバータ付ブースタケーブルは、端子間電圧が異なる電池同士を第1、第2のケーブルを介して接続し、DC−DCコンバータの降圧動作と昇圧動作とを切り替えることで、端子間電圧が大きい電池から端子間電圧が小さい電池に電力を供給することも、端子間電圧が小さい電池から端子間電圧が大きい電池に電力を供給することも可能とし、双方向に電力を供給しあうことができる。
【0009】
請求項2の発明に係るDC−DCコンバータ付ブースタケーブルは、請求項1に記載のDC−DCコンバータ付ブースタケーブルにおいて、前記DC−DCコンバータにおける前記降圧動作と前記昇圧動作とを切り替える切り替えスイッチ(例えば実施の形態の通電方向切り替えスイッチ15)を備えたことを特徴とする。
以上の構成を備えたDC−DCコンバータ付ブースタケーブルは、切り替えスイッチを利用者が切り替えて、DC−DCコンバータの降圧動作と昇圧動作とを選択することで、利用者の意志で、端子間電圧が大きい電池から端子間電圧が小さい電池に電力を供給するか、または端子間電圧が小さい電池から端子間電圧が大きい電池に電力を供給するかを決定することができる。
【0010】
請求項3の発明に係るDC−DCコンバータ付ブースタケーブルは、請求項1、または請求項2に記載のDC−DCコンバータ付ブースタケーブルにおいて、前記第1のケーブルの正極端子と、前記第2のケーブルの正極端子とを短絡するバイパススイッチ(例えば実施の形態のバイパススイッチ16)を備えたことを特徴とする。
以上の構成を備えたDC−DCコンバータ付ブースタケーブルは、バイパススイッチによってDC−DCコンバータとの接続を切断して、第1のケーブルの正極端子と第2のケーブルの正極端子とを短絡し、端子間電圧が等しい電池同士を接続して、一方の電池からもう一方の電池へ電力を供給することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の一実施の形態のDC−DCコンバータ付ブースタケーブルの構成を示すブロック図である。本実施の形態では、電池の一例としてバッテリ(蓄電池)を例にとり、またその電池の電圧の一例として、端子間電圧が大きいバッテリの電圧は公称電圧36[V]、端子間電圧が小さいバッテリの電圧は公称電圧12[V]として説明を行う。
【0012】
図1において、本実施の形態のDC−DCコンバータ付ブースタケーブルは、端子間電圧が異なるバッテリ同士を接続する場合に、2個のバッテリ間の端子間電圧の違いを吸収して、一方のバッテリからもう一方のバッテリへ電力を供給するためのDC−DCコンバータ1を備えている。また、DC−DCコンバータ付ブースタケーブルは、DC−DCコンバータ1を公称電圧36[V]のバッテリの正極端子及び負極端子へそれぞれ接続するための高電圧側正極クリップ2と高電圧側負極クリップ3を備えた高電圧側ケーブル4と、同様にDC−DCコンバータ1を公称電圧12[V]のバッテリの正極端子及び負極端子へそれぞれ接続するための低電圧側正極クリップ5と低電圧側負極クリップ6を備えた低電圧側ケーブル7とを備えている。
【0013】
次に、図1を用いて更にDC−DCコンバータ1について詳細に説明すると、DC−DCコンバータ1は、例えばFET(Field−Effect Transistor :電界効果トランジスタ)等のスイッチング素子10a、10bを備えており、スイッチング素子10aまたはスイッチング素子10bを制御回路14によってスイッチングすることにより、所望の降圧動作、または昇圧動作を行う。なお、所望の降圧動作、または昇圧動作は、スイッチ等により切り替えることにより、どちらか一方を行う。
ここで、説明の簡単化のために、スイッチング素子10a、10bをFETとして説明すると、スイッチング素子10aのドレイン端子の先には、高電圧側ケーブル4の高電圧側正極クリップ2が接続されており、高電圧側正極クリップ2が公称電圧36[V]のバッテリへ接続された場合、36[V]正極側電圧が印加される。
【0014】
一方、スイッチング素子10aのソース端子には、インダクタンス12の一方の端子が接続されており、インダクタンス12の反対側のもう一方の端子の先には、バイパススイッチ16を介して低電圧側ケーブル7の低電圧側正極クリップ5が接続されており、低電圧側正極クリップ5が公称電圧12[V]のバッテリへ接続され、バイパススイッチ16がインダクタンス12側を選択するように設定された場合、12[V]の正極側電圧が印加される。なお、バイパススイッチ16については詳細を後述する。
また、スイッチング素子10aのゲート端子は、制御回路14と接続され、制御回路14からのスイッチング制御信号が供給されている。
【0015】
また、高電圧側ケーブル4の高電圧側負極クリップ3と、低電圧側ケーブル7の低電圧側負極クリップ6とは、DC−DCコンバータ1の内部で接続されており、公称電圧36[V]のバッテリと公称電圧12[V]のバッテリとが、本実施の形態のDC−DCコンバータ付ブースタケーブルによって接続された場合、公称電圧36[V]のバッテリと公称電圧12[V]のバッテリとの負極側端子同士を同電位にするように働く。なお、公称電圧36[V]のバッテリ、及び公称電圧12[V]のバッテリが車両に搭載されているような場合、各車両のバッテリの負極側端子は接地されており、負極側端子電圧は通常は0[V]である。
【0016】
また、スイッチング素子10bのドレイン端子は、スイッチング素子10aのソース端子とインダクタンス12との接続点に接続されており、スイッチング素子10bのソース端子は、高電圧側負極クリップ3と低電圧側負極クリップ6との接続点に接続されている。また、スイッチング素子10bのゲート端子も、制御回路14と接続され、制御回路14からのスイッチング制御信号が供給されている。
なお、高電圧側ケーブル4に接続された公称電圧36[V]のバッテリの
正負両極間電圧と、低電圧側ケーブル7に接続された公称電圧12[V]のバッテリの正負両極間電圧をそれぞれ安定させるために、高電圧側ケーブル4の高電圧側正極クリップ2と高電圧側負極クリップ3との間には平滑コンデンサ13aが設けられ、低電圧側ケーブル7の低電圧側正極クリップ5と低電圧側負極クリップ6との間には平滑コンデンサ13bが設けられている。
【0017】
また、制御回路14には、DC−DCコンバータ1に降圧動作を行わせるか、またはDC−DCコンバータ1に昇圧動作を行わせるかを選択するための通電方向切り替えスイッチ15が接続されている。ここで、高電圧側ケーブル4に接続された公称電圧36[V]のバッテリから低電圧側ケーブル7に接続された公称電圧12[V]のバッテリへ電力を供給する場合には、DC−DCコンバータ1に36[V]から12[V]への降圧動作を行わせる。また、逆に低電圧側ケーブル7に接続された公称電圧12[V]のバッテリから高電圧側ケーブル4に接続された公称電圧36[V]のバッテリへ電力を供給する場合には、DC−DCコンバータ1に12[V]から36[V]への昇圧動作を行わせる。
なお、DC−DCコンバータ1の降圧動作及び昇圧動作の詳細は後述する。
【0018】
更に、制御回路14は、高電圧側ケーブル4の高電圧側正極クリップ2と高電圧側負極クリップ3にも、また低電圧側ケーブル7の低電圧側正極クリップ5と低電圧側負極クリップ6にも、それぞれ直接に接続されており、公称電圧36[V]のバッテリ、または公称電圧12[V]のバッテリの電力を、直接制御回路14の電源として利用したり、DC−DCコンバータ1から高電圧側正極クリップ2と高電圧側負極クリップ3との間、あるいは低電圧側正極クリップ5と低電圧側負極クリップ6との間に供給される電圧をモニタすることができるようになっている。
【0019】
なお、公称電圧36[V]のバッテリ、または公称電圧12[V]のバッテリの電力を、制御回路14の電源として利用するために、通電方向切り替えスイッチ15は、DC−DCコンバータ1の電源を公称電圧36[V]のバッテリとするか、または公称電圧12[V]のバッテリとするかを選択する機能を持つ。
この場合、制御回路14の電源を選択するのであるから、通電方向切り替えスイッチ15の選択方向を、制御回路14が電気的に分別することはできない。そのため、通電方向切り替えスイッチ15は、機械的に選択するバッテリを切り替える構造を備えるものとする。
【0020】
一方、通電方向切り替えスイッチ15の選択方向を、制御回路14が電気的に分別して、制御回路14の電源(この場合、制御回路14の中でスイッチング素子10a及び10bを制御するための電源)となるバッテリを選択するためには、通電方向切り替えスイッチ15の選択方向を電気的に分別して、バッテリを選択する部分の回路の電源は、ボタン(型)電池や乾電池等、別電源を備える必要がある。なお、通電方向切り替えスイッチ15は、電圧変換レギュレータ等の電圧変換素子により、公称電圧36[V]のバッテリ、または公称電圧12[V]のバッテリの電力が所定の定電圧に変換されたものを選択して制御回路14へ供給するものとする。
【0021】
また、通電方向切り替えスイッチ15によるバッテリの選択方向は、DC−DCコンバータ1に降圧動作を行わせる場合は、高電圧側ケーブル4に接続された公称電圧36[V]のバッテリを電源として選択し、DC−DCコンバータ1に昇圧動作を行わせる場合は、低電圧側ケーブル7に接続された公称電圧12[V]のバッテリを電源として選択するものとする。
また、制御回路14は、CPU(中央演算装置)を備えてスイッチング素子10a及び10bを制御しても良いし、ロジック回路のみでスイッチング素子10a及び10bを制御しても良い。
【0022】
また、DC−DCコンバータ1の低電圧側ケーブル7側には、インダクタンス12と低電圧側正極クリップ5との接続を切断して、高電圧側正極クリップ2と低電圧側正極クリップ5とを短絡するためのバイパススイッチ16が設けられている。バイパススイッチ16によって、インダクタンス12と低電圧側正極クリップ5との接続を切断して、高電圧側正極クリップ2と低電圧側正極クリップ5とを短絡(導通)させることにより、本実施の形態のDC−DCコンバータ付ブースタケーブルは、DC−DCコンバータ1が切り離されて、従来のDC−DCコンバータを備えないブースタケーブルと同様に、端子間電圧が等しいバッテリ同士を接続して、一方のバッテリからもう一方のバッテリへ電力を供給するために利用することができる。
【0023】
なお、バイパススイッチ16は、例えばリレースイッチ等を用いて、制御回路14によりその選択方向を制御しても良い。また、バイパススイッチ16は、高電圧側ケーブル4側に設け、スイッチング素子10aと高電圧側正極クリップ2との接続を切断して、低電圧側正極クリップ5と高電圧側正極クリップ2とを短絡するようにしても良い。
また、高電圧側正極クリップ2と、高電圧側負極クリップ3と、低電圧側正極クリップ5と、低電圧側負極クリップ6は、ワニ口クリップのようにバッテリの端子を挟み込むものが一般的であるが、バッテリの端子と着脱自在で、かつ高電流及び高電圧に耐えうるものであれば、どのようなものであっても良い。
【0024】
次に、本実施の形態のDC−DCコンバータ付ブースタケーブルの利用の仕方とその動作、及び制御方法について、図1及び図2を参照しながら説明する。
図2は、本実施の形態のDC−DCコンバータ付ブースタケーブルの利用方法を示す模式図である。図2に示すように、DC−DCコンバータ付ブースタケーブルは、例えば高電圧側ケーブル4の高電圧側正極クリップ2を36[V]システム車両20に搭載された公称電圧36[V]バッテリ21の正極端子へ、高電圧側負極クリップ3を公称電圧36[V]バッテリ21の負極端子へそれぞれ接続し、一方、低電圧側ケーブル7の低電圧側正極クリップ5を12[V]システム車両22に搭載された公称電圧12[V]バッテリ23の正極端子へ、低電圧側負極クリップ6を公称電圧12[V]バッテリ23の負極端子へそれぞれ接続して利用する。
【0025】
このような接続時に、例えば12[V]システム車両22が公称電圧12[V]バッテリ23の電力が放電してしまった被救援車両で、12[V]システム車両22のエンジンを始動するためのスタータモータに電力を供給できないような場合、利用者は、通電方向切り替えスイッチ15を操作して、DC−DCコンバータ1に降圧動作を行わせるように通電方向切り替えスイッチ15を設定し、救援車両である36[V]システム車両20に搭載された公称電圧36[V]バッテリ21の電力を12[V]システム車両22へ供給する。また、バイパススイッチ16は、インダクタンス12と低電圧側正極クリップ5とを接続するように設定する。
すると、DC−DCコンバータ1は、降圧動作により、高電圧側ケーブル4に接続された公称電圧36[V]バッテリ21の電力を、12[V]電圧の電力に変換し、低電圧側ケーブル7に接続された公称電圧12[V]バッテリ23へ供給する。
【0026】
すなわち、制御回路14がスイッチング素子10aをオンする(スイッチング素子10aのゲート端子に電圧を印加し、スイッチング素子10aのドレイン端子とソース端子間を導通させる)と、インダクタンス12を介して公称電圧36[V]バッテリ21から公称電圧12[V]バッテリ23へ電流が流れる。
ここで、制御回路14がスイッチング素子10aをオフする(スイッチング素子10aのゲート端子に対する電圧の印加を止めて、スイッチング素子10aのドレイン端子とソース端子間を遮断する)と、インダクタンス12の逆起電力が、スイッチング素子10bに寄生する寄生ダイオード11bにより整流されることで、公称電圧12[V]バッテリ23の正極と負極の端子間に印加される電圧と、インダクタンス12から公称電圧12[V]バッテリ23、そして寄生ダイオード11bを通してインダクタンス12へ戻る電流が発生する。
【0027】
従って、公称電圧12[V]バッテリ23の正極と負極の端子間には、低電圧側正極クリップ5側(公称電圧12[V]バッテリ23の正極端子側)の方が電位が高く、かつ平滑コンデンサ13bにより平滑化された電圧が印加される。
この場合、インダクタンス12に発生する逆起電力は、スイッチング素子10aをオンする時間が長い程大きくなるので、スイッチング素子10aをオンする時間が長ければ、公称電圧12[V]バッテリ23の正極と負極の端子間に印加される電圧は高くなる。そこで、制御回路14は、公称電圧12[V]バッテリ23の正極と負極の端子間に印加される電圧(低電圧側正極クリップ5と低電圧側負極クリップ6との間に供給される電圧)が12[V]となるように、電圧をモニタしながら、フィードバック制御によりスイッチング素子10aをオンする時間を調整し、公称電圧36[V]バッテリ21から公称電圧12[V]バッテリ23への電力の供給を可能にする。
【0028】
また、逆に、例えば36[V]システム車両20が公称電圧36[V]バッテリ21の電力が放電してしまった被救援車両で、36[V]システム車両20のエンジンを始動するためのスタータモータに電力を供給できないような場合、利用者は、通電方向切り替えスイッチ15を操作して、DC−DCコンバータ1に昇圧動作を行わせるように通電方向切り替えスイッチ15を設定し、救援車両である12[V]システム車両22に搭載された公称電圧12[V]バッテリ23の電力を36[V]システム車両20へ供給する。なお、バイパススイッチ16は、インダクタンス12と低電圧側正極クリップ5とを接続するように設定したままで良い。
すると、DC−DCコンバータ1は、昇圧動作により、低電圧側ケーブル7に接続された公称電圧12[V]バッテリ23の電力を、36[V]電圧の電力に変換し、高電圧側ケーブル4に接続された公称電圧36[V]バッテリ21へ供給する。
【0029】
すなわち、制御回路14がスイッチング素子10bをオンすると、公称電圧12[V]バッテリ23からインダクタンス12へ電流が流れる。
ここで、制御回路14がスイッチング素子10bをオフすると、インダクタンス12は、その逆起電力により、インダクタンス12とスイッチング素子10aとの接続点の方が公称電圧12[V]バッテリ23の正極端子よりも電位が高い電圧が発生する。
そして、この逆起電力がスイッチング素子10aに寄生する寄生ダイオード11aにより整流されることで、公称電圧36[V]バッテリ21の正極と負極の端子間に印加される電圧と、インダクタンス12から寄生ダイオード11a、そして公称電圧36[V]バッテリ21、公称電圧12[V]バッテリ23を通してインダクタンス12へ戻る電流が発生する。
【0030】
従って、公称電圧36[V]バッテリ21の正極と負極の端子間には、高電圧側正極クリップ2側(公称電圧36[V]バッテリ21の正極端子側)の方が電位が高く、かつ平滑コンデンサ13aにより平滑化された電圧が印加される。
この場合、インダクタンス12に発生する逆起電力は、スイッチング素子10bをオンする時間が長い程大きくなるので、スイッチング素子10bをオンする時間が長ければ、公称電圧36[V]バッテリ21の正極と負極の端子間に印加される電圧は高くなる。そこで、制御回路14は、公称電圧36[V]バッテリ21の正極と負極の端子間に印加される電圧(高電圧側正極クリップ2と高電圧側負極クリップ3との間に供給される電圧)が36[V]となるように、電圧をモニタしながら、フィードバック制御によりスイッチング素子10bをオンする時間を調整し、公称電圧12[V]バッテリ23から公称電圧36[V]バッテリ21への電力の供給を可能にする。
【0031】
また、本実施の形態のDC−DCコンバータ付ブースタケーブルを、図2に示すように、36[V]システム車両20と12[V]システム車両22との間で電圧の違うバッテリ同士を接続するのではなく、36[V]システム車両20同士、または12[V]システム車両22同士の間で同電圧のバッテリ同士を接続して電力を供給するために利用する場合は、バイパススイッチ16によって、インダクタンス12と低電圧側正極クリップ5との接続を切断すると共に、高電圧側正極クリップ2と低電圧側正極クリップ5とを短絡(導通)させて、従来のDC−DCコンバータを備えない普通のブースタケーブルと同様に利用すれば良い。
【0032】
なお、上述の実施の形態においては、DC−DCコンバータ1は、非絶縁型DC−DCコンバータを例にとって説明したが、DC−DCコンバータは絶縁型であっても良い。
また、電池はバッテリ(蓄電池)に限らず充電可能な二次電池であればどのような電池であっても良い。
更に、電池の電圧は36[V]や12[V]に限らず、どのような電圧であっても良い。また、電池の電圧に対する閾値を設定し、いずれの電池の電力が放電してしまっているかを検出し、端子間電圧が大きい電池から端子間電圧が小さい電池に電力を供給するか、端子間電圧が小さい電池から端子間電圧が大きい電池に電力を供給するかを自動設定するようにしても良い。
【0033】
また、スイッチング素子は、FETに限らずIGBT( Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラ・トランジスタ)や、逆阻止サイリスタ、GTO(Gate Turn Off thyristor )等を用いても良い。但し、寄生ダイオードを有しないスイッチング素子を利用する場合、寄生ダイオード11a、11bに相当する転流ダイオード(FWD:Free Wheeling Diode )を別途設けるものとする。
【0034】
以上説明したように、本実施の形態のDC−DCコンバータ付ブースタケーブルは、バッテリ同士を接続するブースタケーブルにDC−DCコンバータ1を設け、DC−DCコンバータ1の降圧動作、または昇圧動作を選択して動作させることで、端子間電圧が異なるバッテリ同士を接続して、端子間電圧が大きい一方のバッテリから端子間電圧が小さいもう一方のバッテリへ、またはその逆に端子間電圧が小さい一方のバッテリから端子間電圧が大きいもう一方のバッテリへ、自由に異なるバッテリ間で電力を供給しあうことができるようになる。また、DC−DCコンバータを迂回してバッテリ同士を接続するスイッチを設けることで、端子間電圧が等しいバッテリ同士でも、一方のバッテリからもう一方のバッテリへバッテリ間で電力を供給しあえるようにすることができる。
従って、利用者は、本実施の形態のDC−DCコンバータ付ブースタケーブルを備えるだけで、いろいろな状況に対応して、他車両から電力を供給されることで、バッテリの電力が放電してしまった自車両のエンジンを始動することができるという効果が得られる。
【0035】
【発明の効果】
以上の如く、請求項1に記載のDC−DCコンバータ付ブースタケーブルによれば、降圧動作と昇圧動作を切り替え可能なDC−DCコンバータを備えることで、端子間電圧が大きい電池から端子間電圧が小さい電池に電力を供給することも、端子間電圧が小さい電池から端子間電圧が大きい電池に電力を供給することも可能となり、双方向に電力を供給しあうことができる。
従って、どのような端子間電圧の電池同士でも電力を供給しあうことができるようになるという効果が得られる。
【0036】
請求項2に記載のDC−DCコンバータ付ブースタケーブルによれば、切り替えスイッチを利用者が切り替えて、DC−DCコンバータの降圧動作と昇圧動作とを選択することで、端子間電圧が異なる電池間で電力を供給しあう際に、利用者の意志で電圧の変換を行うことができる。
従って、DC−DCコンバータの動作に対し、明示的に、高い電圧から低い電圧へ変換するのか、またはその逆かを指定することができるようになり、DC−DCコンバータ付ブースタケーブルを利用する際の信頼性を向上させることができるという効果がある。
【0037】
請求項3に記載のDC−DCコンバータ付ブースタケーブルによれば、バイパススイッチによってDC−DCコンバータとの接続を切断して、DC−DCコンバータを迂回して端子間電圧が等しい電池同士を接続し、一方の電池からもう一方の電池へ電力を供給することができる。
従って、DC−DCコンバータ付ブースタケーブルを、従来のDC−DCコンバータを備えない普通のブースタケーブルと同様に利用できるので、利用者は複数のブースタケーブルを用意する必要がなくなると共に、利用者がDC−DCコンバータ付ブースタケーブルを利用する際の使い勝手を向上させることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のDC−DCコンバータ付ブースタケーブルの構成を示す回路図である。
【図2】同実施の形態のDC−DCコンバータ付ブースタケーブルの利用方法を示す模式図である。
【符号の説明】
1  DC−DCコンバータ
2  高電圧側正極クリップ
3  高電圧側負極クリップ
4  高電圧側ケーブル
5  低電圧側正極クリップ
6  低電圧側負極クリップ
7  低電圧側ケーブル
10a、10b  スイッチング素子
11a、11b  寄生ダイオード
12  インダクタンス
13a、13b  平滑コンデンサ
14  制御回路
15  通電方向切り替えスイッチ
16  バイパススイッチ
20  36[V]システム車両
21  公称電圧36[V]バッテリ
22  12[V]システム車両
23  公称電圧12[V]バッテリ

Claims (3)

  1. 第1の電池に接続される正極及び負極の端子を有する第1のケーブルと、
    前記第1の電池より端子間電圧が小さい第2の電池に接続される正極及び負極の端子を有する第2のケーブルと、
    前記第1及び第2のケーブル間に接続されると共に、前記第1の電池の直流電圧を前記第2の電池の直流電圧に変換する降圧動作と、前記第2の電池の直流電圧を前記第1の電池の直流電圧に変換する昇圧動作とを切り替え可能な双方向のDC−DCコンバータと
    を備えたことを特徴とするDC−DCコンバータ付ブースタケーブル。
  2. 前記DC−DCコンバータにおける前記降圧動作と前記昇圧動作とを切り替える切り替えスイッチを
    を備えたことを特徴とする請求項1に記載のDC−DCコンバータ付ブースタケーブル。
  3. 前記第1のケーブルの正極端子と、前記第2のケーブルの正極端子とを短絡するバイパススイッチ
    を備えたことを特徴とする請求項1、または請求項2に記載のDC−DCコンバータ付ブースタケーブル。
JP2002173099A 2002-06-13 2002-06-13 Dc−dcコンバータ付ブースタケーブル Withdrawn JP2004023851A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173099A JP2004023851A (ja) 2002-06-13 2002-06-13 Dc−dcコンバータ付ブースタケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173099A JP2004023851A (ja) 2002-06-13 2002-06-13 Dc−dcコンバータ付ブースタケーブル

Publications (1)

Publication Number Publication Date
JP2004023851A true JP2004023851A (ja) 2004-01-22

Family

ID=31172485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173099A Withdrawn JP2004023851A (ja) 2002-06-13 2002-06-13 Dc−dcコンバータ付ブースタケーブル

Country Status (1)

Country Link
JP (1) JP2004023851A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252520A (ja) * 2009-04-15 2010-11-04 Nissan Motor Co Ltd 車車間充電方法、車車間充電用ケーブルおよび電動車両
KR101099933B1 (ko) 2010-02-25 2011-12-28 대성전기공업 주식회사 바이패스 회로가 있는 isg용 dc-dc 컨버터
JP2013198396A (ja) * 2012-03-15 2013-09-30 Toyota Motor Corp 取出装置
JP2014506970A (ja) * 2011-02-03 2014-03-20 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 自動車両用のジャンプスタート装置
JP2014510221A (ja) * 2011-02-03 2014-04-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト ジャンプスタート装置を具備した自動車両
WO2015155811A1 (ja) * 2014-04-10 2015-10-15 三洋電機株式会社 電源装置とこの電源装置に接続される電子機器への給電方法
CN105099153A (zh) * 2014-05-14 2015-11-25 德克萨斯仪器德国股份有限公司 用于电力变换器的短路保护系统
CN110546846A (zh) * 2017-04-13 2019-12-06 微软技术许可有限责任公司 包括双向充电调节器的混合电池组
WO2020260244A1 (de) * 2019-06-28 2020-12-30 Volkswagen Aktiengesellschaft Verfahren zum aufladen einer hochvolt-batterie eines elektroantriebs eines fahrzeugs, sowie energieübertragungssystem für ein fahrzeug
JP7281587B1 (ja) 2022-07-08 2023-05-25 株式会社オリジン 電気自動車間充放電装置
WO2024010070A1 (ja) * 2022-07-08 2024-01-11 株式会社オリジン 電気自動車間充放電装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252520A (ja) * 2009-04-15 2010-11-04 Nissan Motor Co Ltd 車車間充電方法、車車間充電用ケーブルおよび電動車両
KR101099933B1 (ko) 2010-02-25 2011-12-28 대성전기공업 주식회사 바이패스 회로가 있는 isg용 dc-dc 컨버터
JP2014506970A (ja) * 2011-02-03 2014-03-20 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト 自動車両用のジャンプスタート装置
JP2014510221A (ja) * 2011-02-03 2014-04-24 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト ジャンプスタート装置を具備した自動車両
JP2013198396A (ja) * 2012-03-15 2013-09-30 Toyota Motor Corp 取出装置
JP2013198397A (ja) * 2012-03-15 2013-09-30 Toyota Motor Corp 取出装置
JPWO2015155811A1 (ja) * 2014-04-10 2017-04-13 三洋電機株式会社 電源装置とこの電源装置に接続される電子機器への給電方法
WO2015155811A1 (ja) * 2014-04-10 2015-10-15 三洋電機株式会社 電源装置とこの電源装置に接続される電子機器への給電方法
CN105099153A (zh) * 2014-05-14 2015-11-25 德克萨斯仪器德国股份有限公司 用于电力变换器的短路保护系统
CN110546846A (zh) * 2017-04-13 2019-12-06 微软技术许可有限责任公司 包括双向充电调节器的混合电池组
CN110546846B (zh) * 2017-04-13 2023-09-22 微软技术许可有限责任公司 包括双向充电调节器的混合电池组
WO2020260244A1 (de) * 2019-06-28 2020-12-30 Volkswagen Aktiengesellschaft Verfahren zum aufladen einer hochvolt-batterie eines elektroantriebs eines fahrzeugs, sowie energieübertragungssystem für ein fahrzeug
US11945321B2 (en) 2019-06-28 2024-04-02 Volkswagen Aktiengesellschaft Method for charging a high-voltage battery of an electric drive of a vehicle, and power transmission system for a vehicle
JP7281587B1 (ja) 2022-07-08 2023-05-25 株式会社オリジン 電気自動車間充放電装置
WO2024010070A1 (ja) * 2022-07-08 2024-01-11 株式会社オリジン 電気自動車間充放電装置
JP2024008701A (ja) * 2022-07-08 2024-01-19 株式会社オリジン 電気自動車間充放電装置

Similar Documents

Publication Publication Date Title
US6794846B2 (en) Power source unit
JP5553677B2 (ja) ハイブリッド式発動発電機の出力制御装置
US9085239B2 (en) Push-pull circuit, DC/DC converter, solar charging system, and movable body
WO2004055963A1 (ja) 自動車用電力装置
US9843184B2 (en) Voltage conversion apparatus
US11052771B2 (en) Vehicle-mounted power supply device
JP7070830B2 (ja) スイッチング電源装置
JP2004023851A (ja) Dc−dcコンバータ付ブースタケーブル
JP2017225279A (ja) 電力変換システム
TWI333319B (en) Method of starting power-converting apparatus
JP3632776B2 (ja) 電動車両用充電装置
JP6742145B2 (ja) 双方向dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP3042528B1 (ja) 充電装置
JP2001292567A (ja) Dc/dcコンバータ
JP3859105B2 (ja) ハイブリッド車用充電装置
JP2000354304A (ja) モータ駆動用電力変換装置
US10906484B2 (en) In-vehicle power supply device
JP2000152408A (ja) 電気自動車
JP2011147277A (ja) 双方向電力変換回路
JPH05199744A (ja) 同期整流方法および同期整流回路を備えたスイッチング電源
JPH09308104A (ja) 電源装置
JP2004248335A (ja) モータ制御装置
JP3267204B2 (ja) トランス駆動回路
JP6718150B2 (ja) ハイブリッド車
JP2002084676A (ja) 蓄電装置の電力変換装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906