JP2004022193A - 燃料電池用電源システム及び燃料電池システムの電力供給方法 - Google Patents

燃料電池用電源システム及び燃料電池システムの電力供給方法 Download PDF

Info

Publication number
JP2004022193A
JP2004022193A JP2002171414A JP2002171414A JP2004022193A JP 2004022193 A JP2004022193 A JP 2004022193A JP 2002171414 A JP2002171414 A JP 2002171414A JP 2002171414 A JP2002171414 A JP 2002171414A JP 2004022193 A JP2004022193 A JP 2004022193A
Authority
JP
Japan
Prior art keywords
fuel cell
power
power supply
cell stack
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002171414A
Other languages
English (en)
Inventor
Tomotaka Kuromame
黒豆 友孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002171414A priority Critical patent/JP2004022193A/ja
Publication of JP2004022193A publication Critical patent/JP2004022193A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池スタックからの出力電圧を変換して負荷に供給するシステムを小型化すると共に低コスト化する。
【解決手段】駆動モータに電力供給する駆動用インバータ2にリレー4を介して燃料電池スタック1からの直流電源を供給すると共に、燃料電池スタック1からの直流電源を電力変換装置8により交流電源に変換して空気コンプレッサ用インバータ5等に供給するシステムにおいて、コントロールユニット10では、駆動モータを駆動開始させるに際して、リレー4を開状態にしておいて燃料電池スタック1から駆動用インバータ2への電力供給を遮断した状態にて、燃料電池スタック1を起動させて電力変換装置8から空気コンプレッサ用インバータ5等に電力供給をし、燃料電池スタック1の出力電圧が低下した後に、リレー4を閉状態にして燃料電池スタック1から駆動用インバータ2への電力供給をする。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば燃料電池車両に備えられた駆動モータ等の駆動系負荷及び補機に燃料電池スタックにて発電した電力を供給する燃料電池用電源システム及び燃料電池システムの電力供給方法に関する。
【0002】
【従来の技術】
例えばハイブリッド車両において、燃料電池スタックにて発電した電力を負荷に供給するシステムとしては、特開平5−74296号公報に開示された燃料電池システムの制御装置が知られている。
【0003】
この燃料電池システムの制御装置では、燃料電池スタックの出力が低い場合に、燃料電池スタックからの出力電圧が所定電圧になるように電力変換装置にて変換するように制御し、全ての電力負荷を電力変換装置を介して供給するようにしていた。
【0004】
【発明が解決しようとする課題】
ところで、燃料電池スタックに接続された負荷に要求される電力が小さい場合には、燃料電池スタックの出力電圧が負荷の定格電圧よりも高くなる。このため、燃料電池スタックに接続される負荷には定格電圧である最大電圧が供給されることになり、全ての負荷を高電圧に適合した設計をする必要があり、負荷の大型化、高コスト化を招くという問題があった。
【0005】
このような問題を回避するためには、燃料電池スタックの出力電圧値を降下させるための大型の電力変換装置が必要となる。また、この問題を回避する他の手法としては、特開平10−271706号公報に開示されているように、駆動電源系統及び補機電源系統の電力変換装置を最適なものとし、電圧を低下させる手法があるが、電力変換装置の大型化、高コスト化を免れることができなかった。
【0006】
そこで、本発明は、上述した実情に鑑みて提案されたものであり、燃料電池スタックからの出力電圧を変換して負荷に供給するシステムを小型化すると共に低コスト化することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、駆動系負荷に電力供給する駆動電源系統に開閉装置を介して燃料電池スタックからの直流電源を供給すると共に、上記燃料電池スタックからの直流電源を電力変換装置により交流電源に変換して補機電源系統に供給するシステムを制御するものである。
【0008】
本発明では、上記駆動系負荷を駆動開始させるに際して、上記開閉装置を開状態にしておいて上記燃料電池スタックから上記駆動電源系統への電力供給を遮断した状態にて、上記燃料電池スタックを起動させて上記電力変換装置から上記補機電源系統に電力供給をし、上記燃料電池スタックの出力電圧が低下した後に、上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統への電力供給をすることにより、上述の課題を解決する。
【0009】
【発明の効果】
本発明によれば、駆動系負荷を駆動開始させるに際して、燃料電池スタックを起動させて電力変換装置から補機電源系統に電力供給をし、燃料電池スタックの出力電圧が低下した後に、開閉装置を閉状態にして燃料電池スタックから駆動電源系統への電力供給をするようにしたので、駆動電源系統に電源供給するための電力変換装置を不要とすることができ、燃料電池スタックからの出力電圧を変換して負荷に供給するシステムを小型化すると共に低コスト化することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0011】
本発明は、例えば図1に示すように構成された燃料電池用電源システムに適用される。
【0012】
[第1実施形態]
第1実施形態に係る燃料電池用電源システムは、例えば燃料電池車両に搭載され、燃料電池スタック1にて発電した電力を駆動系負荷及び補機に供給することにより、燃料電池車両を駆動するものである。本例において、駆動系負荷とは燃料電池車両が走行するトルクを発生させる駆動モータ等であり、補機とは燃料電池スタック1を作動させるための空気コンプレッサや水ポンプ、オーディオ機器などである。
【0013】
この燃料電池用電源システムは、図1に示すように、燃料電池スタック1にて発電した出力電圧を駆動電源系統により駆動系負荷に供給すると共に、補機電源系統により補機に供給する。なお、図1において各部を接続する電源線を太線にて図示し、各部を制御する制御線を点線にて図示している。
【0014】
燃料電池スタック1は、コントロールユニット10からの制御信号に応じて発電作動をする。この燃料電池スタック1は、固体高分子電解質膜を酸化剤極(カソード極)と燃料極(アノード極)とにより挟んで構成されたセル構造体が、セパレータを介して複数積層されてなるスタック構造となっている。この燃料電池スタック1は、コントロールユニット10の制御により補機が駆動して、酸化剤極側に酸化剤ガスとしての空気が供給されると共に、燃料極側に燃料ガスとしての水素ガスが供給される。これにより、燃料電池スタック1は、水分を媒体として膜中をそれぞれのイオンが移動して接触して発電する。
【0015】
駆動電源系統は、駆動用インバータ2及びAC用インバータ3がリレー(開閉器)4を介して燃料電池スタック1と接続されてなる。駆動用インバータ2及びAC用インバータ3は、内部に電力用半導体スイッチング素子を有し、この電力用半導体スイッチング素子をオンオフ駆動することにより、駆動系負荷に要求される電力を供給する。このとき、駆動用インバータ2及びAC用インバータ3は、コントロールユニット10からの制御信号に従った電力値に変換して駆動系負荷に供給する。
【0016】
リレー4は、燃料電池スタック1からの直流電圧が供給される。このリレーは、コントロールユニット10からの制御信号に従って開閉動作する電磁式の開閉器からなる。このリレー4は、閉状態時には燃料電池スタック1からの直流電圧をそのまま駆動用インバータ2及びAC用インバータ3に印加し、開状態時には燃料電池スタック1からの駆動用インバータ2及びAC用インバータ3への直流電圧を遮断する。
【0017】
補機電源系統は、空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7が電力変換装置8を介して燃料電池スタック1と接続され、更にバッテリ9と接続されてなる。空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7は、内部に電力用半導体スイッチング素子を有し、この電力用半導体スイッチング素子を駆動することにより、補機に要求される電力を供給する。このとき、空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7は、コントロールユニット10からの制御信号に従った電力値に変換して補機に供給する。
【0018】
電力変換装置8は、コントロールユニット10の制御に従って、燃料電池スタック1にて発電した直流の出力電圧を変換することで交流電圧にしてバッテリ9、及び空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に供給する。この電力変換装置8は、例えば燃料電池スタック1からの300V〜150Vの高電圧を補機用の12Vに降圧する。また、バッテリ9は、コントロールユニット10の制御に従って、放充電動作をすることでそのSOC(State Of Charge)が制御される。
【0019】
コントロールユニット10は、外部から駆動系負荷の駆動要求を入力すると、リレー4の開閉動作を制御すると共に、駆動用インバータ2及びAC用インバータ3を制御して、駆動要求に対応した電力を駆動系負荷に供給させる。具体的には、燃料電池車両を走行駆動するトルクを発生させる要求を入力した場合には、駆動用インバータ2から駆動モータに電力を供給する制御をする。
【0020】
また、コントロールユニット10は、外部から補機の駆動要求を入力すると、バッテリ9、空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7を制御して、駆動要求に対応した電力を駆動系負荷に供給させる。具体的には、燃料電池スタック1を駆動開始する要求を入力した場合には、空気コンプレッサ用インバータ5、水ポンプ用インバータ6から空気コンプレッサ及び水ポンプに電力を供給する制御をする。
【0021】
更に、コントロールユニット10は、燃料電池車両の走行開始時に、燃料電池スタック1を起動して駆動モータを駆動するに際して電源起動処理を行う。このとき、コントロールユニット10は、先ず、バッテリ9のバッテリ電圧を空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に供給して補機を駆動することで燃料電池スタック1を起動させる。このとき、燃料電池スタック1には、起動時の高電圧が発生する。
【0022】
次に、コントロールユニット10では、電力変換装置8を制御して、燃料電池スタック1にて発生した高電圧を変換してバッテリ9、又は、空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に電源供給をする。このとき、リレー4が開状態(オフ)となっているので、燃料電池スタック1にて発電した出力電圧が駆動用インバータ2及びAC用インバータ3に供給されることはない。
【0023】
その後に燃料電池スタック1の起動時の高電圧が低下すると、コントロールユニット10は、リレー4を閉状態(オン)にして燃料電池スタック1の出力電圧を駆動用インバータ2及びAC用インバータ3に供給して駆動系負荷を駆動させる。
【0024】
「第1実施形態の効果」
以上詳細に説明したように、第1実施形態に係る燃料電池用電源システムによれば、燃料電池スタック1の起動直後の高電圧発生時には電力変換装置8により電圧変換をして空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に電源供給をし、その後に燃料電池スタック1の出力電圧が低下したときにリレー4を閉状態にして燃料電池スタック1の出力電圧を駆動用インバータ2及びAC用インバータ3に供給するようにしたので、駆動用インバータ2及びAC用インバータ3に電源供給するための電力変換装置を不要とすることができる。
【0025】
したがって、この燃料電池用電源システムによれば、補機を駆動するための電力変換装置のみにて駆動電源系統及び補機電源系統に電源を供給可能なシステムを実現することができ、システムの小型化及び低コスト化を実現することができる。
【0026】
また、この燃料電池用電源システムによれば、補機の駆動用に設けた電力変換装置8には高い耐電圧が要求されるが、駆動系に比べて電力の小さい補機用なので、小型なものを使用することができる。したがって、電力変換装置8にて使用する耐電圧素子を既存の場合と比較して少なくすることができ、これにより、大電力を扱う必要がある駆動電源系統のシステムを低コストで構成することができる。
【0027】
[第2実施形態]
つぎに、第2実施形態に係る燃料電池用電源システムについて説明する。なお、第2実施形態に係る燃料電池用電源システムは、その構成が第1実施形態と同様であるので説明を省略し、同一符号を付することによりその詳細な説明を省略する。
【0028】
第2実施形態に係る燃料電池用電源システムは、コントロールユニット10にて行う電源起動処理が第1実施形態とは異なる。
【0029】
第2実施形態における電源起動処理では、図2に示すように、燃料電池スタック1の出力電流値(スタック電流)が第1電流値I1以下であって燃料電池スタック1の出力電圧値(スタック電圧)が第1電圧値V1以上である場合には、駆動系負荷への電力供給をせず、補機への電力供給をする補機配電領域とする。また、出力電流値が第2電流値I2より大きく出力電圧値が第2電圧値V2より小さくなるまでの領域も、補機配電領域とする。
【0030】
このとき、コントロールユニット10では、燃料電池スタック1の出力端付近に接続された電源線に設けられた電流電圧センサ(図示せず)からのセンサ値を入力して、リレー4を開状態(オフ)にすると共に、バッテリ9から空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に電力供給をして補機に電力供給をするように制御する。
【0031】
また、この電源起動処理では、燃料電池スタック1の出力電流値(スタック電流)が第1電流値I1〜第2電流値I2であって燃料電池スタック1の出力電圧値(スタック電圧)が第1電圧値V1〜第2電圧値V2である場合には、駆動系負荷への電力供給をする駆動系配電領域とする。
【0032】
このとき、コントロールユニット10では、リレー4を閉状態(オン)にして燃料電池スタック1から駆動用インバータ2及びAC用インバータ3に出力電力を供給して、駆動系負荷に電力供給をするように制御する。
【0033】
このような電源起動処理の処理手順を図3のフローチャートを参照して説明する。
【0034】
電源起動処理では、外部から駆動系負荷を駆動する要求をコントロールユニット10にて入力した後にステップS1以降の処理を開始し、先ず、ステップS1において、コントロールユニット10により、電力を空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7にバッテリ9から電力供給をするように制御してステップS2に処理を進める。
【0035】
ステップS2においては、コントロールユニット10により、ステップS1にて補機を駆動したことにより燃料電池スタック1が起動し、燃料電池スタック1が発電開始したことを出力電圧値から確認してステップS3に処理を進める。
【0036】
ステップS3においては、コントロールユニット10により、燃料電池スタック1の出力電圧が所定値以上に上昇したか否かを判定する。ここで、燃料電池スタック1の起動時には、通常運転時よりも高電圧の発電をするため、コントロールユニット10では、図2の第1電圧値V1以上に燃料電池スタック1の出力電圧が上昇したか否かを判定する。コントロールユニット10により所定値以上の出力電圧が発生していない場合には、ステップS2及びステップS3の処理を繰り返して補機の駆動を継続し、所定値以上の出力電圧が発生したと判定したときにはステップS4に処理を進める。
【0037】
ステップS4においては、コントロールユニット10により、電力変換装置8を起動して、燃料電池スタック1の出力電圧を変換して、空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に電力供給を開始させてステップS5に処理を進める。また、コントロールユニット10は、電力変換装置8の変換電力指令値を上昇させる。
【0038】
ステップS5において、コントロールユニット10により、ステップS4にて電力変換装置8による電力変換をしたことにより、燃料電池スタック1の出力電圧が所定値(第1電圧値V1)以下に下降したか否かを判定する。燃料電池スタック1の出力電圧が所定値以下に下降したと判定した場合にはステップS6に処理を進めてリレー4を閉状態(オン)とするように制御し、燃料電池スタック1の出力電圧が所定値以下まで下降していないと判定した場合にはステップS4に処理を戻す。このステップS4では、コントロールユニット10により、以前のステップS4と比較して変換電力指令値を上昇させて燃料電池スタック1の出力電圧が所定値以下となるように制御する。
【0039】
ステップS6にてリレー4を閉状態にすると、燃料電池スタック1の出力電圧をリレー4を介して駆動用インバータ2及びAC用インバータ3に供給する。ここで、駆動用インバータ2及びAC用インバータ3には、第1電圧値V1以下であって内部の電力用半導体スイッチング素子の半導体耐圧を超える電圧が印加されないことになる。
【0040】
次のステップS7において、コントロールユニット10により、駆動用インバータ2及びAC用インバータ3に供給している配電電圧を監視し、この配電電圧が規定値(第1電圧値V1)以下か否かを判定し、配電電圧が規定値以下である場合にステップS8にて駆動用インバータ2を駆動させて、駆動モータ等を駆動して燃料電池車両のトルクを発生させる。一方、配電電圧が規定値以下でない場合には、ステップS7の処理を繰り返す。
【0041】
「第2実施形態の効果」
以上説明したように、第2実施形態に係る燃料電池用電源システムによれば、ステップS4にて電力変換装置8から出力する電圧値を制御し、駆動用インバータ2及びAC用インバータ3の電力用半導体スイッチング素子の耐圧よりも燃料電池スタック1の出力電圧が小さくなった場合にリレー4を介して電力供給するようにしたので、常に電力用半導体スイッチング素子の耐圧以下の電圧を供給することができ、駆動電源系統の電力変換装置を無くすことができシステムの小型化及び低コスト化を実現することができる。
【0042】
また、この燃料電池用電源システムによれば、駆動用インバータ2及びAC用インバータ3に接続された駆動系負荷の変動や燃料電池スタック1の特性ばらつきの影響を受けることなく、確実に設定電圧以下にて電源供給をすることができる。
【0043】
[第3実施形態]
つぎに、第3実施形態に係る燃料電池用電源システムについて説明する。なお、第3実施形態に係る燃料電池用電源システムは、その構成が第1実施形態と同様であるので説明を省略し、同一符号を付することによりその詳細な説明を省略する。
【0044】
第3実施形態における電源起動処理では、図4に示すように、燃料電池スタック1の出力電圧値が所定値V以下であって、出力電流の変化に対する出力電圧の変化である電圧変化率が所定値ΔV/ΔI以下である場合の電圧変極点を検出する。そして、この電源起動処理では、電圧変極点を検出した後にリレー4を閉状態にして燃料電池スタック1の出力電圧を駆動用インバータ2及びAC用インバータ3に供給する。
【0045】
上記所定値Vは、駆動用インバータ2及びAC用インバータ3内の電力用半導体スイッチング素子の耐圧以下の電圧値が設定されている。また、所定値ΔV/ΔIは、燃料電池スタック1の起動時の不安定な電流−電圧変化が終了して、安定した電流−電圧変化となったことを識別する値がシステム設計時に設定されている。
【0046】
このとき、コントロールユニット10では、燃料電池スタック1に接続された電源線に設けられた電流電圧センサ(図示せず)からのセンサ値を監視し、先ず、出力電圧が所定値Vとなったことを検出した後に、出力電流値に対する出力電圧値の変化を監視し、予め用意しておいた所定値ΔV/ΔIとなった時点でリレー4をオンにする。ここで、コントロールユニット10による補機への電源供給は、第2実施形態と同様とする。
【0047】
このような電源起動処理の処理手順を図5のフローチャートを参照して説明する。なお、第2実施形態にて説明した処理と同様の処理について同一のステップ番号を付することによりその詳細な説明を省略する。
【0048】
第3実施形態における電源起動処理においては、ステップS3にて燃料電池スタック1の出力電圧が所定値まで上昇したことを判定し、ステップS4にて電力変換装置8を起動して空気コンプレッサ用インバータ5、水ポンプ用インバータ6及び補機用DC/DCコンバータ7に電力供給を開始させて次のステップS11において、コントロールユニット10により、燃料電池スタック1の出力電圧Vs、電力変換装置8への入力電流Iinを検出してステップS12に処理を進める。
【0049】
ステップS12においては、コントロールユニット10により、ステップS11にて検出した出力電圧Vsが駆動用インバータ2及びAC用インバータ3の電力用半導体スイッチング素子の耐圧以下であるか否かを判定する。出力電圧Vsが耐圧以下でないと判定したときには再度ステップS4に処理を戻して、更に空気コンプレッサ用インバータ5〜補機用DC/DCコンバータ7への供給電力を増加させるように電力変換装置8を制御し、出力電圧Vsが耐圧以下であると判定したときにはステップS13に処理を進める。
【0050】
ステップS13においては、コントロールユニット10により、ステップS11にて検出した出力電圧Vsと入力電流Iinを用いて、入力電流Iinの変化に対する出力電圧Vsの変化を算出して電圧変化率を求め、この電圧変化率が所定の電圧変化率ΔV/ΔI以下であるか否かの判定をする。すなわち、コントロールユニット10では、燃料電池スタック1起動時の不安定な電流−電圧変化から安定した電流−電圧変化に移行したか否かを判定する。
【0051】
そして、算出した電圧変化率が所定の電圧変化率以下でないと判定した場合にはステップS4に処理を戻してステップS4〜ステップS12の処理を繰り返し、算出した電圧変化率が所定の電圧変化率以下であると判定した場合にはステップS14に処理を進める。
【0052】
ステップS14においては、コントロールユニット10により、ステップS4にて制御して空気コンプレッサ用インバータ5〜補機用DC/DCコンバータ7に供給している電圧を維持するように電力変換装置8を制御して、ステップS6に処理を進める。
【0053】
ステップS6において、コントロールユニット10によりリレー4を閉状態(オン)とするように制御をして、燃料電池スタック1の出力電圧を駆動用インバータ2及びAC用インバータ3に供給してステップS8に処理を進め、駆動系負荷を駆動する。
【0054】
[第3実施形態の効果]
以上詳細に説明したように、第3実施形態に係る燃料電池用電源システムによれば、燃料電池スタック1の起動時の電流−電圧変化が不安定な状態から安定する状態となる変極点を確実に検出することができるので、図4に示した電圧変極点にて駆動系負荷を駆動開始することができる。
【0055】
これに対し、リレー4を閉状態とする出力電圧を予め設定する場合には、図4に示すように、燃料電池スタック1や負荷の変動により発生する電圧分のマージンを設ける必要がありリレー4を閉状態にするしきい値をVにする必要がある。したがって、この燃料電池用電源システムによれば、リレー4を閉状態にして駆動系負荷を駆動する駆動系配電領域を大きくすることができ、効率的に発電電力を使用することができる。
【0056】
[第4実施形態]
つぎに、第4実施形態に係る燃料電池用電源システムについて説明する。なお、第4実施形態に係る燃料電池用電源システムは、その構成が第1実施形態と同様であるので説明を省略し、同一符号を付することによりその詳細な説明を省略する。
【0057】
第4実施形態では、上述した第1実施形態〜第3実施形態の何れかの電源起動処理をして駆動系負荷を駆動しているときに、外部からコントロールユニット10に駆動系負荷の停止命令が入力されたときに停止制御処理をする。このような燃料電池用電源システムについて図6のフローチャートを参照して説明する。
【0058】
コントロールユニット10に駆動系負荷の停止命令が入力されると、先ず、ステップS21において、コントロールユニット10により駆動用インバータ2及びAC用インバータ3に接続された駆動系負荷の作動を停止するように制御して、ステップS22に処理を進める。
【0059】
ステップS22において、コントロールユニット10により、ステップS21での制御により駆動系負荷の動作が停止したか否かの判定をする。駆動系負荷の動作が停止していないと判定した場合にはステップS21の制御を更に実行し、停止したと判定したときにはステップS23に処理を進める。
【0060】
ステップS23においては、コントロールユニット10により、リレー4を開状態(オン)にするように制御して、燃料電池スタック1から駆動用インバータ2及びAC用インバータ3への電源供給を停止して、ステップS24に処理を進める。
【0061】
ステップS24においては、コントロールユニット10により、電力変換装置8の動作を停止させるように制御することで、燃料電池スタック1から電力変換装置8を介した空気コンプレッサ用インバータ5〜補機用DC/DCコンバータ7への電源供給を停止して、ステップS25に処理を進める。
【0062】
ステップS25においては、コントロールユニット10により、補機の動作を停止したことを確認した後に、燃料電池スタック1の作動を停止して処理を終了する。
【0063】
「第4実施形態の効果」
以上詳細に説明したように、第4実施形態に係る燃料電池用電源システムによれば、駆動系負荷を停止させて燃料電池スタック1から駆動用インバータ2及びAC用インバータ3に供給する出力電圧を低くした状態にてリレー4を開状態にし、その後に電力変換装置8の作動を停止するようにしたので、燃料電池スタック1からの高電圧を駆動用インバータ2及びAC用インバータ3に供給することなくシステムを停止させることができる。
【0064】
なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
【図面の簡単な説明】
【図1】本発明を適用した第1実施形態に係る燃料電池用電源システムの構成を示すブロック図である。
【図2】本発明を適用した第2実施形態に係る燃料電池用電源システムの電源起動処理の原理を説明するスタック出力電流とスタック出力電圧との関係を示す図である。
【図3】本発明を適用した第2実施形態における電源起動処理の処理手順を示すフローチャートである。
【図4】本発明を適用した第3実施形態に係る燃料電池用電源システムの電源起動処理の原理を説明するスタック出力電流とスタック出力電圧との関係を示す図である。
【図5】本発明を適用した第3実施形態における電源起動処理の処理手順を示すフローチャートである。
【図6】本発明を適用した第4実施形態における停止制御処理の処理手順を示すフローチャートである。
【符号の説明】
1 燃料電池スタック
2 駆動用インバータ
3 AC用インバータ
4 リレー
5 空気コンプレッサ用インバータ
6 水ポンプ用インバータ
7 補機用DC/DCコンバータ
8 電力変換装置
9 バッテリ
10 コントロールユニット

Claims (12)

  1. 駆動系負荷に電力供給する駆動電源系統に、燃料電池スタックからの直流電源を供給する開閉装置と、
    補機に電力供給する補機電源系統に、上記燃料電池スタックからの直流電源を交流電源に変換して供給する電力変換装置と、
    上記燃料電池スタックの起動直後の高電圧状態には上記開閉装置を開状態にして上記燃料電池スタックから上記駆動電源系統への電力供給を停止すると共に、上記燃料電池スタックから上記電力変換装置を介して上記補機電源系統に電力供給をするようにし、上記燃料電池スタックの出力電圧が低下した場合に上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統への電力供給をするように制御する制御手段と
    を備えることを特徴とする燃料電池用電源システム。
  2. 上記制御手段は、上記補機電源系統に電力供給をするように上記電力変換装置を制御したと同時に、上記燃料電池スタックの出力電圧を検出し、検出した上記燃料電池スタックの出力電圧が駆動電源系統内の素子耐圧以下となった場合に上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統への電力供給をするように上記開閉装置を制御することを特徴とする請求項1に記載の燃料電池用電源システム。
  3. 上記制御手段は、上記燃料電池スタックの出力電圧が素子耐圧以下となるように上記補機電源系統に供給する電力を上昇させるように上記電力変換装置を制御することを特徴とする請求項2に記載の燃料電池用電源システム。
  4. 上記制御手段は、上記燃料電池スタックの出力電流に対する出力電圧の変化率を検出し、検出した変化率の変極点を検出したことに応じて、上記燃料電池スタックから上記駆動電源系統に電力供給をするように上記開閉装置を閉状態に制御することを特徴とする請求項1に記載の燃料電池用電源システム。
  5. 上記制御手段は、上記変化率が変極点となるように上記補機電源系統に供給する電力を上昇させるように上記電力変換装置を制御することを特徴とする請求項4に記載の燃料電池用電源システム。
  6. 上記制御手段は、上記駆動電源系統の動作を停止した後に、上記駆動電源系統への電力供給を停止するように上記開閉装置を開状態に制御し、上記補機電源系統への電力供給を停止するように上記電力変換装置を制御し、上記燃料電池スタックの動作を停止することを特徴とする請求項1に記載の燃料電池用電源システム。
  7. 駆動系負荷に電力供給する駆動電源系統に開閉装置を介して燃料電池スタックにて発電した直流電源を供給すると共に、上記燃料電池スタックにて発電した直流電源を電力変換装置により交流電源に変換して補機電源系統に供給する燃料電池システムの電力供給方法において、
    上記駆動系負荷を駆動開始させるに際して、上記開閉装置を開状態にしておいて上記燃料電池スタックから上記駆動電源系統への電力供給を遮断した状態にて、
    上記燃料電池スタックを起動させて上記電力変換装置から上記補機電源系統に電力供給をし、
    上記燃料電池スタックの出力電圧が低下した後に、上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統への電力供給をすること
    を特徴とする燃料電池システムの電力供給方法。
  8. 上記補機電源系統に電力供給をするように上記電力変換装置を制御したと同時に、上記燃料電池スタックの出力電圧を検出し、
    検出した上記燃料電池スタックの出力電圧が駆動電源系統内の素子耐圧以下となった後に、上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統への電力供給をすることを特徴とする請求項7に記載の燃料電池システムの電力供給方法。
  9. 上記燃料電池スタックの出力電圧が素子耐圧以下となるように上記電力変換装置から上記補機電源系統に供給する電力を上昇させることを特徴とする請求項8に記載の燃料電池システムの電力供給方法。
  10. 上記補機電源系統に電力供給を開始した後に、
    上記燃料電池スタックの出力電流に対する出力電圧の変化率を検出し、
    検出した変化率の変極点を検出し、
    上記開閉装置を閉状態にして上記燃料電池スタックから上記駆動電源系統に電力供給をすることを特徴とする請求項7に記載の燃料電池システムの電力供給方法。
  11. 上記変化率が変極点となるように上記電力変換装置から上記補機電源系統に供給する電力を上昇させることを特徴とする請求項10に記載の燃料電池システムの電力供給方法。
  12. 上記駆動電源系統の動作を停止した後に、
    上記駆動電源系統への電力供給を停止するように上記開閉装置を開状態にし、上記補機電源系統への電力供給を停止するように上記電力変換装置を制御し、
    上記燃料電池スタックの動作を停止すること
    を特徴とする請求項7に記載の燃料電池システムの電力供給方法。
JP2002171414A 2002-06-12 2002-06-12 燃料電池用電源システム及び燃料電池システムの電力供給方法 Pending JP2004022193A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171414A JP2004022193A (ja) 2002-06-12 2002-06-12 燃料電池用電源システム及び燃料電池システムの電力供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171414A JP2004022193A (ja) 2002-06-12 2002-06-12 燃料電池用電源システム及び燃料電池システムの電力供給方法

Publications (1)

Publication Number Publication Date
JP2004022193A true JP2004022193A (ja) 2004-01-22

Family

ID=31171285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171414A Pending JP2004022193A (ja) 2002-06-12 2002-06-12 燃料電池用電源システム及び燃料電池システムの電力供給方法

Country Status (1)

Country Link
JP (1) JP2004022193A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351325A (ja) * 2005-06-15 2006-12-28 Denso Corp 燃料電池システム
JP2008218059A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 燃料電池発電システムを用いた可搬型自立発電装置及びその運転方法
JP2008269908A (ja) * 2007-04-19 2008-11-06 Fuji Electric Holdings Co Ltd 燃料電池発電装置およびその起動方法
WO2010122868A1 (ja) * 2009-04-24 2010-10-28 京セラ株式会社 燃料電池装置
JP2010267170A (ja) * 2009-05-18 2010-11-25 Toshiba Corp 燃料電池発電システムおよびその制御方法
JP2018147630A (ja) * 2017-03-02 2018-09-20 ブラザー工業株式会社 燃料電池システム、及び燃料電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351325A (ja) * 2005-06-15 2006-12-28 Denso Corp 燃料電池システム
JP2008218059A (ja) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd 燃料電池発電システムを用いた可搬型自立発電装置及びその運転方法
JP2008269908A (ja) * 2007-04-19 2008-11-06 Fuji Electric Holdings Co Ltd 燃料電池発電装置およびその起動方法
WO2010122868A1 (ja) * 2009-04-24 2010-10-28 京セラ株式会社 燃料電池装置
CN102414890A (zh) * 2009-04-24 2012-04-11 京瓷株式会社 燃料电池装置
JP5597628B2 (ja) * 2009-04-24 2014-10-01 京セラ株式会社 燃料電池装置
US9219283B2 (en) 2009-04-24 2015-12-22 Kyocera Corporation Method for controlling fuel cell device during power generation start by controlling power conditioner
JP2010267170A (ja) * 2009-05-18 2010-11-25 Toshiba Corp 燃料電池発電システムおよびその制御方法
JP2018147630A (ja) * 2017-03-02 2018-09-20 ブラザー工業株式会社 燃料電池システム、及び燃料電池

Similar Documents

Publication Publication Date Title
JP4495111B2 (ja) 燃料電池システムにおけるコンタクタ故障検知装置
JP4847043B2 (ja) 燃料電池車両の制御方法
CA2291860C (en) Fuel cell device
KR100987738B1 (ko) 연료전지시스템 및 이동체
KR100973761B1 (ko) 연료 전지 시스템
US7083017B2 (en) Fuel cell vehicle
JP2004146114A (ja) 燃料電池システム
US8896282B2 (en) Converter controller
JP2005348530A (ja) 燃料電池車両の電圧状態設定方法
JP5227620B2 (ja) 燃料電池システムの始動方法
US9985446B2 (en) Vehicle electric power supply control system and vehicle
JP2004056989A (ja) 燃料電池ハイブリッド車両の電源制御装置
US7923861B2 (en) Method of controlling hybrid DC power supply system
JP5198219B2 (ja) ハイブリッド直流電源システム及び燃料電池車両
JP6891963B2 (ja) 電源システム及びその制御方法
US20080257621A1 (en) Fuel cell vehicle system
WO2007063785A1 (ja) 燃料電池システム
JPH11191424A (ja) 燃料電池発電装置の操作方法
JPH08162136A (ja) 燃料電池発電装置
JP4099957B2 (ja) 燃料電池発電装置
KR20110058459A (ko) 연료전지차량의 전원관리장치 및 방법
JP2004022193A (ja) 燃料電池用電源システム及び燃料電池システムの電力供給方法
JP2004193063A (ja) 燃料電池システム
JP2004146118A (ja) 燃料電池システム
JP4334500B2 (ja) 電源システム