JP2004017041A - Filter medium for high performance air filter and high performance air filter using filter medium - Google Patents

Filter medium for high performance air filter and high performance air filter using filter medium Download PDF

Info

Publication number
JP2004017041A
JP2004017041A JP2002213122A JP2002213122A JP2004017041A JP 2004017041 A JP2004017041 A JP 2004017041A JP 2002213122 A JP2002213122 A JP 2002213122A JP 2002213122 A JP2002213122 A JP 2002213122A JP 2004017041 A JP2004017041 A JP 2004017041A
Authority
JP
Japan
Prior art keywords
fiber
fibers
weight
filter medium
air filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213122A
Other languages
Japanese (ja)
Inventor
Kojiro Nagatsuka
長塚 孝二郎
Kazuhide Murata
村田 一英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSHIDARI KENKYUSHO KK
Oshitari Laboratory Inc
Original Assignee
OSHIDARI KENKYUSHO KK
Oshitari Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSHIDARI KENKYUSHO KK, Oshitari Laboratory Inc filed Critical OSHIDARI KENKYUSHO KK
Priority to JP2002213122A priority Critical patent/JP2004017041A/en
Publication of JP2004017041A publication Critical patent/JP2004017041A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium for a high performance air filter which solves the problem that a conventional glass fiber filter medium is fragile due to its brittleness and difficult to be disposed of and the problem that the particle collection rate of a conventional electret filter medium is unstable, and the high performance air filter using the filter medium. <P>SOLUTION: The filter medium for the high performance air filter, which has the content of organic fibers of 75-89 wt.% by wet paper making is tough and flexible, has a stable particle collection rate, and is suitable for incineration disposal, and the high performance air filter using the filter medium are obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は精密工業、電子工業、医薬品工業、食品工業等の分野及び、医療、ビル空調等の分野 及び一般空気浄化装置設備に使用される高性能エアフィルタのろ材について安価で、実用強度が大きく 又、使用済みに際して焼却処分ができる高性能エアフィルタ用ろ材及びそれを使用したエアフィルタに関する。
【0002】
【従来の技術】
従来の高性能エアフィルタ用ろ材は湿式抄紙製造法 又は、乾式ウェブ製造法により製造される。湿式抄紙製造法による高性能エアフィルタ用ろ材の多くはガラス繊維であり、安価で高性能なろ材が得られるが、脆性で変形力や衝撃力(外力)に弱い。
又、使用済みに際して不燃性なので焼却処分ができず、環境汚染の問題を生ずる。(埋め立て処分しかできないので捨て場所に困る。)
【0003】
一方、乾式ウェブ製造法による高性能エアフィルタ用ろ材は有機繊維(ポリプロピレン樹脂・ポリエステル樹脂 など)であり、変形や衝撃力(外力)に強く、使用済みに際して焼却処分ができるが、価格が高く、静電気帯電(エレクトレット化)による粉塵捕集機構のため粉塵捕集性能が不安定で、今日に至ってもあまり普及していない。  等の課題がある。
【0004】
特公昭63−56806、特開平10−180020で湿式抄紙製造法による焼却減容処理可能な難燃性高性能ろ材が提案されている。 しかし、これらの方法はろ材を難燃化するためにハロゲン化合物、ホウ素化合物、リン化合物などを塗布したり化合してろ材に相当量含有させることで難燃性を実現している。 これらのハロゲン化合物、ホウ素化合物、リン化合物などは燃焼により有毒ガスを発生するという問題があるため焼却処分は必ずしも適切ではない。
【0005】
有機繊維と微細な繊維を配合して成るエアフィルタ用ろ材に関して特公昭62−110718、特公昭63−44914、特公昭63−44915、特公昭63−44916、特公昭63−56806、特公平6−13082、特開平10−180020がある。
【0006】
特公昭62−110781及び特公平6−13082で直径4μm以下の微細ガラス繊維と0.05〜0.5デニールの細デニール化合繊 及びポリビニールアルコール系繊維を配合して成るエアフィルタ用ろ材を挙げている。 クリーンルームで使用する用途の高性能フィルタ用ろ材は少なくとも繊維径1μm以下の繊維が不可欠であること 及び有機繊維が0.1〜0.2デニールに限定しなければならないことが本発明と異なる。 更にガラス繊維含有率が60〜97重量%と高く、ろ材の脆性改善は望めない。
【0007】
特公昭63−44914,特公昭63−44915、特公昭63−44916で平均繊維径0.3〜4μmの極細ガラス繊維とチョップアンドストランドビニロン繊維やチョップアンドストランドアクリル繊維やチョップアンドストランドレーヨン繊維を配合して成るエアフィルタろ材を挙げている。
チョップアンドストランドビニロン繊維、チョップアンドストランドアクリル繊維、チョップアンドストランドレーヨン繊維については繊維径についての制約がない。 ちなみに、繊維径が太くなれば捕集率の低下を招き、細くなれば圧力損失の上昇を招くなど、捕集率と圧力損失のバランスは有用なエアフィルタろ材に不可欠な性能である。 即ち、本例示の諸特許で必ずしも有用なエアフィルタろ材を得ることができるとは限らない。
【0008】
特公昭63−56806でガラス繊維20重量%、再生セルロース繊維50重量%、天然セルロース繊維30重量%を配合して成るろ紙を挙げている。ガラス繊維は極細ガラス繊維があげられているが、繊維径についての制約はない。  本発明で、マイクロガラス繊維は極細ガラス繊維とも呼称され、特に繊維径は0.1〜1μmの物が選ばれる。即ち、高性能エアフィルタ用ろ材は極細ガラス繊維の中、限定された繊維径の繊維が不可欠である。
【0009】
特公昭63−56806で再生セルロース繊維として1.0デニール以下の極細銅アンモニア法再生セルロース繊維があげられている。 本発明で、有機繊維は繊維径2.7〜6.5μm(0.1〜0.2デニール)範囲内のみ高性能エアフィルタ用ろ材が得られた。 特公昭63−56806で極細ガラス繊維の配合率20重量%が最小限度量とされる。 本発明で、ポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物である微細な有機繊維とを併用することにより、ガラス繊維含有率が11〜25重量%である高性能エアフィルタ用ろ材を得る。
【0010】
特開平10−180020で平均繊維径0.65μm以下のガラス繊維10〜50重量% 自己消火性有機繊維50〜90重量%に繊維状バインダーを配合してなる高性能エアフィルタ用ろ材が挙げられている。本発明の有機繊維はハロゲンやリン化合物を含まない繊維であり、特に自己消火性である必要はない。
【0011】
特開平10−180020で自己消火性有機繊維の繊維径1〜70μmが挙げられている。本発明で有機繊維は繊維径2.7〜6.5μmの範囲で、これ以上太い繊維は捕集率の著しい低下を招く。
【0012】
特開平10−180020で、極細ガラス繊維(マイクロガラス繊維と同義)は平均繊維径0.65μm以下を挙げている。この極細ガラス繊維はその製造方法の特徴で、比較的広くランダムな繊維径分布を持った綿状の繊維製品で、単一の繊維径の値をもってろ材の原材料である極細ガラス繊維を的確に表記することは難しく、ここで挙げられている平均繊維径0.65μm以下とは本発明の詳細説

【0017】の表1にあるBET法による表面積の値より算出された値と推察され、特公開平10−180020の極細ガラス繊維は表1のコード番号で#106,#104,#100,#90等が推測される。 ちなみに、本発明でマイクロガラス繊維がコード番号#90及び#100及び#104である。
【0013】
【発明が解決しようとする課題】
本発明はかかる問題に対し、従来のガラス繊維ろ材と同等の性能を有する有機繊維を主成分とした高性能エアフィルタ用ろ材で、静電気帯電処理(エレクトレット化)を行わず、湿式抄紙製造法により製造することで、安定した捕集性能を有し、安価で変形や衝撃力(外力)に強く、使用済みに際して焼却処分ができる高性能エアフィルタ用ろ材を実現すべく、鋭意研究の結果、本発明に至った。 なお、ろ材の難燃性の必要性についてはエアフィルタは一般に火気のない用途に使用される場合がほとんどであり、今日エアフィルタの構成部材として合板、紙、合成樹脂、合成繊維等が多く使用され、これらの材料は難燃性でない場合が多い。これは、今日使用後の廃棄物処理に際しての環境汚染を最小限にすることが社会的に優先課題となっている結果である。
【0014】
【課題を解決するための手段】
本発明で繊維径2.7〜6 5μm繊維長0.5〜5mmの有機繊維はろ材の骨格を形成する繊維で、従来のガラス繊維ろ材の場合では、繊維径1〜4μmのマイクロガラス繊維(コード番号#108及び#110及び#112)に相当する繊維でろ材の70〜80重量%を占めることから、ろ材の有機繊維化を意図する場合、この繊維径成分の有機繊維化が重要となる。
【0015】
本来ならば本発明での有機繊維も繊維径1〜4μmの物を使用するのが好ましいと推測される。しかしながら、現状では工業的に生産され、本用途に適用できる有機繊維は0.1d(デニール)ポリエステル繊維(PET)繊維(繊維径2.7〜4.5μm)が限度である。本有機繊維の繊維径は2.7〜6.5μm(0.1d〜0.3d)の物が使用できるが、好ましくは2.7〜5μm(0.1d〜0.2d)である。 繊維径が6.5μmを越える物は圧力損失を上昇させ粒子捕集率を低下させるため、高性能エアフィルタ用ろ材には適さない。結果を後記実施例1 及び表2に示す。
【0016】
本発明で繊維径0.1〜1.0μmが主成分で、繊維長20〜5000μmの微細繊維はろ材の粒子捕集率を向上させる目的で使用する。従来のガラス繊維ろ材の場合では繊維径0.1〜1.0μmが主成分であるマイクロガラス繊維(コード番号#90及び#100及び#106)を使用する。本発明で微細繊維は無機繊維として、マイクロガラス繊維の他に有機繊維としてポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物が使用できる。これらのマイクロフィブリル化物は微細な有機繊維であり、繊維径0.2〜1.0μmが主成分であることからマイクロガラス繊維(コード番号#90及び#100及び#104)の代替として、本発明で微細繊維の全部または一部として使用することができ、従来のろ材よりも無機繊維含有量を大幅に減じ、折り曲げ強さ(脆性)、対衝撃強さ(耐変形破壊)を改善し、エアーフィルタ製造工程及びエアーフィルタ取り扱いに際して破損が生じにくいろ材を得ることができる。
【0017】
即ち、本発明で微細繊維は無機繊維としては繊維径0.1〜1.0μmが大部分を占めるマイクロガラス繊維で、スピニング方、火炎挿入法、ロータリー法などで製造される綿状のガラス繊維の中、コード番号#90及び#100及び#104と称する物である。 前記製造方法によるガラス繊維は含有する主要な繊維径範囲毎にコード番号により類別され市販されている。各コード番号のマイクロガラス繊維は電子顕微鏡により視野内の繊維径別繊維数の割合を観察した結果、表1のような繊維径の繊維より構成されている。
【表1】

Figure 2004017041
【0018】
マイクロガラス繊維は製品毎に広い繊維径範囲の繊維を含有し、平均繊維径による区分は厳密な物ではなく、概ねその付近の値になることを意味する。 この事に鑑み、本発明ではマイクロガラス繊維は表1に示す如く大部分を占める繊維の繊維径とコード番号で表現した。
【0019】
本発明で、微細繊維は有機繊維としてポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物で繊維径0.1〜4μmの範囲で、0.2〜1.0μmが大部分を占め、繊維長0.02〜2mmである。
ここでいうマイクロフィブリル化物とはアラミド系繊維など高結晶性、高配向性繊維を適宜の長さに切断した物を水中に分散させホモジナイザー,叩解機等を用いてフィブリル化する方法(特願昭56−100801,特開昭59−92011)や、 合成高分子を溶媒の沸点以上で高圧側から低圧側へ爆発的に噴出させ繊維状にフィブリル化する方法(フラッシュ紡糸法)や水中に分散させた適宜の長さに切断した合成高分子繊維、又はパルプ状繊維を高圧、高速でオリフィスを通過させ器壁に衝突させ急激に減速させることで、合成高分子繊維、又はパルプ状繊維に剪断力を与えて繊維状にフィブリル化する方法 などで得ることができる。
【0020】
本発明で、微細繊維は繊維径0.1〜1μmの繊維が大部分を構成して成る繊維で、無機繊維としては繊維径0.15〜0.4μmの繊維が特に多いコード番号#90のマイクロガラス繊維、及び繊維径0.25〜0.4μmの繊維が特に多いコード番号#100のマイクロガラス繊維、及び繊維径0.4〜0.8μmの繊維が特に多いコード番号#104のマイクロガラス繊維等であるが、好ましくは繊維径0.4μm以下の繊維が特に多いコード番号#90と#100のマイクロガラス繊維であり、また、有機繊維としてはポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物で繊維径0.1〜4μmで大部分の繊維が繊維径0.2〜1μmで、特に多くが繊維径0.2〜0.5μmである。 微細繊維が繊維径0.5μm以上の繊維が特に多い場合はろ材の粒子捕集率の低下を招く。 後記 実施例2 表3に示す。
【0021】
本発明で、微細繊維のマイクロガラス繊維、コード番号#90とコード番号#100とコード番号#104は複数または単独で用いることができる。
【0022】
この微細繊維としての無機繊維(マイクロガラス繊維コード番号#90と#100及び#104)と有機繊維(ポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物)との混合割合は無機繊維72〜100重量%、好ましくは74〜100重量% 有機繊維0〜28重量%、好ましくは0〜26重量%である。 有機繊維が26重量%より多くなると粒子捕集率の低下を招く。
後記 実施例3 表4に示す。
【0023】
本発明の、粉末状又は繊維状のポリビニールアルコール(PVA)系バインダーは湿式抄紙後の乾燥工程で熱溶融し、その後の冷却で固化することで、ろ材構成繊維同士を強固に接着することにより、ろ材シートの強度を発現する。  このポリビニールアルコール(PVA)系バインダーは水中溶融温度が60〜110℃でポリビニールアルコール、カチオン変性ポリビニールアルコール、カルボキン変性ポリビニールアルコールが主に使用されるが、これらの他に公知のあらゆる抄紙用バインダー樹脂、例えばポリアクリル系樹脂、ポリアクリルアミド系樹脂、澱粉系の粉末状又はエマルジョン抄紙用バインダーを用いることができる。
【0024】
本発明の高性能エアフィルタ用ろ材のはっ水性付与は、有機繊維、微細繊維 及び、粉末状又は繊維状バインダーを混合した水性スラリーを作成し、該スラリーを抄紙機で抄紙し、軽くプレスして得たろ材シートを、サイズロール等を用いてはっ水剤を含浸し、乾燥させることにより得ることができる。  はっ水剤は通常のエアフィルタ用ろ材に用いられるはっ水剤で良く、例えば、フッ素樹脂系はっ水剤、シリコン系はっ水剤、ワックス系エマルジョン、アクリル樹脂系エマルジョン等が用いられる。
【0025】
本発明で、繊維径2.7〜6.5μm、繊維長0.5〜5mmの有機繊維70〜85重量%と、繊維径0.1〜1μmが大部分を占め、繊維長0.02〜5mmの微細繊維15〜30重量%と、前記有機繊維と微細繊維の合計重量100部に対し、1〜4部のポリビニールアルコール系バインダーを配合して、湿式抄紙してなる無機繊維11〜25重量%を含有する高性能エアフィルタ用ろ材は、一般の紙類と同様に焼却処分ができる。ちなみに、一般の紙類の無機成分含有率はグラビア紙で20〜30重量%、硬質紙で15〜20重量%であり、本発明の高性能エアフィルタ用ろ材はこれらの紙類と同等の無機成分含有率で有り、難燃剤などの有害な物質を含まない。
【0026】
有機繊維含有率を高くすれば無機成分を低減できるが、有機繊維含有率が89重量%を越えると粒子捕集率が低下する。 後記 実施例4 表5に示す。 有機繊維含有率が70重量%より低くなると折り曲げによる強度低下が著しく脆性なろ材となり、高性能エアフィルタ用ろ材として好ましくない。 後記 実施例5
表6に示す。
【0027】
【実施例】
実施例1
0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維(ジョンマンビル社製 コード番号#100)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料1−1とした。
次に、0.3デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維(ジョンマンビル社製 コード番号#100)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料1−2とした。
次に、0.5デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維(ジョンマンビル社製 コード番号#100)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料1−3とした。
ろ材シート 試料1−1、 試料1−2 及び試料1−3について、JIS B9927クリーンルーム用エアフィルタ性能試験方法の付属書1(規定)クリーンルーム用エアフィルタろ材性能試験方法により粒子捕集率、圧力損失を測定した。 測定した粒子捕集率と圧力損失の値からα値を算出した。 結果を後記表2に示す。
【0028】
実施例2
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料2−1とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#90(ジョンマンビル社製 繊維径0.1〜1.5μm)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料2−2とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#104(ジョンマンビル社製 繊維径0.2〜2μm)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料2−3とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#106(ジョンマンビル社製 繊維径0.2〜3μm)25重量%とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料2−4とした。
ろ材シート 試料2−1、試料2−2、試料2−3 及び試料2−4について、実施例1と同様に粒子捕集率、圧力損失を測定し、α値を算出した。 結果を表3に示す。
【0029】
実施例3
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製:繊維径0.2〜1.2μm)22重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)3重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。 このろ材シートを試料3−1とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)18.5重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)6.5重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。 このろ材シートを試料3−2とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)75重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製繊維径0.2〜1.2μm)18重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)7重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。 このろ材シートを試料3−3とした。
ろ材シート 試料3−1、試料3−2 及び試料3−3について、実施例1、実施例2と同様に粒子捕集率、圧力損失を測定し、α値を算出した。 結果を 後記 表4に示す。
【0030】
実施例4
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)65重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)25.9重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)9.1重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料4−1とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)70重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)22.2重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)7.8重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。 このろ材シートを試料4−2とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)80重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)14.8重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)5.2重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。
このろ材シートを試料4−3とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)85重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)11.1重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)3.9重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。 このろ材シートを試料4−4とした。
繊維長3mmの0.1デニールポリエステル繊維(帝人(株)テピルス)88重量%とマイクロガラス繊維コード番号#100(ジョンマンビル社製 繊維径0.2〜1.2μm)8.9重量%とポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業(株):ティアラKY−400S)3.1重量%(固形分のみ)とを配合して成る混合繊維に、この混合繊維100重量部に対して重量2部の繊維状PVAバインダー(クラレ(株)クラウンVP:VPB101)を配合し、ミキサーにて水性スラリーを作成し、JIS P8209の標準角形手漉き抄紙機にて抄紙し、軽くプレスした後、ロータリードライヤーで乾燥し、坪量80g/mのろ材シートを得た。  このろ材シートを試料4−5とした。
ろ材シート 試料4−1、試料4−2、試料4−3、試料4−4 及び試料4−5について、実施例1、実施例2、実施例3と同様に粒子捕集率、圧力損失を測定し、α値を算出した。 後記 表5に示す。
【0031】
実施例5
実施例4で得たろ材シートの試料4−2、試料4−3、試料4−4について、折り曲げ後強度低下[%] 及び、帯電中和処理による粒子通過率の増加率を下記の方法で求めた。
結果を後記表6に示す。
折り曲げ後強度低下率試験方法
JIS P8113(紙及び板紙の引っ張り強さ試験方法)に従い試験片を6枚採取する。この中、3枚についてはJIS P8113の方法に従って「引っ張り強さ」試験を行い、その平均値を「初期引っ張り強さ」とする。
他の3枚については、下記の方法で「繰り返し折り曲げ後の試験片」を調製する。
即ち、試験片を平面上に置き、長手方向の中央において長手方向に対し直角な中心線に沿って厚さ2mm、縦幅約50mm、横幅約50mmの平板をその一辺が中心線上になるように置く。
次に、試験片を平板を挟むようにして中心線に沿って180度折り曲げ、平板の上面に2秒間密着させた後、試験片を元の折り曲げない状態に戻す。
この「折り曲げ」と「元に戻す」操作を5回行い、この試験片を「繰り返し折り曲げ後の試験片」とする。
この「繰り返し折り曲げ後の試験片」3枚をJIS P8113に記載の方法で「引っ張り強さ」試験を行い、その平均値を「折り曲げ後の引っ張り強さ」とする。
式5により引っ張り強度低下率を算出する
Figure 2004017041
帯電中和処理による粒子通過率の増加率試験方法
ろ材シートの粒子捕集率をJIS B9927付属書1(規定)クリーンルーム用エアフィルタろ材性能試験方法に記載の方法で測定する。この測定値を「処理前の粒子捕集率」とする。
次にこのろ材シートに帯電中和剤を十分に含浸した後、常温で乾燥する。
次にこのシートをJIS B9927付属書1(規定)クリーンルーム用エアフィルタろ材性能試験方法に記載の方法で測定する。この測定値を「処理後の粒子捕集率」とする。
次に、測定値から式6により、帯電中和による粒子通過率の増加率[%]を算出する。
Figure 2004017041
【0032】
【比較例】
比較例1
市販の高性能エアフィルタ用ガラス繊維ろ材(北越製紙(株)製 H305AR)について実施例1と同様の性能試験を行い、後記、表2の比較試料1に示す。ざらに、実施例5と同様に折り曲げ後の引っ張り強度低下率を測定した結果 及び、帯電中和処理後の粒子捕集率を測定した結果を後記表6に示す。
【0033】
比較例2
市販の高性能エアフィルタ用ろ材で、ガラス繊維30重量%と有機成分(有機繊維と有機バインダー)70重量%から成る難燃性ろ材(北越製紙(株)製 H388)について、実施例5と同様に折り曲げ後の引っ張り強度低下率を測定した結果及び、帯電中和処理後の粒子捕集率を測定した結果を後記、表6に示す。
【0034】
比較例3
市販の乾式法による高性能エアフィルタ用有機繊維ろ材(東燃タピルス(株)P80UW−EP4)について、実施例5と同様に折り曲げ後の引っ張り強度低下率を測定した結果 及び、帯電中和処理後の粒子捕集率を測定した結果を後記、表6に示す。
【0035】
【表2】
Figure 2004017041
表2のように、高性能エアフィルタ用ろ材の性能を示したのは試料1−1,試料1−2であった。
本有機ろ材が従来のマイクロガラス繊維を代替することで、ろ材の折曲強さ、耐衝撃強さを改善し、エアーフィルター製造工程及び、エアフィルタ取り扱いに於ける破損が生じないろ材を得た。
【0036】
【表3】
Figure 2004017041
本発明でマイクロガラス繊維グレード番号#106は繊維径0.25〜1μmの繊維が大部分であるが、特に繊維径0.5μm以上の繊維を多く含有するため、微細繊維としての効果は小さく粒子捕集率を低下させる。
【0037】
【表4】
Figure 2004017041
表4のように微細繊維を構成する無機繊維(マイクロガラス繊維#100または#90)と有機繊維(ポリ−p−フェニレンテレフタルアミド繊維のマイクロフィブリル化物)との割合は無機繊維が100〜74重量%、有機繊維が0〜26重量%である。
【0038】
【表5】
Figure 2004017041
【0039】
【表6】
Figure 2004017041
【0040】
【発明の効果】
本発明による高性能エアフィルタ用ろ材は、従来にない高い有機繊維含有率で高性能を実現すると共に、有害物質を含まず、柔軟で破れにくく、加工性に優れている。
本発明のろ材を使用したエアフィルタは使用後に一般可燃物と同様に焼却処分ができる高性能エアフィルタを提供する。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention relates to the fields of precision industry, electronics industry, pharmaceutical industry, food industry, etc., medical field, building air conditioning, etc., and high performance air filter media used in general air purification equipment. The present invention also relates to a high-performance air filter medium that can be incinerated when used, and an air filter using the same.
[0002]
[Prior art]
A conventional high-performance air filter medium is manufactured by a wet papermaking method or a dry web method. Most of the filter media for high-performance air filters manufactured by the wet papermaking method are glass fibers, and inexpensive and high-performance filter media can be obtained. However, they are brittle and weak in deformation force and impact force (external force).
Further, since it is nonflammable when used, it cannot be incinerated, which causes a problem of environmental pollution. (Since it can only be landfilled, it is troublesome to throw it away.)
[0003]
On the other hand, the filter media for high-performance air filters manufactured by the dry web manufacturing method is organic fiber (polypropylene resin, polyester resin, etc.), resistant to deformation and impact force (external force), and can be incinerated when used, but is expensive. Dust collection performance is unstable due to a dust collection mechanism by electrostatic charging (electretization), and it has not been widely used even today. There are issues such as.
[0004]
JP-B-63-56806 and JP-A-10-180020 propose a flame-retardant high-performance filter medium capable of being incinerated and reduced in volume by a wet papermaking method. However, these methods achieve flame retardancy by applying a halogen compound, a boron compound, a phosphorus compound, or the like in order to make the filter medium flame-retardant or by adding a considerable amount to the filter medium.焼 These halogen compounds, boron compounds, phosphorus compounds, etc. have the problem of generating toxic gases by combustion, so incineration is not always appropriate.
[0005]
Japanese Patent Publication No. 62-110718, Japanese Patent Publication No. 63-44914, Japanese Patent Publication No. 63-44915, Japanese Patent Publication No. 63-44916, Japanese Patent Publication No. 63-56806, and Japanese Patent Publication No. 13082 and JP-A-10-180020.
[0006]
Japanese Patent Publication No. 62-110781 and Japanese Patent Publication No. 6-13082, filter media for air filters comprising fine glass fibers having a diameter of 4 μm or less, fine denier synthetic fiber of 0.05 to 0.5 denier and polyvinyl alcohol-based fiber. ing. The present invention differs from the present invention in that {a filter medium having a fiber diameter of at least 1 μm is indispensable for a filter medium for use in a clean room, and an organic fiber must be limited to 0.1 to 0.2 denier. Furthermore, the glass fiber content is as high as 60 to 97% by weight, and the brittleness of the filter medium cannot be improved.
[0007]
JP-B-63-44914, JP-B-63-44915, and JP-B-63-44916 blend ultrafine glass fiber with an average fiber diameter of 0.3-4 μm, chop-and-strand vinylon fiber, chop-and-strand acrylic fiber, and chop-and-strand rayon fiber. An air filter medium made of:
There is no restriction on the fiber diameter of chop and strand vinylon fiber, chop and strand acrylic fiber, and chop and strand rayon fiber. Incidentally, the balance between the collection rate and the pressure loss is an indispensable performance for a useful air filter medium, for example, as the fiber diameter increases, the trapping rate decreases, and as the fiber diameter decreases, the pressure loss increases. That is, it is not always possible to obtain useful air filter media in the patents of this example.
[0008]
Japanese Patent Publication No. 63-56806 discloses a filter paper comprising 20% by weight of glass fiber, 50% by weight of regenerated cellulose fiber and 30% by weight of natural cellulose fiber. The glass fiber is an ultra-fine glass fiber, but there is no restriction on the fiber diameter.マ イ ク ロ In the present invention, the micro glass fiber is also called an ultra-fine glass fiber, and a fiber having a fiber diameter of 0.1 to 1 μm is particularly selected. That is, the filter medium for the high performance air filter is indispensable among the ultrafine glass fibers having a limited fiber diameter.
[0009]
JP-B-63-56806 discloses a regenerated cellulose fiber having an ultrafine copper ammonia method of 1.0 denier or less as a regenerated cellulose fiber.で In the present invention, a filter medium for a high-performance air filter was obtained only for organic fibers within a fiber diameter range of 2.7 to 6.5 μm (0.1 to 0.2 denier).で In Japanese Patent Publication No. 63-56806, the blending ratio of ultra-fine glass fiber is 20% by weight as the minimum amount. In the present invention, the glass fiber-containing material is used in combination with fine organic fibers which are microfibrillated products such as poly-P-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3 / 4-diphenylether terephthalamide fiber. A high-performance air filter medium having a ratio of 11 to 25% by weight is obtained.
[0010]
Japanese Patent Application Laid-Open No. H10-180020 discloses a high-performance air filter medium comprising 10 to 50% by weight of glass fibers having an average fiber diameter of 0.65 μm or less 50 to 90% by weight of self-extinguishing organic fibers and a fibrous binder. I have. The organic fiber of the present invention is a fiber containing no halogen or phosphorus compound, and need not be self-extinguishing.
[0011]
Japanese Patent Application Laid-Open No. Hei 10-180020 discloses a self-extinguishing organic fiber having a fiber diameter of 1 to 70 μm. In the present invention, the organic fiber has a fiber diameter in the range of 2.7 to 6.5 μm.
[0012]
Japanese Patent Application Laid-Open No. H10-180020 discloses that ultrafine glass fibers (synonymous with micro glass fibers) have an average fiber diameter of 0.65 μm or less. This ultra-fine glass fiber is a characteristic of its manufacturing method.It is a cotton-like fiber product with a relatively wide and random fiber diameter distribution, and the value of a single fiber diameter accurately describes the ultra-fine glass fiber that is the raw material of the filter medium. The average fiber diameter of 0.65 μm or less mentioned here is a detailed explanation of the present invention.
Light
It is presumed that this is a value calculated from the surface area value by the BET method in Table 1 and the ultrafine glass fibers of Japanese Patent Application Laid-Open No. 10-180020 are identified by the code numbers in Table 1 as # 106, # 104, # 100, # 90 mag is assumed. Incidentally, the micro glass fibers in the present invention are code numbers # 90, # 100 and # 104.
[0013]
[Problems to be solved by the invention]
In order to solve this problem, the present invention provides a high-performance air filter medium mainly composed of organic fibers having performance equivalent to that of a conventional glass fiber medium. As a result of intensive research, the production of a high-performance air filter media that has stable collection performance, is inexpensive, resistant to deformation and impact force (external force), and can be incinerated when used, has been conducted. Invented the invention. Regarding the necessity of the flame retardancy of the filter media, air filters are generally used for applications without fire, and plywood, paper, synthetic resin, synthetic fibers, etc. are often used as components of air filters today. These materials are often not flame-retardant. This is a result of the social priority of minimizing environmental pollution during waste disposal after use today.
[0014]
[Means for Solving the Problems]
In the present invention, the organic fiber having a fiber diameter of 2.7 to 6 5 μm and a fiber length of 0.5 to 5 mm is a fiber forming a skeleton of a filter medium. In the case of a conventional glass fiber filter medium, a micro glass fiber having a fiber diameter of 1 to 4 μm ( Since the fibers corresponding to the code numbers # 108, # 110, and # 112) occupy 70 to 80% by weight of the filter medium, it is important to convert the fiber diameter component into organic fibers when the filter medium is intended to be converted into organic fibers. .
[0015]
Originally, it is presumed that it is preferable to use an organic fiber having a fiber diameter of 1 to 4 μm in the present invention. However, at present, organic fibers produced industrially and applicable to this application are limited to 0.1 d (denier) polyester fiber (PET) fiber (fiber diameter 2.7 to 4.5 μm). The organic fiber having a fiber diameter of 2.7 to 6.5 μm (0.1 to 0.3 d) can be used, and preferably 2.7 to 5 μm (0.1 to 0.2 d).物 A fiber having a fiber diameter of more than 6.5 µm is not suitable for a high-performance air filter medium because it increases the pressure loss and lowers the particle collection rate. The results are shown in Example 1 below and Table 2.
[0016]
In the present invention, fine fibers having a fiber diameter of 0.1 to 1.0 μm as a main component and a fiber length of 20 to 5000 μm are used for the purpose of improving the particle collection rate of the filter medium. In the case of a conventional glass fiber filter medium, micro glass fibers (code numbers # 90, # 100, and # 106) having a fiber diameter of 0.1 to 1.0 μm as a main component are used. In the present invention, the fine fibers are inorganic fibers, and microfibrillated products such as poly-P-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3,4-diphenyl ether terephthalamide fiber as organic fiber in addition to micro glass fiber. Can be used. Since these microfibrillated products are fine organic fibers and have a fiber diameter of 0.2 to 1.0 μm as a main component, the present invention can be used as a substitute for micro glass fibers (code numbers # 90 and # 100 and # 104). It can be used as all or a part of fine fibers, greatly reduces inorganic fiber content compared to conventional filter media, improves bending strength (brittleness), impact strength (deformation resistance), and air It is possible to obtain a filter medium that is unlikely to be damaged during the filter manufacturing process and the air filter handling.
[0017]
That is, in the present invention, the fine fiber is a micro glass fiber occupying most of the inorganic fiber having a fiber diameter of 0.1 to 1.0 μm, and a cotton-like glass fiber produced by a spinning method, a flame insertion method, a rotary method, or the like. Are code numbers # 90, # 100, and # 104.ガ ラ ス Glass fibers produced by the above method are classified by code number for each major fiber diameter range and are commercially available. As a result of observing the ratio of the number of fibers by fiber diameter in the field of view using an electron microscope, the micro glass fibers of each code number are composed of fibers having fiber diameters as shown in Table 1.
[Table 1]
Figure 2004017041
[0018]
The micro glass fiber contains a fiber of a wide fiber diameter range for each product, and the classification based on the average fiber diameter is not strict, but means that the value is approximately in the vicinity.鑑 In view of this, in the present invention, the micro glass fibers are represented by the fiber diameter and the code number of the majority of the fibers as shown in Table 1.
[0019]
In the present invention, the fine fibers are microfibrillated organic fibers such as poly-P-phenylene terephthalamide fibers or poly-P-phenylene terephthalamide-3,4-diphenyl ether terephthalamide fibers, and have a fiber diameter of 0.1 to 4 μm. In this case, 0.2 to 1.0 μm occupies the majority, and the fiber length is 0.02 to 2 mm.
The term microfibrillated product as used herein refers to a method of cutting highly crystalline and highly oriented fibers such as aramid-based fibers into appropriate lengths, dispersing them in water, and fibrillating them using a homogenizer, a beater, etc. 56-100801, JP-A-59-92011) and (1) a method of explosively ejecting a synthetic polymer from a high pressure side to a low pressure side at a temperature higher than the boiling point of a solvent to fibrillate into a fibrous form (flash spinning method), or dispersing it in water. The synthetic polymer fiber or pulp-like fiber cut into an appropriate length is passed through an orifice at high pressure and high speed and collides with the vessel wall to rapidly reduce the shear force on the synthetic polymer fiber or pulp-like fiber. And fibrillation into a fibrous form.
[0020]
In the present invention, the fine fiber is a fiber composed mainly of fibers having a fiber diameter of 0.1 to 1 μm. As the inorganic fibers, fibers having a fiber diameter of 0.15 to 0.4 μm are particularly frequently used. Micro glass fiber and micro glass fiber of code number # 100, which has a particularly large fiber diameter of 0.25 to 0.4 μm, and micro glass fiber of code number # 104, which has a particularly large fiber diameter of 0.4 to 0.8 μm Fibers and the like, preferably micro-glass fibers of code numbers # 90 and # 100, which are particularly often fibers having a fiber diameter of 0.4 μm or less, and poly-P-phenylene terephthalamide fibers or poly- fibers as organic fibers. A microfibrillated product such as P-phenylene terephthalamide-3,4-diphenylether terephthalamide fiber, and most of the fibers having a fiber diameter of 0.1 to 4 μm. In diameter 0.2 to 1 [mu] m, especially many of which are fiber diameter 0.2 to 0.5 [mu] m. (4) When the number of the fine fibers is particularly large with a fiber diameter of 0.5 μm or more, the particle collection rate of the filter medium is reduced. {Postscript} Example 2 Table 3 shows the results.
[0021]
In the present invention, a plurality of micro glass fibers, code number # 90, code number # 100 and code number # 104 can be used alone or in combination.
[0022]
Inorganic fibers (micro glass fiber code numbers # 90, # 100 and # 104) and organic fibers (poly-P-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3 / 4-diphenyl ether terephthalamide) as the fine fibers The mixing ratio with inorganic fibers (microfibrillated products such as fibers) is 72 to 100% by weight of inorganic fibers, preferably 74 to 100% by weight 0 to 28% by weight of organic fibers, and preferably 0 to 26% by weight. (4) When the organic fiber content exceeds 26% by weight, the particle collection rate decreases.
Table 4 below shows {Example 3}.
[0023]
The powdery or fibrous polyvinyl alcohol (PVA) -based binder of the present invention is hot-melted in a drying step after wet papermaking, and then solidified by cooling, whereby the filter medium constituent fibers are firmly bonded to each other. Develops the strength of the filter medium sheet. The polyvinyl alcohol (PVA) -based binder has a melting temperature in water of 60 to 110 ° C., and is mainly made of polyvinyl alcohol, cation-modified polyvinyl alcohol, and carboxine-modified polyvinyl alcohol. Binder resins, for example, polyacrylic resins, polyacrylamide resins, starch-based powdery or emulsion papermaking binders can be used.
[0024]
The water repellency imparting of the filter medium for a high performance air filter of the present invention is performed by preparing an aqueous slurry in which an organic fiber, a fine fiber, and a powdery or fibrous binder are mixed, making the slurry with a paper machine, and pressing lightly. The filter medium sheet obtained in this way can be obtained by impregnating a water repellent with a size roll or the like and drying. The water-repellent agent may be a water-repellent agent used for an ordinary filter material for an air filter. .
[0025]
In the present invention, 70 to 85% by weight of an organic fiber having a fiber diameter of 2.7 to 6.5 μm and a fiber length of 0.5 to 5 mm, and a fiber diameter of 0.1 to 1 μm occupy most, and a fiber length of 0.02 to Inorganic fibers 11 to 25 obtained by blending 15 to 30% by weight of 5 mm fine fibers and 100 parts by weight of the total weight of the organic fibers and fine fibers with 1 to 4 parts of a polyvinyl alcohol-based binder and wet papermaking. The filter medium for high-performance air filters containing weight% can be incinerated in the same manner as ordinary papers. Incidentally, the inorganic component content of general papers is 20 to 30% by weight for gravure paper and 15 to 20% by weight for hard paper, and the filter medium for high-performance air filters of the present invention has the same inorganic content as these papers. It is a component content and does not contain harmful substances such as flame retardants.
[0026]
If the organic fiber content is increased, the inorganic component can be reduced. However, if the organic fiber content exceeds 89% by weight, the particle collection rate decreases. {Postscript} Example 4 Table 5 shows the results.と When the organic fiber content is lower than 70% by weight, the strength is significantly reduced due to bending, resulting in a brittle filter medium, which is not preferable as a filter medium for a high-performance air filter. << Postscript >> Example 5
It is shown in Table 6.
[0027]
【Example】
Example 1
100 parts by weight of a mixed fiber obtained by blending 75% by weight of 0.1 denier polyester fiber (Tepirus Co., Ltd.) and 25% by weight of micro glass fiber (Johnmanville Co., Ltd., code No. # 100) Was mixed with 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101), an aqueous slurry was prepared with a mixer, paper-made with a standard square handmade paper machine of JIS P8209, and lightly pressed. Then, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained.ろ This filter medium sheet was used as Sample 1-1.
Next, a mixed fiber obtained by blending 75% by weight of 0.3 denier polyester fiber (Tepils Co., Ltd., Teijin Co., Ltd.) and 25% by weight of micro glass fiber (Johnmanville Co., Ltd., code number # 100) was mixed with the mixed fiber. 100 parts by weight of 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, and papermaking was performed with a standard square handmade paper machine of JIS P8209. After pressing lightly, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. This filter medium sheet was used as Sample 1-2.
Next, a mixed fiber obtained by blending 75% by weight of 0.5 denier polyester fiber (Tepirus Co., Ltd.) and 25% by weight of micro glass fiber (Johnmanville Co., Ltd., code No. # 100) was mixed with the mixed fiber. 100 parts by weight of 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, and papermaking was performed with a standard square handmade paper machine of JIS P8209. After pressing lightly, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. The filter medium sheet was used as Sample 1-3.
Filter Material Sheets {Sample 1-1, {Sample 1-2} and Sample 1-3> Annex 1 of JIS B9927 Clean Room Air Filter Performance Test Method (Regulation) Particle Collection Rate and Pressure Loss According to Clean Room Air Filter Media Performance Test Method Was measured. Α The α value was calculated from the measured particle collection rate and pressure loss value. The results are shown in Table 2 below.
[0028]
Example 2
A blend of 75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 25% by weight of micro glass fiber code # 100 (Johnmanville Co., Ltd., fiber diameter: 0.2 to 1.2 μm) 100 parts by weight of the mixed fiber was mixed with 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101), and an aqueous slurry was prepared using a mixer. Paper is made with a standard square handmade paper machine, pressed lightly, dried with a rotary drier, and weighs 80 g / m2.2A filter material sheet was obtained. This filter medium sheet was used as Sample 2-1.
A blend of 75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 25% by weight of micro glass fiber code # 90 (fiber diameter of 0.1 to 1.5 μm manufactured by Johnmanville Co.) 100 parts by weight of the mixed fiber was mixed with 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101), and an aqueous slurry was prepared using a mixer. Paper is made with a standard square handmade paper machine, pressed lightly, dried with a rotary drier, and weighs 80 g / m2.2A filter material sheet was obtained. This filter medium sheet was used as Sample 2-2.
A blend of 75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 25% by weight of micro glass fiber code number # 104 (fiber diameter of 0.2 to 2 μm manufactured by John Manville Co.) 100 parts by weight of the mixed fiber was blended with 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101), and an aqueous slurry was prepared using a mixer. After making paper with a handmade paper machine, pressing lightly, drying with a rotary dryer, basis weight 80 g / m2A filter material sheet was obtained.ろ This filter medium sheet was used as Sample 2-3.
75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 25% by weight of micro glass fiber code No. # 106 (fiber diameter of 0.2 to 3 μm manufactured by John Manville Co.) 100 parts by weight of the mixed fiber was blended with 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101), and an aqueous slurry was prepared using a mixer. After making paper with a handmade paper machine, pressing lightly, drying with a rotary dryer, basis weight 80 g / m2A filter material sheet was obtained.ろ The filter medium sheet was used as Sample 2-4.
For the filter medium sheets {Sample 2-1, Sample 2-2, Sample 2-3} and Sample 2-4, the particle collection rate and pressure loss were measured in the same manner as in Example 1, and the α value was calculated. The results are shown in Table 3.
[0029]
Example 3
75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.), 22% by weight of micro glass fiber code number # 100 (manufactured by John Manville Co., Ltd .: fiber diameter of 0.2 to 1.2 μm) and poly To a mixed fiber obtained by mixing 3% by weight (solid content only) of a microfibrillated product of P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) with respect to 100 parts by weight of the mixed fiber Then, 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper-made with a standard square handmade paper machine of JIS P8209, and lightly pressed. Dry with a rotary dryer, basis weight 80 g / m2A filter material sheet was obtained.ろ This filter medium sheet was used as Sample 3-1.
75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 18.5% by weight of micro glass fiber code # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 6.5% by weight (solid content only) of a microfibrillated product of poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained.ろ This filter medium sheet was used as Sample 3-2.
75% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.), 18% by weight of micro glass fiber code No. # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) and poly- A mixed fiber obtained by blending 7% by weight (solid content only) of a microfibrillated product of P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) with respect to 100 parts by weight of the mixed fiber 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper-made with a standard square handmade paper machine of JIS P8209, and lightly pressed. Dry with a dryer, basis weight 80g / m2A filter material sheet was obtained.ろ This filter medium sheet was used as Sample 3-3.
For the filter medium sheets {Sample 3-1 and Sample 3-2} and Sample 3-3, the particle collection rate and the pressure loss were measured in the same manner as in Example 1 and Example 2, and the α value was calculated. {Results} are shown in Table 4 below.
[0030]
Example 4
65% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepirus Co., Ltd. Tepils) and 25.9% by weight of micro glass fiber code number # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 9.1% by weight (solid content only) of a microfibrillated product of poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. This filter medium sheet was used as Sample 4-1.
70% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 22.2% by weight of micro glass fiber code # 100 (fiber diameter 0.2 to 1.2 μm, manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 7.8% by weight (solid content only) of microfibrillated poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. The filter medium sheet was used as Sample 4-2.
80% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 14.8% by weight of micro glass fiber code number # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 5.2% by weight (solid content only) of a microfibrillated product of poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained.
This filter medium sheet was used as Sample 4-3.
85% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 11.1% by weight of micro glass fiber code number # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 3.9% by weight (solid content only) of a microfibrillated product of poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. This filter medium sheet was used as Sample 4-4.
88% by weight of 0.1 denier polyester fiber having a fiber length of 3 mm (Tepils Co., Ltd.) and 8.9% by weight of micro glass fiber code No. # 100 (fiber diameter of 0.2 to 1.2 μm manufactured by John Manville Co.) 100% by weight of a mixed fiber obtained by mixing 3.1% by weight (solid content only) of a microfibrillated product of poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Ltd .: Tiara KY-400S) 2 parts by weight of a fibrous PVA binder (Kuraray Co., Ltd. Crown VP: VPB101) was blended, an aqueous slurry was prepared with a mixer, paper was made with a standard square handmade paper machine of JIS P8209, and lightly pressed. After that, it is dried with a rotary drier and has a basis weight of 80 g / m.2A filter material sheet was obtained. The filter medium sheet was used as Sample 4-5.
For the filter medium sheets {Sample 4-1, Sample 4-2, Sample 4-3, Sample 4-4} and Sample 4-5, the particle collection rate and the pressure loss were measured in the same manner as in Examples 1, 2 and 3. It measured and calculated (alpha) value. {Postscript} Table 5
[0031]
Example 5
For the filter media sheets 4-2, 4-3, and 4-4 obtained in Example 4, the strength reduction after bending [%] and the increase rate of the particle passage rate due to the charge neutralization treatment were determined by the following methods. I asked.
The results are shown in Table 6 below.
Test method for strength reduction rate after bending
Six test pieces are collected in accordance with JIS P8113 (test method for tensile strength of paper and paperboard). Among them, three sheets are subjected to a “tensile strength” test according to the method of JIS P8113, and the average value is defined as “initial tensile strength”.
For the other three pieces, a "test piece after repeated bending" is prepared by the following method.
That is, a test piece is placed on a plane, and a flat plate having a thickness of 2 mm, a vertical width of about 50 mm, and a horizontal width of about 50 mm is placed along the center line perpendicular to the longitudinal direction at the center in the longitudinal direction so that one side thereof is on the center line. Put.
Next, the test piece is bent 180 degrees along the center line so as to sandwich the flat plate, and is brought into close contact with the upper surface of the flat plate for 2 seconds.
The “bending” and “returning” operations are performed five times, and this test piece is referred to as a “test piece after repeated bending”.
The three “test pieces after repeated bending” are subjected to a “tensile strength” test by the method described in JIS P 8113, and the average value is defined as “tensile strength after bending”.
Calculate the tensile strength reduction rate by Equation 5
Figure 2004017041
Test method of increase rate of particle passage rate by charge neutralization treatment
The particle collection rate of the filter medium sheet is measured according to the method described in JIS B9927 Appendix 1 (Regulation) Air Filter Media Performance Test Method for Clean Room. This measured value is referred to as “particle collection rate before treatment”.
Next, the filter medium sheet is sufficiently impregnated with a charge neutralizing agent, and then dried at normal temperature.
Next, this sheet is measured by the method described in JIS No. B9927 Appendix 1 (Regulated) Air Filter Material Performance Test Method for Clean Room. This measured value is referred to as “particle collection rate after treatment”.
Next, the increase rate [%] of the particle passage rate due to the charge neutralization is calculated from the measured value by Expression 6.
Figure 2004017041
[0032]
[Comparative example]
Comparative Example 1
A performance test similar to that of Example 1 was performed on a commercially available glass fiber filter medium for a high-performance air filter (H305AR manufactured by Hokuetsu Paper Co., Ltd.). The results of the measurement of the tensile strength reduction rate after bending in the same manner as in Example 5 and the results of the measurement of the particle collection rate after the charge neutralization treatment are shown in Table 6 below.
[0033]
Comparative Example 2
Same as Example 5 for a commercially available filter medium for high-performance air filters, which is a flame-retardant filter medium (# H388 manufactured by Hokuetsu Paper Co., Ltd.) comprising 30% by weight of glass fiber and 70% by weight of an organic component (organic fiber and organic binder). Table 6 shows the results of measuring the tensile strength reduction rate after bending and the results of measuring the particle collection rate after the charge neutralization treatment.
[0034]
Comparative Example 3
For a commercially available organic fiber filter medium for a high-performance air filter (Tonen Tapyrus Co., Ltd., P80UW-EP4) by a dry method, the tensile strength decrease rate after bending was measured in the same manner as in Example 5, and the results after the charge neutralization treatment The results of measuring the particle collection rate are shown in Table 6 below.
[0035]
[Table 2]
Figure 2004017041
As shown in Table 2, Sample 1-1 and Sample 1-2 showed the performance of the high-performance air filter medium.
By replacing the conventional micro glass fiber with this organic filter medium, the bending strength and impact resistance of the filter medium were improved, and a filter medium that did not break during the air filter manufacturing process and air filter handling was obtained. .
[0036]
[Table 3]
Figure 2004017041
In the present invention, the micro glass fiber grade number # 106 is mostly composed of fibers having a fiber diameter of 0.25 to 1 μm, but particularly contains a large amount of fibers having a fiber diameter of 0.5 μm or more. Decrease collection rate.
[0037]
[Table 4]
Figure 2004017041
As shown in Table 4, the ratio of the inorganic fiber (microglass fiber # 100 or # 90) and the organic fiber (microfibrillated poly-p-phenylene terephthalamide fiber) constituting the fine fiber is 100 to 74% by weight of the inorganic fiber. %, Organic fiber is 0 to 26% by weight.
[0038]
[Table 5]
Figure 2004017041
[0039]
[Table 6]
Figure 2004017041
[0040]
【The invention's effect】
The high-performance air filter medium according to the present invention realizes high performance with an unprecedentedly high organic fiber content, does not contain harmful substances, is flexible and resistant to breakage, and has excellent workability.
The air filter using the filter medium of the present invention provides a high-performance air filter that can be incinerated after being used in the same manner as general combustibles.

Claims (6)

繊維径2.7〜6.5μm、繊維長0.5〜5mmの有機繊維70〜85重量%と繊維径0.1〜1.0μmが大部分を占める繊維長0.02〜5mmの微細繊維15〜30重量%との混合繊維に繊維状または粉末状バインダーを混合繊維の合計重量100部に対して0.5〜4部配合し湿式抄紙してなる 有機繊維含有率が75〜89重量%、坪量50〜100g/mの使用済みに際して焼却処理に適した高性能エアフィルタ用ろ材。Fine fibers having a fiber length of 2.7 to 6.5 μm, a fiber length of 0.5 to 5 mm, 70 to 85% by weight of organic fibers, and a fiber diameter of 0.1 to 1.0 μm, the majority of which has a fiber length of 0.02 to 5 mm. A fibrous or powdery binder is mixed with 15 to 30% by weight and a fibrous or powdery binder is blended in an amount of 0.5 to 4 parts based on 100 parts of the total weight of the mixed fiber, and wet papermaking is performed. The organic fiber content is 75 to 89% by weight. , A high-performance air filter medium suitable for incineration when used, having a basis weight of 50 to 100 g / m 2 . JIS B9927付属書1(規定)クリーンルーム用エアフィルタろ材性能試験方法に記載された方法で測定した、粒子捕集率[%]と圧力損失[mmHO]の値から式1
Figure 2004017041
により算出されるαの値が0.035以上であり、
JIS P8113紙及び板紙の引っ張り強さ試験方法に記載された方法で、引っ張り強さが400g/15mm幅以上であり、下記「折り曲げ後強度低下率試験方法」による折り曲げ後の「強度低下率[%]」が5%以下である請求項1に記載の高性能エアフィルタ用ろ材。
折り曲げ後強度低下率試験方法
JIS P8113(紙及び板紙の引っ張り強さ試験方法)に従い試験片を6枚採取する。この中、3枚についてはJIS P8113の方法に従って「引っ張り強さ」試験を行い、その平均値を「初期引っ張り強さ」とする。
他の3枚については、下記の方法で「繰り返し折り曲げ後の試験片」を調製する。
即ち、試験片を平面上に置き、長手方向の中央において長手方向に対し直角な中心線に沿って厚さ2mm、縦幅約50mm、横幅約50mmの平板をその一辺が中心線上になるように置く。
次に、試験片を平板を挟むようにして中心線に沿って180度折り曲げ、平板の上面に2秒間密着させた後、試験片を元の折り曲げない状態に戻す。
この「折り曲げ」と「元に戻す」操作を5回行い、この試験片を「繰り返し折り曲げ後の試験片」とする。
この「繰り返し折り曲げ後の試験片」3枚をJIS P8113に記載の方法で「引っ張り強さ」試験を行い、その平均値を「折り曲げ後の引っ張り強さ」とする。
式2により引っ張り強度低下率を算出する
Figure 2004017041
From the values of the particle collection rate [%] and the pressure loss [mmH 2 O] measured by the method described in JIS B9927 Appendix 1 (Normal) Cleanroom Air Filter Media Performance Test Method, Equation 1 is used.
Figure 2004017041
Α is 0.035 or more,
According to the method described in the JIS P8113 paper and paperboard tensile strength test method, the tensile strength is 400 g / 15 mm width or more, and the “strength reduction rate [% ] Is 5% or less.
Six test pieces are sampled in accordance with JIS P8113 (Test method for tensile strength of paper and paperboard) after bending. Among them, three sheets are subjected to a “tensile strength” test according to the method of JIS P8113, and the average value is defined as “initial tensile strength”.
For the other three pieces, a "test piece after repeated bending" is prepared by the following method.
That is, a test piece is placed on a plane, and a flat plate having a thickness of 2 mm, a vertical width of about 50 mm, and a horizontal width of about 50 mm is placed along the center line perpendicular to the longitudinal direction at the center in the longitudinal direction so that one side thereof is on the center line. Put.
Next, the test piece is bent 180 degrees along the center line so as to sandwich the flat plate, and is brought into close contact with the upper surface of the flat plate for 2 seconds.
This “bending” and “returning” operations are performed five times, and this test piece is referred to as a “test piece after repeated bending”.
A "tensile strength" test is performed on three of the "test pieces after repeated bending" according to the method described in JIS P8113, and the average value is defined as "tensile strength after bending".
Calculate the tensile strength reduction rate by Equation 2.
Figure 2004017041
繊維径2.7〜6.5μm、繊維長0.5〜5mmの有機繊維がポリエステル繊維、ポリアクリルニトリル繊維、ポリプロピレン繊維、及びセルロース繊維、セルロース系再生繊維の中から1種または複数選ばれる。 繊維径0.1〜1.0μmが大部分を占める繊維長0.02〜5mmの微細繊維は有機繊維ではポリ−p−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物で 繊維径0.2〜1μmが大部分を占め、少量の1〜5μmがあり、繊維長0.02〜2mmであるものと無機繊維ではマイクロガラス繊維で繊維径0.1〜1.0μmが大部分を占め、少量の1〜1.6μmがあり、繊維長0.05〜5mmでコード番号が#90及び#100及び#104である。 微細繊維が前記、ポリ−p−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物 及びマイクロガラス繊維のコード番号#90及び#100及び#104から1種または複数選ばれる請求項1,2の高性能エアフィルタ用ろ材。One or more organic fibers having a fiber diameter of 2.7 to 6.5 μm and a fiber length of 0.5 to 5 mm are selected from polyester fibers, polyacrylonitrile fibers, polypropylene fibers, cellulose fibers, and cellulose-based regenerated fibers. The fine fibers having a fiber length of 0.02 to 5 mm, the majority of which has a fiber diameter of 0.1 to 1.0 μm, are poly-p-phenylene terephthalamide fibers or poly-P-phenylene terephthalamide-3,4-diphenyl ether as organic fibers. Microfibrillated products such as terephthalamide fiber, etc. Fiber diameter 0.2-1μm occupies most, small amount 1-5μm, fiber length 0.02-2mm and inorganic fiber micro glass fiber 0.1 to 1.0 μm occupies the majority, small amounts of 1 to 1.6 μm, fiber lengths of 0.05 to 5 mm and code numbers # 90, # 100 and # 104. The fine fibers are the microfibrillated compound such as the above-mentioned poly-p-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3,4-diphenylether terephthalamide fiber and the micro glass fiber code numbers # 90, # 100 and # 104. 4. The high-performance air filter medium according to claim 1, which is selected from one or more of the following. 微細繊維が有機繊維(ポリ−P−フェニレンテレフタルアミド繊維またはポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維等のマイクロフィブリル化物)と無機繊維(マイクロガラス繊維のコード番号#90及び#100及び#104)の両方により構成され、その構成割合は有機繊維0〜26重量%、無機繊維74〜100重量%である、請求項1,2,3の高性能エアフィルタ用ろ材。The fine fibers are composed of organic fibers (microfibrillated products such as poly-P-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3,4-diphenyl ether terephthalamide fiber) and inorganic fibers (micro glass fiber code number # 90 and The filter medium for a high-performance air filter according to any one of claims 1, 2, and 3, wherein the filter medium is composed of both # 100 and # 104), and the composition ratio is 0 to 26% by weight of organic fibers and 74 to 100% by weight of inorganic fibers. 帯電中和剤、有機溶剤などの静電帯電を中和する物質が付着しても粒子通過率が、式3によりより算出する「粒子通過率の増加率[%]」が30%以下である請求項1,2,3,4に記載の高性能エアフィルタ用ろ材。
Figure 2004017041
但し、 PEi : 静電帯電を中和する物質が付着していない時のろ材の粒子捕集率[%]
Ed : 静電帯電を中和する物質が付着している時のろ材の粒子捕集率[%]
Even if a substance that neutralizes electrostatic charge such as a charge neutralizing agent or an organic solvent adheres, the “particle increase rate” calculated by Equation 3 is “30% or less” (increase rate of particle passage rate [%]). The high-performance air filter medium according to claim 1, 2, 3, or 4.
Figure 2004017041
However, P Ei : particle collection rate [%] of the filter medium when the substance neutralizing electrostatic charging is not attached
P Ed : Particle collection rate [%] of filter medium when a substance neutralizing electrostatic charge is attached
請求項1,2,3,4,5に記載の高性能エアフィルタ用ろ材を用いて成る高性能エアフィルタA high-performance air filter using the high-performance air filter medium according to claim 1, 2, 3, 4, or 5.
JP2002213122A 2002-06-19 2002-06-19 Filter medium for high performance air filter and high performance air filter using filter medium Pending JP2004017041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213122A JP2004017041A (en) 2002-06-19 2002-06-19 Filter medium for high performance air filter and high performance air filter using filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213122A JP2004017041A (en) 2002-06-19 2002-06-19 Filter medium for high performance air filter and high performance air filter using filter medium

Publications (1)

Publication Number Publication Date
JP2004017041A true JP2004017041A (en) 2004-01-22

Family

ID=31184447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213122A Pending JP2004017041A (en) 2002-06-19 2002-06-19 Filter medium for high performance air filter and high performance air filter using filter medium

Country Status (1)

Country Link
JP (1) JP2004017041A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090292A (en) * 2005-09-30 2007-04-12 Hokuetsu Paper Mills Ltd Non-flammable filtration material for dust removal filter and production method thereof
JP2007144415A (en) * 2005-11-07 2007-06-14 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008086953A (en) * 2006-10-04 2008-04-17 Hokuetsu Paper Mills Ltd Filter medium for air filter and air filter with filter medium
WO2010122999A1 (en) * 2009-04-24 2010-10-28 北越紀州製紙株式会社 Low-basis-weight filter media for air filters
CN102199903A (en) * 2011-04-13 2011-09-28 北京联飞翔科技股份有限公司 Filter paper of energy-saving and environment-friendly filter and making method thereof
JP2012077400A (en) * 2010-09-30 2012-04-19 Nippon Muki Co Ltd Filter paper and air filter using the filter paper
JP2013056338A (en) * 2004-11-05 2013-03-28 Donaldson Co Inc Filter medium and structure
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
JP2018171582A (en) * 2017-03-31 2018-11-08 日本無機株式会社 Filtering material for air filter and air filter
CN114214874A (en) * 2021-12-16 2022-03-22 山东龙德复合材料科技股份有限公司 Air filter paper coating glue solution and application thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47737E1 (en) 2004-11-05 2019-11-26 Donaldson Company, Inc. Filter medium and structure
US11504663B2 (en) 2004-11-05 2022-11-22 Donaldson Company, Inc. Filter medium and breather filter structure
USRE49097E1 (en) 2004-11-05 2022-06-07 Donaldson Company, Inc. Filter medium and structure
US10610813B2 (en) 2004-11-05 2020-04-07 Donaldson Company, Inc. Filter medium and breather filter structure
JP2013056338A (en) * 2004-11-05 2013-03-28 Donaldson Co Inc Filter medium and structure
JP2013240796A (en) * 2004-11-05 2013-12-05 Donaldson Co Inc Filter medium
JP2015037783A (en) * 2004-11-05 2015-02-26 ドナルドソン カンパニー,インコーポレイティド Filter medium
US9795906B2 (en) 2004-11-05 2017-10-24 Donaldson Company, Inc. Filter medium and breather filter structure
JP2007090292A (en) * 2005-09-30 2007-04-12 Hokuetsu Paper Mills Ltd Non-flammable filtration material for dust removal filter and production method thereof
JP2007144415A (en) * 2005-11-07 2007-06-14 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008086953A (en) * 2006-10-04 2008-04-17 Hokuetsu Paper Mills Ltd Filter medium for air filter and air filter with filter medium
WO2010122999A1 (en) * 2009-04-24 2010-10-28 北越紀州製紙株式会社 Low-basis-weight filter media for air filters
JP2010253391A (en) * 2009-04-24 2010-11-11 Hokuetsu Kishu Paper Co Ltd Low-basis-weight filter medium for air filter
JP2012077400A (en) * 2010-09-30 2012-04-19 Nippon Muki Co Ltd Filter paper and air filter using the filter paper
CN102199903A (en) * 2011-04-13 2011-09-28 北京联飞翔科技股份有限公司 Filter paper of energy-saving and environment-friendly filter and making method thereof
JP2018171582A (en) * 2017-03-31 2018-11-08 日本無機株式会社 Filtering material for air filter and air filter
CN114214874A (en) * 2021-12-16 2022-03-22 山东龙德复合材料科技股份有限公司 Air filter paper coating glue solution and application thereof
CN114214874B (en) * 2021-12-16 2023-03-10 山东龙德复合材料科技股份有限公司 Air filter paper coating glue solution and application thereof

Similar Documents

Publication Publication Date Title
JP5319380B2 (en) Low basis weight air filter media
KR101752922B1 (en) Multi-phase filter medium
JP4922664B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP7250845B2 (en) Composite media for fuel diversion
JP2004017041A (en) Filter medium for high performance air filter and high performance air filter using filter medium
JP2018038983A (en) Production method of filtering medium for air filter
JP2020191274A (en) Thermal runaway suppression fireproof sheet
CN106794653B (en) Honeycomb core with high compression-strength
JPH1080612A (en) Filter material and air filter
JP2006136809A (en) Non-halogen, non-phosphorus flame-retardant filter medium for air filter, and its production method
JP7252435B2 (en) Method for producing low-density fiber paper containing hydrophobic nanofibers
JP5797175B2 (en) Air filter media
JP2806582B2 (en) Activated carbon fiber sheet and filter
JP2005307371A (en) Wet method nonwoven fabric, prepreg and composite material
JP5290507B2 (en) Air filter medium and air filter including the same
JP2020065956A (en) Filter material for air filter and manufacturing method therefor
JP3046347B2 (en) Filter material for deodorization and method for producing the same
JP2021086820A (en) Thermal runaway suppression fireproof sheet
JP2021112717A (en) Adsorption sheet and method for producing the same
JP3180036B2 (en) Non-combustible decorative board
JPH06207398A (en) Moisture absorbing and releasing fiber sheet and its production
JP4579445B2 (en) Unstretched polyester fiber for papermaking
JPH02191759A (en) High-tenacity sheet
JP2020023759A (en) Flame-retardant paper
JP7281419B2 (en) Filter material for filter and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Effective date: 20070425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016