JP2020023759A - Flame-retardant paper - Google Patents

Flame-retardant paper Download PDF

Info

Publication number
JP2020023759A
JP2020023759A JP2018147417A JP2018147417A JP2020023759A JP 2020023759 A JP2020023759 A JP 2020023759A JP 2018147417 A JP2018147417 A JP 2018147417A JP 2018147417 A JP2018147417 A JP 2018147417A JP 2020023759 A JP2020023759 A JP 2020023759A
Authority
JP
Japan
Prior art keywords
flame
retardant paper
paper
retardant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018147417A
Other languages
Japanese (ja)
Inventor
秀朗 唐崎
Hideaki Karasaki
秀朗 唐崎
朋子 高野
Tomoko Takano
朋子 高野
和也 西岡
Kazuya Nishioka
和也 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018147417A priority Critical patent/JP2020023759A/en
Publication of JP2020023759A publication Critical patent/JP2020023759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

To provide flame-retardant paper having high flame resistance especially suitable for a member of an electromagnetic wave absorber, difficulty to form paper rupture in a production process, and good productivity.SOLUTION: The flame-retardant paper of the present invention is flame-retardant paper containing a pulp, aluminium hydroxide, a guanidine-based flame retardant and a urethane resin. The flame-retardant paper is characterized by that the content of the pulp is 10-35 mass%, the content of the aluminium hydroxide is 40-70 mass%, the content of the guanidine-based flame retardant is 0.1-15 mass%, and the content of the urethane resin is 0.1-2 mass%.SELECTED DRAWING: None

Description

この発明は、難燃紙に関する。   The present invention relates to flame retardant paper.

従来、難燃性を有する紙の開発が多くの分野で要望されている。例えば、電気・電子材料や産業用資材などにおいて、紙は幅広く利用されており、これらの分野の一部においては難燃性を有する紙の開発への要求が高まっている。   2. Description of the Related Art Conventionally, development of paper having flame retardancy has been demanded in many fields. For example, paper is widely used in electric and electronic materials, industrial materials, and the like, and in some of these fields, there is an increasing demand for the development of flame-retardant paper.

紙に難燃性を付与する手法としては、難燃剤の塗付あるいは含浸、難燃性の有機物質や無機質紛体の内添、無機繊維の混抄、あるいはそれらの組み合わせ等が知られている。より具体的には、例えば、難燃性繊維や水酸化アルミニウムを含む難燃紙が提案されている(特許文献1参照)。   Known methods for imparting flame retardancy to paper include application or impregnation of a flame retardant, internal addition of a flame retardant organic substance or inorganic powder, blending of inorganic fibers, or a combination thereof. More specifically, for example, flame retardant paper containing flame retardant fibers and aluminum hydroxide has been proposed (see Patent Document 1).

更に、電波暗室で使用される電波吸収体部材用難燃紙等は、10年以上にわたって使用されるが、その間の難燃性低下が抑制されたものであることが望まれている。   Further, flame-retardant paper and the like for a radio wave absorber member used in an anechoic chamber have been used for more than 10 years, and it is desired that the flame retardancy during that time is suppressed.

上記のような要求を解決すべく、パルプならびに水酸化アルミニウムおよびポリホウ酸塩から成る難燃剤を含む電波吸収体部材用難燃紙が提案されている(特許文献2参照。)。   In order to solve the above-mentioned demands, a flame-retardant paper for a radio wave absorber member containing pulp and a flame retardant composed of aluminum hydroxide and polyborate has been proposed (see Patent Document 2).

国際公開第2014/088019号International Publication No. 2014/088019 国際公開第2017/002863号International Publication No. WO 2017/002863

本発明者の知見によると、上記の特許文献1および2で提案された難燃紙および電波吸収体部材用難燃紙は、難燃紙のじん性が比較的低く、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が発生する傾向がみられ、難燃紙の生産性が低下してしまうという加工上の問題がある。   According to the knowledge of the present inventors, the flame retardant paper and the flame retardant paper for a radio wave absorber member proposed in Patent Documents 1 and 2 described above have relatively low toughness of the flame retardant paper, and are difficult to impregnate or apply. There is a tendency for the flame-retardant paper to break during drying in the chemical application step and during secondary processing such as slitting and printing, and there is a processing problem that the productivity of the flame-retardant paper is reduced.

そこで、本発明の目的は、特に、電波吸収体の部材に好適な高い難燃性を有するのに加えて、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が発生しにくく、生産性が良好な難燃紙を提供することにある。   Accordingly, an object of the present invention is to provide, in addition to having high flame retardancy suitable for a member of a radio wave absorber, in addition to secondary drying such as drying or slitting or printing in a drug application step such as impregnation or application. An object of the present invention is to provide a flame-retardant paper which is less likely to break during processing and has good productivity.

上記目標を達成するため、本発明の難燃紙は、(1)パルプ、水酸化アルミニウム、グアニジン系難燃剤およびウレタン樹脂を含有する難燃紙であって、前記難燃紙に対し、前記パルプの含有量が10〜35質量%であり、前記水酸化アルミニウムの含有量が40〜70質量%であり、前記グアニジン系難燃剤の含有量が0.1〜15質量%であり、前記ウレタン樹脂の含有量が0.1〜2質量%である。   In order to achieve the above-mentioned object, the flame-retardant paper of the present invention is (1) a flame-retardant paper containing pulp, aluminum hydroxide, a guanidine-based flame retardant and a urethane resin. Is 10 to 35% by mass, the content of the aluminum hydroxide is 40 to 70% by mass, the content of the guanidine-based flame retardant is 0.1 to 15% by mass, and the urethane resin is Is 0.1 to 2% by mass.

また、(2)(1)の難燃紙において、前記難燃紙に含有される前記グアニジン系難燃剤の前記ウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)が50/50以上95/5以下である。   (2) In the flame-retardant paper of (1), the mass ratio of the guanidine-based flame retardant contained in the flame-retardant paper to the urethane resin (guanidine-based flame retardant / urethane resin) is 50/50 or more and 95 /. 5 or less.

本発明によれば、高い難燃性を有するのに加えて、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が発生しにくく、生産性が良好な難燃紙を得ることができる。   According to the present invention, in addition to having high flame retardancy, it is difficult for the flame-retardant paper to break during drying and in secondary processing such as slitting or printing in a drug application step such as impregnation or coating. Thus, a flame-retardant paper having good productivity can be obtained.

以下、本発明の実施形態の例を説明する。   Hereinafter, an example of an embodiment of the present invention will be described.

本発明の難燃紙は、パルプ、水酸化アルミニウム、グアニジン系難燃剤およびウレタン樹脂を含有する難燃紙であって、前記難燃紙に対し、前記パルプの含有量が10〜35質量%であり、前記水酸化アルミニウムの含有量が40〜70質量%であり、前記グアニジン系難燃剤の含有量が0.1〜15質量%であり、前記ウレタン樹脂の含有量が0.1〜2質量%である。   The flame-retardant paper of the present invention is a flame-retardant paper containing pulp, aluminum hydroxide, a guanidine-based flame retardant and a urethane resin, wherein the content of the pulp is 10 to 35% by mass based on the flame-retardant paper. The content of the aluminum hydroxide is 40 to 70% by mass, the content of the guanidine-based flame retardant is 0.1 to 15% by mass, and the content of the urethane resin is 0.1 to 2% by mass. %.

そして、上記の構成を採用する本発明の難燃紙は、優れた難燃性を有する一方で、含浸や塗布等での薬剤付与工程における乾燥時などにおける難燃紙の破断の発生が抑制されることにより優れた生産性も有することとなる。その理由については、以下のとおり推測する。まず、詳細は下記するが、難燃紙が紙として成形されるために難燃紙は特定の量以上のパルプを含有する必要がある。そして、パルプは比較的、燃えやすい素材であるため、難燃紙の難燃性を十分なものとするためには、難燃紙における水酸化アルミニウムやグアニジン系難燃剤などの難燃剤の含有量を特定の量以上とする必要がある。一方で、難燃紙における難燃剤の含有量が多くなると、難燃紙のじん性が低下し、含浸や塗布等での薬剤付与工程における乾燥時などにおける難燃紙の破断の発生頻度が増大する。しかし、難燃紙がウレタン樹脂を含有するものであり、さらに、パルプ、水酸化アルミニウム、グアニジン系難燃剤およびウレタン樹脂を、それぞれ特定の含有量で含むものであることで、難燃紙のじん性がより高いものとなり、難燃紙の紙としての成形性と難燃性とを、それぞれ高い水準で有しつつ、さらに、含浸や塗布等での薬剤付与工程における乾燥時などにおける難燃紙の破断の発生が抑制され生産性にも優れた難燃紙を得ることができるものと推測する。なお、本来、難燃紙の紙としての成形性と難燃性とは、上記の事情により、トレードオフの関係にある。   The flame-retardant paper of the present invention adopting the above configuration has excellent flame retardancy, while suppressing the occurrence of breakage of the flame-retardant paper at the time of drying in a drug application step such as impregnation or application. By doing so, it also has excellent productivity. The reason is presumed as follows. First, as described in detail below, the flame-retardant paper needs to contain a specific amount or more of pulp in order to form the flame-retardant paper as paper. Since pulp is a relatively flammable material, the content of flame retardants such as aluminum hydroxide and guanidine-based flame retardants in flame-retardant paper is required to ensure sufficient flame retardancy of flame-retardant paper. Must be equal to or more than a specific amount. On the other hand, when the content of the flame retardant in the flame-retardant paper increases, the toughness of the flame-retardant paper decreases, and the frequency of rupture of the flame-retardant paper increases during drying in a chemical application process such as impregnation or application. I do. However, since the flame-retardant paper contains a urethane resin, and further contains pulp, aluminum hydroxide, a guanidine-based flame retardant and a urethane resin at specific contents, the toughness of the flame-retardant paper is reduced. It is higher and has high levels of moldability and flame retardancy as paper of flame-retardant paper, and furthermore, breakage of flame-retardant paper at the time of drying in a chemical application process such as impregnation or coating etc. It is presumed that it is possible to obtain a flame-retardant paper which suppresses the occurrence of odor and is excellent in productivity. It should be noted that the formability of the flame-retardant paper as a paper and the flame retardancy inherently have a trade-off relationship due to the above circumstances.

本発明の難燃紙に用いられるパルプとしては、針葉樹パルプ、広葉樹パルプ、サーモメカニカルパルプ、砕木パルプ、リンターパルプおよび麻パルプなどの植物繊維からなるパルプ、レーヨンなどの再生繊維からなるパルプ、およびビニロンやポリエステルなどからなる合成繊維パルプなどが挙げられ、これのなかから1種類または2種類以上のパルプを適宜選択して用いることができる。   As the pulp used in the flame-retardant paper of the present invention, softwood pulp, hardwood pulp, thermomechanical pulp, groundwood pulp, pulp composed of plant fibers such as linter pulp and hemp pulp, pulp composed of regenerated fibers such as rayon, and vinylon And synthetic fiber pulp made of polyester or the like. One or more types of pulp can be appropriately selected from these and used.

本発明の難燃紙は、難燃紙全体に対し10〜35質量%のパルプを含有している。パルプの含有量が10質量%を下回る場合は、抄紙工程においてパルプの絡合力が弱くなり、シート状態の形成が困難になる。一方、パルプの含有量が35質量%を上回る場合には、難燃紙として十分な難燃性が得られない傾向がある。   The flame retardant paper of the present invention contains 10 to 35% by mass of pulp based on the entire flame retardant paper. When the content of the pulp is less than 10% by mass, the entanglement force of the pulp is weakened in the paper making process, and it is difficult to form a sheet state. On the other hand, if the pulp content exceeds 35% by mass, there is a tendency that sufficient flame retardancy cannot be obtained as flame retardant paper.

このように、パルプの含有量を10〜35質量%の範囲とすることにより、難燃紙の難燃性が優れたシートを得ることができる。   Thus, by setting the content of the pulp in the range of 10 to 35% by mass, a sheet having excellent flame retardancy of the flame retardant paper can be obtained.

次に、本発明の難燃紙は、水酸化アルミニウムを40〜70質量%含有している。水酸化アルミニウムは、難燃紙の全体に十分に分散された状態で担持されていることが好ましいため、水酸化アルミニウムは粉末であることが好ましい。   Next, the flame retardant paper of the present invention contains 40 to 70% by mass of aluminum hydroxide. Since the aluminum hydroxide is preferably supported in a state of being sufficiently dispersed throughout the flame retardant paper, the aluminum hydroxide is preferably a powder.

ここで、水酸化アルミニウムは高温になると脱水分解し、その際の吸熱作用により難燃効果が得られる。この難燃効果は長期間の保存によっても経時的に低下せず、難燃紙に付与された難燃効果を長期間、維持することを可能とする。   Here, aluminum hydroxide is dehydrated and decomposed at a high temperature, and an endothermic effect at that time provides a flame retardant effect. This flame-retardant effect does not decrease over time even after long-term storage, and enables the flame-retardant effect imparted to the flame-retardant paper to be maintained for a long time.

また、難燃紙の抄紙時にカチオン高分子化合物あるいはアニオン高分子化合物からなる歩留まり向上剤や紙力増強剤等の抄紙用薬剤を適宜添加することにより、水酸化アルミニウムはパルプに吸着され、難燃紙の難燃性の向上により寄与する。   In addition, aluminum hydroxide is adsorbed to pulp by appropriately adding a papermaking agent such as a retention enhancer or a paper strength enhancer composed of a cationic polymer compound or an anionic polymer compound during papermaking of flame-retardant paper. It contributes by improving the flame retardancy of paper.

また、水酸化アルミニウムは白色粉末であるため、水酸化アルミニウムを特定の含有量以上で含有する難燃紙の色は白色となる。よって、本発明の難燃紙を、例えば、電波暗室用の電波吸収体に使用した際、室内の照明効果を高めることができる。更に、水酸化アルミニウムは変色せず、難燃紙を白色に維持することができる。   Further, since aluminum hydroxide is a white powder, the color of flame-retardant paper containing aluminum hydroxide at a specific content or more is white. Therefore, when the flame retardant paper of the present invention is used for a radio wave absorber for an anechoic chamber, for example, the indoor lighting effect can be enhanced. Further, the aluminum hydroxide does not discolor, and the flame retardant paper can be maintained white.

水酸化アルミニウムの含有量が40質量%を下回る場合には、難燃紙が十分な難燃性を得られない可能性がある。また、水酸化アルミニウムの含有量が40質量%を下回る場合であって、難燃紙における水酸化アルミニウムの含有量とパルプの含有量との比(水酸化アルミニウムの含有量/パルプの含有量)が小さくなる場合には、この難燃紙が電波吸収体部材用難燃紙として使用される場合、難燃紙中のパルプ分が難燃紙中の水酸化アルミニウム分に対し多くなるため、難燃紙の経時変化による変色が著しく目立つようになる。   When the content of aluminum hydroxide is less than 40% by mass, the flame retardant paper may not be able to obtain sufficient flame retardancy. In the case where the content of aluminum hydroxide is less than 40% by mass, the ratio between the content of aluminum hydroxide and the content of pulp in the flame retardant paper (content of aluminum hydroxide / content of pulp) When the flame-retardant paper is used as a flame-retardant paper for a radio wave absorber member, the pulp content in the flame-retardant paper increases with respect to the aluminum hydroxide content in the flame-retardant paper. Discoloration due to aging of the fuel paper becomes noticeable.

一方、水酸化アルミニウムの含有量が70質量%を上回る場合には、難燃紙は高い難燃性を得られるが、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時に難燃紙の破断が発生し、取り扱い性や工程通過性が悪化する場合がある。   On the other hand, when the content of aluminum hydroxide is more than 70% by mass, the flame-retardant paper can obtain high flame retardancy. During the secondary processing, the flame-retardant paper may be broken, and the handleability and processability may deteriorate.

このように、水酸化アルミニウムの含有量を40〜70質量%の範囲にすることにより、難燃紙の優れた難燃性および白色保持性を有した難燃紙を得ることができる。水酸化アルミニウムは富士フイルム和光純薬株式会社およびシグマアルドリッチジャパン株式会社等から購入できる。   Thus, by setting the content of aluminum hydroxide in the range of 40 to 70% by mass, it is possible to obtain a flame-retardant paper having excellent flame retardancy and white color retention of the flame-retardant paper. Aluminum hydroxide can be purchased from Fujifilm Wako Pure Chemical Industries, Ltd. and Sigma-Aldrich Japan Co., Ltd.

本発明の難燃紙に用いられるグアニジン系難燃剤としては、リン酸グアニジンやリン酸グアニル尿素、スルファミン酸グアニジン、炭酸グアニジン等が挙げられ、これら1種類または2種類以上のグアニジン系難燃剤を適宜選択して用いることができる。一般に、難燃剤の所要量が多いと、難燃紙のじん性が低下するため、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時に難燃紙の破断が発生しやすい傾向にある。また、難燃紙のじん性を低下させる傾向は、グアニジン系難燃剤のほうが水酸化アルミニウムよりも大きい。これらグアニジン系難燃剤の中でも、特にセルロース素材に対して難燃効果が高く、含有する難燃剤の所要量の少なくとも十分な難燃紙の難燃性を確保できるリン酸グアニジンを用いることが好ましい。   Examples of the guanidine-based flame retardant used in the flame-retardant paper of the present invention include guanidine phosphate, guanylurea phosphate, guanidine sulfamate, guanidine carbonate, and the like. Can be selected and used. In general, if the required amount of the flame retardant is large, the toughness of the flame retardant paper decreases, so that the flame retardant paper breaks during drying in the chemical application process such as impregnation or application and during secondary processing such as slitting and printing. Tends to occur. The tendency of the toughness of flame-retardant paper to decrease is greater for guanidine-based flame retardants than for aluminum hydroxide. Among these guanidine-based flame retardants, it is preferable to use guanidine phosphate which has a high flame retardant effect particularly on a cellulose material and can ensure the flame retardancy of the flame retardant paper at least in a required amount of the contained flame retardant.

本発明の難燃紙は、難燃紙全体に対し、0.1〜15質量%のグアニジン系難燃剤を含有している。   The flame retardant paper of the present invention contains 0.1 to 15% by mass of a guanidine-based flame retardant based on the entire flame retardant paper.

グアニジン系難燃剤の難燃紙全体に対する含有量が0.1質量%以下である場合、難燃紙と発泡スチロールとを貼り合わせた部材の難燃性が不十分となる傾向がみられる。上記の観点からは、グアニジン系難燃剤の含有量は、2質量%以上であることがより好ましい。   When the content of the guanidine-based flame retardant with respect to the entire flame retardant paper is 0.1% by mass or less, the flame retardancy of a member obtained by laminating the flame retardant paper and the styrene foam tends to be insufficient. From the above viewpoint, the content of the guanidine-based flame retardant is more preferably 2% by mass or more.

一方、グアニジン系難燃剤の難燃紙全体に対する含有量が15質量%以上である場合、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時に難燃紙の破断が発生し、取り扱い性や工程通過性が悪化する場合がある。また、電波吸収体部材用難燃紙として使用される場合、経時変化による変色が著しく目立つようになる。   On the other hand, when the content of the guanidine-based flame retardant with respect to the whole flame retardant paper is 15% by mass or more, the flame retardant paper is dried at the time of applying the agent by impregnation or coating and at the time of secondary processing such as slitting or printing. Breakage may occur, and handleability and processability may deteriorate. Further, when used as a flame retardant paper for a radio wave absorber member, discoloration due to aging becomes noticeable.

本発明の難燃紙は、難燃紙全体に対し0.1〜2質量%のウレタン樹脂を含有している。ウレタン樹脂は、難燃紙に含有させることで難燃紙のじん性を向上させることができるため、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時における難燃紙の破断を抑制することが可能である。   The flame retardant paper of the present invention contains a urethane resin in an amount of 0.1 to 2% by mass based on the entire flame retardant paper. The urethane resin can improve the toughness of the flame-retardant paper by being contained in the flame-retardant paper, so that it is used during drying in the chemical application step such as impregnation or application and during secondary processing such as slitting and printing. It is possible to suppress the breakage of the flame retardant paper.

ウレタン樹脂の難燃紙全体に対する含有量が0.1質量%以下である場合、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時に難燃紙の破断が発生し、取り扱い性や工程通過性が悪化する場合がある。   When the content of the urethane resin with respect to the entire flame-retardant paper is 0.1% by mass or less, the flame-retardant paper breaks during drying in the chemical application step such as impregnation or application and during secondary processing such as slitting and printing. Occurs, and the handleability and process passability may deteriorate.

一方、ウレタン樹脂の難燃紙全体に対する含有量が2質量%以上である場合、薬剤付与工程において塗工装置や乾燥ロール上にウレタン樹脂が付着し、定期的に設備の清掃が必要になる等、生産性が低下する可能性がある。   On the other hand, when the content of the urethane resin with respect to the entire flame-retardant paper is 2% by mass or more, the urethane resin adheres to the coating device or the drying roll in the chemical application step, and the equipment needs to be periodically cleaned. , The productivity may decrease.

また、本発明の難燃紙は、グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)が50/50以上95/5以下であることが好ましい。   The flame retardant paper of the present invention preferably has a mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) of 50/50 or more and 95/5 or less.

ここで、グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)について説明する。難燃紙と発泡スチロールとを貼り合わせた部材の難燃性および含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時における難燃紙の破断の抑制はトレードオフの関係にある。つまり、難燃紙に含まれるグアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)を大きくすると、その難燃紙と発泡スチロールとを貼り合わせた部材の難燃性がより優れたものとなる。一方で、難燃紙に含まれるグアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)を小さくすると、その難燃紙の含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時における難燃紙の破断がより抑制される。   Here, the mass ratio of the guanidine-based flame retardant to the urethane resin (guanidine-based flame retardant / urethane resin) will be described. Trade-offs are made between the flame retardancy of members made by laminating flame-retardant paper and Styrofoam, and the suppression of breakage of flame-retardant paper during drying in the chemical application process such as impregnation and application, and during secondary processing such as slitting and printing. In a relationship. That is, when the mass ratio of the guanidine-based flame retardant to the urethane resin (the guanidine-based flame retardant / urethane resin) contained in the flame-retardant paper is increased, the flame retardancy of the member in which the flame-retardant paper and the styrene foam are bonded is more excellent. It will be. On the other hand, if the mass ratio (guanidine-based flame retardant / urethane resin) of the guanidine-based flame retardant to the urethane resin contained in the flame-retardant paper is reduced, it is possible to reduce Breakage of the flame-retardant paper during secondary processing such as slitting and printing is further suppressed.

上記の観点から、グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)を50/50以上95/5以下の範囲にすることにより、難燃紙と発泡スチロールとを貼り合わせた部材の難燃性および含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時における難燃紙の破断の抑制がより高い水準で両立された難燃紙となる。なお、難燃紙に含まれるグアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は50/50以上95/5以下の範囲内において、目的に応じて、上記の基準より適宜選択することが好ましい。   In view of the above, by setting the mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) in the range of 50/50 or more and 95/5 or less, flame-retardant paper and styrofoam were bonded. A flame-retardant paper that achieves a higher level of flame retardancy of the member and a higher level of suppression of breakage of the flame-retardant paper during drying in the chemical application step in impregnation and application and during secondary processing such as slitting and printing. . The mass ratio (guanidine-based flame retardant / urethane resin) of the guanidine-based flame retardant to the urethane resin contained in the flame-retardant paper is within the range of 50/50 or more and 95/5 or less, depending on the purpose. It is preferable to select an appropriate one.

本発明の難燃紙は、ガラス繊維、ロックウール、バサルト繊維等の無機繊維を含有させてよい。これらは、無機繊維であるために難燃紙の難燃性を向上させることができるとともに、剛性が高い繊維であるために難燃紙で高度な剛性を発現でき、難燃紙の取り扱い性を向上させることができる。前記無機繊維の含有量としては、本発明の難燃紙の紙全体を100質量%とした場合、1〜30質量%の範囲であることが好ましい。さらに20質量%以下であることがより好ましい。この範囲とすることで、高度な剛性を有する難燃紙を安定して製造することができる。   The flame retardant paper of the present invention may contain inorganic fibers such as glass fibers, rock wool, and basalt fibers. Since these are inorganic fibers, they can improve the flame retardancy of flame-retardant paper, and because they are highly rigid fibers, they can express a high degree of rigidity with flame-retardant paper, improving the handleability of flame-retardant paper. Can be improved. The content of the inorganic fiber is preferably in the range of 1 to 30% by mass when the entire flame retardant paper of the present invention is 100% by mass. More preferably, the content is 20% by mass or less. Within this range, flame-retardant paper having high rigidity can be stably manufactured.

本発明の難燃紙は、導電性物質を含有することができる。本発明における導電性物質とは、難燃紙が電波吸収体部材用難燃紙として使用される場合、電波エネルギーを微小な電流に変換し、更に熱エネルギーに変換することにより電波の減衰作用、すなわち電波の吸収をおこなう材料である。導電性物質としては、例えば、導電性粒子や導電性繊維を挙げることができる。ここで、導電性粒子としては、金属粒子、カーボンブラック粒子、カーボンナノチューブ粒子、カーボンマイクロコイル粒子、およびグラファイト粒子等を挙げることができる。導電性繊維としては、炭素繊維および金属繊維等を挙げることができ、金属繊維としてはステンレス繊維、銅繊維、銀繊維、金繊維、ニッケル繊維、アルミニウム繊維、および鉄繊維等を挙げることができる。また、非導電性粒子および繊維に金属をめっき、蒸着および溶射する等して導電性を付与したものについても、導電性物質として挙げることができる。   The flame retardant paper of the present invention can contain a conductive substance. The conductive substance in the present invention, when the flame-retardant paper is used as a flame-retardant paper for a radio wave absorber member, converts the radio wave energy into a minute current, and further converts it into heat energy, thereby attenuating the radio wave, That is, it is a material that absorbs radio waves. Examples of the conductive substance include conductive particles and conductive fibers. Here, examples of the conductive particles include metal particles, carbon black particles, carbon nanotube particles, carbon microcoil particles, and graphite particles. Examples of the conductive fiber include carbon fiber and metal fiber, and examples of the metal fiber include stainless steel fiber, copper fiber, silver fiber, gold fiber, nickel fiber, aluminum fiber, and iron fiber. In addition, non-conductive particles and fibers obtained by imparting conductivity by plating, vapor deposition, and thermal spraying of a metal can also be mentioned as the conductive substance.

これらの導電性物質の中でも、導電性繊維を用いることが好ましく、導電性繊維の中でも、導電性短繊維を用いることがより好ましい。導電性短繊維はアスペクト比が大きいので、繊維同士が接触しやすく、粉体と比べて、少量でも効果的に電波吸収性能を得ることができる。また、導電性短繊維の中でも、炭素繊維は繊維が剛直であり、基材内に配向させやすいこと、および長期間の使用において、ほとんど性能の変化がないことから、特に好ましく使用されている。導電性短繊維について、繊維同士の接触のしやすさと、後述する抄紙製造工程におけるスラリーの分散性から、導電性短繊維の長さは0.1mm以上が好ましく、1.0mm以上がより好ましい。一方で、15.0mm以下が好ましく、10.0mm以下がより好ましい。   Among these conductive substances, conductive fibers are preferably used, and among conductive fibers, conductive short fibers are more preferably used. Since the conductive short fibers have a large aspect ratio, the fibers are likely to come into contact with each other, and the radio wave absorption performance can be effectively obtained even in a small amount as compared with powder. Among the conductive short fibers, carbon fibers are particularly preferably used because the fibers are rigid and easily oriented in the base material, and there is almost no change in performance during long-term use. The length of the conductive short fiber is preferably 0.1 mm or more, more preferably 1.0 mm or more, from the viewpoint of the ease of contact between the fibers and the dispersibility of the slurry in the paper making process described below. On the other hand, it is preferably 15.0 mm or less, more preferably 10.0 mm or less.

本発明の難燃紙において、導電性物質の含有量は導電性物質を除いた難燃紙の原料100質量部に対して、0.05質量部以上5質量部以下であることが好ましい。更に、その含有量は0.1質量部以上であることが好ましい。一方で、その含有量は4質量部以下であることが好ましく、3質量部以下であることがより好ましい。   In the flame-retardant paper of the present invention, the content of the conductive substance is preferably 0.05 to 5 parts by mass based on 100 parts by mass of the raw material of the flame-retardant paper excluding the conductive substance. Further, the content is preferably at least 0.1 part by mass. On the other hand, the content is preferably at most 4 parts by mass, more preferably at most 3 parts by mass.

本発明の難燃紙の坪量は50〜200g/mの範囲であることが好ましい。坪量がこの範囲内であることにより、難燃紙のじん性が向上し、難燃紙の含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断を抑制できる。坪量は80g/m以上が好ましい。一方で、150g/m以下が好ましい。 The basis weight of the flame-retardant paper of the present invention is preferably in the range of 50 to 200 g / m 2 . When the basis weight is within this range, the toughness of the flame-retardant paper is improved, and the flame-retardant paper is difficult to be dried at the time of applying a drug in impregnation or application of the flame-retardant paper and at the time of secondary processing such as slitting and printing. The breaking of the fuel paper can be suppressed. The basis weight is preferably 80 g / m 2 or more. On the other hand, it is preferably 150 g / m 2 or less.

次に、本発明の難燃紙の製造方法について説明する。   Next, a method for producing the flame-retardant paper of the present invention will be described.

本発明の難燃紙の製造方法は、難燃紙に対するパルプの含有量が10〜35質量%であり、かつ、難燃紙に対する水酸化アルミニウムの含有量が40〜70質量%となるように、パルプと水酸化アルミニウムとを湿式抄紙することで難燃紙基材を得る工程と、難燃紙に対するグアニジン系難燃剤の含有量が0.1〜15質量%であり、かつ、難燃紙に対するウレタン樹脂の含有量が0.1〜2質量%となるように、グアニジン系難燃剤とウレタン樹脂とを難燃紙基材に付与する工程とを、この順に有するものである。そして、本発明の難燃紙の製造方法としては、その一例として、公知の紙材料の抄紙による方法を用いることができる。本発明の難燃紙の構成材料である、繊維(パルプ)および水酸化アルミニウム等と水とを混合したスラリーとし、抄紙機で抄きあげる湿式抄紙法等である。   The method for producing flame-retardant paper according to the present invention is such that the content of pulp is 10 to 35% by mass with respect to the flame-retardant paper, and the content of aluminum hydroxide is 40 to 70% by mass with respect to the flame-retardant paper. A step of obtaining a flame-retardant paper base material by wet papermaking of pulp and aluminum hydroxide, wherein the content of the guanidine-based flame retardant with respect to the flame-retardant paper is 0.1 to 15% by mass, and And a step of applying a guanidine-based flame retardant and a urethane resin to the flame-retardant paper base material in this order so that the content of the urethane resin is 0.1 to 2% by mass. As a method for producing the flame-retardant paper of the present invention, as one example, a method of making a known paper material can be used. A wet papermaking method and the like, in which a slurry in which fibers (pulp), aluminum hydroxide, and the like, which are constituent materials of the flame-retardant paper of the present invention, and water and the like are mixed, are made with a paper machine.

抄紙機としては、円網、短網、長網、パーチフォーマー、ロトフォーマーおよびハイドロフォーマー等、いずれの抄紙機も用いることができる。また、乾燥機としては、ヤンキー型、多筒型およびスルー型等、いずれの乾燥機も用いることができる。   As the paper machine, any paper machine such as a circular net, a short net, a long net, a perch former, a rotoformer, and a hydroformer can be used. As the dryer, any dryer such as a Yankee type, a multi-cylinder type, and a through type can be used.

更に、グアニジン系難燃剤とウレタン樹脂を難燃紙に含有させる方法は、特に限定されない。例えば、内添や含浸塗布、コーティング塗付等が例示できる。含浸塗布やコーティング塗布には、サイズプレスコーター、ロールコーター、ブレードコーター、バーコーターおよびエアーナイフコーター等の塗工装置を用いることができ、それらの装置はオンマシンもしくはオフマシンで用いることができる。   Further, the method of incorporating the guanidine-based flame retardant and the urethane resin into the flame retardant paper is not particularly limited. For example, internal addition, impregnation application, coating application and the like can be exemplified. Coating devices such as a size press coater, a roll coater, a blade coater, a bar coater, and an air knife coater can be used for impregnation coating and coating coating, and these devices can be used on-machine or off-machine.

ウレタン樹脂を難燃紙に含有させる方法としては、含浸塗布がより好ましい。ウレタン樹脂を含浸塗布により難燃紙に含有させることで、ウレタン樹脂が難燃紙の表面に被膜を形成し、より効果的に難燃紙のじん性を向上させるため、難燃紙の含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断をより抑制することができる。   As a method for incorporating the urethane resin into the flame retardant paper, impregnation coating is more preferable. By incorporating the urethane resin into the flame-retardant paper by impregnation coating, the urethane resin forms a film on the surface of the flame-retardant paper and more effectively improves the toughness of the flame-retardant paper. Breakage of the flame-retardant paper can be further suppressed at the time of drying in a drug application step such as coating and at the time of secondary processing such as slitting and printing.

また、難燃紙に導電性繊維を添加する方法としては、上記スラリー中に導電性繊維を混合して、難燃紙の中に抄き込む方法や、バインダー樹脂材料に導電性繊維を混合し、サイズプレスコーター、ロールコーター、ブレードコーター、バーコーターおよびエアーナイフコーター等の装置を用いて、難燃紙に塗布する等の方法が挙げられる。   Further, as a method of adding conductive fibers to the flame-retardant paper, a method of mixing the conductive fibers in the above-mentioned slurry and shaping into the flame-retardant paper or a method of mixing the conductive fibers with the binder resin material is used. , A size press coater, a roll coater, a blade coater, a bar coater, an air knife coater and the like, and a method of applying the composition to flame retardant paper.

次に実施例により、本発明の難燃紙についてさらに詳細に説明する。実施例に示す性能値は、次の方法で測定したものである。   Next, the flame retardant paper of the present invention will be described in more detail with reference to examples. The performance values shown in the examples were measured by the following methods.

[測定方法]
(1)難燃紙に含有される成分の確認
難燃紙に含有される成分の確認は、次のようにして行う。すなわち、超高分解能電解放出形走査電子顕微鏡(SEM、日立ハイテクノロジーズ製SU−8010型)を用いて、10cm×10cmの難燃紙の試験片の4隅から試験片の中央に向かってタテ、ヨコ方向に2.5cmずつずらした点の周辺領域の4つの領域点と、試験片の中央部の1点の周辺領域の1つの領域の合計5つの領域を撮影し、エネルギー分散型X線分析装置(EDX)にて、特定の元素の存在を確認し、前記試験片を赤外分光光度計(FT−IR、島津製作所製IR PRESTIGE−21)を用いて測定した結果と併せて、難燃紙に含有される成分について確認する。
[Measuring method]
(1) Confirmation of the components contained in the flame retardant paper The components contained in the flame retardant paper are confirmed as follows. That is, by using an ultra-high resolution field emission scanning electron microscope (SEM, SU-8010 manufactured by Hitachi High-Technologies Corporation), from the four corners of a flame-retardant paper test piece of 10 cm × 10 cm to the center of the test piece, An energy dispersive X-ray analysis is performed by photographing a total of five regions including four regions around a point shifted by 2.5 cm in the horizontal direction and one region around one point at the center of the test piece. The presence of a specific element was confirmed by an apparatus (EDX), and the test piece was measured for flame retardancy using an infrared spectrophotometer (FT-IR, IR PRESTIGE-21 manufactured by Shimadzu Corporation). Check the components contained in the paper.

(2)難燃紙の坪量
難燃紙5枚を1辺300mmの正方形にカットして質量を測定し、1m当たりの質量に換算して、平均値を取ることで坪量を算出する。
(2) Basis Weight of Flame Retardant Paper Five pieces of flame retardant paper are cut into a square of 300 mm on a side, the mass is measured, converted to the mass per 1 m 2 , and the average value is taken to calculate the basis weight. .

(3)難燃紙の難燃性
UL94安全規格(「装置及び器具部品のプラスチック材料燃焼性試験」)における20mm垂直燃焼試験(UL94 V−0)に基づいて、評価する。ここで、ULとは、米国Underwriters Laboratories Inc.が制定し、許可している電子機器に関する安全性規格であり、UL94は難燃性の規格でもある。
・◎:5本全ての水準について、100mm間(25mmラインから125mmラインまで)の燃焼時間を測定し、燃焼速度を算出し、40mm/分を超える燃焼速度で燃えるサンプルがあってはならない。または、燃焼あるいは火種が125mmラインに達する前に消火するサンプルでなくてはならない。さらに、燃焼したサンプルの燃焼速度の平均値が35mm/分未満でなくてはならない。
・○:5本全ての水準について、100mm間(25mmラインから125mmラインまで)の燃焼時間を測定し、燃焼速度を算出し、40mm/分を超える燃焼速度で燃えるサンプルがあってはならない。または、燃焼あるいは火種が125mmラインに達する前に消火するサンプルでなくてはならない。さらに、燃焼したサンプルの燃焼速度の平均値が35mm/分以上40mm/分以下でなくてはならない。
・×:5本の内少なくとも1本が上記◎および/または○の基準を満たさない。
(3) Flame Retardancy of Flame Retardant Paper Evaluate based on the 20 mm vertical burn test (UL94 V-0) in UL94 safety standard (“Test for plastic material flammability of equipment and appliance parts”). Here, UL refers to U.S. Underwriters Laboratories Inc. Is a safety standard for electronic devices that has been established and permitted, and UL94 is also a flame-retardant standard.
◎: For all five levels, measure the burning time between 100 mm (from the 25 mm line to the 125 mm line), calculate the burning speed, and there must be no sample burning at a burning speed exceeding 40 mm / min. Alternatively, the sample must be extinguished before the combustion or fire reaches the 125 mm line. Furthermore, the average value of the burning rates of the burned samples must be less than 35 mm / min.
○: For all five levels, measure the burning time between 100 mm (from the 25 mm line to the 125 mm line), calculate the burning speed, and there must be no sample burning at a burning speed exceeding 40 mm / min. Alternatively, the sample must extinguish before the combustion or fire reaches the 125 mm line. Further, the average value of the burning rate of the burned sample must be 35 mm / min or more and 40 mm / min or less.
×: At least one of the five does not satisfy the above criteria of ◎ and / or ○.

(4)難燃紙と発泡スチロールとを貼り合わせた部材の難燃性
難燃紙と厚みが10mmの発泡スチロールとを両面テープ(再生紙両面テープ NWBB−15、ニチバン株式会社製)で貼り合わせて、難燃紙と発泡スチロールが接合している部材を制作する。
(4) Flame retardancy of a member in which flame-retardant paper and styrofoam are bonded together The flame-retardant paper and styrofoam having a thickness of 10 mm are bonded with a double-sided tape (recycled paper double-sided tape NWBB-15, manufactured by Nichiban Co., Ltd.) Produces a member in which flame retardant paper and styrofoam are joined.

上記部材をUL94安全規格(「装置及び器具部品のプラスチック材料燃焼性試験」)における発泡材料水平燃焼性試験(UL94 HBF)に準拠して燃焼速度を評価する。
・◎:5本全ての水準について、100mm間(25mmラインから125mmラインまで)の燃焼時間を測定し、燃焼速度を算出し、40mm/分を超える燃焼速度で燃えるサンプルがあってはならない。または、燃焼あるいは火種が125mmラインに達する前に消火するサンプルでなくてはならない。さらに、燃焼したサンプルの燃焼速度の平均値が35mm/分未満でなくてはならない。
・○:5本全ての水準について、100mm間(25mmラインから125mmラインまで)の燃焼時間を測定し、燃焼速度を算出し、40mm/分を超える燃焼速度で燃えるサンプルがあってはならない。または、燃焼あるいは火種が125mmラインに達する前に消火するサンプルでなくてはならない。さらに、燃焼したサンプルの燃焼速度の平均値が35mm/分以上40mm/分以下でなくてはならない。
・×:5本の内少なくとも1本が上記◎および/または○の基準を満たさない。
The above members are evaluated for the burning rate in accordance with the foam material horizontal flammability test (UL94 HBF) in the UL94 safety standard ("Plastic material flammability test of equipment and appliance parts").
◎: For all five levels, measure the burning time between 100 mm (from the 25 mm line to the 125 mm line), calculate the burning speed, and there must be no sample burning at a burning speed exceeding 40 mm / min. Alternatively, the sample must extinguish before the combustion or fire reaches the 125 mm line. Furthermore, the average value of the burning rates of the burned samples must be less than 35 mm / min.
○: For all five levels, measure the burning time between 100 mm (from the 25 mm line to the 125 mm line), calculate the burning speed, and there must be no sample burning at a burning speed exceeding 40 mm / min. Alternatively, the sample must extinguish before the combustion or fire reaches the 125 mm line. Furthermore, the average value of the burning rate of the burned sample must be 35 mm / min or more and 40 mm / min or less.
×: At least one of the five does not satisfy the above criteria of ◎ and / or ○.

(5)折れ割れ性
以下の手法により、難燃紙の破断の有無を確認した。100mm角にカットした難燃紙を80℃、120秒乾燥処理した後に、室温で10秒冷却し、山折・谷折を繰り返して、折れ目に裂け目が出来た回数を記録する(上限は20回)。ここで、裂け目ができるまでに折り曲げ回数が多いほど、破断が生じづらい難燃紙であるといえる。
(5) Breakability The presence or absence of breakage of the flame retardant paper was confirmed by the following method. After drying the flame-retardant paper cut into a square of 100 mm at 80 ° C. for 120 seconds, it is cooled at room temperature for 10 seconds, and the number of times a rip is formed by repeating mountain folds and valley folds is recorded (the upper limit is 20 times). ). Here, it can be said that as the number of times of bending is increased before a tear is formed, the flame retardant paper is less likely to break.

(6)抄紙生産性
連続式抄紙方法で湿式抄紙する場合において、次の評価によって安定した連続生産性を確認した。
・A:安定して抄紙生産ができた。
・B:抄紙中に紙が破断した、又は塗工設備や乾燥ロールへのウレタン樹脂の付着が発生し、安定した抄紙生産ができなかった。
(6) Papermaking productivity In the case of wet papermaking by the continuous papermaking method, stable continuous productivity was confirmed by the following evaluation.
A: Papermaking could be stably produced.
B: The paper was broken during the paper making, or the urethane resin was attached to the coating equipment or the drying roll, and stable paper making could not be performed.

[実施例1]
パルプとして繊維長5mmの針葉樹パルプを15質量%、水酸化アルミニウム(和光純薬工業株式会社)を66質量%およびガラス繊維を15質量%混合して連続式抄紙方法で湿式抄紙することで、難燃紙基材を作成した。
[Example 1]
As a pulp, 15% by mass of softwood pulp having a fiber length of 5 mm, 66% by mass of aluminum hydroxide (Wako Pure Chemical Industries, Ltd.) and 15% by mass of glass fiber are mixed, and wet papermaking is performed by a continuous papermaking method. A fuel paper substrate was prepared.

この難燃紙に、サイズプレスコーターにより、グアニジン系難燃剤としてリン酸グアニジン(製品名ノンネン(登録商標)985、丸菱油化工業株式会社製)とウレタン樹脂(製品名スーパーフレックス150(商品名)、第一工業製薬株式会社製)を難燃紙全体に対してそれぞれ3質量%および1質量%となるように含有させることで、坪量104g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(難燃剤/ウレタン樹脂)は70/30とした。抄紙生産性は、Aの評価であった。 Guanidine phosphate (product name: Nonen (registered trademark) 985, manufactured by Marubishi Yuka Kogyo Co., Ltd.) and urethane resin (product name: SuperFlex 150 (product name) ) And Daiichi Kogyo Seiyaku Co., Ltd.) were contained in an amount of 3% by mass and 1% by mass, respectively, based on the entire flame-retardant paper to obtain a flame-retardant paper having a basis weight of 104 g / m 2 . The mass ratio of guanidine-based flame retardant to urethane resin (flame retardant / urethane resin) was 70/30. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は6回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was six).

[実施例2]
実施例1のパルプを20質量%および水酸化アルミニウムを61質量%としたこと以外は実施例1と同様にして、実施例2の坪量104g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Example 2]
A flame-retardant paper having a basis weight of 104 g / m 2 was obtained in the same manner as in Example 1 except that the pulp of Example 1 was changed to 20% by mass and the aluminum hydroxide was changed to 61% by mass. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は7回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was seven).

[実施例3]
実施例1のパルプを30質量%および水酸化アルミニウムを51質量%としたこと以外は実施例1と同様にして、実施例3の坪量104g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Example 3]
A flame-retardant paper having a basis weight of 104 g / m 2 was obtained in the same manner as in Example 1 except that the pulp of Example 1 was changed to 30% by mass and the aluminum hydroxide was changed to 51% by mass. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は9回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was 9).

[実施例4]
実施例1のパルプを21質量%、水酸化アルミニウムを62.5質量%、グアニジン系難燃剤を1.0質量%およびウレタン樹脂0.5質量%としたこと以外は実施例1と同様にして、実施例4の坪量102g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Example 4]
In the same manner as in Example 1 except that the pulp of Example 1 was 21% by mass, the aluminum hydroxide was 62.5% by mass, the guanidine-based flame retardant was 1.0% by mass, and the urethane resin was 0.5% by mass. Thus, a flame-retardant paper having a basis weight of 102 g / m 2 of Example 4 was obtained. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は9回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was 9).

[実施例5]
実施例1のパルプを19質量%、水酸化アルミニウムを59質量%、グアニジン系難燃剤を5質量%およびウレタン樹脂2質量%としたこと以外は実施例1と同様にして、実施例5の坪量107g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Example 5]
Except that the pulp of Example 1 was 19% by mass, the aluminum hydroxide was 59% by mass, the guanidine-based flame retardant was 5% by mass, and the urethane resin was 2% by mass, the basis weight of Example 5 was changed. A flame retardant paper having an amount of 107 g / m 2 was obtained. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は5回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was 5 times).

[実施例6]
実施例5のパルプを17質量%、水酸化アルミニウムを54質量%、ガラス繊維を12質量%およびグアニジン系難燃剤を15質量%としたこと以外は実施例5と同様にして、実施例6の坪量117g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は88/12とした。抄紙生産性は、Aの評価であった。
[Example 6]
Example 6 was repeated in the same manner as in Example 5 except that the pulp was 17% by mass, the aluminum hydroxide was 54% by mass, the glass fiber was 12% by mass, and the guanidine-based flame retardant was 15% by mass. A flame-retardant paper having a basis weight of 117 g / m 2 was obtained. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 88/12. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は3回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was three).

[実施例7]
実施例2のパルプを21質量%、水酸化アルミニウムを60.7質量%およびウレタン樹脂を0.3質量%としたこと以外は実施例2と同様にして、実施例7の坪量103g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は90/10とした。抄紙生産性は、Aの評価であった。
[Example 7]
The basis weight of Example 7 was 103 g / m in the same manner as in Example 2 except that the pulp of Example 2 was 21% by mass, the aluminum hydroxide was 60.7% by mass, and the urethane resin was 0.3% by mass. 2 was obtained. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 90/10. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は5回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was 5 times).

[実施例8]
実施例2のグアニジン系難燃剤を2質量%およびウレタン樹脂を2質量%としたこと以外は実施例2と同様にして、実施例8の坪量104g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は50/50とした。抄紙生産性は、Aの評価であった。
Example 8
A flame-retardant paper having a basis weight of 104 g / m 2 of Example 8 was obtained in the same manner as in Example 2 except that the guanidine-based flame retardant was 2% by mass and the urethane resin was 2% by mass. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 50/50. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は13回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was 13).

[実施例9]
実施例2の水酸化アルミニウムを63質量%、グアニジン系難燃剤を0.2質量%およびウレタン樹脂を1.8質量%としたこと以外は実施例2と同様にして、実施例9の坪量102g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は10/90とした。抄紙生産性は、Aの評価であった。
[Example 9]
The basis weight of Example 9 was the same as Example 2 except that the aluminum hydroxide of Example 2 was 63% by mass, the guanidine-based flame retardant was 0.2% by mass, and the urethane resin was 1.8% by mass. 102 g / m 2 of flame retardant paper was obtained. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 10/90. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は○)。加えて、折れ割れ性も良好であった(折れ割れ回数は20回以上)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). Further, the burning speed of the member bonded to the polystyrene foam was low, and the member passed UL94 HBF (evaluation was ○). In addition, the breakability was also good (the number of breaks was 20 or more).

[実施例10]
実施例6の水酸化アルミニウムを54.4質量%、ガラス繊維を13質量%およびウレタン樹脂を0.6質量%としたこと以外は実施例6と同様にして、実施例10の坪量116g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は96/4とした。抄紙生産性は、Aの評価であった。
[Example 10]
Except that the aluminum hydroxide of Example 6 was 54.4% by mass, the glass fiber was 13% by mass, and the urethane resin was 0.6% by mass, the basis weight of Example 10 was 116 g / to obtain a flame燃紙of m 2. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 96/4. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性は良好であった(折れ割れ回数は2回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was good (the number of breaks was two).

[実施例11]実施例2のグアニジン系難燃剤をリン酸グアニル尿素(製品名アピノン−405(商品名)、株式会社三和ケミカル製)としたこと以外は実施例2と同様にして、実施例10の坪量104g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は70/30とした。抄紙生産性は、Aの評価であった。 [Example 11] The procedure of Example 2 was repeated, except that the guanidine-based flame retardant of Example 2 was guanylurea phosphate (product name: Apinone-405 (trade name), manufactured by Sanwa Chemical Co., Ltd.). A flame-retardant paper having a basis weight of 104 g / m 2 of Example 10 was obtained. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 70/30. Papermaking productivity was rated A.

得られた難燃紙について評価を実施した。その結果を表1に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格した(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格した(評価は◎)。加えて、折れ割れ性も良好であった(折れ割れ回数は6回)。   The obtained flame retardant paper was evaluated. Table 1 shows the results. The burning speed of the flame-retardant paper was low, and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrene foam was low, and the member passed UL94 HBF (evaluation: ◎). In addition, the breakability was also good (the number of breaks was six).

実施例1〜11の難燃紙の構成および評価結果を表1に示した。   Table 1 shows the configurations and evaluation results of the flame retardant papers of Examples 1 to 11.

Figure 2020023759
Figure 2020023759

[比較例1]
実施例1のパルプを5質量%および水酸化アルミニウムを76質量%としたこと以外は実施例1と同様にしたが、安定した製造ができず、比較例1の難燃紙は得られなかった。
[Comparative Example 1]
Example 1 was repeated except that the pulp of Example 1 was 5% by mass and the aluminum hydroxide was 76% by mass. However, stable production was not possible, and the flame-retardant paper of Comparative Example 1 was not obtained. .

[比較例2]
実施例1のパルプを40質量%、水酸化アルミニウムを36質量%およびガラス繊維を20質量%としたこと以外は実施例1と同様にして、比較例2の坪量104g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は70/30とした。抄紙生産性は、Aの評価であった。
[Comparative Example 2]
Flame retardant of Comparative Example 2 having a basis weight of 104 g / m 2 in the same manner as in Example 1 except that the pulp of Example 1 was 40% by mass, the aluminum hydroxide was 36% by mass, and the glass fiber was 20% by mass. I got the paper. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 70/30. Papermaking productivity was rated A.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は速く、UL94 V−0に不合格であった(評価は×)。また、発泡スチロールと貼り合わせた部材の燃焼速度も速く、UL94 HBFに不合格であった(評価は×)。折れ割れ性は良好(13回)であり、上記難燃紙は折れ割れ性に優れるものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was high, and it failed UL94 V-0 (evaluation is x). In addition, the burning speed of the member bonded to the polystyrene foam was high, and the material failed UL94 HBF (the evaluation was x). The breaking property was good (13 times), and the flame-retardant paper was excellent in breaking property.

[比較例3]
実施例2の水酸化アルミニウムを65質量%、グアニジン系難燃剤およびウレタン樹脂を含まないとしたこと以外は実施例2と同様にして、比較例3の坪量100g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Comparative Example 3]
A flame-retardant paper having a basis weight of 100 g / m 2 of Comparative Example 3 was prepared in the same manner as in Example 2 except that 65% by mass of the aluminum hydroxide of Example 2 and no guanidine-based flame retardant and urethane resin were contained. Obtained. Papermaking productivity was rated A.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は◎)。一方、発泡スチロールと貼り合わせた部材の燃焼速度は速く、UL94 HBFに不合格であった(評価は×)。折れ割れ性は良好(20回以上)であり、上記難燃紙は折れ割れ性に優れるものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ◎). On the other hand, the burning rate of the member bonded to the polystyrene foam was high, and the member failed UL94 HBF (evaluation: x). The breaking property was good (20 times or more), and the flame-retardant paper was excellent in breaking property.

[比較例4]
実施例5の水酸化アルミニウムを58質量%およびウレタン樹脂を3質量%としたこと以外は実施例5と同様にして、比較例4の坪量108g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は63/37とした。抄紙生産性は、塗工設備や乾燥ロールへのウレタン樹脂の付着が見られたため、Bの評価であった。
[Comparative Example 4]
A flame-retardant paper having a basis weight of 108 g / m 2 of Comparative Example 4 was obtained in the same manner as in Example 5 except that the amount of aluminum hydroxide and the urethane resin in Example 5 were 58% by mass and 3% by mass, respectively. The mass ratio of guanidine flame retardant to urethane resin (guanidine flame retardant / urethane resin) was 63/37. Papermaking productivity was rated B because urethane resin adhered to coating equipment and drying rolls.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格であった(評価は○)。折れ割れ性は良好(6回)であり、上記難燃紙は折れ割れ性に優れるものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ◎). Further, the burning speed of the member bonded to the styrofoam was low, and the member passed UL94 HBF (evaluation is ○). The breaking property was good (6 times), and the flame-retardant paper was excellent in breaking property.

[比較例5]
実施例6のパルプを17質量%、水酸化アルミニウムを53質量%およびグアニジン系難燃剤を16質量%としたこと以外は実施例6と同様にして、比較例5の坪量118g/mの難燃紙を得た。グアニジン系難燃剤のウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)は89/11とした。抄紙生産性は、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が見られたため、Bの評価であった。
[Comparative Example 5]
Except that the pulp of Example 6 was 17% by mass, the aluminum hydroxide was 53% by mass, and the guanidine-based flame retardant was 16% by mass, the same procedure as in Example 6 was carried out, except that the basis weight of Comparative Example 5 was 118 g / m 2 . Obtained flame retardant paper. The mass ratio of guanidine-based flame retardant to urethane resin (guanidine-based flame retardant / urethane resin) was 89/11. Papermaking productivity was evaluated as B because the flame-retardant paper was broken during drying in the chemical application step such as impregnation or application and during secondary processing such as slitting or printing.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格であった(評価は◎)。折れ割れ性は悪く(2回)、上記難燃紙は折れ割れ性に劣るものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrofoam was low, and the member passed UL94 HBF (evaluation is ◎). The breakability was poor (twice), and the flame retardant paper was inferior in the breakability.

[比較例6]
実施例6のパルプを21質量%、水酸化アルミニウムを61質量%、ガラス繊維を15質量%およびウレタン樹脂を含まないとしたこと以外は実施例6と同様にして、比較例6の坪量115g/mの難燃紙を得た。抄紙生産性は、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が見られたため、Bの評価であった。
[Comparative Example 6]
Except that the pulp of Example 6 was 21% by mass, the aluminum hydroxide was 61% by mass, the glass fiber was 15% by mass, and the urethane resin was not contained, the basis weight of Comparative Example 6 was 115 g in the same manner as in Example 6. / M 2 of flame retardant paper. Papermaking productivity was evaluated as B because the flame-retardant paper was broken during drying in the chemical application step such as impregnation or application and during secondary processing such as slitting or printing.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は◎)。一方、発泡スチロールと貼り合わせた部材の燃焼速度は遅く、UL94 HBFに合格であった(評価は◎)。折れ割れ性は悪く(1回)、上記難燃紙は折れ割れ性に劣るものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ◎). On the other hand, the burning rate of the member bonded to the polystyrene foam was low, and the member passed UL94 HBF (evaluation was ◎). The breakability was poor (1 time), and the flame retardant paper was inferior in the breakability.

[比較例7]
実施例8のパルプを19質量%、水酸化アルミニウムを65質量%、ガラス繊維を14質量%およびグアニジン系難燃剤を含まないとしたこと以外は実施例8と同様にして、比較例7の坪量102g/mの難燃紙を得た。抄紙生産性は、Aの評価であった。
[Comparative Example 7]
Comparative Example 7 was prepared in the same manner as in Example 8 except that the pulp of Example 8 was 19% by mass, the aluminum hydroxide was 65% by mass, the glass fiber was 14% by mass, and the guanidine-based flame retardant was not contained. A flame retardant paper with an amount of 102 g / m 2 was obtained. Papermaking productivity was rated A.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は○)。一方、発泡スチロールと貼り合わせた部材の燃焼速度は速く、UL94 HBFに不合格であった(評価は×)。折れ割れ性は良好(20回以上)であり、上記難燃紙は折れ割れ性に優れるものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ○). On the other hand, the burning rate of the member bonded to the polystyrene foam was high, and the member failed UL94 HBF (evaluation: x). The breaking property was good (20 times or more), and the flame-retardant paper was excellent in breaking property.

[比較例8]
実施例6のパルプを18質量%、水酸化アルミニウムを59質量%、難燃剤をポリホウ酸塩(製品名SOUFA(商品名)およびウレタン樹脂を含まないとしたこと以外は実施例6と同様にして、比較例8の坪量110g/mの難燃紙を得た。抄紙生産性は、含浸や塗布等での薬剤付与工程における乾燥時およびスリットや印刷加工等の二次加工時において難燃紙の破断が見られたため、Bの評価であった。
[Comparative Example 8]
Except that the pulp of Example 6 was 18% by mass, the aluminum hydroxide was 59% by mass, and the flame retardant was a polyborate (product name SOUFA (trade name) and no urethane resin were included, the same as Example 6) Thus, a flame-retardant paper having a basis weight of 110 g / m 2 was obtained in Comparative Example 8. The papermaking productivity was such that the flame-retardant paper was dried during the chemical application step such as impregnation and coating, and during the secondary processing such as slitting and printing. Since the paper was broken, the evaluation was B.

得られた難燃紙について、評価を実施した。その結果を表2に示す。難燃紙の燃焼速度は遅く、UL94 V−0に合格であった(評価は◎)。また、発泡スチロールと貼り合わせた部材の燃焼速度も遅く、UL94 HBFに合格であった(評価は◎)。折れ割れ性は悪く(1回)、上記難燃紙は折れ割れ性に劣るものであった。   The obtained flame retardant paper was evaluated. Table 2 shows the results. The burning speed of the flame-retardant paper was low and passed UL94 V-0 (evaluation is ◎). In addition, the burning speed of the member bonded to the styrofoam was low, and the member passed UL94 HBF (evaluation is ◎). The breakability was poor (1 time), and the flame retardant paper was inferior in the breakability.

比較例1〜8の難燃紙の構成と評価結果を表2に示した。   Table 2 shows the configurations and evaluation results of the flame retardant papers of Comparative Examples 1 to 8.

Figure 2020023759
Figure 2020023759

実施例1〜11において、難燃紙の難燃性、難燃紙と発泡スチロールとを貼り合わせた部材の難燃性、折れ割れ性、抄紙生産性に優れた難燃紙を得ることができた。   In Examples 1 to 11, it was possible to obtain a flame-retardant paper excellent in flame retardancy of flame-retardant paper, flame retardancy of a member obtained by laminating the flame-retardant paper and styrene foam, breakability, and papermaking productivity. .

一方、比較例1は、安定した製造ができなかった。また、比較例2は折れ割れ性に優れるものの、難燃紙および貼り合わせ品の難燃性に劣るものであった。比較例3は、折れ割れ性および難燃紙の難燃性に優れるものの、貼り合わせ品の難燃性に劣るものであった。比較例4は、難燃紙および貼り合わせ品の難燃性、折れ割れ性に優れるものの、抄紙生産性に劣るものであった。比較例5および6は、難燃紙および貼り合わせ品の難燃性に優れるものの、折れ割れ性および抄紙生産性に劣るものであった。比較例7は、難燃紙の難燃性および折れ割れ性に優れるものの、貼り合わせ品の難燃性に劣るものであった。比較例8は、難燃紙および貼り合わせ品の難燃性に優れるものの、折れ割れ性および抄紙生産性に劣るものであった。   On the other hand, in Comparative Example 1, stable production could not be performed. Further, Comparative Example 2 was excellent in the breakability, but was inferior in the flame retardancy of the flame-retardant paper and the bonded product. Comparative Example 3 was excellent in the fracturing property and the flame retardancy of the flame retardant paper, but was inferior in the flame retardancy of the bonded product. In Comparative Example 4, although the flame retardancy of the flame-retardant paper and the bonded product were excellent and the breakability was excellent, the papermaking productivity was poor. Comparative Examples 5 and 6 were excellent in the flame retardancy of the flame-retardant paper and the bonded product, but were inferior in the breakability and the papermaking productivity. In Comparative Example 7, although the flame retardancy of the flame-retardant paper was excellent, the flame retardancy of the bonded product was poor. Comparative Example 8 was excellent in flame retardancy of the flame-retardant paper and the bonded product, but was inferior in foldability and papermaking productivity.

Claims (3)

パルプ、水酸化アルミニウム、グアニジン系難燃剤およびウレタン樹脂を含有する難燃紙であって、前記難燃紙に対し、
前記パルプの含有量が10〜35質量%であり、
前記水酸化アルミニウムの含有量が40〜70質量%であり、
前記グアニジン系難燃剤の含有量が0.1〜15質量%であり、
前記ウレタン樹脂の含有量が0.1〜2質量%である難燃紙。
Pulp, aluminum hydroxide, a flame retardant paper containing a guanidine-based flame retardant and urethane resin, for the flame retardant paper,
The content of the pulp is 10 to 35% by mass,
The content of the aluminum hydroxide is 40 to 70% by mass,
The content of the guanidine-based flame retardant is 0.1 to 15% by mass,
Flame-retardant paper having a urethane resin content of 0.1 to 2% by mass.
前記グアニジン系難燃剤の前記ウレタン樹脂に対する質量比(グアニジン系難燃剤/ウレタン樹脂)が50/50以上95/5以下である請求項1に記載の難燃紙。   The flame-retardant paper according to claim 1, wherein a mass ratio of the guanidine-based flame retardant to the urethane resin (guanidine-based flame retardant / urethane resin) is 50/50 or more and 95/5 or less. 難燃紙の製造方法であって、
前記難燃紙に対するパルプの含有量が10〜35質量%であり、かつ、前記難燃紙に対する水酸化アルミニウムの含有量が40〜70質量%となるように、パルプと水酸化アルミニウムとを湿式抄紙することで難燃紙基材を得る工程と、
前記難燃紙に対するグアニジン系難燃剤の含有量が0.1〜15質量%であり、かつ、前記難燃紙に対するウレタン樹脂の含有量が0.1〜2質量%となるように、グアニジン系難燃剤とウレタン樹脂とを前記難燃紙基材に付与する工程とを、この順に有する、難燃紙の製造方法。
A method for producing flame-retardant paper, comprising:
The pulp and the aluminum hydroxide are wet-processed so that the pulp content with respect to the flame-retardant paper is 10 to 35% by mass and the aluminum hydroxide content with respect to the flame-retardant paper is 40 to 70% by mass. A step of obtaining a flame-retardant paper substrate by making paper,
A guanidine-based flame-retardant is used in such a manner that the content of the guanidine-based flame retardant in the flame-retardant paper is 0.1 to 15% by mass and the content of the urethane resin in the flame-retardant paper is 0.1 to 2% by mass. Applying a flame retardant and a urethane resin to the flame retardant paper substrate in this order.
JP2018147417A 2018-08-06 2018-08-06 Flame-retardant paper Pending JP2020023759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018147417A JP2020023759A (en) 2018-08-06 2018-08-06 Flame-retardant paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147417A JP2020023759A (en) 2018-08-06 2018-08-06 Flame-retardant paper

Publications (1)

Publication Number Publication Date
JP2020023759A true JP2020023759A (en) 2020-02-13

Family

ID=69618364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147417A Pending JP2020023759A (en) 2018-08-06 2018-08-06 Flame-retardant paper

Country Status (1)

Country Link
JP (1) JP2020023759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230038456A (en) 2020-07-17 2023-03-20 도레이 카부시키가이샤 Flame retardant paper for radio wave absorber member and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230038456A (en) 2020-07-17 2023-03-20 도레이 카부시키가이샤 Flame retardant paper for radio wave absorber member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Carosio et al. Graphene oxide exoskeleton to produce self‐extinguishing, nonignitable, and flame resistant flexible foams: a mechanically tough alternative to inorganic aerogels
JP5390001B2 (en) Carbon nanotube aqueous dispersion and composite sheet obtained using the same
CN109518519B (en) Flame-retardant sheet
TWI601582B (en) Method for producing raw material for papermaking, raw material for papermaking obtained, and heat-resistant electrical insulating sheet using the same
CN106163794A (en) Decorative panel
JP2020023759A (en) Flame-retardant paper
JP6127984B2 (en) Flame retardant paper for radio wave absorber member and radio wave absorber member
KR20200077530A (en) Insulation sheet
JP2009194341A (en) Electromagnetic wave suppressing paper
WO2017002863A1 (en) Flame-retardant paper for radar absorbing material members
JP4866758B2 (en) Non-combustible sheet or non-combustible molded product
JP2004017041A (en) Filter medium for high performance air filter and high performance air filter using filter medium
JP7238768B2 (en) flame retardant paper
JP2011111680A (en) Sheet material
JP2013002003A (en) Flame-resistant paper for radio-wave absorbent member and radio-wave absorbent member
JP2000008299A (en) Flame resistant insulating paper
WO2022014459A1 (en) Flame-resistant paper for radio wave absorber member and production method for same
JP5503381B2 (en) Flame retardant sheet material and insulating paper using the same
JP2001288696A (en) Flame retardant insulating paper
JP7123669B2 (en) Fireproof insulation sheet, method for producing fireproof insulation sheet, and fireproof and heat-resistant material
Yeh et al. Preparation of novel non-halogen flame-retardant papers
JP2021048086A (en) Thermal runaway suppression fireproof sheet
JPH09158092A (en) Flame-retardant insulating paper