JP2018171582A - Filtering material for air filter and air filter - Google Patents

Filtering material for air filter and air filter Download PDF

Info

Publication number
JP2018171582A
JP2018171582A JP2017071869A JP2017071869A JP2018171582A JP 2018171582 A JP2018171582 A JP 2018171582A JP 2017071869 A JP2017071869 A JP 2017071869A JP 2017071869 A JP2017071869 A JP 2017071869A JP 2018171582 A JP2018171582 A JP 2018171582A
Authority
JP
Japan
Prior art keywords
fiber
mass
short
fibers
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071869A
Other languages
Japanese (ja)
Other versions
JP6941462B2 (en
Inventor
包 理
Osamu Tsutsumi
理 包
小林 誠
Makoto Kobayashi
誠 小林
陽一 大森
Yoichi Omori
陽一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2017071869A priority Critical patent/JP6941462B2/en
Publication of JP2018171582A publication Critical patent/JP2018171582A/en
Application granted granted Critical
Publication of JP6941462B2 publication Critical patent/JP6941462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a filtering material for an air filter that has an increased PF value higher than 9.9 and has low pressure loss and high collection efficiency relative to an existing filtering material for air filters.SOLUTION: A filtering material for an air filter composed of short fiber is provided. The short fiber comprises skeleton short fiber and collecting short fiber of a smaller diameter than that of the skeleton short fiber, and these are uniformly dispersed, and an FP value expressed by the following formula (1) is 11 or more. A particle diameter of collection efficiency of a PF value=log(1-collection efficiency [%]/100)/(a pressure loss [Pa]/9.8)×(-100)(1) is 0.1-0.15 μm, and surface wind velocity is 5.3 cm/sec.SELECTED DRAWING: None

Description

本発明は、エアフィルタ用濾材に関し、特に半導体、液晶、バイオ・食品工業関係のクリーンルーム、クリーンベンチなど又はビル空調用エアフィルタ、空気清浄機用途などにおいて、気体中の微粒子を濾過するために使用されるエアフィルタ用濾材に関する。更に詳しくは、現行のエアフィルタ用濾材に比べ低圧損化・高捕集効率化したエアフィルタ用濾材に関する。   The present invention relates to a filter medium for an air filter, and particularly used for filtering fine particles in a gas in semiconductors, liquid crystals, clean rooms for bio / food industries, clean benches, etc., air filters for building air conditioning, and air cleaner applications. The present invention relates to a filter medium for an air filter. More specifically, the present invention relates to a filter medium for an air filter having a low pressure loss and a high collection efficiency as compared with the current filter medium for an air filter.

従来、空気中のサブミクロン又はミクロン単位の粒子を効率的に捕集するために、エアフィルタの捕集技術が用いられている。エアフィルタは、その対象とする粒子径や除塵効率の違いによって粗塵用フィルタ、中性能フィルタ、準高性能フィルタ、高性能フィルタ(HEPAフィルタ、ULPAフィルタ)などに大別される。このうち、準高性能フィルタ、高性能フィルタの規格としては、欧州規格のEN1822がある。このEN1822においては、最大透過粒径(MPPS)における捕集効率のレベルによって、U16からH10まで7段階に分類されている。その他、高性能フィルタの規格としては、米国のIEST−RP−CC001、日本のJIS Z 4812などがある。そして、準高性能フィルタ、高性能フィルタに使用される濾材としては、これらの規格をエアフィルタとして満足するものが使用されている。濾材の素材としては、不織布状のガラス繊維を用いて製造したエアフィルタ用濾材が多く使われている。主要構成物として平均繊維径が100nm(サブミクロン)〜数10μm(ミクロン)のガラス繊維が用いられており、前述の最大透過粒径(MPPS)が0.1〜0.2μmの間である。   Conventionally, air filter collection techniques have been used to efficiently collect submicron or micron particles in air. Air filters are roughly classified into coarse dust filters, medium performance filters, semi-high performance filters, high performance filters (HEPA filters, ULPA filters), etc., depending on the target particle size and dust removal efficiency. Among them, the standard for semi-high performance filters and high performance filters is EN1822 of the European standard. This EN1822 is classified into seven stages from U16 to H10 according to the level of collection efficiency at the maximum transmission particle size (MPPS). Other high performance filter standards include IEST-RP-CC001 in the United States and JIS Z 4812 in Japan. And as a filter medium used for a semi-high performance filter and a high performance filter, what satisfies these specifications as an air filter is used. As a material for the filter medium, a filter medium for air filter manufactured using non-woven glass fiber is often used. Glass fibers having an average fiber diameter of 100 nm (submicron) to several tens of micrometers (microns) are used as main components, and the aforementioned maximum transmission particle diameter (MPPS) is between 0.1 and 0.2 μm.

エアフィルタ用濾材の主要な要求特性として、捕集効率以外に濾材の空気抵抗を示す圧力損失がある。濾材の捕集効率を高めるには、細径のガラス繊維の配合を増やす必要がある。しかし、同時に濾材の圧力損失が高くなる問題が発生する。高い圧力損失は、吸気ファンの運転負荷が高くなるため電力費のランニングコストがかかる問題があり、省エネの観点から濾材の低圧力損失化が求められている。特に近年、エアフィルタの多風量化に伴い、濾過性能面においてクリーンルーム、クリーンベンチ等に使用される送風機のランニングコスト低減の目的で、濾材の低圧損化・高捕集効率化の要望が強まっている。
これを解決する手段として、国際特許公開WO2009/119054号において、ガラス短繊維を主体繊維としたエアフィルタ用濾材において、構成繊維の繊維分散性が均一で、かつ、構成繊維の沈降容積を希釈濃度0.04質量%で12時間放置したとき450cm/g以上とするとともにPF値を9.9以上としたエアフィルタ用濾材が提案されている。
The main required characteristics of air filter media include pressure loss that indicates the air resistance of the filter media in addition to the collection efficiency. In order to increase the collection efficiency of the filter medium, it is necessary to increase the blending of small-diameter glass fibers. However, at the same time, there arises a problem that the pressure loss of the filter medium increases. The high pressure loss has a problem that the operating load of the intake fan becomes high, and there is a problem that the running cost of the power cost is high, and the pressure loss of the filter medium is required to be reduced from the viewpoint of energy saving. In particular, with the recent increase in air volume of air filters, in order to reduce the running cost of blowers used in clean rooms, clean benches, etc. in terms of filtration performance, there is an increasing demand for low pressure loss and high collection efficiency of filter media. Yes.
As means for solving this, in International Patent Publication No. WO2009 / 119054, in the filter medium for air filters mainly composed of short glass fibers, the fiber dispersibility of the constituent fibers is uniform, and the sedimentation volume of the constituent fibers is diluted. A filter medium for an air filter has been proposed in which, when left at 0.04% by mass for 12 hours, it is 450 cm 3 / g or more and the PF value is 9.9 or more.

国際公開公報WO2009/119054号International Publication WO2009 / 119054

発明の課題は、前記提案のエアフィルタ用濾材に比べ更に低圧損化・高捕集効率化し、PF値を11以上に高めたエアフィルタ用濾材を提供することを目的とする。   An object of the present invention is to provide a filter medium for air filter having a low pressure loss and a high collection efficiency as compared with the proposed filter medium for air filter and having a PF value increased to 11 or more.

本発明者等は前記課題を解決するべく鋭意検討の結果、濾材の構成繊維を骨格短繊維とこれより細径の捕集短繊維と有機バインダー繊維で構成してこれを均一に分散させ、均一に分散された状態でこれら骨格短繊維と捕集短繊維とを均一に分散された繊維状態の有機バインダー繊維で結着することで前記課題を解決できることを知見した。
本発明のエアフィルタ用濾材は前記知見に基づきなされたもので、請求項1に記載の通り、短繊維からなるエアフィルタ用濾材において前記短繊維を骨格短繊維とこれより細径の捕集短繊維と、有機バインダー繊維で構成しこれらが均一に分散され、下記式(1)で表されるPF値が11以上であることを特徴とする。
PF値=log10(1-捕集効率[%]/100)/(圧力損失[Pa]/9.8)×(-100) (1)
捕集効率の粒径は0.1〜0.15μm、面風速は5.3cm/秒とする。
また、請求項2記載のエアフィルタ用濾材は請求項1に記載のフィルタ用濾材において、前記骨格短繊維が45〜80質量%、前記捕集短繊維が5〜30質量%、前記有機バインダー繊維が15〜25質量%からなることを特徴とする。
また、請求項3記載のエアフィルタ用濾材は請求項1または2の何れか1項に記載のエアフィルタ用濾材において、前記骨格短繊維の繊維長が1〜5mmで平均繊維径が9〜13μm、前記捕集短繊維の繊維長が0.05mm〜0.5mmで平均繊維径が0.05〜0.5μm、前記有機バインダー繊維の繊維長が1.0〜4.0mmで平均繊維径が6.0〜16.5μmであることを特徴とする。
また、請求項4記載のエアフィルタ用濾材は請求項1乃至3の何れか1項に記載エアフィルタ用濾材において、前記捕集短繊維の平均繊維径が0.2μm以下のものが濾材の5〜10質量%の範囲内及び/または前記短繊維の平均繊維径0.2μmを越えるものが濾材の10〜15質量%の範囲内であることを特徴とする。
また、請求項5記載のエアフィルタ用濾材は請求項1乃至4の何れか1項に記載のエアフィルタ用濾材において、前記骨格短繊維及び捕集短繊維がガラス短繊維であることを特徴とする。
また、請求項6記載のエアフィルタ用濾材は請求項1乃至5記載の何れか1項に記載のエアフィルタ用濾材において、前記有機バインダー繊維がポリビニルアルコール繊維であることを特徴とする。
また、本発明のエアフィルタは、請求項7記載の通り、前記請求項1乃至6の何れか1項に記載のエアフィルタ用濾材を用いたことを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors constituted the constituent fibers of the filter medium with skeleton short fibers, finer collection short fibers and organic binder fibers, and uniformly dispersed them. It has been found that the above problem can be solved by binding these short skeleton fibers and the collected short fibers with the uniformly dispersed organic binder fibers in a dispersed state.
The filter material for an air filter of the present invention has been made on the basis of the above knowledge. As described in claim 1, in the filter material for an air filter made of short fibers, the short fibers are made of skeletal short fibers and a smaller collection diameter. It comprises fibers and organic binder fibers, these are uniformly dispersed, and the PF value represented by the following formula (1) is 11 or more.
PF value = log 10 (1-capture efficiency [%] / 100) / (pressure loss [Pa] /9.8) × (-100) (1)
The particle size of the collection efficiency is 0.1 to 0.15 μm, and the surface wind speed is 5.3 cm / second.
The filter medium for an air filter according to claim 2 is the filter medium for filter according to claim 1, wherein the skeleton short fiber is 45 to 80% by mass, the collecting short fiber is 5 to 30% by mass, and the organic binder fiber. Is composed of 15 to 25% by mass.
The air filter medium according to claim 3 is the air filter medium according to any one of claims 1 and 2, wherein the skeletal short fibers have a fiber length of 1 to 5 mm and an average fiber diameter of 9 to 13 µm. The fiber length of the collected short fibers is 0.05 mm to 0.5 mm and the average fiber diameter is 0.05 to 0.5 μm. The fiber length of the organic binder fibers is 1.0 to 4.0 mm and the average fiber diameter is It is 6.0 to 16.5 μm.
The air filter medium according to claim 4 is the air filter medium according to any one of claims 1 to 3, wherein the collection fiber has an average fiber diameter of 0.2 μm or less. The short fiber has an average fiber diameter exceeding 0.2 μm within the range of 10 to 15% by mass and within the range of 10 to 15% by mass of the filter medium.
The filter medium for an air filter according to claim 5 is the filter medium for an air filter according to any one of claims 1 to 4, wherein the skeleton short fibers and the collection short fibers are short glass fibers. To do.
The air filter medium according to claim 6 is the air filter medium according to any one of claims 1 to 5, wherein the organic binder fiber is a polyvinyl alcohol fiber.
The air filter of the present invention is characterized in that, as described in claim 7, the air filter medium according to any one of claims 1 to 6 is used.

本発明のエアフィルタ用濾材においては、中性能エアフィルタ、準HEPAフィルタ、HEPAフィルタ等のグレードを問わず、PF値が11以上の低圧損化・高捕集効率化したエアフィルタ用濾材並びにエアフィルタが得られる。   In the filter medium for air filter of the present invention, regardless of the grade of medium performance air filter, quasi-HEPA filter, HEPA filter, etc., the filter medium for air filter and the air filter having a low PF value and high collection efficiency having a PF value of 11 or more and air A filter is obtained.

エアフィルタ用濾材とそれを用いたエアフィルタの実施例及び比較例についての構成と特性を纏めた表(中性能)。The table | surface (medium performance) which put together the structure and characteristic about the Example and comparative example of a filter medium for air filters, and an air filter using the same. エアフィルタ用濾材とそれを用いたエアフィルタの実施例及び比較例についての構成と特性を纏めた表(準HEPA)。The table | surface (quasi-HEPA) which put together the structure and characteristic about the Example and comparative example of a filter medium for air filters, and an air filter using the same. エアフィルタ用濾材とそれを用いたエアフィルタの実施例及び比較例についての構成と特性を纏めた表(HEPA)。The table | surface (HEPA) which put together the structure and characteristic about the Example and comparative example of a filter medium for air filters, and an air filter using the same.

本発明のエアフィルタ用濾材は濾材の構成繊維を骨格短繊維とこれより細径の捕集短繊維と有機繊維バインダーで構成してこれを均一に分散させ、均一に分散された状態でこれら骨格短繊維と捕集短繊維とを均一に分散された繊維状態の有機繊維バインダーで結着するようにしたため、FP値が11以上であることが達成される。   The filter medium for an air filter of the present invention is composed of a short skeleton fiber, a collecting fiber having a smaller diameter than this, and an organic fiber binder to uniformly disperse the skeleton short fibers, and these skeletons in a uniformly dispersed state. Since the short fibers and the collected short fibers are bound by the organic fiber binder in a uniformly dispersed fiber state, it is achieved that the FP value is 11 or more.

前記捕集短繊維としてはガラス繊維、セラミック繊維、炭素繊維、カーボンナノチューブ、カーボンナノファイバ、金属繊維等の無機繊維や、セルロース、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ポリエステル、ポリプロピレン、ポリオレフィン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロルニトリル。アクリル、ナイロン、ポリアミド、ポリビニルアルコール、ポリウレタン等の有機繊維が挙げられる。
但し、耐熱性や経済性を考慮するとボロシリケートガラス繊維のようなガラス短繊維の使用が好ましい。
Examples of the collection short fibers include glass fibers, ceramic fibers, carbon fibers, carbon nanotubes, carbon nanofibers, metal fibers, and the like, cellulose, polytetrafluoroethylene, polyethylene terephthalate, polyester, polypropylene, polyolefins, and polyvinylidene fluoride. , Polyethylene, polyacrylonitrile. Organic fibers such as acrylic, nylon, polyamide, polyvinyl alcohol, and polyurethane are listed.
However, in consideration of heat resistance and economy, it is preferable to use short glass fibers such as borosilicate glass fibers.

また、前記骨格短繊維としては前記捕集短繊維と同様の無機繊維や有機繊維が使用される。また、前記捕集短繊維と同様にボロシリケートガラス繊維のようなガラス短繊維の使用が好ましい。   Further, as the skeleton short fibers, the same inorganic fibers and organic fibers as the collection short fibers are used. In addition, it is preferable to use short glass fibers such as borosilicate glass fibers in the same manner as the collected short fibers.

前記有機バインダー繊維としてはポリビニルアルコール(PVA)、ビニロン、ポリエステル等が挙げられる。
但し、低温で乾燥した時に、バインダ繊維の繊維形状を保て、繊維状結着しやすいという観点からポリビニルアルコール(PVA)のような有機繊維の使用が好ましい。
尚、有機繊維バインダーが溶融して膜化してしまうと圧力損失増加の原因となるので余り低融点のものの使用は好ましくなく、また、製造工程における抄紙工程に続く乾燥工程の乾燥温度を有機繊維バインダーの融点以下にする必要がある。
Examples of the organic binder fiber include polyvinyl alcohol (PVA), vinylon, and polyester.
However, it is preferable to use an organic fiber such as polyvinyl alcohol (PVA) from the viewpoint of maintaining the fiber shape of the binder fiber and facilitating the fiber binding when dried at a low temperature.
In addition, if the organic fiber binder melts and becomes a film, it causes an increase in pressure loss, so it is not preferable to use a material having a very low melting point, and the drying temperature in the drying process following the paper making process in the manufacturing process is not preferred. It is necessary to make it below the melting point.

濾材を構成する前記骨格短繊維と、前記捕集短繊維と有機バインダー繊維の配合は、前記骨格短繊維が45〜80質量%、前記捕集短繊維が5〜30質量%、前記有機バインダー繊維が15〜25質量%とするのが好ましい。   The composition of the skeleton short fibers constituting the filter medium, the collection short fibers, and the organic binder fibers is 45 to 80 mass% for the skeleton short fibers, 5 to 30 mass% for the collection short fibers, and the organic binder fibers. Is preferably 15 to 25% by mass.

また、前記骨格短繊維は繊維長が1〜5mmで平均繊維径が9〜13μm前記捕集短繊維は繊維長が0.05mm〜0.5mmで平均繊維径が0.05〜0.5μmであることが好ましい。
また、前記有機バインダー繊維は、繊維長が1.0〜4.0mmで平均繊維径が6.0〜16.5μmであることが好ましい
The skeletal short fiber has a fiber length of 1 to 5 mm and an average fiber diameter of 9 to 13 μm. The collected short fiber has a fiber length of 0.05 mm to 0.5 mm and an average fiber diameter of 0.05 to 0.5 μm. Preferably there is.
The organic binder fiber preferably has a fiber length of 1.0 to 4.0 mm and an average fiber diameter of 6.0 to 16.5 μm.

また、前記捕集短繊維の平均繊維径が0.2μm以下のものが濾材の5〜10質量%の範囲内にするのが圧力損失の増加を押さえる観点から好ましく、前記短繊維の平均繊維径0.2μmを越えるものが濾材の10〜15質量%の範囲内にするのが捕集効率の低下を押さえる観点から好ましい。   Moreover, it is preferable from the viewpoint of suppressing an increase in pressure loss that the collected short fibers have an average fiber diameter of 0.2 μm or less in the range of 5 to 10% by mass of the filter medium, and the average fiber diameter of the short fibers It is preferable from the viewpoint of suppressing the reduction of the collection efficiency that the thickness exceeds 0.2 μm is within the range of 10 to 15% by mass of the filter medium.

前記濾材の製造例を説明すれば、例えば、捕集短繊維と、骨格短繊維と、有機バインダー繊維をミキサーで離解し、離解後の原料を水で希釈し、手抄装置を用いて抄紙することによって湿紙を得、これをロールドライヤーで乾燥し、濾材を得る。
尚、この製造において、前記ミキサーの回転数が速い場合は、捕集繊維の骨格繊維への分散が良くなり、高いPF値が得られるが、繊維が切れて繊維長さが短くなるので、短寿命の懸念のある、へたった濾材材しか得られない。また、回転数が遅い場合は、繊維長さが保たれるので、長寿命を期待できる嵩高な濾材が得られるが、捕集繊維の骨格繊維への分散が悪くなり、高いPF値が得られない。そこで、鋭意検討した結果、ミキシング条件等を検討すれば、例えば回転数が6,000rmp程度だと、捕集繊維の骨格繊維への分散が良くでき、高いPF値が得られると共に、繊維長さも調整でき、長寿命が期待できる嵩高の濾材を作成できることを見い出した。
また、ロールドライヤーでの乾燥温度は、有機バインダー繊維をその繊維形状を保持した状態で捕集短繊維と骨格短繊維を結着できる程度の温度とすることが好ましい。
Explaining the production example of the filter medium, for example, the collection staple fiber, the skeleton short fiber, and the organic binder fiber are disaggregated with a mixer, the disaggregated raw material is diluted with water, and paper is made using a hand-pulling apparatus. Thus, a wet paper is obtained and dried with a roll dryer to obtain a filter medium.
In this production, when the rotational speed of the mixer is high, the dispersion of the collected fibers into the skeletal fiber is improved and a high PF value is obtained, but the fiber is cut and the fiber length is shortened. Only a filter medium with a concern about the lifetime can be obtained. In addition, when the rotation speed is slow, the fiber length is maintained, so that a bulky filter medium that can be expected to have a long life can be obtained, but the dispersion of the collected fibers into the skeletal fiber becomes poor, and a high PF value is obtained. Absent. Therefore, as a result of diligent investigation, if mixing conditions are examined, for example, if the rotational speed is about 6,000 rpm, the dispersion of the collected fibers to the skeleton fibers can be improved, and a high PF value can be obtained, and the fiber length can also be increased. It was found that a bulky filter medium that can be adjusted and expected to have a long life can be produced.
The drying temperature in the roll dryer is preferably set to a temperature at which the collected short fibers and the skeleton short fibers can be bound in a state where the fiber shape of the organic binder fibers is maintained.

実施例1
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)70質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 1
Glass having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as a collection short fiber (Code 104 manufactured by Johns Manville) 10% by mass, and a skeleton short fiber having a fiber length of 4 mm or less and an average fiber diameter of 10.5 μm 70% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例2
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)5質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)75質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 2
5% by mass of a short glass fiber (Code 90 manufactured by Johnsmanville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a short glass having a fiber length of 4 mm and an average fiber diameter of 10.5 μm as a skeleton short fiber 75% by mass of fibers (Nittobo chopped slant) and 20% by mass of PVA fibers (VPB041 made by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例3
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)70質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを120℃のロールドライヤーで乾燥し、濾材を得た。
Example 3
Glass having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as a collection short fiber (Code 104 manufactured by Johns Manville) 10% by mass, and a skeleton short fiber having a fiber length of 4 mm or less and an average fiber diameter of 10.5 μm 70% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 120 ° C. to obtain a filter medium.

比較例1
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)70質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを150℃のロールドライヤーで乾燥し、濾材を得た。
Comparative Example 1
Glass having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as a collection short fiber (Code 104 manufactured by Johns Manville) 10% by mass, and a skeleton short fiber having a fiber length of 4 mm or less and an average fiber diameter of 10.5 μm 70% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 150 ° C. to obtain a filter medium.

比較例2
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)5質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)75質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Comparative Example 2
5% by mass of short glass fibers (Code 104 manufactured by Johns Manville) having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as collection short fibers, and a glass having an average fiber diameter of 10.5 μm and a fiber length of 4 mm or less. 75% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

次ぎに、前記実施例1乃至3及び比較例例1及び2のエアフィルタ用濾材について次ぎのようにして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図1に示した。
捕集効率
0.1〜0.15μmのPAO粒子を含む気流を濾過速度5.3cm/秒で通過させ、JIS Z8813に準じた光散乱積算法により、通過前後の粉じん濃度を測定し、次式にて求める。
圧力損失
捕集効率の測定と並行して風速5.3cm/秒の気流を通過させた時の上下流の静圧差を測定し、それを圧力損失とする。
Next, the trapping efficiency (%) and the pressure loss (Pa) are determined for the air filter media of Examples 1 to 3 and Comparative Examples 1 and 2 as follows, and the PF value is determined from them. It was shown to.
The collection efficiency is measured by measuring the dust concentration before and after passing by the light scattering integration method according to JIS Z8813 by passing an air stream containing PAO particles of 0.1 to 0.15 μm at a filtration rate of 5.3 cm / sec. Ask for.
Pressure loss In parallel with the measurement of the collection efficiency, the static pressure difference between the upstream and downstream when an air flow with a wind speed of 5.3 cm / second is passed is measured, and this is taken as the pressure loss.

次ぎに、前記濾材を用い、折幅125mm、山数104山、風量56m/minの中性能フィルタ(610×610×150mm)を作成した。
得られた中性能フィルタについて以下のようにして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図1に示した。
Next, a medium performance filter (610 × 610 × 150 mm) having a folding width of 125 mm, a mountain number of 104, and an air volume of 56 m 3 / min was prepared using the filter medium.
With respect to the obtained medium performance filter, the collection efficiency (%) and the pressure loss (Pa) were obtained as follows, and the PF value was obtained therefrom and shown in FIG.

実施例4
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)70質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 4
10% by mass of short glass fibers (Code 90 manufactured by Johnsmanville Co., Ltd.) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as collection short fibers, and a short glass having a fiber length of 4 mm and an average fiber diameter of 10.5 μm as skeleton short fibers 70% by mass of fibers (Nittobo chopped slant) and 20% by mass of PVA fibers (VPB041 made by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例5
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのボロシリケートガラス短繊維(ジョンズマンビル社製 Code90)5質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)65質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 5
5% by mass of borosilicate glass short fibers (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as collection short fibers, and a fiber length of 0.284 mm and an average fiber diameter as collection short fibers 0.284 μm short glass fiber (Code 104, manufactured by Johns Manville) 10% by mass, short glass fiber having a fiber length of 4 mm and an average fiber diameter of 10.5 μm (chopped slant) 65% by mass, organic binder As a fiber, 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例6
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)5質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)65質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを120℃のロールドライヤーで乾燥し、濾材を得た。
Example 6
5% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0. 10% by mass of 284 μm short glass fiber (Code 104 manufactured by Johnsmanville), 4% fiber length as skeleton short fiber, 65% by mass glass short fiber (chopped slant manufactured by Nitteau-Bo Co.) having an average fiber diameter of 10.5 μm, and organic binder fiber 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 120 ° C. to obtain a filter medium.

実施例7
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)20質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 7
Glass having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as a collecting short fiber (Code 104 manufactured by Johns Manville) 20% by mass, and a skeleton short fiber having a fiber length of 4 mm or less and an average fiber diameter of 10.5 μm 60% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例8
捕集短繊維として繊維長0.195mm、平均繊維径0.195μmのPET短繊維5質量%と、繊維長0.395mm、平均繊維径0.395μmのPET短繊維10質量%、骨格短繊維として繊維長5mm以下、平均繊維径12.5μmのPET短繊維(帝人社製 TT04PN)65質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 8
As collection short fibers, 5% by mass of PET short fibers having a fiber length of 0.195 mm and an average fiber diameter of 0.195 μm, and 10% by mass of PET short fibers having a fiber length of 0.395 mm and an average fiber diameter of 0.395 μm, as skeleton short fibers 65% by mass of PET short fiber (TT04PN manufactured by Teijin Ltd.) having a fiber length of 5 mm or less and an average fiber diameter of 12.5 μm, and 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as an organic binder fiber (6, 000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

比較例3
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)5質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのボロシリケートガラス短繊維(ニットーボー社製 チョップドスラント)65質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを150℃のロールドライヤーで乾燥し、濾材を得た。
Comparative Example 3
5% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0. 284 μm short glass fiber (Code 104, manufactured by Johns Manville) 10% by mass, skeletal short fiber borosilicate glass short fiber (4 mm, average fiber diameter 10.5 μm, chopped slant) 65% by mass, organic binder As a fiber, 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 150 ° C. to obtain a filter medium.

次ぎに、前記実施例4乃至8及び比較例例3のエアフィルタ用濾材について上記と同様にして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図2に示した。   Next, in the same manner as described above, the collection efficiency (%) and the pressure loss (Pa) were obtained for the air filter media of Examples 4 to 8 and Comparative Example 3, and the PF value was obtained therefrom and shown in FIG. It was.

次ぎに、前記濾材を用い、折幅65mm、山数200山、風量17m/minの準PEPA(610×610×75)を作成した。
得られた中性能フィルタについて上記と同様にして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図2に示した。
Next, a quasi-PEPA (610 × 610 × 75) having a folding width of 65 mm, a mountain number of 200, and an air volume of 17 m 3 / min was prepared using the filter medium.
With respect to the obtained medium performance filter, the collection efficiency (%) and the pressure loss (Pa) were obtained in the same manner as described above, and the PF value was obtained therefrom and shown in FIG.

実施例9
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)10質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 9
10% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0.84 as a collecting short fiber. 10% by mass of 284 μm short glass fiber (Code 104 manufactured by Johns Manville), 4% fiber length as a skeleton short fiber, 60% by mass short glass fiber (chopped slant manufactured by Nittobo) as an organic binder fiber 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例10
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)5質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)15質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 10
5% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0. 15% by mass of 284 μm short glass fiber (Code 104 manufactured by Johnsmanville), 4% fiber length as skeleton short fiber, 60% by mass glass short fiber (chopped slant manufactured by Nitteau-Bo Co.) having an average fiber diameter of 10.5 μm, and organic binder fiber 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例11
捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)30質量%、骨格短繊維として繊維長4mm以下、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)50質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 11
Glass having a fiber length of 0.284 mm and an average fiber diameter of 0.284 μm as a collecting short fiber (Code 104 manufactured by Johns Manville) 30% by mass, and a skeleton short fiber having a fiber length of 4 mm or less and an average fiber diameter of 10.5 μm 50% by mass of short fibers (chopped slant manufactured by Nitto Bo) and 20% by mass of PVA fibers (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例12
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)10質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを120℃のロールドライヤーで乾燥し、濾材を得た。
Example 12
10% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0.84 as a collecting short fiber. 10% by mass of 284 μm short glass fiber (Code 104 manufactured by Johns Manville), 4% fiber length as a skeleton short fiber, 60% by mass short glass fiber (chopped slant manufactured by Nittobo) as an organic binder fiber 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 120 ° C. to obtain a filter medium.

実施例13
捕集短繊維として繊維長0.195mm、平均繊維径0.195μmのPET短繊維10質量%と、繊維長0.395mm、平均繊維径0.395μmのPET短繊維10質量%、骨格短繊維として繊維長5mm以下、平均繊維径12.5μmのPET短繊維(帝人社製 TT04PN)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 13
10% by mass of PET short fibers having a fiber length of 0.195 mm and an average fiber diameter of 0.195 μm as collection short fibers, and 10% by mass of PET short fibers having a fiber length of 0.395 mm and an average fiber diameter of 0.395 μm, as skeleton short fibers 60% by mass of a PET short fiber (TT04PN manufactured by Teijin Ltd.) having a fiber length of 5 mm or less and an average fiber diameter of 12.5 μm, and 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as an organic binder fiber are mixed with a mixer (6 000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

実施例14
捕集短繊維として繊維長0.195mm、平均繊維径0.195μmのPET短繊維5質量%と、繊維長0.125mm、平均繊維径0.125μmのPET短繊維10質量%、骨格短繊維として繊維長5mm以下、平均繊維径12.5μmのPET短繊維(帝人社製 TT04PN)65質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Example 14
As collection short fibers, 5% by mass of PET short fibers having a fiber length of 0.195 mm and an average fiber diameter of 0.195 μm, and 10% by mass of PET short fibers having a fiber length of 0.125 mm and an average fiber diameter of 0.125 μm, as skeleton short fibers 65% by mass of PET short fiber (TT04PN manufactured by Teijin Ltd.) having a fiber length of 5 mm or less and an average fiber diameter of 12.5 μm, and 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as an organic binder fiber (6, 000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

比較例4
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)10質量%と、捕集短繊維として繊維長0.284mm、平均繊維径0.284μmのガラス短繊維(ジョンズマンビル社製 Code104)10質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)60質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを150℃のロールドライヤーで乾燥し、濾材を得た。
Comparative Example 4
10% by mass of a short glass fiber (Code 90 manufactured by Johns Manville) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as a collecting short fiber, and a fiber length of 0.284 mm and an average fiber diameter of 0.84 as a collecting short fiber. 10% by mass of 284 μm short glass fiber (Code 104 manufactured by Johns Manville), 4% fiber length as a skeleton short fiber, 60% by mass short glass fiber (chopped slant manufactured by Nittobo) as an organic binder fiber 20% by mass of PVA fiber (VPB041 manufactured by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm was disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 150 ° C. to obtain a filter medium.

比較例5
捕集短繊維として繊維長0.175mm、平均繊維径0.175μmのガラス短繊維(ジョンズマンビル社製 Code90)30質量%、骨格短繊維として繊維長4mm、平均繊維径10.5μmのガラス短繊維(ニットーボー社製 チョップドスラント)50質量%、有機バインダー繊維として平均繊維径7μmのPVA繊維(クラレ社製 VPB041)20質量%をミキサー(6,000rpm)で離解した。この離解された分散物は、均一な分散状態であった。次いで、離解後の原料を水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。これを80℃のロールドライヤーで乾燥し、濾材を得た。
Comparative Example 5
30% by mass of short glass fibers (Code 90 manufactured by Johnsmanville Co., Ltd.) having a fiber length of 0.175 mm and an average fiber diameter of 0.175 μm as collection short fibers, and a short glass having a fiber length of 4 mm and an average fiber diameter of 10.5 μm as skeleton short fibers 50% by mass of fibers (Nittobo chopped slant) and 20% by mass of PVA fibers (VPB041 made by Kuraray Co., Ltd.) having an average fiber diameter of 7 μm as organic binder fibers were disaggregated with a mixer (6,000 rpm). This disaggregated dispersion was in a uniform dispersion state. Next, a wet paper was obtained by diluting the raw material after disaggregation with water to a concentration of 0.1% by mass and making paper using a hand-making apparatus. This was dried with a roll dryer at 80 ° C. to obtain a filter medium.

次ぎに、前記実施例9乃至14及び比較例例4及び5のエアフィルタ用濾材について上記と同様にして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図3に示した。   Next, for the air filter media of Examples 9 to 14 and Comparative Examples 4 and 5, the collection efficiency (%) and the pressure loss (Pa) are obtained in the same manner as described above, and the PF value is obtained therefrom. It was shown to.

次ぎに、前記濾材を用い、折幅65mm、山数80山、風量56m/minの準PEPA(610×610×290)を作成した。
得られた中性能フィルタについて上記と同様にして捕集効率(%)と圧力損失(Pa)を求め、それらからPF値を求め図3に示した。
Next, a quasi-PEPA (610 × 610 × 290) having a folding width of 65 mm, a mountain number of 80, and an air volume of 56 m 3 / min was prepared using the filter medium.
With respect to the obtained medium performance filter, the collection efficiency (%) and the pressure loss (Pa) were obtained in the same manner as described above, and the PF value was obtained therefrom and shown in FIG.

比較例1、比較例3及び比較例4の場合、乾燥温度が高すぎたため、有機バインダー繊維が膜化した結果圧力損失が高いものになってしまった。また、比較例2の場合、平均繊維径0.284μmのガラス短繊維の配合量が少なすぎて捕集効率の悪いもものになった。また、比較例5の場合、平均繊維径0.175μmのガラス短繊維の配合量が多すぎて圧力損失の高いものになった。
比較例1乃至5以外の本願発明実施例の場合は、中性能フィルタ、準HEPAフィルタ、HEPAフィルタと全てのグレードにおいて、PF値が11以上で、低圧損化・高捕集効率化が実現されていた。
In the case of Comparative Example 1, Comparative Example 3 and Comparative Example 4, since the drying temperature was too high, the pressure loss was high as a result of forming the organic binder fiber into a film. Moreover, in the case of the comparative example 2, the compounding quantity of the short glass fiber with an average fiber diameter of 0.284 micrometers was too small, and it became a thing with bad collection efficiency. Moreover, in the case of the comparative example 5, the compounding quantity of the short glass fiber with an average fiber diameter of 0.175 micrometers was too much, and became a thing with a high pressure loss.
In the case of the embodiments of the present invention other than Comparative Examples 1 to 5, the PF value is 11 or more in all grades including the medium performance filter, the semi-HEPA filter, and the HEPA filter, and low pressure loss and high collection efficiency are realized. It was.

本発明のエアフィルタ用濾材並びにそれを用いたエアフィルタは、中性能エアフィルタ、準HEPAフィルタ、HEPAフィルタ等のグレードを問わず、PF値が11以上の低圧損化・高捕集効率化したエアフィルタ用濾材並びにエアフィルタが得られ産業上有用である。   The filter medium for air filter of the present invention and the air filter using the same have a low-pressure loss and high collection efficiency with a PF value of 11 or more regardless of the grade of medium performance air filter, semi-HEPA filter, HEPA filter, etc. An air filter medium and an air filter are obtained and are industrially useful.

Claims (7)

短繊維からなるエアフィルタ用濾材において前記短繊維を骨格短繊維とこれより細径の捕集短繊維と、有機バインダー繊維で構成しこれらが均一に分散され、下記式(1)で表されるPF値が11以上であることを特徴とするエアフィルタ用濾材。
PF値=log10(1-捕集効率[%]/100)/(圧力損失[Pa]/9.8)×(-100) (1)
捕集効率の粒径は0.1〜0.15μm、面風速は5.3cm/秒とする。
In the filter medium for an air filter made of short fibers, the short fibers are composed of skeleton short fibers, finer collection short fibers, and organic binder fibers, and these are uniformly dispersed and represented by the following formula (1). A filter medium for an air filter having a PF value of 11 or more.
PF value = log 10 (1-capture efficiency [%] / 100) / (pressure loss [Pa] /9.8) × (-100) (1)
The particle size of the collection efficiency is 0.1 to 0.15 μm, and the surface wind speed is 5.3 cm / second.
前記骨格短繊維が45〜80質量%、前記捕集短繊維が5〜30質量%、前記有機バインダー繊維が15〜25質量%からなることを特徴とする請求項1記載のエアフィルタ用濾材。   The filter medium for an air filter according to claim 1, wherein the skeleton short fiber is 45 to 80% by mass, the collection short fiber is 5 to 30% by mass, and the organic binder fiber is 15 to 25% by mass. 前記骨格短繊維の繊維長が1〜5mmで平均繊維径が9〜13μm、前記捕集短繊維の繊維長が0.05mm〜0.5mmで平均繊維径が0.05〜0.5μm、前記有機バインダー繊維の繊維長が1.0〜4.0mmで平均繊維径が6.0〜16.5μmであることを特徴とする請求項1または2の何れか1項に記載のエアフィルタ用濾材。   The skeletal short fiber has a fiber length of 1 to 5 mm and an average fiber diameter of 9 to 13 μm, the collected short fiber has a fiber length of 0.05 mm to 0.5 mm and an average fiber diameter of 0.05 to 0.5 μm, The filter material for an air filter according to any one of claims 1 and 2, wherein the organic binder fiber has a fiber length of 1.0 to 4.0 mm and an average fiber diameter of 6.0 to 16.5 µm. . 前記捕集短繊維の平均繊維径が0.2μm以下のものが濾材の5〜10質量%の範囲内及び/または前記短繊維の平均繊維径0.2μmを越えるものが濾材の10〜15質量%の範囲内であることを特徴とする請求項1乃至3の何れか1項に記載エアフィルタ用濾材。   Those whose collected short fibers have an average fiber diameter of 0.2 μm or less are within the range of 5 to 10% by mass of the filter medium and / or those whose short fibers exceed the average fiber diameter of 0.2 μm are 10 to 15 mass of the filter medium. The filter medium for air filters according to any one of claims 1 to 3, wherein the filter medium is within a range of%. 前記骨格短繊維及び捕集短繊維がガラス短繊維であることを特徴とする請求項1乃至4の何れか1項に記載のエアフィルタ用濾材。   The filter medium for an air filter according to any one of claims 1 to 4, wherein the skeleton short fibers and the collection short fibers are short glass fibers. 前記有機バインダー繊維はポリビニルアルコール繊維であることを特徴とする請求1乃至5の何れか1項に記載のエアフィルタ用濾材。   The air filter medium according to any one of claims 1 to 5, wherein the organic binder fiber is a polyvinyl alcohol fiber. 前記請求項1乃至6の何れか1項に記載のエアフィルタ用濾材を用いたことを特徴とするエアフィルタ。   An air filter using the air filter medium according to any one of claims 1 to 6.
JP2017071869A 2017-03-31 2017-03-31 Filter media for air filters and air filters Active JP6941462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071869A JP6941462B2 (en) 2017-03-31 2017-03-31 Filter media for air filters and air filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071869A JP6941462B2 (en) 2017-03-31 2017-03-31 Filter media for air filters and air filters

Publications (2)

Publication Number Publication Date
JP2018171582A true JP2018171582A (en) 2018-11-08
JP6941462B2 JP6941462B2 (en) 2021-09-29

Family

ID=64108039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071869A Active JP6941462B2 (en) 2017-03-31 2017-03-31 Filter media for air filters and air filters

Country Status (1)

Country Link
JP (1) JP6941462B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038118A (en) * 1999-07-30 2001-02-13 Daikin Ind Ltd Power generation system using high-temperature furnace gas
JP2004017041A (en) * 2002-06-19 2004-01-22 Oshidari Kenkyusho:Kk Filter medium for high performance air filter and high performance air filter using filter medium
JP2006007209A (en) * 2004-05-28 2006-01-12 Nippon Muki Co Ltd Filter medium for mid-performance air filter, production method therefor, and mid-performance air filter
JP2008246321A (en) * 2007-03-29 2008-10-16 Hokuetsu Paper Mills Ltd Filter medium for dust removing air filter and its manufacturing method
JP2012045021A (en) * 2010-08-24 2012-03-08 Shigematsu Works Co Ltd Filter for mask, method for producing the same, and particle-collecting mask
US20140123613A1 (en) * 2012-11-06 2014-05-08 Lydall, Inc. Air filtration media and processes for manufacturing the same
JP2014151299A (en) * 2013-02-13 2014-08-25 Toray Ind Inc Filter material for filter and air filter
JP2017013068A (en) * 2013-04-15 2017-01-19 北越紀州製紙株式会社 Filter medium for air filter, and the air filter provided with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038118A (en) * 1999-07-30 2001-02-13 Daikin Ind Ltd Power generation system using high-temperature furnace gas
JP2004017041A (en) * 2002-06-19 2004-01-22 Oshidari Kenkyusho:Kk Filter medium for high performance air filter and high performance air filter using filter medium
JP2006007209A (en) * 2004-05-28 2006-01-12 Nippon Muki Co Ltd Filter medium for mid-performance air filter, production method therefor, and mid-performance air filter
JP2008246321A (en) * 2007-03-29 2008-10-16 Hokuetsu Paper Mills Ltd Filter medium for dust removing air filter and its manufacturing method
JP2012045021A (en) * 2010-08-24 2012-03-08 Shigematsu Works Co Ltd Filter for mask, method for producing the same, and particle-collecting mask
US20140123613A1 (en) * 2012-11-06 2014-05-08 Lydall, Inc. Air filtration media and processes for manufacturing the same
JP2014151299A (en) * 2013-02-13 2014-08-25 Toray Ind Inc Filter material for filter and air filter
JP2017013068A (en) * 2013-04-15 2017-01-19 北越紀州製紙株式会社 Filter medium for air filter, and the air filter provided with the same

Also Published As

Publication number Publication date
JP6941462B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6212619B2 (en) Air filter medium and air filter including the same
JP5600397B2 (en) Filter medium for air filter having electrospun nanofiber layer
CN106999953B (en) Air filter for high efficiency PM2.5 capture
JP5434076B2 (en) Filter media and filter unit
Graham et al. Polymeric nanofibers in air filtration applications
AU2014237819B2 (en) Filter media and elements
WO2010122999A1 (en) Low-basis-weight filter media for air filters
JP5537831B2 (en) Air filter media and air filter
CN103894077A (en) Composite filter membrane with multidimensional pore structure and preparation method thereof
KR102230448B1 (en) Non-woven fabric filter for reducing particulate matter and Method for preparing the same
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
JP2018038983A (en) Production method of filtering medium for air filter
Zhang et al. Energy consumption performance optimization of PTFE HEPA filter media during dust loading through compositing them with the efficient filter medium
US11583797B2 (en) Dual density nanofiber media
JP2014144421A (en) Deodorization-gas removal filter
JP2018171582A (en) Filtering material for air filter and air filter
JP5536537B2 (en) Air filter media
JP5688942B2 (en) Filter paper and air filter using the filter paper
JP5797175B2 (en) Air filter media
JP2006000838A (en) Air conditioning filter
JP5290507B2 (en) Air filter medium and air filter including the same
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP6964033B2 (en) Filter material for air filter
JPH05261224A (en) Filter material for air filter
JP6858678B2 (en) Filter media for air filters and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150