JP5290507B2 - Air filter medium and air filter including the same - Google Patents

Air filter medium and air filter including the same Download PDF

Info

Publication number
JP5290507B2
JP5290507B2 JP2006272899A JP2006272899A JP5290507B2 JP 5290507 B2 JP5290507 B2 JP 5290507B2 JP 2006272899 A JP2006272899 A JP 2006272899A JP 2006272899 A JP2006272899 A JP 2006272899A JP 5290507 B2 JP5290507 B2 JP 5290507B2
Authority
JP
Japan
Prior art keywords
mass
fiber
air filter
diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006272899A
Other languages
Japanese (ja)
Other versions
JP2008086953A (en
Inventor
智彦 楚山
信之 坂爪
義彦 忍足
次夫 橋本
孝二郎 長塚
信男 松本
泰靖 川上
文人 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Kishu Paper Co Ltd
Original Assignee
Hokuetsu Kishu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Kishu Paper Co Ltd filed Critical Hokuetsu Kishu Paper Co Ltd
Priority to JP2006272899A priority Critical patent/JP5290507B2/en
Publication of JP2008086953A publication Critical patent/JP2008086953A/en
Application granted granted Critical
Publication of JP5290507B2 publication Critical patent/JP5290507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium for an air filter with such advantages as low pressure loss, stably secured high uptake efficiency, high water resistant strength and high mass reduction rate after burning-disposal of a used filter medium, and to provide an air filter equipped with this filter medium. <P>SOLUTION: This filter medium for an air filter has a mixed fiber comprising a microorganic fiber content of not less than 2 mass% to less than 5 mass%, the content of 10 to 15 mass% of an extremely fine glass fiber with less than 0.5 &mu;m average fiber diameter, the content of 50 to 70 mass% of a small-diameter chopped organic fiber with 2.9 to 8.4 &mu;m average fiber diameter; and the content of not less than 10 mass% and not more than 38 mass% of either one of a large-diameter chopped organic fiber with 9.0 to 20 &mu;m average fiber diameter or a thermally fusible binder fiber with 9.0 to 20 &mu;m average fiber diameter, or the total content of both large-diameter chopped organic fiber and thermally fusible binder fiber. In addition, the mixed fiber is blended with not less than 0.5 pt.mass to less than 10 pts.mass fibrous binder or powdery binder in ratio for 100 pts.mass the former, and this mixture is formed into paper in a wet process fashion. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は精密工業、電子工業、医薬工業、医療、介護福祉及びビル空調などの分野での空気浄化、集塵及び集塵装置設備、及び家庭電化製品分野での空気浄化及び集塵、並びに車両、航空機などの輸送運搬分野での空気浄化及び集塵に使用される高性能エアフィルタ用濾材及びそれを備えるエアフィルタに関し、高性能で、実用強度、特に耐水強度が大きく、使用済みに際して焼却処分ができるエアフィルタ用濾材及びそれを備えるエアフィルタに関する。   The present invention relates to air purification, dust collection and dust collection equipment in fields such as precision industry, electronics industry, pharmaceutical industry, medical care, nursing care and welfare, and building air conditioning, and air purification and dust collection in the field of home appliances, and vehicles. High performance air filter used for air purification and dust collection in transportation and transportation fields such as aircraft and air filter equipped with the same, high performance, practical strength, especially water resistance strength, incineration disposal when used The present invention relates to a filter medium for air filter and an air filter including the same.

従来から、空気中の微粒子を捕集するために、エアフィルタの捕集技術が用いられている。エアフィルタは、その捕集性能によって、粗塵用フィルタ、中性能フィルタ、HEPA(High Efficiency Particulate Air)フィルタ又はULPA(Ultra Low Penetration Air)フィルタに大別される。   Conventionally, in order to collect fine particles in the air, an air filter collecting technique has been used. Air filters are roughly classified into coarse dust filters, medium performance filters, HEPA (High Efficiency Particulate Air) filters, and ULPA (Ultra Low Penetration Air) filters, depending on their collection performance.

このうち、HEPAフィルタについては、定格風量で通風した時、粒子径が0.3μmのDOPの捕集効率(以下、「DOP捕集効率」と記す。)が99.97%以上、即ち、粒子径が0.3μmのDOPの透過率(以下、「DOP透過率」と記す。)が0.03%以下で規定されている。このため、HEPAフィルタに使用される高性能なエアフィルタ用濾材もフィルタ設計に対応した仕様である。   Among these, the HEPA filter has a DOP collection efficiency (hereinafter referred to as “DOP collection efficiency”) of 99.97% or more when it is ventilated at the rated air volume, that is, particles. The transmittance of a DOP having a diameter of 0.3 μm (hereinafter referred to as “DOP transmittance”) is regulated to 0.03% or less. For this reason, the high performance filter material for air filters used for the HEPA filter also has specifications corresponding to the filter design.

大部分の高性能なエアフィルタ用濾材はガラス繊維製であり、安価で高性能という特性を有するが、ガラス繊維自体が脆弱であるため外力でエアフィルタ用濾材が変形したり破れたりする危険性がある。また、特に振動や、水に濡れた際のエアフィルタ用濾材の強度が弱い問題がある。さらに、使用済みに際してエアフィルタ用濾材が不燃性なので焼却処分ができず、廃棄物の埋め立て処分しかできない問題がある。   Most high-performance air filter media are made of glass fiber and have the characteristics of low cost and high performance, but the risk of the air filter media being deformed or broken by external force due to the weakness of the glass fiber itself. There is. In addition, there is a problem that the strength of the filter medium for air filter is weak particularly when it gets wet with water. Furthermore, since the filter medium for air filter is nonflammable when used, there is a problem that it cannot be incinerated and only landfilled waste can be disposed.

そこで、高性能なガラス繊維製エアフィルタ用濾材以外に、焼却廃棄処分が可能な有機繊維主体のエアフィルタ用濾材が過去提案されている(例えば、特許文献1〜6を参照。)。   Therefore, in addition to high-performance glass fiber air filter media, organic filter-based air filter media that can be disposed of by incineration have been proposed in the past (see, for example, Patent Documents 1 to 6).

例えば、特許文献1では、直径4.0μm以下の極細ガラス繊維と0.05〜0.5デニールの細デニールポリビニールアルコール系繊維及びポリビニールアルコール系繊維状バインダーとを配合して成るエアフィルタ用濾材が提案されている。   For example, in Patent Document 1, for an air filter comprising an ultrafine glass fiber having a diameter of 4.0 μm or less, a fine denier polyvinyl alcohol fiber of 0.05 to 0.5 denier, and a polyvinyl alcohol fiber binder. Filter media have been proposed.

特許文献2、特許文献3又は特許文献4では、平均繊維径0.3〜4.0μmの極細ガラス繊維とチョップアンドストランドビニロン繊維、チョップアンドストランドアクリル繊維又はチョップアンドストランドレーヨン繊維とを配合して成るエアフィルタ用濾材が提案されている。   In Patent Document 2, Patent Document 3 or Patent Document 4, an ultrafine glass fiber having an average fiber diameter of 0.3 to 4.0 μm and chop and strand vinylon fiber, chop and strand acrylic fiber or chop and strand rayon fiber are blended. A filter medium for air filters is proposed.

また、特許文献5では、極細ガラス繊維20質量%、再生セルロース繊維50質量%及び天然セルロース繊維30質量%を配合してなるエアフィルタ用濾紙が提案されている。   Patent Document 5 proposes a filter paper for an air filter formed by blending 20% by mass of ultrafine glass fiber, 50% by mass of regenerated cellulose fiber, and 30% by mass of natural cellulose fiber.

本発明者らは、過去、平均繊維径0.65μm以下のガラス繊維10〜50質量%、自己消火性有機繊維50〜90質量%に繊維状バインダーを配合してなる高性能なエアフィルタ用濾材を提案している(特許文献6を参照。)。   In the past, the present inventors have provided a high-performance filter material for an air filter obtained by blending a fibrous binder with 10 to 50% by mass of glass fibers having an average fiber diameter of 0.65 μm or less and 50 to 90% by mass of self-extinguishing organic fibers. (See Patent Document 6).

これら特許文献1〜6で提案されたエアフィルタ用濾材からガラス繊維の配合を減らす試みがなされている(例えば、特許文献7又は8を参照。)。特許文献7では、平均繊維径0.1〜1.0μmのマイクロガラス繊維、剛直鎖合成高分子からなる濾水値が30〜800秒のフィブリル化した微細有機繊維を配合している。   Attempts have been made to reduce the mixing of glass fibers from the air filter media proposed in Patent Documents 1 to 6 (see, for example, Patent Documents 7 and 8). In Patent Document 7, microglass fibers having an average fiber diameter of 0.1 to 1.0 μm and fibrillated fine organic fibers having a drainage value of 30 to 800 seconds composed of a rigid linear synthetic polymer are blended.

本発明者らは、過去、エアフィルタ用濾材をガラス繊維濾材並みの高性能に維持するため、無機、有機の微細繊維量を30%以下に抑え、残りの配合を繊維径2.7〜6.5μmの有機繊維に限定することを提案している(特許文献8を参照。)。   In the past, in order to maintain the filter medium for air filters as high as the glass fiber filter medium in the past, the amount of inorganic and organic fine fibers was suppressed to 30% or less, and the remaining formulation was adjusted to a fiber diameter of 2.7 to 6 It is proposed to limit the organic fiber to 5 μm (see Patent Document 8).

特公平6−13082号公報Japanese Examined Patent Publication No. 6-13082 特開昭63−44914号公報JP-A-63-44914 特開昭63−44915号公報JP 63-44915 A 特開昭63−44916号公報JP 63-44916 A 特公昭63−56806号公報Japanese Examined Patent Publication No. 63-56806 特開平10−180020号公報Japanese Patent Laid-Open No. 10-180020 特開平8−323121号公報JP-A-8-323121 特開2004−17041号公報JP 2004-17041 A

しかし、特許文献1で提案された技術では、極細ガラス繊維の配合率が60〜97質量%と、ガラスが主体であることには変わりない。   However, in the technique proposed in Patent Document 1, the mixing ratio of the ultrafine glass fiber is 60 to 97% by mass, and the glass is the main component.

特許文献2、特許文献3又は特許文献4で提案された技術では、極細ガラス繊維を5.0〜95質量%と規定しているが、HEPAフィルタ用濾材とするには極細ガラス繊維20質量%、或いは、これ以上の配合が必要である。また、チョップアンドストランドビニロン繊維、チョップアンドストランドアクリル繊維又はチョップアンドストランドレーヨン繊維について、繊維径の制約が無く、繊維径が太くなれば捕集効率の低下を招き、繊維径が細くなれば圧力損失の上昇を招く問題がある。捕集効率と圧力損失とのバランスは有用なエアフィルタ用濾材に不可欠であり、特許文献2、特許文献3又は特許文献4で提案された技術では、必ずしも有用なエアフィルタ用濾材を得ることができるとは限らない。   In the technique proposed in Patent Document 2, Patent Document 3 or Patent Document 4, the ultrafine glass fiber is regulated to 5.0 to 95% by mass. However, in order to obtain a filter medium for HEPA filter, the ultrafine glass fiber is 20% by mass. Or, more blending is required. For chop and strand vinylon fiber, chop and strand acrylic fiber or chop and strand rayon fiber, there is no restriction on the fiber diameter, and if the fiber diameter is thick, the collection efficiency decreases, and if the fiber diameter is thin, pressure loss There is a problem that leads to an increase. The balance between the collection efficiency and the pressure loss is indispensable for a useful air filter medium, and the technique proposed in Patent Document 2, Patent Document 3 or Patent Document 4 does not necessarily provide a useful air filter medium. It is not always possible.

特許文献5で提案された技術では、前記同様、極細ガラス繊維の配合率が高く、これらの繊維径についての制約はない。   In the technique proposed in Patent Document 5, the blending ratio of ultrafine glass fibers is high as described above, and there is no restriction on the fiber diameter.

特許文献6で提案された技術では、捕集効率が低下する場合があった。   In the technique proposed in Patent Document 6, the collection efficiency may be reduced.

以上、特許文献1〜6で提案された技術では、極細ガラス繊維の配合率が20質量%以上であり、結果、焼却処理後の質量減少率は、多くても80%程度にとどまっていた。   As described above, in the techniques proposed in Patent Documents 1 to 6, the blending ratio of the ultrafine glass fibers is 20% by mass or more, and as a result, the mass reduction rate after the incineration process is only about 80% at most.

特許文献7で提案された技術では、エアフィルタ用濾材の捕集効率を確保するためにエアフィルタ用濾材の圧力損失が490Paを超えるほど高くなってしまい、このエアフィルタ用濾材を使用したエアフィルタの圧力損失が高くなりすぎる問題があった。   In the technique proposed in Patent Document 7, in order to ensure the collection efficiency of the air filter medium, the pressure loss of the air filter medium exceeds 490 Pa, and the air filter using this air filter medium is used. There was a problem that the pressure loss was too high.

特許文献8で提案された技術では、圧力損失が高くなりすぎる場合があり、また、耐水強度に不安があった。   In the technique proposed in Patent Document 8, the pressure loss may be too high, and there is anxiety about the water resistance strength.

さらに、近年、HEPAフィルタは、花粉症、ディーゼル排ガス又はダニなどによるアレルギー対策及びSARSなどの感染症対策に代表される汚染空気対策のため、掃除機、エアコン又は空気清浄器などの家庭電化製品、及び、自動車まで用途が拡大している。このため、強靭で、水に濡れても強度が保持され、捕集後の粉塵を水洗することが可能なエアフィルタ用濾材が求められるようになってきた。   Furthermore, in recent years, HEPA filters have been used in household appliances such as vacuum cleaners, air conditioners, and air purifiers to prevent polluted air, diesel exhaust gas, mite allergies, and contaminated air, such as SARS. And the use is expanding to the car. For this reason, a filter medium for an air filter that is tough and retains strength even when wet with water and can wash the dust after collection has been demanded.

本発明は、圧力損失が低く、高い捕集効率を安定的に確保し、耐水強度が高く、使用済み焼却処分後の質量減少率が高いエアフィルタ用濾材及びそれを備えるエアフィルタの提供を目的とする。   An object of the present invention is to provide a filter medium for an air filter that has a low pressure loss, stably secures a high collection efficiency, has high water resistance, and has a high mass reduction rate after used incineration, and an air filter including the same. And

本発明者らが鋭意検討した結果、微細有機繊維を使用したエアフィルタ用濾材は、圧力損失の上昇が大きくなりすぎ、また、捕集効率のばらつきが大きくなるため、HEPAフィルタ用濾材として最低限必要な圧力損失及び捕集効率を安定的に得ることが難しいことが分かった。このため、本発明者らは、微細有機繊維の配合率を限定し、細径の有機繊維を所定量配合することでガラス繊維の配合率を最小限とし、さらに、太径チョップド有機繊維及び熱融着バインダー繊維のいずれか一方或いはそれら両方の合計を所定量配合することによって、上記問題を解決できることを見出し、本発明を完成させた。具体的には、本発明に係るエアフィルタ用濾材は、平均繊維径が0.2〜1.0μmのマイクロフィブリル化した微細有機繊維の含有量が2質量%以上5質量%未満であり、平均繊維径が0.5μm未満の極細ガラス繊維の含有量が10〜15質量%であり、平均繊維径が2.9〜8.4μmの細径チョップド有機繊維の含有量が50〜70質量%であり、かつ、平均繊維径が9.0〜20μmの太径チョップド有機繊維及び平均繊維径が9.0〜20μmの熱融着バインダー繊維の少なくともいずれか一方を含み、いずれか一方のみを含むときはその含有量又はそれら両方を含むときは合計含有量が10質量%超えて38質量%以下である混合繊維に、該混合繊維100質量部に対して熱水溶融タイプの繊維状バインダー又は粉末状バインダーを0.5質量部以上10質量部未満配合して湿式抄紙されてなり、面風速が5.3cm/秒において圧力損失が490Pa以下であり、かつ、面風速が3.0cm/秒において0.3μmの粒子径を有するDOPの透過率が0.03%以下であることを特徴とする。 As a result of intensive studies by the present inventors, the filter material for air filters using fine organic fibers has an excessive increase in pressure loss and a large variation in collection efficiency. It has been found that it is difficult to stably obtain the necessary pressure loss and collection efficiency. For this reason, the present inventors limit the blending ratio of fine organic fibers, minimize the blending ratio of glass fibers by blending a predetermined amount of small-diameter organic fibers, and, further, large-diameter chopped organic fibers and heat The inventors have found that the above problems can be solved by blending a predetermined amount of either one or both of the fused binder fibers, and have completed the present invention. Specifically, the filter medium for an air filter according to the present invention has a content of microfibrillated fine organic fibers having an average fiber diameter of 0.2 to 1.0 μm of 2% by mass or more and less than 5% by mass. The content of ultrafine glass fibers having a fiber diameter of less than 0.5 μm is 10 to 15% by mass, and the content of fine chopped organic fibers having an average fiber diameter of 2.9 to 8.4 μm is 50 to 70% by mass. When including at least one of a thick chopped organic fiber having an average fiber diameter of 9.0 to 20 μm and a heat-fusing binder fiber having an average fiber diameter of 9.0 to 20 μm, and including only one of them Is a mixed fiber having a total content of more than 10% by mass and 38% by mass or less when including both of them, or a hot water melt type fibrous binder or powder with respect to 100 parts by mass of the mixed fiber binder Of 0.5 to 10 parts by weight, and wet papermaking. When the surface wind speed is 5.3 cm / second, the pressure loss is 490 Pa or less, and when the surface wind speed is 3.0 cm / second, 0. The transmittance of DOP having a particle diameter of 3 μm is 0.03% or less.

本発明に係るエアフィルタ用濾材では、面風速が5.3cm/秒において圧力損失が490Pa以下であり、かつ、面風速が3.0cm/秒において0.3μmの粒子径を有するDOPの透過率が0.03%以下であり、圧力損失と透過率とのバランスがとれているIn the filter medium for an air filter according to the present invention, the transmittance of DOP having a particle diameter of 0.3 μm when the surface wind speed is 5.3 cm / sec and the pressure loss is 490 Pa or less and the surface wind speed is 3.0 cm / sec. There Ri der 0.03% or less, and the balance being the pressure loss transmittance.

本発明に係るエアフィルタ用濾材では、使用済み焼却処理後の質量減少率が85%以上であることが好ましい。本発明に係るエアフィルタ用濾材は、焼却廃棄処分が可能であり、埋め立て処分する必要がなくなる。   In the filter material for air filters which concerns on this invention, it is preferable that the mass decreasing rate after a used incineration process is 85% or more. The filter medium for an air filter according to the present invention can be disposed of by incineration, eliminating the need for landfill disposal.

本発明に係るエアフィルタ用濾材では、前記微細有機繊維は、平均繊維径が0.2〜1.0μmであるので、圧力損失をより低く、捕集効率をより高くできる。 In the filter medium for an air filter according to the present invention, since the fine organic fiber has an average fiber diameter of 0.2 to 1.0 μm , the pressure loss can be further reduced and the collection efficiency can be further increased.

本発明に係るエアフィルタ用濾材では、数1で表される湿潤折目付引張強度低下率が60%以下であることが好ましい。耐水強度をより高くできる。
(数1)湿潤折目付引張強度低下率(%)={1−(湿潤折目付引張強度/常態引張強度)}×100
In the filter medium for an air filter according to the present invention, it is preferable that the tensile strength reduction rate with wet crease represented by Formula 1 is 60% or less. Water resistance can be increased.
(Equation 1) Wet crease tensile strength reduction rate (%) = {1− (wet crease tensile strength / normal tensile strength)} × 100

本発明に係るエアフィルタは、上記いずれかのエアフィルタ用濾材を備えることを特徴とする。   An air filter according to the present invention includes any one of the air filter media described above.

本発明は、圧力損失が低く、高い捕集効率を安定的に確保し、耐水強度が高く、使用済み焼却処分後の質量減少率が高いエアフィルタ用濾材及びそれを備えるエアフィルタを提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a filter medium for an air filter that has a low pressure loss, stably ensures high collection efficiency, has high water resistance, and has a high mass reduction rate after used incineration, and an air filter including the same.

以下、本発明について詳細に説明するが、本発明はこれらの記載に限定して解釈されない。   Hereinafter, the present invention will be described in detail, but the present invention is not construed as being limited to these descriptions.

本実施形態に係るエアフィルタ用濾材は、微細有機繊維の含有量が2質量%以上5質量%未満であり、平均繊維径が0.5μm未満の極細ガラス繊維の含有量が10〜15質量%であり、平均繊維径が2.9〜8.4μmの細径チョップド有機繊維の含有量が50〜70質量%であり、かつ、平均繊維径が9.0〜20μmの太径チョップド有機繊維及び平均繊維径が9.0〜20μmの熱融着バインダー繊維の少なくともいずれか一方を含み、いずれか一方のみを含むときはその含有量又はそれら両方を含むときは合計含有量が10質量%超えて38質量%以下である混合繊維に、混合繊維100質量部に対して熱水溶融タイプの繊維状バインダー又は粉末状バインダーを0.5質量部以上10質量部未満配合して湿式抄紙されてなる。 In the filter medium for an air filter according to this embodiment, the content of fine organic fibers is 2% by mass or more and less than 5% by mass, and the content of ultrafine glass fibers having an average fiber diameter of less than 0.5 μm is 10 to 15% by mass. A thick chopped organic fiber having an average fiber diameter of 2.9 to 8.4 μm and a fine chopped organic fiber content of 50 to 70 mass% and an average fiber diameter of 9.0 to 20 μm; Including at least one of heat-fusing binder fibers having an average fiber diameter of 9.0 to 20 μm, when including only one of them, the total content exceeds 10% by mass when including the content or both A wet papermaking is carried out by blending a mixed fiber of 38% by mass or less with 0.5 parts by mass or more and less than 10 parts by mass of a hot water melt type fibrous binder or a powdery binder with respect to 100 parts by mass of the mixed fiber.

本実施形態における微細有機繊維としては、例えば、ポリ−P−フェニレンテレフタルアミド繊維又はポリ−P−フェニレンテレフタルアミド−3・4−ジフェニルエーテルテレフタルアミド繊維などのマイクロフィブリル化した微細有機繊維がある(以下、「マイクロフィブリル化物」という。)。マイクロフィブリル化物は、例えば、アラミド系繊維などの高結晶性及び高配向性繊維を適宜な長さに切断した後、水中に分散させてホモジナイザー又は叩解機などを用いてフィブリル化する方法、或いは、合成高分子を溶媒の沸点以上で高圧側から低圧側へ爆発的に噴出させ繊維状にフィブリル化する方法で得ることができる。また、マイクロフィブリル化物は、水中に分散させた適宜な長さに切断した合成高分子繊維又はパルプ状繊維を高圧、かつ、高速でオリフィスを通過させ器壁に衝突させ急激に減速させることで、合成高分子繊維又はパルプ状繊維に剪断力を与えて繊維状にフィブリル化する方法で得ることもできる。   Examples of the fine organic fibers in the present embodiment include microfibrillated fine organic fibers such as poly-P-phenylene terephthalamide fiber or poly-P-phenylene terephthalamide-3,4-diphenyl ether terephthalamide fiber (hereinafter referred to as the following). , "Microfibrillated product"). The microfibrillated product is, for example, a method in which highly crystalline and highly oriented fibers such as aramid fibers are cut to an appropriate length and then dispersed in water and fibrillated using a homogenizer or a beater, or the like. The synthetic polymer can be obtained by a method in which the synthetic polymer is explosively ejected from the high-pressure side to the low-pressure side above the boiling point of the solvent and fibrillated into a fibrous form. In addition, the microfibrillated product is a high-speed, high-speed, high-speed and high-speed passage of the synthetic polymer fiber or pulp-like fiber dispersed in water to impinge on the vessel wall and rapidly decelerate, It can also be obtained by applying a shearing force to a synthetic polymer fiber or pulp-like fiber to form a fiber.

本実施形態に係るエアフィルタ用濾材では、微細有機繊維は、平均繊維径が0.2〜1.0μmであることが好ましく、0.2〜0.5μmであることがより好ましい。圧力損失をより低く、捕集効率をより高くできる。   In the air filter medium according to this embodiment, the fine organic fibers preferably have an average fiber diameter of 0.2 to 1.0 μm, and more preferably 0.2 to 0.5 μm. The pressure loss can be reduced and the collection efficiency can be increased.

本実施形態における極細ガラス繊維は、例えば、スピニング法、火炎挿入法又はロータリー法で製造される綿状のガラス繊維である。本実施形態に係るエアフィルタ用濾材では、使用済み焼却処理後の質量減少率が85%以上であることが好ましい。本実施形態に係るエアフィルタ用濾材は、焼却廃棄処分が可能であり、埋め立て処分する必要がなくなる。このため、できうる限り極細ガラス繊維の配合を減じるのが望ましい。   The ultrafine glass fiber in this embodiment is a cotton-like glass fiber manufactured by a spinning method, a flame insertion method, or a rotary method, for example. In the filter medium for air filters which concerns on this embodiment, it is preferable that the mass decreasing rate after a used incineration process is 85% or more. The air filter medium according to the present embodiment can be disposed of by incineration, eliminating the need for landfill disposal. For this reason, it is desirable to reduce the blend of ultrafine glass fibers as much as possible.

本実施形態に係るエアフィルタ用濾材では、面風速が5.3cm/秒において圧力損失が490Pa以下であり、かつ、面風速が3.0cm/秒において0.3μmの粒子径を有するDOPの透過率が0.03%以下であることが好ましい。本実施形態に係るエアフィルタ用濾材は、圧力損失と透過率とのバランスがとれ、HEPAフィルタ用濾材として使用できる。ここで、極細ガラス繊維が平均繊維径0.5μm以上では、上記の捕集効率を得るために15質量%を超えて配合しなければならず品質設計ができない。一方、極細ガラス繊維が平均繊維径0.5μm未満であれば、エアフィルタ用濾材の繊維ネットワークが細かくなり上記の捕集効率に達することができる。ここで、極細ガラス繊維の平均繊維径は、0.5μm未満であれば、極細ガラス繊維の平均繊維径を小さくするほど、極細ガラス繊維の配合を減らすことができるので好ましい。現在で最も細い平均繊維径は、例えば、0.2μmである。また、半導体工程の用途においては、シリコンウエハーのボロン汚染を防止する目的で、ローボロンガラス繊維又はシリカガラス繊維を使用することも出来る。   In the filter medium for an air filter according to this embodiment, the pressure loss is 490 Pa or less at a surface wind speed of 5.3 cm / second, and the DOP having a particle diameter of 0.3 μm at a surface wind speed of 3.0 cm / second is transmitted. The rate is preferably 0.03% or less. The filter medium for an air filter according to this embodiment can balance the pressure loss and the transmittance, and can be used as a filter medium for a HEPA filter. Here, if the ultrafine glass fiber has an average fiber diameter of 0.5 μm or more, in order to obtain the above-described collection efficiency, it must be blended in an amount exceeding 15% by mass, and quality design cannot be performed. On the other hand, if the ultrafine glass fiber is less than the average fiber diameter of 0.5 μm, the fiber network of the filter medium for the air filter becomes fine and the above collection efficiency can be achieved. Here, if the average fiber diameter of the ultrafine glass fiber is less than 0.5 μm, it is preferable that the average fiber diameter of the ultrafine glass fiber is reduced because the blending of the ultrafine glass fiber can be reduced. The thinnest average fiber diameter at present is, for example, 0.2 μm. Moreover, in the use of a semiconductor process, a low boron glass fiber or a silica glass fiber can also be used for the purpose of preventing boron contamination of a silicon wafer.

上記の微細有機繊維と極細ガラス繊維は、いずれも平均繊維径が細いため、エアフィルタ用濾材の捕集性能の確保には必要な構成要素である。しかし、極細ガラス繊維が前記のとおり配合率に上限あることに加えて、微細有機繊維もまた安定的な捕集性能を得るためにその配合率に制限を加えるべきであることが、本発明者らの検討の結果わかってきた。   Since both the fine organic fiber and the ultrafine glass fiber have a small average fiber diameter, they are necessary components for ensuring the collection performance of the air filter medium. However, in addition to the fact that the ultrafine glass fiber has an upper limit on the blending ratio as described above, the present inventors also note that the fine organic fiber should also limit its blending ratio in order to obtain stable collection performance. As a result of these studies, it has become clear.

即ち、エアフィルタ用濾材の圧力損失の上昇、並びに、捕集効率の低下及びばらつきの原因は、第一に、紙層構成中の微細有機繊維が繊維ネットワークの網目を目詰まりさせていることが分かった。微細有機繊維の目詰まりによって、圧力損失の上昇と同時に極細ガラス繊維の機能をも低減させ、捕集効率を低下させる。これは、湿式抄紙を行うため水分散した原料スラリーを抄紙装置の抄紙ワイヤー(網)上で脱水させる際に起る現象であり、抄紙条件の違い(脱水速度、スラリー液の乱流)にも左右され、微細有機繊維の存在によって多かれ少なかれ起り得る。微細有機繊維が微細、かつ、柔軟なので、極細ガラス繊維、細径チョップド有機繊維又は太径チョップド有機繊維に絡みやすく、これら繊維で構成される繊維ネットワークの目を塞いてしまうのが要因と見られる。この点、極細ガラス繊維は、剛直であるので、一定の空隙を確保できる。   That is, the cause of the increase in pressure loss of air filter media and the decrease and variation in collection efficiency is that the fine organic fibers in the paper layer structure are clogging the fiber network. I understood. By clogging the fine organic fibers, the function of the ultrafine glass fibers is reduced at the same time as the pressure loss is increased, and the collection efficiency is lowered. This is a phenomenon that occurs when water-dispersed raw material slurry is dewatered on a papermaking wire (net) of a papermaking machine for wet papermaking, and also due to differences in papermaking conditions (dehydration speed, turbulent flow of slurry) Depending on the presence of fine organic fibers. Because the fine organic fibers are fine and flexible, they tend to get entangled with ultra-fine glass fibers, fine chopped organic fibers, or large chopped organic fibers, and this seems to be the cause of blocking the fiber network composed of these fibers. . In this respect, since the ultrafine glass fiber is rigid, a certain gap can be secured.

本発明者らの検討の結果、前記現象は、微細有機繊維の配合率を制限すれば抑制できることが分かった。それ故、微細有機繊維の適正な配合率は、2質量%以上5質量%未満であり、好ましくは、3〜4質量%である。微細有機繊維が5質量%以上では、前記現象による極端な圧力損失の上昇、並びに、捕集効率の低下及びばらつきが発生する。一方、微細有機繊維が2質量%未満では、エアフィルタ用濾材として十分な捕集効率を得ることができなくなる。また、極細ガラス繊維の適正な配合率は、10〜15質量%である。極細ガラス繊維が10質量%未満では、現在最も繊維径の細い極細ガラス繊維をもってしてもエアフィルタ用濾材として十分な捕集効率を得ることができなくなる。一方、極細ガラス繊維が15質量%を超えると、使用済み焼却処分後の高い質量減少率、例えば、85%以上を確保できなくなる。   As a result of the study by the present inventors, it has been found that the above phenomenon can be suppressed by limiting the blending ratio of fine organic fibers. Therefore, an appropriate blending ratio of the fine organic fibers is 2% by mass or more and less than 5% by mass, and preferably 3 to 4% by mass. When the fine organic fiber is 5% by mass or more, an extreme increase in pressure loss due to the above phenomenon, and a decrease and variation in collection efficiency occur. On the other hand, if the fine organic fiber is less than 2% by mass, it becomes impossible to obtain sufficient collection efficiency as a filter medium for an air filter. Moreover, the suitable mixture rate of an ultrafine glass fiber is 10-15 mass%. When the ultrafine glass fiber is less than 10% by mass, it is impossible to obtain sufficient collection efficiency as a filter medium for an air filter even with the ultrafine glass fiber having the thinnest fiber diameter at present. On the other hand, if the ultrafine glass fiber exceeds 15% by mass, a high mass reduction rate after used incineration disposal, for example, 85% or more cannot be secured.

さらに、エアフィルタ用濾材の主体となる細径チョップド有機繊維の配合は、エアフィルタ用濾材の捕集性能の確保に必須条件である。細径チョップド有機繊維は、繊維ネットワークの網目を細かくし、これが微細有機繊維と極細ガラス繊維の均一分散を助長し、捕集性能の向上により効果的である。その繊維径は、0.1〜0.5デシテックスに相当する繊維径2.9〜8.4μm、好ましくは、2.9〜5.0μmである。細径チョップド有機繊維としては、例えば、レーヨン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ビニロン繊維又はアクリル繊維など各種繊維がある。また、細径チョップド有機繊維は、カット長さが、例えば、1〜20mm、好ましくは、3〜10mmである。   Furthermore, the blending of the small-diameter chopped organic fiber, which is the main component of the air filter medium, is an indispensable condition for ensuring the collection performance of the air filter medium. The fine chopped organic fiber makes the mesh of the fiber network fine, which promotes uniform dispersion of the fine organic fiber and the ultrafine glass fiber, and is more effective for improving the collection performance. The fiber diameter is 2.9 to 8.4 μm, preferably 2.9 to 5.0 μm, corresponding to 0.1 to 0.5 dtex. Examples of the small-diameter chopped organic fiber include various fibers such as rayon fiber, polyethylene fiber, polypropylene fiber, polyester fiber, vinylon fiber, and acrylic fiber. The thin chopped organic fiber has a cut length of, for example, 1 to 20 mm, preferably 3 to 10 mm.

しかし、細径チョップド有機繊維の過剰な配合は、逆に、圧力損失の上昇、並びに、捕集効率及びばらつきをより悪化させる第二の原因となることが分かった。即ち、繊維径が細いチョップド有機繊維は、繊維で構成する繊維ネットワークの網目を細かくするため、微細有機繊維の目詰まりがより顕著になりやすく、また、同繊維は湿式抄紙における水中分散性が悪いため、形成されたエアフィルタ用濾材に疎密のムラを生じやすく、これが捕集効率の低下及びばらつきの原因となっていた。   However, it has been found that excessive blending of small-diameter chopped organic fibers, on the contrary, becomes a second cause of increased pressure loss and worsening collection efficiency and dispersion. That is, the chopped organic fiber having a small fiber diameter makes the network of the fiber network composed of fibers finer, so that the fine organic fiber is more easily clogged, and the fiber has poor dispersibility in wet papermaking. For this reason, unevenness of density is easily generated in the formed filter medium for air filter, which causes a decrease in the collection efficiency and a variation.

本発明者らの検討の結果、前記現象は微細有機繊維の配合率を制限し、残りを太径の有機繊維を配合すれば抑制できることが分かった。それ故、細径チョップド有機繊維の配合率は、50〜70質量%であり、好ましくは、60〜65質量%である。細径チョップド有機繊維の配合率が70質量%より多いと前記現象の発生が顕著になる。一方、細径チョップド有機繊維の50質量%未満ではエアフィルタ用濾材の捕集効率の向上が期待できない。   As a result of the study by the present inventors, it was found that the above phenomenon can be suppressed by limiting the blending ratio of fine organic fibers and blending the remainder with thick organic fibers. Therefore, the compounding ratio of the small-diameter chopped organic fiber is 50 to 70% by mass, and preferably 60 to 65% by mass. When the blending ratio of the small diameter chopped organic fiber is more than 70% by mass, the above phenomenon becomes remarkable. On the other hand, if it is less than 50% by mass of the small-diameter chopped organic fibers, improvement in the collection efficiency of the air filter medium cannot be expected.

本実施形態における太径チョップド有機繊維の配合は、微細有機繊維の目詰まりを緩和するのに有効である。これは、太径チョップド有機繊維の配合によってエアフィルタ用濾材表面の凹凸が多くなり、3次元的になるので微細有機繊維が存在しても空隙が確保できるためと考えられる。ただし、太径チョップド有機繊維の配合が多くなりすぎるとエアフィルタ用濾材としての繊維ネットワーク構成が乱れて空隙が大きくなりすぎ、捕集効率の低下につながってしまう。   The blending of large-diameter chopped organic fibers in this embodiment is effective for alleviating clogging of fine organic fibers. This is thought to be because the unevenness of the surface of the filter medium for the air filter increases due to the blending of the large-diameter chopped organic fibers, and the gap is secured even if fine organic fibers are present because it becomes three-dimensional. However, if the blending of large-diameter chopped organic fibers is too large, the fiber network configuration as the filter medium for the air filter is disturbed and the voids become too large, leading to a decrease in collection efficiency.

本実施形態における太径チョップド有機繊維は、平均繊維径が9.0〜20μm、好ましくは、10〜17μmであれば、特に制限されない。太径チョップド有機繊維としては、例えば、レーヨン繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ビニロン繊維又はパルプ繊維がある。太径チョップド有機繊維の平均繊維径が9.0μm未満では、前記の性能低下及びばらつき現象が起ってしまう。一方、太径チョップド有機繊維の平均繊維径が20μmを超えると、径が太すぎてエアフィルタ用濾材としての繊維ネットワーク構成が乱れて空隙が大きくなりすぎ、捕集効率の低下につながってしまう。また、太径チョップド有機繊維は、カット長さが、例えば、1〜20mm、好ましくは、3〜10mmである。   The large diameter chopped organic fiber in the present embodiment is not particularly limited as long as the average fiber diameter is 9.0 to 20 μm, preferably 10 to 17 μm. Examples of the large-diameter chopped organic fiber include rayon fiber, polyethylene fiber, polypropylene fiber, polyester fiber, vinylon fiber, and pulp fiber. When the average fiber diameter of the large-diameter chopped organic fiber is less than 9.0 μm, the above-described performance deterioration and variation phenomenon occur. On the other hand, if the average fiber diameter of the large-diameter chopped organic fibers exceeds 20 μm, the diameter is too large, the fiber network configuration as the filter medium for the air filter is disturbed, the voids become too large, and the collection efficiency is lowered. The cut diameter of the large-diameter chopped organic fiber is, for example, 1 to 20 mm, preferably 3 to 10 mm.

本実施形態に係るエアフィルタ用濾材では、混合繊維が、微細有機繊維、極細ガラス繊維及び細径チョップド有機繊維とともに、太径チョップド有機繊維を10質量%超えて38質量%以下含有する、熱融着バインダー繊維を10質量%超えて38質量%以下含有する、或いは、太径チョップド有機繊維と熱融着バインダー繊維とを含むときはそれらの合計として10質量%超えて38質量%以下含有する、いずれかの場合がある。さらに、太径チョップド有機繊維及び熱融着バインダー繊維の少なくともいずれか一方を含み、いずれか一方のみを含むときはその含有量又はそれら両方を含むときは合計含有量が、15〜30質量%であることが好ましい。ここで、熱融着型バインダー繊維を使用することは、耐水強度レベル向上のために極めて有効である。熱融着型バインダー繊維としては、例えば、高融点成分を芯側に低融点成分を鞘側にした芯鞘バインダー繊維、高融点成分及び低融点成分を並べた並列バインダー繊維がある。この高融点成分と低融点成分との組み合わせとしては、例えば、ポリプロピレンとポリエチレンとの組み合わせ又は高沸点ポリエステルと低沸点ポリエステルとの組み合わせがある。熱融着型バインダー繊維の平均繊維径は、太径チョップド有機繊維と同様、9.0〜20μm、好ましくは、10〜17μmである。 In the filter material for an air filter according to this embodiment, the mixed fiber contains fine organic fibers, ultrafine glass fibers, and fine chopped organic fibers together with large chopped organic fibers exceeding 10 mass% and 38 mass% or less. Containing 10% by weight of binder fiber or 38% by weight or less, or when containing large diameter chopped organic fiber and heat-bonded binder fiber, the total of them is more than 10% by weight and 38% by weight or less. There is either case. Furthermore, when including at least any one of a large diameter chopped organic fiber and a heat-fusing binder fiber and including only one of them, the total content is 15-30 mass% when including both of them. Preferably there is. Here, the use of the heat-fusing binder fiber is extremely effective for improving the water-resistant strength level. Examples of the heat-sealable binder fiber include a core-sheath binder fiber having a high melting point component on the core side and a low melting point component on the sheath side, and a parallel binder fiber in which the high melting point component and the low melting point component are arranged. Examples of the combination of the high melting point component and the low melting point component include a combination of polypropylene and polyethylene or a combination of high boiling point polyester and low boiling point polyester. The average fiber diameter of the heat-fusible binder fiber is 9.0 to 20 μm, preferably 10 to 17 μm, like the large-diameter chopped organic fiber.

本実施形態に係るエアフィルタ用濾材では、数1で表される湿潤折目付引張強度低下率が60%以下であることが好ましい。本実施形態に係るエアフィルタ用濾材は、実使用時に濾材が濡れ又は水洗浄した場合であっても十分な実使用強度を有する。
(数1)湿潤折目付引張強度低下率(%)={1−(湿潤折目付引張強度/常態引張強度)}×100
In the filter medium for an air filter according to the present embodiment, it is preferable that the tensile strength reduction rate with wet crease expressed by the equation 1 is 60% or less. The air filter medium according to the present embodiment has sufficient actual use strength even when the filter medium is wet or washed with water during actual use.
(Equation 1) Wet crease tensile strength reduction rate (%) = {1− (wet crease tensile strength / normal tensile strength)} × 100

熱融着型バインダー繊維を使用した場合の強度の向上効果は、本実施形態のように、各繊維が最適なブレンドによって緻密、かつ、均一な繊維ネットワーク構成となることで、熱融着型バインダー繊維との接着面積が大きくなったために得られたと考えられる。   The effect of improving the strength when using the heat-fusing binder fiber is that, as in this embodiment, each fiber has a dense and uniform fiber network configuration by an optimum blend, so that the heat-fusing binder is used. It is thought that it was obtained because the adhesion area with the fiber was increased.

PVA繊維バインダー又はPVA粉末バインダーなど熱水溶融タイプの繊維状バインダー又は粉末状バインダーは、混合繊維の100質量部に対し10質量部未満ならば配合しても差し支えないが、これを超えて配合すると、捕集性能の低下現象を引き起こす。十分な強度を得るためには、繊維状バインダー又は粉末状バインダーを0.5質量部以上の配合が必要であり、2〜7質量部の配合が好ましい。これらバインダーは濾材の常態強度の発現に効果があるのに加え、適正配合であれば耐水強度の助長にも寄与する。   The hot water-melting type fibrous binder or powdered binder such as PVA fiber binder or PVA powder binder may be blended if it is less than 10 parts by mass with respect to 100 parts by mass of the mixed fiber, but if exceeding this, , Causing a decrease in collection performance. In order to obtain sufficient strength, it is necessary to add 0.5 parts by mass or more of a fibrous binder or a powdery binder, and 2 to 7 parts by mass is preferable. These binders are effective for the expression of the normal strength of the filter medium, and also contribute to the promotion of the water resistance strength if properly formulated.

本実施形態に係るエアフィルタ用濾材は、以下の製造方法などを用いて得ることができる。すなわち、エアフィルタ用濾材を構成するガラス繊維をパルパーなどの分散機を用いて水中に分散させ、このスラリーを抄紙機で湿式抄紙して湿紙を得る。   The filter medium for an air filter according to this embodiment can be obtained using the following manufacturing method. That is, the glass fiber constituting the filter medium for air filter is dispersed in water using a dispersing machine such as a pulper, and this slurry is wet-made by a paper machine to obtain wet paper.

原料繊維の分散工程では、pH中性水をそのまま用いても効果を上げることはできるが、原料分散性をより良くするため、例えば、硫酸酸性でpH2〜4の範囲で調整するか、或いは、pH中性で分散剤などの界面活性剤を使用する。   In the raw fiber dispersion step, the effect can be improved even if the pH neutral water is used as it is, but in order to improve the raw material dispersibility, for example, it is adjusted in the range of pH 2 to 4 with sulfuric acid acidity, or A surfactant such as a dispersant is used at a neutral pH.

また、撥水性又は難燃性を付与するため、本発明の目的の範囲内で原料系に撥水剤又は難燃剤を添加し、或いは、前記湿紙又は乾燥後のシートに撥水剤又は難燃剤を付与させることも可能である。   Further, in order to impart water repellency or flame retardancy, a water repellant or a flame retardant is added to the raw material system within the scope of the object of the present invention, or a water repellant or a flame retardant is added to the wet paper or the dried sheet. It is also possible to add a flame retardant.

湿紙の乾燥方法としては、例えば、熱風乾燥機又はロールドライヤーを利用し、乾燥温度が120℃以上、好ましくは、140℃以上とする。ここで、湿紙が熱融着バインダー繊維を含有する場合、乾燥温度は、110℃以上、好ましくは130℃以上である。   As a wet paper drying method, for example, a hot air dryer or a roll dryer is used, and the drying temperature is 120 ° C. or higher, preferably 140 ° C. or higher. Here, when the wet paper contains the heat-fusing binder fiber, the drying temperature is 110 ° C. or higher, preferably 130 ° C. or higher.

次に、本発明をより詳細に説明するが、本発明はこれらの記載に限定して解釈されない。   Next, although this invention is demonstrated in detail, this invention is limited to these description and is not interpreted.

(実施例1)
微細有機繊維としてポリ−P−フェニレンテレフタルアミド繊維のマイクロフィブリル化物(ダイセル化学工業株式会社製、ティアラKY−400S)2質量%、極細ガラス繊維として平均繊維径0.20μm品(ジョンマンビル社製、コード#90)10質量%、細径チョップド有機繊維として0.1デシテックス(平均繊維径3.5μm;推定値)アクリル繊維3mmカット品(三菱レイヨン株式会社製、ボンネルMVP)65質量%、太径チョップド有機繊維として2.2デシテックス(平均繊維径14.3μm;推定値)ポリエステル繊維5mmカット品(株式会社クラレ製、EP203)23質量%を含有する混合繊維とし、混合繊維100質量部に対して、繊維状バインダーとしてPVA繊維バインダー(株式会社クラレ製、VPB101)5質量部を配合し、これを硫酸酸性pH3.5の水中にて、2Lミキサーを用いて離解した。次いで、手抄装置にて抄紙を行い、28cm×28cmの大きさの湿紙を得た。この湿紙を120℃の熱風乾燥機で乾燥し、目付80g/mのシート状のエアフィルタ用濾材を得た。
Example 1
2% by mass of micro-fibrillated poly-P-phenylene terephthalamide fiber (Daicel Chemical Industries, Tiara KY-400S) as fine organic fiber, product with an average fiber diameter of 0.20 μm (produced by John Mannville) , Code # 90) 10% by mass, 0.1 decitex as the chopped organic fiber (average fiber diameter 3.5 μm; estimated value) 65% by mass of acrylic fiber 3 mm cut product (Mitsubishi Rayon Co., Ltd., Bonnell MVP), thick As a chopped organic fiber, 2.2 decitex (average fiber diameter 14.3 μm; estimated value) polyester fiber 5 mm cut product (Kuraray Co., Ltd., EP203) mixed fiber containing 23% by mass, and 100 parts by mass of mixed fiber As a fibrous binder, PVA fiber binder (manufactured by Kuraray Co., Ltd., VP 101) 5 parts by mass were blended, which in water of sulfuric acid pH 3.5, were macerated with 2L mixer. Next, papermaking was performed using a hand-making apparatus to obtain a wet paper having a size of 28 cm × 28 cm. This wet paper was dried with a hot air dryer at 120 ° C. to obtain a sheet-like air filter medium having a basis weight of 80 g / m 2 .

(実施例2)
実施例1において、極細ガラス繊維を15質量%とし、太径チョップド有機繊維を18質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Example 2)
A filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 1, except that the ultrafine glass fiber was 15% by mass and the large-diameter chopped organic fiber was 18% by mass.

(実施例3)
実施例2において、微細有機繊維を3質量%とし、太径チョップド有機繊維を17質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Example 3)
A filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 2, except that the fine organic fiber was 3% by mass and the large-diameter chopped organic fiber was 17% by mass.

(実施例4)
実施例2において、極細ガラス繊維を4質量%とし、太径チョップド有機繊維を16質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
Example 4
In Example 2, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the ultrafine glass fiber was 4 mass% and the large-diameter chopped organic fiber was 16 mass%.

(実施例5)
実施例4において、極細ガラス繊維として、平均繊維径0.20μmの極細ガラス繊維の代わりに、平均繊維径0.32μmの極細ガラス繊維(ジョンマンビル社製、コード#100)15質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Example 5)
In Example 4, as an ultrafine glass fiber, instead of an ultrafine glass fiber having an average fiber diameter of 0.20 μm, an ultrafine glass fiber having an average fiber diameter of 0.32 μm (manufactured by John Mannville, code # 100) was 15% by mass. In the same manner, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained.

(実施例6)
実施例5において、全ての太径チョップド有機繊維の代わりに、熱融着バインダー繊維として2.2デシテックス(平均繊維径16μm;推定値)繊維長5mmの芯鞘バインダー繊維(株式会社クラレ製、N720)16質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Example 6)
In Example 5, instead of all large-diameter chopped organic fibers, a core-sheath binder fiber (N720, manufactured by Kuraray Co., Ltd.) having 2.2 decitex (average fiber diameter: 16 μm; estimated value) fiber length as a heat-fusing binder fiber. ) A filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the content was 16% by mass.

(実施例7)
実施例6において、実施例6の配合原料を硫酸酸性pH3.5の水中にて、10mパルパー分散機を用い離解した。次いで、抄紙機にて連続的に抄紙を行い、抄紙によって得られた湿紙を120℃のロールドライヤーで乾燥し、目付80g/m、幅610mm及び長さ300mのエアフィルタ用濾材の巻取り品を作製した。
(Example 7)
In Example 6, the blended raw material of Example 6 was disaggregated in a sulfuric acid acidic pH 3.5 water using a 10 m 3 pulper disperser. Next, the paper is continuously made with a paper machine, and the wet paper obtained by the paper making is dried with a roll dryer at 120 ° C., and a filter medium for air filter having a basis weight of 80 g / m 2 , a width of 610 mm and a length of 300 m is wound. An article was made.

(比較例1)
実施例5において、極細ガラス繊維を10質量%とし、微細有機繊維を5質量%とし、太径チョップド有機繊維を20質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 1)
In Example 5, the filter medium for air filters having a basis weight of 80 g / m 2 is used except that the ultrafine glass fiber is 10% by mass, the fine organic fiber is 5% by mass, and the large-diameter chopped organic fiber is 20% by mass. Got.

(比較例2)
実施例4において、微細有機繊維を5質量%とし、太径チョップド有機繊維を15質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 2)
In Example 4, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the fine organic fiber was 5 mass% and the large-diameter chopped organic fiber was 15 mass%.

(比較例3)
実施例1において、微細有機繊維を6質量%とし、極細ガラス繊維を配合せず、太径チョップド有機繊維を29質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 3)
In Example 1, an air filter medium having a basis weight of 80 g / m 2 was obtained in the same manner except that the fine organic fiber was 6 mass%, the ultrafine glass fiber was not blended, and the large-diameter chopped organic fiber was 29 mass%. Obtained.

(比較例4)
実施例5において、細径チョップド有機繊維を75質量%とし、太径チョップド有機繊維を6質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 4)
In Example 5, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the fine chopped organic fiber was 75% by mass and the large chopped organic fiber was 6% by mass.

(比較例5)
実施例5において、細径チョップド有機繊維を45質量%とし、太径チョップド有機繊維を36質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 5)
In Example 5, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the fine chopped organic fiber was 45% by mass and the large chopped organic fiber was 36% by mass.

(比較例6)
実施例4において、極細ガラス繊維として、平均繊維径0.20μmの極細ガラス繊維の代わりに、平均繊維径0.50μmの極細ガラス繊維(ジョンマンビル社製、コード#104)15質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 6)
In Example 4, as an ultrafine glass fiber, instead of an ultrafine glass fiber having an average fiber diameter of 0.20 μm, an ultrafine glass fiber having an average fiber diameter of 0.50 μm (manufactured by John Mannville, code # 104) was 15% by mass. In the same manner, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained.

(比較例7)
実施例2において、微細有機繊維を配合せず、太径チョップド有機繊維を20質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 7)
In Example 2, a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner except that the fine organic fiber was not blended and the large-diameter chopped organic fiber was changed to 20% by mass.

(比較例8)
実施例2において、微細有機繊維を1質量%とし、太径チョップド有機繊維を19質量%とした以外、同様にして、目付80g/mのエアフィルタ用濾材を得た。
(Comparative Example 8)
A filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 2, except that the fine organic fiber was 1% by mass and the large-diameter chopped organic fiber was 19% by mass.

実施例1〜6及び比較例1〜8では、各3枚のエアフィルタ用濾材を作製した。圧力損失、常態引張強度、湿潤折目付引張強度及び質量減少率の項目では、エアフィルタ用濾材の1枚から試験片をサンプリングして測定を行った。DOP透過率の項目では、データのばらつきを見るために3枚のエアフィルタ用濾材の全てから試験片をサンプリングして測定した。   In each of Examples 1 to 6 and Comparative Examples 1 to 8, three air filter media were produced. In the items of pressure loss, normal tensile strength, wet crease tensile strength, and mass reduction rate, measurement was performed by sampling a test piece from one filter medium for air filter. In the item of DOP transmittance, measurement was performed by sampling test pieces from all three air filter media in order to see variation in data.

また、実施例7のエアフィルタ用濾材の巻取り品では、圧力損失、常態引張強度、湿潤折目付引張強度及び質量減少率の項目では、エアフィルタ用濾材の巻取り端から試験片をサンプリングして測定した。また、DOP透過率の項目では、エアフィルタ用濾材の巻取り端から1mおきに3箇所で試験片をサンプリングして測定した。   In the air filter filter product of Example 7, in the items of pressure loss, normal tensile strength, wet crease tensile strength, and mass reduction rate, the test piece was sampled from the winding end of the filter material for air filter. Measured. Moreover, in the item of DOP transmittance | permeability, it measured by sampling a test piece at three places every 1 m from the winding end of the filter medium for air filters.

(圧力損失)
自製の装置を用いて、有効面積100cmの試験片に面風速5.3cm/秒で通風した際の圧力損失を微差圧計で測定した。
(Pressure loss)
Using a self-manufactured device, pressure loss was measured with a micro differential pressure gauge when a test piece having an effective area of 100 cm 2 was ventilated at a surface wind speed of 5.3 cm / sec.

(DOP透過率)
ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cmの試験片に面風速3.0cm/秒で通風した時の上流及び下流の個数比からDOP透過率を、リオン株式会社社製のレーザーパーティクルカウンターを使用して測定した。なお、多分散DOP粒子の粒子径は、0.3μmとした。また、DOP透過率は、粒子径区分0.2−0.3μmのDOP透過率と0.3−0.4μmのDOP透過率との幾何平均によって求めた。なお、DOP捕集効率とDOP透過率との関係を数2に示す。
(DOP transmittance)
RION Co., Ltd. calculated DOP transmittance from the number ratio of upstream and downstream when air containing polydisperse DOP particles generated by a Ruskin nozzle was passed through a test piece with an effective area of 100 cm 2 at a surface wind speed of 3.0 cm / sec. It measured using the laser particle counter made from a company. The particle diameter of the polydisperse DOP particles was 0.3 μm. Further, the DOP transmittance was determined by a geometric average of the DOP transmittance of the particle size classification 0.2-0.3 μm and the DOP transmittance of 0.3-0.4 μm. The relationship between DOP collection efficiency and DOP transmittance is shown in Equation 2.

(数2)DOP捕集効率(%)=100−DOP透過率(%) (Equation 2) DOP collection efficiency (%) = 100-DOP transmittance (%)

(常態引張強度)
幅25.4mm及び有効長さ100mmの試験片について、紙及び板紙−引張特性の試験方法(JIS P8113 1998)に準拠して測定した。実施例7のエアフィルタ用濾材の巻取り品については、シートの縦方向(抄紙機の流れ方向)と横方向(抄紙機の横断方向)について測定した。
(Normal tensile strength)
A test piece having a width of 25.4 mm and an effective length of 100 mm was measured according to a paper and paperboard-tensile property test method (JIS P8113 1998). With respect to the wound product of the filter material for air filter of Example 7, the longitudinal direction of the sheet (flow direction of the paper machine) and the lateral direction (transverse direction of the paper machine) were measured.

(湿潤折目付引張強度)
常態引張強度測定用と同じサイズの試験片の中央部に厚さ1mmのプレートを当て、試験片をプレートに沿って180°折り曲げた後、試験片を折り曲げる前の平坦な状態に戻すことを5回繰り返し、試験片に折目を付けた。これを常温の水に15分間浸漬した後、紙及び板紙−引張特性の試験方法(JIS P8113 1998)に準拠して湿潤折目付引張強度を測定した。巻取り品については、縦方向のみの測定とした。
(Wet crease tensile strength)
Applying a 1 mm thick plate to the center of a test piece of the same size as that for measuring the normal tensile strength, bending the test piece 180 ° along the plate, and then returning the test piece to its flat state before bending. The test piece was creased repeatedly. This was immersed in water at room temperature for 15 minutes, and then the tensile strength with wet creases was measured according to a paper and paperboard-tensile property test method (JIS P8113 1998). For the wound product, only the longitudinal direction was measured.

(質量減少率)
電気炉で550℃、2時間加熱し、試験片における加熱前後の質量差を加熱前質量で割り、百分率として求めた。
(Mass reduction rate)
It heated at 550 degreeC for 2 hours with the electric furnace, and divided | segmented the mass difference before and behind the heating in a test piece with the mass before a heating, and calculated | required as a percentage.

(測定結果の評価)
実施例1〜7の各試験片の測定結果及び湿潤折目付引張強度低下率を表1に、及び、比較例1〜8の各試験片の測定結果及び湿潤折目付引張強度低下率を表2に示す。なお、表1及び表2に製造条件も併記した。
(Evaluation of measurement results)
Table 1 shows the measurement results and wet crease tensile strength reduction rate of each test piece of Examples 1 to 7, and Table 2 shows the measurement results and wet crease tensile strength reduction rate of each test piece of Comparative Examples 1 to 8. Shown in In Tables 1 and 2, production conditions are also shown.

Figure 0005290507
Figure 0005290507

Figure 0005290507
Figure 0005290507

実施例1,2と比較例7,8との比較によれば、微細有機繊維が2質量%未満の配合では、最細径の極細ガラス繊維を最大量15質量%配合したとしても、微細有機繊維の絶対量が足らないため圧力損失が低すぎて、DOP透過率がHEPAフィルタ用濾材の性能に届かない0.03%を超えてしまう。また、極細ガラス繊維の配合率は、10質量%以上必要であることが分かった。   According to the comparison between Examples 1 and 2 and Comparative Examples 7 and 8, when the fine organic fiber is less than 2% by mass, even if the finest ultrafine glass fiber is blended by the maximum amount of 15% by mass, the fine organic fiber is fine organic. Since the absolute amount of fibers is insufficient, the pressure loss is too low, and the DOP permeability exceeds 0.03% which does not reach the performance of the filter medium for HEPA filter. Moreover, it turned out that the compounding rate of an ultrafine glass fiber needs 10 mass% or more.

実施例2,3,4,5と比較例1,2,3との比較によれば、微細有機繊維を5質量%以上配合するとエアフィルタ用濾材の圧力損失が上がり過ぎて透過率も悪化すること、より太径の極細ガラス繊維を配合して圧力損失を490Pa以下に低減させたとしてもDOP透過率が0.03%を超えること、透過率のばらつきが大きくなってしまうことが分かった。   According to the comparison between Examples 2, 3, 4, and 5 and Comparative Examples 1, 2, and 3, when 5 mass% or more of fine organic fibers are blended, the pressure loss of the filter material for the air filter is excessively increased and the transmittance is also deteriorated. In other words, it was found that even when a thicker ultrafine glass fiber was blended and the pressure loss was reduced to 490 Pa or less, the DOP transmittance exceeded 0.03% and the variation in transmittance increased.

実施例5と比較例4,5との比較によれば、細径チョップド有機繊維の配合率が70質量%より多く、或いは、50質量%未満配合すると、透過率が悪化し、透過率のばらつきが大きくなってしまうことが分かった。   According to the comparison between Example 5 and Comparative Examples 4 and 5, when the compounding ratio of the fine chopped organic fibers is more than 70% by mass or less than 50% by mass, the transmittance deteriorates and the transmittance varies. It turns out that will become big.

実施例4,5と比較例6との比較によれば、平均繊維径が0.5μm以上の太径の極細ガラス繊維を配合すると、圧力損失が低すぎて、捕集効率がHEPAフィルタ用濾材の性能に届かない0.03%を超えてしまうことが分かった。   According to the comparison between Examples 4 and 5 and Comparative Example 6, when ultra-thin glass fibers having an average fiber diameter of 0.5 μm or more were blended, the pressure loss was too low and the collection efficiency was HEPA filter media. It turned out that it will exceed 0.03% which does not reach the performance of.

実施例6、7によれば、熱融着バインダー繊維を配合することによって、引張強度、特に、湿潤時折目付引張強度が向上し、湿潤時折目付引張強度低下率が60%以下まで低減することが分かった。湿潤折目付引張強度低下率が60%以下であれば、エアフィルタ用濾材が濡れた場合或いはエアフィルタ用濾材を水洗浄した場合であっても十分な使用強度を有する。   According to Examples 6 and 7, by blending the heat-fusing binder fiber, the tensile strength, particularly the wet creased tensile strength can be improved, and the wet creased tensile strength reduction rate can be reduced to 60% or less. I understood. If the rate of decrease in wet creased tensile strength is 60% or less, even when the filter medium for air filter is wet or when the filter medium for air filter is washed with water, it has sufficient use strength.

以上から、本発明に係るエアフィルタ用濾材は、HEPAフィルタ用濾材としての性能を満たすことが分かった。さらに、本発明に係るエアフィルタ用濾材は、耐水強度が高く、使用済み焼却処分後の質量減少率が高いことがわかった。   As mentioned above, it turned out that the filter material for air filters which concerns on this invention satisfy | fills the performance as a filter medium for HEPA filters. Furthermore, it turned out that the filter medium for air filters which concerns on this invention has high water-proof strength, and the mass reduction | decrease rate after used incineration disposal is high.

Claims (4)

平均繊維径が0.2〜1.0μmのマイクロフィブリル化した微細有機繊維の含有量が2質量%以上5質量%未満であり、平均繊維径が0.5μm未満の極細ガラス繊維の含有量が10〜15質量%であり、平均繊維径が2.9〜8.4μmの細径チョップド有機繊維の含有量が50〜70質量%であり、かつ、平均繊維径が9.0〜20μmの太径チョップド有機繊維及び平均繊維径が9.0〜20μmの熱融着バインダー繊維の少なくともいずれか一方を含み、いずれか一方のみを含むときはその含有量又はそれら両方を含むときは合計含有量が10質量%超えて38質量%以下である混合繊維に、該混合繊維100質量部に対して熱水溶融タイプの繊維状バインダー又は粉末状バインダーを0.5質量部以上10質量部未満配合して湿式抄紙されてなり、面風速が5.3cm/秒において圧力損失が490Pa以下であり、かつ、面風速が3.0cm/秒において0.3μmの粒子径を有するDOPの透過率が0.03%以下であることを特徴とするエアフィルタ用濾材。 The content of microfibrillated fine organic fibers having an average fiber diameter of 0.2 to 1.0 μm is 2% by mass or more and less than 5% by mass, and the content of ultrafine glass fibers having an average fiber diameter of less than 0.5 μm is 10-15 mass%, the average fiber diameter is 2.9-8.4 μm, the content of fine chopped organic fibers is 50-70 mass%, and the average fiber diameter is 9.0-20 μm thick. Including at least one of the diameter chopped organic fiber and the heat-fusing binder fiber having an average fiber diameter of 9.0 to 20 μm , when only one of them is included, the content is included or when both are included, the total content is A mixed fiber of more than 10% by mass and 38% by mass or less is blended with 0.5 parts by mass or more and less than 10 parts by mass of a hot water melt type fibrous binder or powdery binder with respect to 100 parts by mass of the mixed fiber. Wet paper extraction The transmittance of DOP having a particle diameter of 0.3 μm is 0.03% when the surface wind speed is 5.3 cm / sec and the pressure loss is 490 Pa or less and the surface wind speed is 3.0 cm / sec. An air filter medium characterized by the following. 使用済み焼却処理後の質量減少率が85%以上であることを特徴とする請求項1に記載のエアフィルタ用濾材。   The filter material for an air filter according to claim 1, wherein the mass reduction rate after the used incineration treatment is 85% or more. 数1で表される湿潤折目付引張強度低下率が60%以下であることを特徴とする請求項1又は2に記載のエアフィルタ用濾材。
(数1)湿潤折目付引張強度低下率(%)={1−(湿潤折目付引張強度/常態引張強度)}×100
The filter medium for an air filter according to claim 1 or 2, wherein the rate of decrease in tensile strength with wet crease represented by the formula 1 is 60% or less.
(Equation 1) Wet crease tensile strength reduction rate (%) = {1− (wet crease tensile strength / normal tensile strength)} × 100
請求項1、2又は3に記載のエアフィルタ用濾材を備えることを特徴とするエアフィルタ。   An air filter comprising the air filter medium according to claim 1, 2 or 3.
JP2006272899A 2006-10-04 2006-10-04 Air filter medium and air filter including the same Active JP5290507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272899A JP5290507B2 (en) 2006-10-04 2006-10-04 Air filter medium and air filter including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272899A JP5290507B2 (en) 2006-10-04 2006-10-04 Air filter medium and air filter including the same

Publications (2)

Publication Number Publication Date
JP2008086953A JP2008086953A (en) 2008-04-17
JP5290507B2 true JP5290507B2 (en) 2013-09-18

Family

ID=39371660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272899A Active JP5290507B2 (en) 2006-10-04 2006-10-04 Air filter medium and air filter including the same

Country Status (1)

Country Link
JP (1) JP5290507B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641764B2 (en) * 2004-12-03 2010-01-05 Mitsubishi Paper Mills Limited Non-woven fabric for gypsum board and process for producing the same
CN102182117B (en) * 2011-03-15 2012-08-15 郭茂 Special air filter paper for personnel protection and preparation method thereof
JP7081911B2 (en) * 2017-08-15 2022-06-07 三菱製紙株式会社 Filter material for laminated filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279822A (en) * 1985-10-02 1987-04-13 Nippon Muki Kk Filter paper for air filter
JP3527793B2 (en) * 1995-05-31 2004-05-17 三菱製紙株式会社 Filter media and air filters
JP3669798B2 (en) * 1996-12-25 2005-07-13 北越製紙株式会社 Flame retardant volume reducing high performance air filter medium and method for producing the same
JP3948990B2 (en) * 2002-03-28 2007-07-25 北越製紙株式会社 Volume reduction high performance air filter medium with little expansion and contraction and method for manufacturing the same
JP2004017041A (en) * 2002-06-19 2004-01-22 Oshidari Kenkyusho:Kk Filter medium for high performance air filter and high performance air filter using filter medium
JP4717817B2 (en) * 2004-07-21 2011-07-06 北越紀州製紙株式会社 Filter medium for liquid filtration and method for producing the same

Also Published As

Publication number Publication date
JP2008086953A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5319380B2 (en) Low basis weight air filter media
JP6212619B2 (en) Air filter medium and air filter including the same
EP2401146B1 (en) Filter media suitable for ashrae applications
JP5052935B2 (en) Filter medium for dust removal air filter and manufacturing method thereof
JP7250845B2 (en) Composite media for fuel diversion
JP5096726B2 (en) Composite filter media
JP2010234285A (en) Filter medium for air filter
JP6668203B2 (en) Manufacturing method of filter medium for air filter
JP5290507B2 (en) Air filter medium and air filter including the same
JP2008049333A (en) Composite filter medium and its manufacturing method
JP5797175B2 (en) Air filter media
EP3781286B1 (en) High burst strength wet-laid nonwoven filtration media and its use
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP2019166513A (en) Dust collection deodorizing filter material and dust collection deodorizing filter
JP7281419B2 (en) Filter material for filter and manufacturing method thereof
JP6964033B2 (en) Filter material for air filter
JP2018061924A (en) Nonwoven fabric filter medium for air filter
JP2022124201A (en) Filter medium for air filters
WO2023062964A1 (en) Filter medium for high-performance air filter, and method for manufacturing same
JP2012210588A (en) Filter medium
JP2019177330A (en) Filter medium for air filter, and air filter
CN115916372A (en) Filter medium for air filter and method for producing same
JP2007307516A (en) Filter medium and air filter
JP2001212416A (en) Filter paper for high temperature air filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R150 Certificate of patent or registration of utility model

Ref document number: 5290507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250