JP2013052324A - Composite filter medium and method for manufacturing the same - Google Patents

Composite filter medium and method for manufacturing the same Download PDF

Info

Publication number
JP2013052324A
JP2013052324A JP2011190514A JP2011190514A JP2013052324A JP 2013052324 A JP2013052324 A JP 2013052324A JP 2011190514 A JP2011190514 A JP 2011190514A JP 2011190514 A JP2011190514 A JP 2011190514A JP 2013052324 A JP2013052324 A JP 2013052324A
Authority
JP
Japan
Prior art keywords
filter medium
medium layer
fiber
composite filter
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011190514A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ikeda
光弘 池田
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011190514A priority Critical patent/JP2013052324A/en
Publication of JP2013052324A publication Critical patent/JP2013052324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composit filter medium for a filter in which collecting efficiency of dust in the air is high, pressure loss is low at that time, the coming off of micro glass fiber from the filter medium is a few, which is hardly broken when subjecting to filter processing and filter washing, which has compatively proper rigidity and strength by which mini pleat processing can be easily done, considers the reduction of nonflamable waste materials, can reduce a volume by incineration.SOLUTION: The composite filter medium comprising two layers of an upstream side filter medium layer and a downstream side filter medium layer contains the micro glass fiber having average fiber diameter of 0.1 to 1.0 mm and heat-fusible fiber having a melting point of 50 to 170°C measured by differential scanning calorimetry (DSC) in both layers of the upstream side filter medium layer and the downstream side filter medium layer and further contains polyvinyl alcohol base fiber having Young's modulus of 200 cN/dex or more in at least one layer. Thereby, the above problem can be solved.

Description

本発明は、空気中の粉塵を捕集するエアフィルタ濾材に関し、更に詳しくは、中性能・高性能エアフィルタ用途の濾材に関するものである。   The present invention relates to an air filter medium that collects dust in the air, and more particularly to a filter medium for medium performance and high performance air filters.

エアフィルタ濾材としては、静電気力によりメルトブロー不織布の捕集効率を高めたエレクトレット濾材が知られている。しかし、水分付着によって、著しく捕集効率が低下してしまうため、信頼性の点から、物理的に粒子を捕捉する濾材が必要とされている。物理的に粒子を捕捉する濾材として、ガラス繊維を主体とした濾材が多く用いられている。   As an air filter medium, an electret filter medium in which the collection efficiency of the melt blown nonwoven fabric is enhanced by electrostatic force is known. However, since the collection efficiency is significantly reduced due to the adhesion of moisture, a filter medium that physically captures particles is required from the viewpoint of reliability. As a filter medium that physically captures particles, a filter medium mainly composed of glass fibers is used.

ガラス繊維を主体としたエアフィルタ濾材は、チョップドストランドガラス繊維および/またはマイクロガラス繊維を混合して湿式抄紙法で抄造した後、バインダーを付与して強度を強くする方法で製造されている。しかし、濾材に弾性がなく、フィルタユニットに加工する際の折り曲げ時に折り部が破損する欠点や、衝撃が加わった際にガラス繊維が折れて脱落するという欠点がある。また、フィルタを洗浄して再使用する場合、洗浄時の衝撃で濾材が破損したり、洗剤等が原因でバインダーが溶出してしまい、濾材の強度が低下したりするのが現状である。更に、使用済みの濾材を廃棄する場合、焼却してもガラス繊維が燃えないために、ほとんど減容しないことから、不燃ゴミ問題も深刻となっている。   An air filter medium mainly composed of glass fibers is manufactured by a method in which chopped strand glass fibers and / or micro glass fibers are mixed and made by a wet papermaking method, and then a binder is added to increase the strength. However, there is a drawback that the filter medium is not elastic and that the folded portion is damaged when it is folded into a filter unit, and that the glass fiber is broken and dropped when an impact is applied. In addition, when the filter is washed and reused, the filter medium is damaged due to an impact at the time of washing, or the binder is eluted due to a detergent or the like, so that the strength of the filter medium is reduced. Further, when the used filter medium is discarded, the glass fiber does not burn even when incinerated, and the volume is hardly reduced.

これらの問題を解決するために、捕集効率を向上させる平均繊維径0.1〜1.0μmのマイクロガラス繊維と剛直鎖合成高分子からなる濾水値が30〜800秒のフィブリル化有機繊維とを含有する濾材が提案されている(例えば、特許文献1参照)。マイクロガラス繊維とフィブリル化有機繊維とを濾材中に混在させて、両繊維の絡み合い効果を引き出すことにより、マイクロガラス繊維単独の場合に問題となる抄紙ワイヤーからの繊維離脱の問題、フィルタ加工時の破損の問題を解決している。また、焼却減容可能な濾材となっている。しかし、近年では、フィルタ寿命を延ばすために、従来よりも更に圧力損失の低い濾材が望まれてきているが、マイクロガラス繊維とフィブリル化有機繊維とを混在させている濾材は、密度が高くなり過ぎる場合があり、圧力損失が充分に低いとは言えない。   In order to solve these problems, a fibrillated organic fiber having a drainage value of 30 to 800 seconds comprising micro glass fibers having an average fiber diameter of 0.1 to 1.0 μm and a rigid linear synthetic polymer for improving the collection efficiency. Has been proposed (see, for example, Patent Document 1). By mixing micro glass fiber and fibrillated organic fiber in the filter medium and drawing out the entanglement effect of both fibers, the problem of fiber detachment from papermaking wire, which is a problem in the case of micro glass fiber alone, at the time of filter processing Resolves corruption issues. In addition, the filter medium can be reduced in volume by incineration. However, in recent years, in order to extend the filter life, a filter medium with lower pressure loss than before has been desired. However, a filter medium in which micro glass fibers and fibrillated organic fibers are mixed has a higher density. In some cases, the pressure loss is not sufficiently low.

フィルタ寿命を延ばすために、捕集効率の異なる濾材を密接して重ねて、同時に折り加工を施して、フィルタを作製する方法が提案されている。しかし、濾材の厚みが厚いために、フィルタユニットに折り込める濾材面積が少なくなってしまい、結果として寿命を延ばすことが困難となっている(例えば、特許文献2参照)。   In order to extend the filter life, a method has been proposed in which filter media having different collection efficiencies are closely stacked and simultaneously folded to produce a filter. However, since the thickness of the filter medium is large, the area of the filter medium that can be folded into the filter unit is reduced, and as a result, it is difficult to extend the life (see, for example, Patent Document 2).

また、高性能エアフィルタ濾材として、ポリエステル繊維にガラス繊維を混成させた不織布であって、捕集効率の異なる不織布を一体成形してなる積層濾材を用い、該積層濾材をミニプリーツ形状とした集塵フィルタが提案されている。この混成積層濾材では、ポリエステル繊維によって柔軟になることから、折り加工部の破損は減少するものの、強度向上が図られていないことから、ミニプリーツ形状に加工する際に折り部が破損するという問題や、フィルタ洗浄で破損するという問題が残っていた(例えば、特許文献3参照)。   In addition, as a high-performance air filter medium, a non-woven fabric in which glass fibers are mixed with polyester fibers and formed by integrally forming non-woven fabrics having different collection efficiencies, the multi-layer filter medium is made into a mini-pleated shape. Dust filters have been proposed. In this hybrid laminated filter medium, the polyester fiber becomes soft, so the breakage of the folded part is reduced, but the strength is not improved, so that the folded part breaks when processed into a mini-pleated shape. In addition, there remains a problem of damage due to filter cleaning (see, for example, Patent Document 3).

圧力損失を低く抑え、且つマイクロガラス繊維の脱落を防止するために、融点が50〜170℃である熱融着性繊維とマイクロガラス繊維を含有させて、熱融着性繊維同士の一部を熱融着させた濾材(複合濾材)が提案されている。この濾材では、熱融着性繊維の融着効果による繊維のネットワークが形成されることにより、高い捕集効率、低い圧力損失が得られ、且つ折り加工時に層間剥離等が起こりにくく、強度の高い濾材が得られている(例えば、特許文献4参照)。しかしながら、マイクロガラス繊維と熱融着性繊維を主体とする濾材では剛直性が弱いため、ミニプリーツ加工がしづらいという問題が残っていた。   In order to keep the pressure loss low and prevent the micro glass fiber from falling off, the heat melting fiber having a melting point of 50 to 170 ° C. and the micro glass fiber are contained, and a part of the heat fusible fiber is contained. A heat-fused filter medium (composite filter medium) has been proposed. In this filter medium, the fiber network is formed by the fusing effect of the heat-fusible fiber, so that high collection efficiency and low pressure loss are obtained, and delamination or the like hardly occurs at the time of folding, and the strength is high. A filter medium is obtained (see, for example, Patent Document 4). However, a filter medium mainly composed of micro glass fibers and heat-fusible fibers has a low rigidity, and thus there remains a problem that mini-pleating is difficult.

ミニプリーツ加工をし易くするために、ヤング率の高い繊維とガラス転移温度が30℃以上の樹脂を含有させた濾材が提案されている。しかしながら、樹脂を含有させると濾材中の小さな細孔が塞がれてしまい、捕集効率と圧力損失の悪化を招いていた(例えば、特許文献5参照)。   In order to facilitate mini-pleating, a filter medium containing fibers having a high Young's modulus and a resin having a glass transition temperature of 30 ° C. or higher has been proposed. However, when the resin is contained, small pores in the filter medium are blocked, leading to deterioration of collection efficiency and pressure loss (for example, see Patent Document 5).

また、繊維径が4μm以下の極細ガラス繊維を含有する濾材に、熱水溶解性ポリビニルアルコール系繊維(ポリビニルアルコール系繊維状バインダー)を含有させて、繊維間を融着させることによって、濾材の強度を高めた濾材が提案されている(例えば、特許文献6〜7参照)。しかしながら、ポリビニルアルコール系繊維状バインダーは濾材中の小さな細孔を塞いでしまい、捕集効率を悪化させるという問題があった。また、繊維径が1.0μm以下の極細ガラス繊維を含有する濾材に、湿潤状態で皮膜を形成するポリビニルアルコール系繊維(繊維状ビニロンバインダー)と熱融着性繊維とを含有させて濾材の強度を高めた濾材も提案されている(例えば、特許文献8参照)。しかしながら、湿潤状態で皮膜を形成するポリビニルアルコール系繊維も濾材中の小さな細孔を塞いでしまい、捕集効率を悪化させるという問題があった。   Moreover, the strength of the filter medium is obtained by adding hot water-soluble polyvinyl alcohol fiber (polyvinyl alcohol fiber binder) to a filter medium containing ultrafine glass fibers having a fiber diameter of 4 μm or less and fusing the fibers together. Has been proposed (see, for example, Patent Documents 6 to 7). However, the polyvinyl alcohol-based fibrous binder has a problem that it clogs small pores in the filter medium and deteriorates the collection efficiency. In addition, the filter medium containing ultrafine glass fibers having a fiber diameter of 1.0 μm or less contains polyvinyl alcohol fibers (fibrous vinylon binder) that form a film in a wet state and heat-fusible fibers, and the strength of the filter medium A filter medium having an improved stencil has also been proposed (see, for example, Patent Document 8). However, the polyvinyl alcohol fiber that forms a film in a wet state also has a problem that it clogs small pores in the filter medium and deteriorates the collection efficiency.

このように、空気中の粉塵の捕集効率が高く、その際の圧力損失が低く、濾材からのマイクロガラス繊維の脱落が少なく、フィルタ加工やフィルタ洗浄の際に破損がしにくく、ミニプリーツ加工をし易い適度な剛直性と強度を兼ね備え、且つ不燃ゴミ減量にも配慮した濾材は未だ得られていなかった。   In this way, the collection efficiency of dust in the air is high, the pressure loss at that time is low, the micro glass fiber does not fall off from the filter medium, it is difficult to break during filter processing and filter cleaning, mini pleat processing There has not yet been obtained a filter medium that has both moderate rigidity and strength that are easy to dispose of and that is also suitable for reducing incombustible waste.

特開平8−323121号公報JP-A-8-323121 特開2001−263089号公報JP 2001-263089 A 国際公開第WO03/043717号パンフレットInternational Publication No. WO03 / 043717 Pamphlet 特開2007−144415号公報JP 2007-144415 A 国際公開第WO08/120572号パンフレットInternational Publication No. WO08 / 120572 Pamphlet 特開昭62−110718号公報Japanese Patent Laid-Open No. 62-110718 特開昭62−110719号公報Japanese Patent Laid-Open No. 62-110719 特開2008−246321号公報JP 2008-246321 A

本発明の課題は、空気中の粉塵の捕集効率が高く、その際の圧力損失が低く、複合濾材からのマイクロガラス繊維の脱落が少なく、フィルタ加工やフィルタ洗浄の際に破損がしにくく、ミニプリーツ加工をし易い適度な剛直性と強度を兼ね備え、且つ、不燃ゴミ減量にも配慮し、焼却による減容が可能であるフィルタ用の複合濾材を提供することにある。   The problem of the present invention is that the collection efficiency of dust in the air is high, the pressure loss at that time is low, the micro glass fiber is not dropped from the composite filter medium, and is difficult to break during filter processing and filter cleaning. An object of the present invention is to provide a composite filter medium for a filter which has moderate rigidity and strength that are easy to carry out mini-pleating processing, and is capable of reducing the volume by incineration in consideration of the reduction of incombustible waste.

この課題を解決するための具体的手段は以下の通りである。   Specific means for solving this problem is as follows.

(1)上流側濾材層と下流側濾材層の2層からなる複合濾材であって、上流側濾材層と下流側濾材層の両層に平均繊維径0.1〜1.0μmのマイクロガラス繊維と、示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含有し、且つ少なくとも一方の層にヤング率が200cN/dtex以上のポリビニルアルコール系繊維を含有することを特徴とする複合濾材。   (1) A composite filter medium composed of two layers of an upstream filter medium layer and a downstream filter medium layer, and a micro glass fiber having an average fiber diameter of 0.1 to 1.0 μm in both the upstream filter medium layer and the downstream filter medium layer And a heat-fusible fiber having a melting point of 50 to 170 ° C. measured by differential scanning calorimetry (DSC), and at least one layer contains a polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more. A composite filter medium characterized by that.

(2)ヤング率が200cN/dtex以上のポリビニルアルコール系繊維の総含有量が、複合濾材質量比で2〜20%である上記(1)記載の複合濾材。   (2) The composite filter medium according to (1), wherein the total content of polyvinyl alcohol fibers having a Young's modulus of 200 cN / dtex or more is 2 to 20% in terms of the composite filter medium mass ratio.

(3)上流側濾材層および下流側濾材層に含有されるマイクロガラス繊維の総含有量が、複合濾材質量比で10〜40%である上記(1)または(2)記載の複合濾材。   (3) The composite filter medium according to (1) or (2), wherein the total content of the micro glass fibers contained in the upstream filter medium layer and the downstream filter medium layer is 10 to 40% in terms of the composite filter medium mass ratio.

(4)上流側濾材層に含有されるマイクロガラス繊維の含有量(A)と、下流側濾材層に含有されるマイクロガラス繊維の含有量(B)の比が、(B)/(A)が1.0〜10.0である上記(1)〜(3)のいずれか記載の複合濾材。   (4) The ratio of the content (A) of the micro glass fiber contained in the upstream filter medium layer to the content (B) of the micro glass fiber contained in the downstream filter medium layer is (B) / (A) The composite filter medium according to any one of (1) to (3), wherein is 1.0 to 10.0.

(5)下流側濾材層に含有されるマイクロガラス繊維の平均繊維径が、上流側濾材層に含有されるマイクロガラス繊維の平均繊維径よりも小さい上記(1)〜(4)のいずれか記載の複合濾材。   (5) Any one of the above (1) to (4), wherein the average fiber diameter of the micro glass fibers contained in the downstream filter medium layer is smaller than the average fiber diameter of the micro glass fibers contained in the upstream filter medium layer. Composite filter media.

(6)示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維の総含有量が、複合濾材質量比で25〜60%である上記(1)〜(5)のいずれか記載の複合濾材。   (6) The total content of heat-fusible fibers having a melting point of 50 to 170 ° C. measured by differential scanning calorimetry (DSC) is 25 to 60% in terms of the mass ratio of the composite filter medium (1) to (5) The composite filter medium according to any one of the above.

(7)上記(1)〜(6)のいずれか記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層ウェブを形成した後に、該積層ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させてなる複合濾材の製造方法。   (7) A method for producing a composite filter medium according to any one of the above (1) to (6), wherein a wet paper web of an upstream filter medium layer and a downstream stream using a combination wet paper machine having a plurality of papermaking heads After forming the laminated web composed of the wet filter web of the side filter medium layer, the upstream filter medium layer is brought into close contact with a hot roll having a surface temperature higher than the melting point of the heat-fusible fiber by 10 ° C. or higher while pressing the laminated web. And a downstream filter medium layer are integrated and then dried, and then a method for producing a composite filter medium.

本発明により、空気中の粉塵の捕集効率が高く、その際の圧力損失が低く、複合濾材からのマイクロガラス繊維の脱落が少なく、フィルタ加工やフィルタ洗浄の際に破損がしにくく、ミニプリーツ加工をし易い適度な剛直性と強度を兼ね備え、且つ、不燃ゴミ減量にも配慮し、焼却による減容が可能であるフィルタ用の複合濾材を提供することができる。   According to the present invention, the collection efficiency of dust in the air is high, the pressure loss at that time is low, the micro glass fiber is not dropped from the composite filter medium, and is not easily damaged during filter processing or filter cleaning. It is possible to provide a composite filter medium for a filter that has moderate rigidity and strength that are easy to process, and that can reduce the volume by incineration in consideration of the reduction of incombustible waste.

本発明の複合濾材は、上流側濾材層と下流側濾材層の2層が一体化された複合濾材であって、上流側濾材層と下流側濾材層の両層に平均繊維径0.1〜1.0μmのマイクロガラス繊維と、示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含有し、且つ、少なくとも一方の層にヤング率が200cN/dtex以上のポリビニルアルコール系繊維を含有する複合濾材である。   The composite filter medium of the present invention is a composite filter medium in which two layers of an upstream filter medium layer and a downstream filter medium layer are integrated, with an average fiber diameter of 0.1 to both layers of the upstream filter medium layer and the downstream filter medium layer. It contains 1.0 μm micro glass fiber and heat-fusible fiber having a melting point of 50 to 170 ° C. measured by differential scanning calorimetry (DSC), and at least one layer has a Young's modulus of 200 cN / dtex or more. It is the composite filter medium containing the polyvinyl alcohol type fiber of this.

本発明に係わるヤング率が200cN/dtex以上のポリビニルアルコール系繊維とは、繊維断面の形状や、分子の配向や結晶化度などを調整することによって、ヤング率を高めたポリビニルアルコール系繊維であり、例えば溶剤湿式冷却ゲル紡糸法によって製造するものが知られているが、本発明はこれに限定されるものではない。また、このような高いヤング率を有するポリビニルアルコール系繊維は、熱水や冷水にはほとんど溶解せず、抄造後の複合濾材中でも繊維の形状を維持しており、抄造工程において皮膜を形成しない。したがって、濾材中の小さな細孔を塞ぐことがない。以下、特に断らない限り、本発明で言う「ポリビニルアルコール系繊維」は、「ヤング率が200cN/dtex以上のポリビニルアルコール系繊維」を指すものとする。   The polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more according to the present invention is a polyvinyl alcohol fiber having an increased Young's modulus by adjusting the shape of the fiber cross section, molecular orientation, crystallinity, etc. For example, although what is manufactured by a solvent wet cooling gel spinning method is known, this invention is not limited to this. Moreover, the polyvinyl alcohol fiber having such a high Young's modulus hardly dissolves in hot water or cold water, maintains the shape of the fiber even in the composite filter medium after paper making, and does not form a film in the paper making process. Therefore, the small pores in the filter medium are not blocked. Hereinafter, unless otherwise specified, “polyvinyl alcohol fiber” in the present invention refers to “polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more”.

ポリビニルアルコール系繊維でないヤング率の高い繊維を複合濾材中に含有させることによっても、剛直性を付与することができるが、ヤング率の高い繊維とマイクロガラス繊維や熱融着性繊維との親和性が低い場合には、繊維間の強度が弱い、もろい複合濾材になってしまい、フィルタ加工やフィルタ洗浄の際に破損することや、ミニプリーツ加工がし難くなることがある。   Stiffness can also be imparted by including fibers with high Young's modulus that are not polyvinyl alcohol fibers in the composite filter medium, but the affinity between fibers with high Young's modulus and micro glass fibers or heat-fusible fibers If it is low, it becomes a fragile composite filter medium with weak inter-fiber strength, and may be damaged during filter processing or filter cleaning, and mini-pleat processing may be difficult.

ポリビニルアルコール系繊維は、適度な親水性と疎水性を持っていることから、本発明で用いるマイクロガラス繊維と熱融着性繊維の両方との親和性が高く、湿式抄紙の際にワイヤーからのマイクロガラス繊維の流出を抑えることができると共に、繊維間の強度も強くなることから、強度の強い複合濾材を得ることができる。   Since the polyvinyl alcohol fiber has moderate hydrophilicity and hydrophobicity, it has a high affinity with both the microglass fiber and the heat-fusible fiber used in the present invention, and the wire from the wire during wet papermaking. Since the outflow of the micro glass fibers can be suppressed and the strength between the fibers is increased, a composite filter medium having a high strength can be obtained.

したがって、複合濾材中にポリビニルアルコール系繊維を含有することにより、繊維間強度も強めることができることから、強度の強い複合濾材を得ることができ、フィルタ加工やフィルタ洗浄の際に破損がしにくく、ミニプリーツ加工をし易い適度な剛直性と強度を付与することができる。   Therefore, by containing polyvinyl alcohol fiber in the composite filter medium, it is possible to increase the strength between the fibers, it is possible to obtain a strong composite filter medium, difficult to break during filter processing and filter cleaning, Appropriate rigidity and strength that facilitates mini-pleating can be imparted.

本発明に係わるポリビニルアルコール系繊維の総含有量は、複合濾材質量比で2〜20%であることが好ましく、特に3〜10%が好ましい。ポリビニルアルコール系繊維の含有量が少な過ぎると、十分な剛直性が得られないことがある。一方、多過ぎると、マイクロガラス繊維や熱融着性繊維の含有量が相対的に低くなり、十分な捕集効率が得られないことや、十分な強度が得られないことがある。   The total content of the polyvinyl alcohol fiber according to the present invention is preferably 2 to 20% in terms of the mass ratio of the composite filter medium, and particularly preferably 3 to 10%. If the content of the polyvinyl alcohol fiber is too small, sufficient rigidity may not be obtained. On the other hand, when the amount is too large, the content of the microglass fiber and the heat-fusible fiber is relatively low, and sufficient collection efficiency may not be obtained or sufficient strength may not be obtained.

本発明に係わるポリビニルアルコール系繊維のヤング率は、十分な剛直性が確保できれば上限を定める必要はないが、強過ぎると、剛直性を適度に調整することが難しくなるため、200〜400cN/dtexが好ましく、特に好ましくは250〜350cN/dtexである。   The Young's modulus of the polyvinyl alcohol fiber according to the present invention is not required to set an upper limit if sufficient rigidity can be secured, but if it is too strong, it becomes difficult to appropriately adjust the rigidity, so 200 to 400 cN / dtex. Is preferred, with 250 to 350 cN / dtex being particularly preferred.

本発明に係わるポリビニルアルコール系繊維の繊度は、1〜20dtexが好ましく、特に好ましくは1.5〜10dtexであり、更に好ましくは2〜7dtexである。繊度が小さ過ぎると十分な剛直性が得られないことがあり、繊度が大き過ぎると、地合不良になることや、剛直性が強くなり過ぎて、ミニプリーツ加工がし難くなることがある。   The fineness of the polyvinyl alcohol fiber according to the present invention is preferably 1 to 20 dtex, particularly preferably 1.5 to 10 dtex, and further preferably 2 to 7 dtex. If the fineness is too small, sufficient rigidity may not be obtained. If the fineness is too large, the formation may be poor, or the rigidity may be too strong, making mini-pleating difficult.

本発明に係わるポリビニルアルコール系繊維の繊維長は、1〜15mmが好ましく、特に好ましくは2〜10mmであり、更に好ましくは3〜7mmである。繊維長が長過ぎると、地合不良になり易く、それにより大きな細孔ができて捕集効率が低下することがある。一方、繊維長が短過ぎた場合には、複合濾材の機械的強度が低くなって、複合濾材が破損し易くなることがある。   The fiber length of the polyvinyl alcohol fiber according to the present invention is preferably 1 to 15 mm, particularly preferably 2 to 10 mm, and further preferably 3 to 7 mm. If the fiber length is too long, poor formation is likely to occur, thereby creating large pores and reducing the collection efficiency. On the other hand, when the fiber length is too short, the mechanical strength of the composite filter medium is lowered, and the composite filter medium may be easily damaged.

なお、複数の異なる繊度、異なる繊維長あるいは異なるヤング率のポリビニルアルコール系繊維を必要に応じて混抄して複合濾材を作製しても良い。   A composite filter medium may be prepared by blending a plurality of polyvinyl alcohol fibers having different finenesses, different fiber lengths or different Young's moduli as necessary.

本発明に係わるマイクロガラス繊維は、捕集効率を決定づける繊維の一つである。マイクロガラスの平均繊維径は0.1〜1.0μmであり、特に0.3〜0.8μmが好ましい。平均繊維径が大き過ぎると、捕集効率を向上させる効果が少なくなる。また、平均繊維径が小さ過ぎると、湿式抄紙の際、ワイヤーからのマイクロガラス繊維の流出が多くなり、歩留まりが非常に悪くなることがある。   The micro glass fiber according to the present invention is one of fibers that determine the collection efficiency. The average fiber diameter of the micro glass is 0.1 to 1.0 μm, and particularly preferably 0.3 to 0.8 μm. When the average fiber diameter is too large, the effect of improving the collection efficiency is reduced. On the other hand, if the average fiber diameter is too small, the flow of micro glass fibers from the wire increases during wet papermaking, and the yield may be very poor.

なお、本発明で言う「繊維径」とは、繊維の断面が楕円形や多角形等の場合は、断面積が等しい真円の径に換算した値の繊維径を示し、本発明で言う「平均繊維径」とは、繊維径Diの繊維がNi個存在した場合、ΣDiNi/ΣDiNiで算出される質量平均繊維径を示すものとする。 The “fiber diameter” as used in the present invention refers to the fiber diameter of a value converted into a true circular diameter having the same cross-sectional area when the cross section of the fiber is an ellipse or a polygon, and is referred to in the present invention. The “average fiber diameter” indicates a mass average fiber diameter calculated by ΣDi 2 Ni / ΣDiNi when Ni fibers having a fiber diameter Di exist.

上流側濾材層および下流側濾材層に含有されるマイクロガラス繊維の総含有量は、複合濾材質量比で10〜40%が好ましく、特に好ましくは15〜30%である。マイクロガラスの総含有量が多過ぎると、圧力損失が大きくなり過ぎることがある。また、マイクロガラスの含有量が少な過ぎると、十分な捕集効率が得られないことがある。   The total content of micro glass fibers contained in the upstream filter medium layer and the downstream filter medium layer is preferably 10 to 40%, particularly preferably 15 to 30%, in terms of the mass ratio of the composite filter medium. If the total content of microglass is too high, the pressure loss may become too large. Moreover, when there is too little content of micro glass, sufficient collection efficiency may not be acquired.

また、今後ますます問題視されつつある環境問題の観点からも、不燃ゴミを減量するために、上流側濾材層および下流側濾材層に含有されるマイクロガラス繊維の総含有量は、濾材質量比で50%以下が好ましく、より好ましくは40%以下である。50質量%を超えた場合には、ガラス繊維は不燃性であるため、焼却減容の効果が少なくなる。   Also, from the viewpoint of environmental problems that are increasingly regarded as problems in the future, in order to reduce incombustible waste, the total content of micro glass fibers contained in the upstream filter medium layer and the downstream filter medium layer is Is preferably 50% or less, more preferably 40% or less. When it exceeds 50 mass%, since the glass fiber is nonflammable, the effect of volume reduction by incineration decreases.

上流側濾材層に含有されるマイクロガラス繊維の含有量(A)と、下流側濾材層に含有されるマイクロガラス繊維の含有量(B)の比(B)/(A)は、1.0〜10.0が好ましく、特に好ましくは1〜5であり、更に好ましくは1〜3である。上流側濾材層中のマイクロガラス繊維の含有量が少なく、下流側濾材層中のマイクロガラス繊維の含有量が多く、(B)/(A)が10.0を超えると、捕捉した粉塵が上流側濾材層と下流側濾材層の界面付近に多く溜まり、圧力損失が上昇し易くなるため、複合濾材の寿命が短くなることがある。一方、上流側濾材層中のマイクロガラス繊維の含有量が多く、下流側濾材層中のマイクロガラス繊維の含有量が少なく、(B)/(A)が1.0未満の場合には、粉塵の大半が上流側濾材層で捕捉され、下流側濾材層にはわずかの量の粉塵しか到達しないため、やはり圧力損失が上昇し易くなり、複合濾材の寿命が短くなることがある。   The ratio (B) / (A) of the content (A) of the micro glass fiber contained in the upstream filter medium layer and the content (B) of the micro glass fiber contained in the downstream filter medium layer was 1.0. -10.0 is preferable, Especially preferably, it is 1-5, More preferably, it is 1-3. When the content of micro glass fibers in the upstream filter medium layer is small, the content of micro glass fibers in the downstream filter medium layer is large, and (B) / (A) exceeds 10.0, the captured dust is upstream. Since it accumulates in the vicinity of the interface between the side filter medium layer and the downstream filter medium layer, and the pressure loss is likely to increase, the life of the composite filter medium may be shortened. On the other hand, when the content of the micro glass fiber in the upstream filter medium layer is large, the content of the micro glass fiber in the downstream filter medium layer is small, and (B) / (A) is less than 1.0, Most of the water is trapped by the upstream filter medium layer, and only a small amount of dust reaches the downstream filter medium layer, so that the pressure loss is likely to increase and the life of the composite filter medium may be shortened.

また、下流側濾材層に含有されるマイクロガラス繊維の平均繊維径は、上流側濾材層に含有されるマイクロガラス繊維の平均繊維径よりも小さいことが好ましい。特に好ましくは、下流側濾材層に含有されるマイクロガラス繊維の平均繊維径(D1)と、上流側濾材層に含有されるマイクロガラス繊維の平均繊維径(D2)の比(D1)/(D2)が0.5〜0.9である。下流側濾材層中のマイクロガラス繊維の平均繊維径を、上流側濾材層中のマイクロガラス繊維の平均繊維径よりも小さくすることにより、上流側濾材層で主に大粒径粉塵を、下流側濾材層で主に小粒径粉塵を、順次捕捉することにより、粉塵保持容量が多くなり、圧力損失も低くすることができる。一方、上流側濾材層中のマイクロガラス繊維の平均繊維径が、下流側濾材層中のマイクロガラス繊維の平均繊維径よりも小さい場合には、粉塵の大半が上流側濾材層で捕捉され、下流側濾材層にはわずかの量の粉塵しか到達しないため、圧力損失が上昇し易くなり、複合濾材の寿命が短くなることがある。また、平均繊維径の比(D1)/(D2)が0.9を超える場合は、下流側濾材層中のマイクロガラス繊維の平均繊維径を、上流側濾材層中のマイクロガラス繊維の平均繊維径よりも小さくした効果が認められないことがある。   Moreover, it is preferable that the average fiber diameter of the micro glass fiber contained in a downstream filter medium layer is smaller than the average fiber diameter of the micro glass fiber contained in an upstream filter medium layer. Particularly preferably, the ratio (D1) / (D2) of the average fiber diameter (D1) of the micro glass fibers contained in the downstream filter medium layer and the average fiber diameter (D2) of the micro glass fibers contained in the upstream filter medium layer. ) Is 0.5 to 0.9. By making the average fiber diameter of the micro glass fibers in the downstream filter medium layer smaller than the average fiber diameter of the micro glass fibers in the upstream filter medium layer, mainly the large particle size dust in the upstream filter medium layer By sequentially capturing mainly small particle size dust in the filter medium layer, the dust holding capacity can be increased and the pressure loss can be reduced. On the other hand, when the average fiber diameter of the micro glass fibers in the upstream filter medium layer is smaller than the average fiber diameter of the micro glass fibers in the downstream filter medium layer, most of the dust is captured by the upstream filter medium layer, and downstream Since only a small amount of dust reaches the side filter medium layer, pressure loss tends to increase, and the life of the composite filter medium may be shortened. Moreover, when ratio (D1) / (D2) of average fiber diameter exceeds 0.9, the average fiber diameter of the micro glass fiber in a downstream filter medium layer is set to the average fiber of the micro glass fiber in an upstream filter medium layer. The effect smaller than the diameter may not be recognized.

なお、平均繊維径を調整するために、平均繊維径の異なる複数のマイクロガラス繊維を必要に応じて混抄して複合濾材を作製しても良い。   In order to adjust the average fiber diameter, a plurality of micro glass fibers having different average fiber diameters may be mixed as necessary to produce a composite filter medium.

本発明に係わるマイクロガラス繊維の素材に関しては特に制限はなく、一般的なボロシリケート系の他に、よりシリカの純度の高い石英ガラスも使用できる。なお、一般的なボロシリケート系の場合、半導体産業などで使用された場合、微量の酸やアルカリとの接触によって、ガラス繊維表面が侵食され、微量の金属(B、Naなど)が発生することが問題視されている。酸化硼素含有量が極めて少ないマイクロガラス繊維を使用した場合には、半導体製造工程での酸やアルカリによる劣化の問題もないことから、クリーンルーム用フィルタにも適用することができる。 The material for the micro glass fiber according to the present invention is not particularly limited, and quartz glass having higher silica purity can be used in addition to a general borosilicate system. In the case of a general borosilicate system, when used in the semiconductor industry, the glass fiber surface is eroded by contact with a small amount of acid or alkali, and a small amount of metal (B , Na +, etc.) is generated. It has been viewed as a problem. When micro glass fiber having an extremely low boron oxide content is used, there is no problem of deterioration due to acid or alkali in the semiconductor manufacturing process, and therefore, it can be applied to a clean room filter.

本発明の複合濾材は、上流側濾材層と下流側濾材層の両層に、示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含有する。また、特に好ましい熱融着性繊維の融点は、60〜140℃である。融点が50℃未満の場合は、複合濾材が高温にさらされた場合に、熱融着性繊維が軟化して強度低下を招くことがある。一方、融点が170℃を超えた場合、熱融着機能を発現させるために、高温で加熱や乾燥をさせることが必要となり、多くのエネルギーが必要となる。なお、融点は、JIS K7121に準じて測定することができる。   The composite filter medium of the present invention contains heat-fusible fibers having a melting point of 50 to 170 ° C. measured by differential scanning calorimetry (DSC) in both the upstream filter medium layer and the downstream filter medium layer. Moreover, the melting point of the particularly preferable heat-fusible fiber is 60 to 140 ° C. When the melting point is less than 50 ° C., when the composite filter medium is exposed to a high temperature, the heat-fusible fiber may soften and the strength may be reduced. On the other hand, when the melting point exceeds 170 ° C., it is necessary to heat and dry at a high temperature in order to develop the heat fusion function, and much energy is required. The melting point can be measured according to JIS K7121.

また、熱融着性繊維を含有させて、該熱融着性繊維の溶融温度以上に温度を上げる工程を組み入れることで、複合濾材がフィルタ加工される際の折り曲げに対する機械的強度を向上させることができる。また、熱融着性繊維がネットワークを形成することにより、折り曲げに対する強度を発現するばかりでなく、複合濾材を構成する他の繊維とも均一なネットワークを構成することができ、強度を有しながら捕集効率の高い複合濾材となる。   In addition, by incorporating a heat-fusible fiber and incorporating a step of raising the temperature above the melting temperature of the heat-fusible fiber, the mechanical strength against bending when the composite filter medium is filtered is improved. Can do. In addition, since the heat-fusible fiber forms a network, it not only exhibits strength against bending, but can also form a uniform network with other fibers constituting the composite filter medium, and has strength while capturing. It becomes a composite filter medium with high collection efficiency.

本発明に係わる熱融着性繊維としては、単繊維の他、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、複合濾材の空間を保持したまま、機械的強度を向上させることができる。熱融着性繊維としては、例えば、ポリプロピレン繊維、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)と酢酸ビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ等が挙げられる。また、ポリエチレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、熱水可溶性ポリビニルアルコール系繊維のような熱水可溶性バインダーは、複合濾材の乾燥工程で皮膜を形成し易いが、特性を阻害しない範囲で使用することができる。   Examples of the heat-fusible fiber according to the present invention include single fibers, and composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radial split fibers. Since the composite fiber hardly forms a film, the mechanical strength can be improved while maintaining the space of the composite filter medium. Examples of heat-fusible fibers include polypropylene fiber, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), polypropylene (core) and vinyl acetate alcohol (sheath). , A combination of polypropylene (core) and polyethylene (sheath), a combination of high-melting polyester (core) and low-melting polyester (sheath), and the like. In addition, a single fiber (total melt type) composed only of a low melting point resin such as polyethylene and a hot water soluble binder such as a hot water soluble polyvinyl alcohol fiber can easily form a film in the drying step of the composite filter medium. , Can be used as long as the properties are not impaired.

熱融着性繊維の含有量は、上流側濾材層中と下流側濾材層中の総含有量が、濾材質量比で25〜60%であることが好ましく、更に好ましくは30〜55%である。熱融着性繊維が少な過ぎると、複合濾材の剥離強さ、耐折強さが不足し、折り加工時に層間剥離が生じたり、折り部に膨れが生じて、構造圧損を高めてしまったり、亀裂が生じたりすることがある。多過ぎた場合には、複合濾材が緻密になって圧力損失が高まり、フィルタ寿命が短くなる場合がある。   As for the content of the heat-fusible fiber, the total content in the upstream filter medium layer and the downstream filter medium layer is preferably 25 to 60%, more preferably 30 to 55% in terms of mass ratio of the filter medium. . If there are too few heat-fusible fibers, the peel strength and folding strength of the composite filter medium will be insufficient, delamination will occur during folding, and the folds will swell, increasing structural pressure loss, Cracks may occur. If the amount is too large, the composite filter medium may become dense, pressure loss may increase, and filter life may be shortened.

熱融着性繊維の繊維径は特に限定されないが、3〜25μmであることが好ましく、より好ましくは5〜20μmである。繊維径が3μm未満では、複合濾材の圧力損失が高くなり、フィルタの寿命が短くなる傾向がある。また、繊維径が25μmを超えると、複合濾材の圧力損失は低くなるものの、ネットワークの空隙が大きくなるために、抄造時に抄紙ワイヤーから複合濾材を構成する他の繊維(例えば、マイクロガラス繊維)の抜けが多くなり、捕集効率が低下してしまうことがある。また、融着する比表面積が少なくなり、複合濾材の耐折強さや剥離強さ等の強度が向上しにくくなることがある。   Although the fiber diameter of a heat-fusible fiber is not specifically limited, It is preferable that it is 3-25 micrometers, More preferably, it is 5-20 micrometers. When the fiber diameter is less than 3 μm, the pressure loss of the composite filter medium increases, and the life of the filter tends to be shortened. Also, when the fiber diameter exceeds 25 μm, the pressure loss of the composite filter medium is reduced, but the voids of the network increase, so that other fibers (for example, micro glass fibers) constituting the composite filter medium from the papermaking wire at the time of papermaking There are cases where the number of omissions increases and the collection efficiency decreases. In addition, the specific surface area to be fused is reduced, and it may be difficult to improve the strength of the composite filter medium such as folding strength and peel strength.

耐折強さを高めるためには、熱融着性繊維の繊維長を2〜15mmにすることが好ましく、より好ましくは3〜10mmである。繊維長が2mm未満の場合、熱融着性繊維の単独繊維に交差する繊維の本数が少ないことから、フィルタユニット製造時のプリーツ加工等の折り加工における衝撃で、融着している繊維交点が外れたり、繊維が脱落したりする可能性がある。一方、15mmを超えた場合、抄造前の繊維分散性が悪く、結果として地合の悪い複合濾材となり、マイクロガラス繊維の歩留まりを悪化させてしまう場合がある。   In order to increase the bending resistance, the fiber length of the heat-fusible fiber is preferably 2 to 15 mm, more preferably 3 to 10 mm. When the fiber length is less than 2 mm, since the number of fibers intersecting with the single fiber of the heat-fusible fiber is small, the fiber intersection that is fused by the impact in the folding process such as pleating at the time of manufacturing the filter unit is It may come off or the fibers may fall off. On the other hand, when it exceeds 15 mm, the fiber dispersibility before papermaking is poor, resulting in a poor composite filter medium, which may deteriorate the yield of microglass fibers.

本発明の複合濾材には、上流側濾材層および/または下流側濾材層に、必要に応じて、熱融着性を持たない非熱融着性繊維を含有することができる。特に、熱融着性繊維とポリビニルアルコール系繊維よりも細く、マイクロガラス繊維よりも太い繊維は、太い繊維に収束するように絡むため、接合点を増やすことができ、繊維間の固定力を高めることができることから好ましい。抄紙機の繊維分散工程において、全繊維がパルパーの攪拌装置で水に分散されることにより、各繊維がランダムに配置され、その後の抄紙ワイヤー部で脱水されてウェブを形成する際に、非熱融着性繊維が他の繊維との間に配置されることにより、これらの繊維と空隙を形成しつつ、程良く絡み合い、良好な三次元ネットワークを形成する。ゆえに、均一な地合となり、捕集性能を保持しつつ、適当な空間保持によって通気性を確保することができ、適正な圧力損失を得ることができる。   In the composite filter medium of the present invention, the upstream filter medium layer and / or the downstream filter medium layer may contain non-heat-bondable fibers that do not have heat-bondability, if necessary. In particular, fibers that are thinner than heat-fusible fibers and polyvinyl alcohol fibers and thicker than micro glass fibers are entangled so as to converge on thick fibers, so that the number of junctions can be increased and the fixing force between fibers can be increased. This is preferable. In the fiber dispersion process of a paper machine, when all the fibers are dispersed in water with a pulper stirrer, each fiber is randomly arranged and then dehydrated at the paper machine wire section to form a web. By disposing the fusible fibers with other fibers, the fibers are entangled with each other while forming voids, thereby forming a good three-dimensional network. Therefore, it becomes uniform formation, air permeability can be ensured by maintaining appropriate space while maintaining the collection performance, and appropriate pressure loss can be obtained.

なお、非熱融着性繊維を含有させる場合の含有量は、複合濾材質量比で20〜60質量%が好ましい。非熱融着性繊維が少ない場合には、含有させた効果が認められないことがある。一方、非熱融着性繊維が多過ぎると、マイクロガラス繊維や熱融着性繊維の含有量が相対的に低くなり、十分な捕集効率が得られないことや、十分な強度が得られないことがある。   In addition, as for content in the case of containing a non-heat-bondable fiber, 20-60 mass% is preferable by composite filter medium mass ratio. When there are few non-heat-fusible fibers, the contained effect may not be recognized. On the other hand, if there are too many non-heat-fusible fibers, the content of microglass fibers and heat-fusible fibers will be relatively low, and sufficient collection efficiency will not be obtained, and sufficient strength will be obtained. There may not be.

本発明において、非熱融着性繊維としては、繊維径1〜20μmの有機繊維を好適に用いることができる。具体的には、天然繊維としては、皮膜の少ない麻パルプ、コットンリンター、リント;再生繊維としては、リヨセル繊維、レーヨン、キュプラ;半合成繊維としては、アセテート、トリアセテート、プロミックス;合成繊維としては、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン、ポリ塩化ビニル、ポリエステル系、ナイロン系、ポリオレフィン系、ベンゾエート、ポリクラール、フェノール系などの繊維が挙げられる。上記の繊維の他に、植物繊維として、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を使用することもできる。これらの繊維は、通液性、通気性を阻害しない範囲であれば、フィブリル化されていてもなんら差し支えない。更に古紙、損紙などから得られるパルプ繊維等も使用することができる。また、断面形状がT型、Y型、三角等の異形断面を有する繊維も通気性、通液性確保のために含有できる。また、本発明の複合濾材に含有される非熱融着性繊維には、複合濾材へ新たな機能を付加するといった側面もある。例えば、難燃性繊維を使用することにより、難燃剤の付与といった後加工をすることなく、難燃性を持った複合濾材となる。   In the present invention, an organic fiber having a fiber diameter of 1 to 20 μm can be suitably used as the non-heat-bondable fiber. Specific examples of natural fibers include hemp pulp, cotton linter, and lint with few coatings; recycled fibers include lyocell fiber, rayon, and cupra; semi-synthetic fibers include acetate, triacetate, and promix; synthetic fibers , Polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene, polyvinyl chloride, polyester-based, nylon-based, polyolefin-based, benzoate, polyclar, and phenol-based fibers. In addition to the above-mentioned fibers, wood fibers such as conifer pulp and hardwood pulp, woods such as bamboo pulp, bamboo pulp, kenaf pulp, and herbs can be used as plant fibers. These fibers may be fibrillated as long as they do not impair liquid permeability and air permeability. Furthermore, pulp fibers obtained from waste paper, waste paper, etc. can also be used. Further, fibers having an irregular cross section such as a T-shape, Y-shape, or triangle can be included for ensuring air permeability and liquid permeability. Further, the non-heat-fusible fiber contained in the composite filter medium of the present invention also has an aspect of adding a new function to the composite filter medium. For example, by using a flame retardant fiber, a composite filter medium having flame retardancy can be obtained without post-processing such as application of a flame retardant.

本発明の複合濾材の厚みは特に限定しないが、100〜800μmであることが好ましく、より好ましくは200〜500μmである。100μm未満では複合濾材の堅さが不足し、良好なプリーツ加工ができない場合がある。一方、800μmを超えると、プリーツ加工は可能ではあるが、フィルタユニット内の折られた複合濾材同士の空隙が少なくなり、構造圧力損失が高まり、結果として寿命が短いフィルタとなることがある。本発明の複合濾材の坪量は特に限定しないが、フィルタに加工する際の強度や必要な濾材面積を考慮すると、20〜150g/mが好ましく、より好ましくは、50〜120g/mである。 Although the thickness of the composite filter medium of this invention is not specifically limited, It is preferable that it is 100-800 micrometers, More preferably, it is 200-500 micrometers. If it is less than 100 μm, the composite filter medium may not be sufficiently firm, and good pleating may not be possible. On the other hand, if the thickness exceeds 800 μm, pleating is possible, but the gap between the folded composite filter media in the filter unit is reduced, the structural pressure loss is increased, and as a result, the filter may have a short life. Although the basic weight of the composite filter medium of the present invention is not particularly limited, it is preferably 20 to 150 g / m 2 , more preferably 50 to 120 g / m 2 in consideration of strength when processing into a filter and a necessary filter medium area. is there.

なお、粉塵はまず上流側濾材層で捕捉されるため、上流側濾材層はある程度の厚みおよび/または坪量が必要である。一方、下流側濾材層は上流側濾材層を通過した粉塵のみを補足するため、上流側濾材層よりも薄くおよび/または軽くても良い場合があるが、十分な捕集効率を得るためには、ある程度の厚みおよび/または坪量が必要である。また、上流側濾材層と下流側濾材層が共に厚すぎる/重すぎると、プリーツ加工の際に複合濾材が割れてしまうことや、圧力損失が大きくなり過ぎることがある。したがって、上流側濾材層の坪量は10〜120g/mが好ましく、より好ましくは20〜100g/mである。また、下流側濾材層の坪量は5〜80g/mが好ましく、より好ましくは10〜50g/mである。また、上流側濾材層の厚みは100〜600μmが好ましく、より好ましくは100〜400μmである。また、下流側濾材層の厚みは20〜300μmが好ましく、より好ましくは30〜200g/mである。 Since dust is first captured by the upstream filter medium layer, the upstream filter medium layer needs to have a certain thickness and / or basis weight. On the other hand, the downstream filter medium layer supplements only the dust that has passed through the upstream filter medium layer, and may be thinner and / or lighter than the upstream filter medium layer, but in order to obtain sufficient collection efficiency Some degree of thickness and / or basis weight is required. Moreover, when both the upstream filter medium layer and the downstream filter medium layer are too thick / heavy, the composite filter medium may be cracked during pleating, and the pressure loss may become too large. Therefore, the basis weight of the upstream filter medium layer is preferably 10 to 120 g / m 2 , more preferably 20 to 100 g / m 2 . Moreover, 5-80 g / m < 2 > is preferable and, as for the basic weight of a downstream filter medium layer, More preferably, it is 10-50 g / m < 2 >. Further, the thickness of the upstream filter medium layer is preferably 100 to 600 μm, more preferably 100 to 400 μm. Moreover, 20-300 micrometers is preferable and, as for the thickness of a downstream filter medium layer, More preferably, it is 30-200 g / m < 2 >.

本発明の複合濾材は、JIS P8115のMIT試験機による耐折強さが1.0以上であることが好ましい。本発明の複合濾材は、折り加工(プリーツ加工)する際に、複合濾材に折り機の刃を押しつけて折り目を付けたり、凹凸のロール間を通過させて折り目を付けた後に、機械または手で折りたたみ加工される。耐折強さが1.0未満の場合、複合濾材に亀裂が発生することや、フィルタ完成後の風圧により破れることがある。また、フィルタを洗浄して再使用する場合、洗浄時の衝撃で複合濾材が破損する場合がある。   The composite filter medium of the present invention preferably has a bending strength of 1.0 or more according to JIS P8115 MIT testing machine. When the composite filter medium of the present invention is folded (pleated), the blade of the folding machine is pressed against the composite filter medium to make a crease, or after passing between concavo-convex rolls, Folded. When the folding strength is less than 1.0, the composite filter medium may be cracked or broken by wind pressure after the filter is completed. In addition, when the filter is washed and reused, the composite filter medium may be damaged by the impact during washing.

本発明の複合濾材は、一般紙や湿式不織布を製造するための抄紙機、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機等、これらの抄紙機が同種または異種の2機以上がオンラインで設置されているコンビネーション抄紙機などにより製造されることが好ましい。その際、積層方法は各々の抄紙機で抄きあげた湿紙ウェブを積層する抄き合わせや、一方の湿紙ウェブを形成した後に、この湿紙ウェブの上に繊維を分散した原料スラリーを流して複合濾材を形成する方法でも良い。また、乾燥したウェブの上に、繊維を分散した原料スラリーを流して複合濾材を形成する方法でも良い。   The composite filter medium of the present invention is a paper machine for producing general paper or wet nonwoven fabric, for example, a long net paper machine, a circular net paper machine, an inclined wire type paper machine, etc. The above is preferably manufactured by a combination paper machine installed on-line. At that time, the laminating method is a method of laminating wet paper webs made by each paper machine, forming one wet paper web, and then forming a raw material slurry in which fibers are dispersed on the wet paper web. A method of forming a composite filter medium by pouring may be used. Moreover, the method of flowing the raw material slurry which disperse | distributed the fiber on the dry web and forming a composite filter medium may be used.

これらの抄紙機で抄造された湿紙ウェブは、加熱乾燥され、湿紙ウェブに含有される熱融着性繊維により、複合濾材が形成される。加熱乾燥の手段としては、シリンダードライヤー、エアドライヤー、サクションドラム式ドライヤー、赤外方式ドライヤーなどの方式を用いることができるが、熱融着性繊維を効率よく融着させ、より高い強度が得られる方式として、シリンダードライヤーによる加熱方式が好ましい。シリンダードライヤーによる加熱方法としては、熱ロールにタッチロールで加圧しながら、片面のみ接触させても良いし、フェルトに抱かれたシリンダードライヤー群の間に複合濾材を通過させて表裏を順次、熱ロールに接触させても良い。   The wet paper web produced by these paper machines is dried by heating, and a composite filter medium is formed by the heat-fusible fibers contained in the wet paper web. As a means for drying by heating, methods such as a cylinder dryer, an air dryer, a suction drum type dryer, and an infrared type dryer can be used, but a heat-sealable fiber can be fused efficiently to obtain higher strength. As a method, a heating method using a cylinder dryer is preferable. As a heating method using a cylinder dryer, only one side may be brought into contact with a hot roll while being pressed with a touch roll, or a composite filter medium is passed between cylinder dryers held in a felt, and the front and back are sequentially heated. You may make it contact.

特に好ましい複合濾材の製造方法は、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層ウェブを形成した後に、該積層ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させる複合濾材の製造方法である。この製造方法によれば、熱融着性繊維の融着効果によって、各層内において繊維のネットワークが形成されると共に、両層間も融着させることができ、折り加工時に層間剥離等が起こりにくい、強度の高い複合濾材を得ることができる。   A particularly preferable method for producing a composite filter medium is to use a combination wet paper machine having a plurality of paper making heads to form a laminated web composed of a wet paper web of an upstream filter medium layer and a wet paper web of a downstream filter medium layer, A composite filter medium to be dried after the upstream filter medium layer and the downstream filter medium layer are integrated by bringing the laminated web into close contact with a hot roll having a surface temperature of 10 ° C. or more higher than the melting point of the heat-fusible fiber. It is a manufacturing method. According to this manufacturing method, due to the fusing effect of the heat-fusible fiber, a fiber network is formed in each layer, and both layers can be fused, and delamination or the like hardly occurs during folding. A composite filter medium having high strength can be obtained.

本発明の複合濾材は、JIS B9927に規定される撥水性が1kPa以上であることが好ましく、より好ましくは5kPa以上である。MIL−STD−282に規定されるHEPA濾材の撥水性は508mmHO(4.98kPa)以上とされているが、全てのHEPA濾材が準拠しているわけではない。しかしながら、必要十分な値として、MIL規格を参考にしたJIS B9927に規定される方法で撥水性を測定した場合、5kPa以上の値があれば十分な撥水性を持った濾材と言える。 The composite filter medium of the present invention preferably has a water repellency as defined in JIS B9927 of 1 kPa or more, more preferably 5 kPa or more. The water repellency of the HEPA filter medium defined in MIL-STD-282 is 508 mmH 2 O (4.98 kPa) or more, but not all HEPA filter media comply. However, when the water repellency is measured by a method defined in JIS B9927 with reference to the MIL standard as a necessary and sufficient value, a value of 5 kPa or more can be said to be a filter medium having sufficient water repellency.

本発明の複合濾材において、撥水性を1kPa以上とするには、少なくとも上流側濾材層に撥水性化合物を含有させることが好ましい。撥水性化合物の含有量は、上流側濾材層を構成する繊維に対して0.01〜10質量%が好ましく、より好ましくは0.1〜5質量%である。撥水性化合物の含有量が0.01質量%未満であると、撥水性が1kPa以上得られない場合があり、10質量%を超えると、撥水効果が過剰であり経済的に好ましくないばかりでなく、複合濾材のミクロポアを過剰に塞いでしまうことにより捕集効率が低下する可能性がある。本発明の複合濾材において、複合濾材を使用する環境(温度・湿度等)があまり厳しくない場合や、通風する空気が高湿になる可能性が低い場合などは、上流側濾材層のみに撥水性化合物を含有させれば良いが、下流側濾材層にも撥水性化合物を含有させることも可能である。   In the composite filter medium of the present invention, in order to make the water repellency 1 kPa or more, it is preferable that at least the upstream filter medium layer contains a water repellency compound. The content of the water repellent compound is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the fibers constituting the upstream filter medium layer. When the content of the water repellent compound is less than 0.01% by mass, the water repellency of 1 kPa or more may not be obtained. When the content exceeds 10% by mass, the water repellent effect is excessive and not economically preferable. In addition, there is a possibility that the collection efficiency is lowered by excessively blocking the micropores of the composite filter medium. In the composite filter medium of the present invention, when the environment (temperature, humidity, etc.) in which the composite filter medium is used is not so severe, or when it is unlikely that the air to be ventilated will be highly humid, only the upstream filter medium layer is water repellent. A compound may be included, but a water-repellent compound may also be included in the downstream filter medium layer.

本発明の複合濾材において、撥水性化合物としては、例えば、シリコン系、フッ素系が用いられ、内添法で付与する場合は、ロジン系、強化ロジン系、アルキルケテンダイマー系、アルケニル無水コハク酸系などの製紙用サイズ剤を好適に用いることができる。   In the composite filter medium of the present invention, as the water-repellent compound, for example, silicon-based and fluorine-based compounds are used, and when imparted by an internal addition method, rosin-based, reinforced rosin-based, alkyl ketene dimer-based, alkenyl succinic anhydride-based A paper sizing agent such as can be suitably used.

本発明の複合濾材において、撥水性の付与方法としては、濾材を抄造する前の原料スラリー中に撥水性化合物を添加する内添法と、抄紙後湿紙の状態または乾燥後に含浸または塗工によって撥水性化合物を付与し、乾燥させる外添法が挙げられる。本発明の複合濾材は、どちらの方法でも用いることができる。外添法において、含浸または塗工方式は特に限定はしないが、サイズプレス方式、タブサイズプレス方式、スプレー方式、内添方式、グラビア塗工方式などの方法が挙げられる。   In the composite filter medium of the present invention, as a method for imparting water repellency, an internal addition method in which a water-repellent compound is added to a raw material slurry before paper making, and a wet paper state after paper making or impregnation or coating after drying are performed. Examples include an external addition method in which a water-repellent compound is applied and dried. The composite filter medium of the present invention can be used by either method. In the external addition method, the impregnation or coating method is not particularly limited, and examples thereof include a size press method, a tab size press method, a spray method, an internal addition method, and a gravure coating method.

撥水性化合物の付与方法において、外添法は、含浸または塗工から乾燥までの工程およびそれに伴う製造設備が必要であること、場合によっては抄紙乾燥して得られた濾材の性能を低下させる可能性がある。したがって、内添法が好ましい。また、フィルタの使用環境があまり厳しくない場合や、通風する空気が高湿になる可能性が低い場合などは、上流側濾材層のみに撥水性を付与すれば良く、2層から構成される本発明の複合濾材においては内添法が適している。また、外添法において、上流側濾材層のみに撥水性を付与するには、塗工工程において、上流側濾材層面側から撥水性化合物を供給すれば良く、スプレー方式やグラビア塗工方式を用いることが好ましい。   In the application method of water repellent compounds, the external addition method requires steps from impregnation or coating to drying and the accompanying production equipment, and in some cases, can reduce the performance of the filter media obtained by papermaking. There is sex. Therefore, the internal addition method is preferable. In addition, when the use environment of the filter is not so severe, or when the possibility that the air to be ventilated will be high is low, water repellency may be given only to the upstream filter medium layer. The internal addition method is suitable for the composite filter medium of the invention. In addition, in the external addition method, in order to impart water repellency only to the upstream filter medium layer, a water repellent compound may be supplied from the upstream filter medium layer side in the coating process, and a spray method or a gravure coating method is used. It is preferable.

本発明の複合濾材には、必要に応じて複合濾材の特性を阻害しない範囲で、架橋剤、分散剤、歩留まり向上剤、紙力剤、難燃剤、染料、樹脂などの添加剤を適宜配合することができる。これらの添加剤を付与する方法としては、撥水性化合物を付与するのと同様に、内添法や外添法を適宜選択して用いることができる。例えば、難燃剤を付与することによって、難燃性を持った複合濾材となる。本発明に用いられる難燃剤としては、安全面、環境面からノンハロゲン系難燃剤が好ましく、無機リン系、有機リン系、金属水酸化物などが挙げられる。   In the composite filter medium of the present invention, additives such as a cross-linking agent, a dispersant, a yield improver, a paper strength agent, a flame retardant, a dye, and a resin are appropriately blended as needed, as long as the characteristics of the composite filter medium are not impaired. be able to. As a method for applying these additives, an internal addition method and an external addition method can be appropriately selected and used in the same manner as in the case of applying the water repellent compound. For example, by adding a flame retardant, a composite filter medium having flame retardancy is obtained. The flame retardant used in the present invention is preferably a halogen-free flame retardant from the viewpoint of safety and environment, and examples thereof include inorganic phosphorus, organic phosphorus, and metal hydroxides.

また、機械的強度、耐水性を付与するために熱可塑性樹脂、熱硬化性樹脂を含有させることができる。このような樹脂としては、例えば、アクリル系、酢酸ビニル系、エポキシ系、合成ゴム系、ウレタン系、ポリエステル系、塩化ビニリデン系などのラテックス、ポリビニルアルコール、澱粉、フェノール樹脂などが挙げられ、これらは単独または2種類以上を併用することができる。複合濾材に含有せしめる熱可塑性樹脂の量としては、複合濾材に対して0.01〜10質量%が適当である。10質量%を超えると複合濾材の圧力損失が大きくなる。また、0.01質量%未満では、熱可塑性樹脂を含有しない複合濾材と比較して、機械的強度や耐水性が向上しない場合がある。   Moreover, in order to provide mechanical strength and water resistance, a thermoplastic resin and a thermosetting resin can be contained. Examples of such resins include latexes such as acrylic, vinyl acetate, epoxy, synthetic rubber, urethane, polyester, and vinylidene chloride, polyvinyl alcohol, starch, and phenol resin. These can be used alone or in combination of two or more. The amount of the thermoplastic resin to be contained in the composite filter medium is suitably 0.01 to 10% by mass with respect to the composite filter medium. If it exceeds 10% by mass, the pressure loss of the composite filter medium increases. Moreover, if it is less than 0.01 mass%, compared with the composite filter medium which does not contain a thermoplastic resin, mechanical strength and water resistance may not improve.

また、更にフィルタ寿命を延ばすために、必要に応じて3層構造以上の複合濾材にするために、スパンボンド、ケミカルボンド、メルトブロー等の乾式法で製造した不織布と抄紙機で製造した本発明の2層構造の複合濾材とを、抄紙機で積層しても良いし、別途加工機を用いて積層しても良い。その場合、本発明の複合濾材の上流側濾材層面に、乾式法で製造した不織布を積層することが好ましい。   Further, in order to further extend the filter life, in order to obtain a composite filter medium having a three-layer structure or more, if necessary, the nonwoven fabric manufactured by a dry method such as spunbond, chemical bond, melt blow, and the paper machine manufactured according to the present invention. The composite filter medium having a two-layer structure may be laminated with a paper machine, or may be laminated with a separate processing machine. In that case, it is preferable to laminate the nonwoven fabric manufactured by the dry method on the upstream filter medium layer surface of the composite filter medium of the present invention.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。まず、熱融着性繊維の融点の測定方法と濾材の評価方法を示す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. First, a method for measuring the melting point of the heat-fusible fiber and a method for evaluating the filter medium will be described.

熱融着性繊維の融点の測定方法
<熱融着性繊維の融点(単位:℃)>
熱融着性繊維の融点は、PERKIN ELMER社製示差走査熱分析装置DSC7を用いて測定した。測定は、25〜300℃まで、毎分10℃の昇温条件で測定した。
Measuring method of melting point of heat-fusible fiber <Melting point of heat-fusible fiber (unit: ° C.)>
The melting point of the heat-fusible fiber was measured using a differential scanning calorimeter DSC7 manufactured by PERKIN ELMER. The measurement was performed under a temperature rising condition of 10 ° C./min up to 25 to 300 ° C.

濾材の評価方法
<圧力損失(単位:Pa)>
JIS B9927に準じて、風速5.3cm/秒で通気させ、濾材の上流側と下流側の静圧差を測定し、下記数式1より、圧力損失ΔPを算出した。
Evaluation method of filter medium <pressure loss (unit: Pa)>
In accordance with JIS B9927, aeration was conducted at a wind speed of 5.3 cm / sec, the difference in static pressure between the upstream side and the downstream side of the filter medium was measured, and the pressure loss ΔP was calculated from Equation 1 below.

(数式1)
ΔP=SP1−SP2
ΔP :圧力損失(Pa)
SP1:上流側静圧(Pa)
SP2:下流側静圧(Pa)
(Formula 1)
ΔP = SP1-SP2
ΔP: Pressure loss (Pa)
SP1: Upstream static pressure (Pa)
SP2: Downstream static pressure (Pa)

圧力損失は低い方が優れており、350Pa以下が実用上使用可能なレベルである。また、250Pa以下が優れた濾材であり、150Pa以下が特に優れた濾材である。   A lower pressure loss is better, and 350 Pa or less is a practically usable level. Moreover, 250 Pa or less is an excellent filter medium, and 150 Pa or less is a particularly excellent filter medium.

<粒子捕集効率(単位:%)>
JIS B9908に準じて面風速5.3cm/秒の条件で測定した。測定対象粒子は、大気塵を使用して、粒子径0.3〜0.5μmの粒子についての捕集効率をパーティクルカウンター(商品名「KC−11」、リオン社製)を使用して測定し、下記数式2より、捕集効率ηを算出した。
<Particle collection efficiency (unit:%)>
The surface wind speed was measured at 5.3 cm / sec in accordance with JIS B9908. Particles to be measured are measured using a particle counter (trade name “KC-11”, manufactured by Rion Co., Ltd.) for the collection efficiency of particles having a particle diameter of 0.3 to 0.5 μm using atmospheric dust. From the following formula 2, the collection efficiency η was calculated.

(数式2)
η=(1−C2/C1)×100
η :捕集効率(%)
C1:濾材上流側の粒子数(単位時間、単位流量当たり)
C2:濾材下流側の粒子数(単位時間、単位流量当たり)
(Formula 2)
η = (1−C2 / C1) × 100
η: Collection efficiency (%)
C1: Number of particles on the upstream side of the filter medium (per unit time, per unit flow rate)
C2: Number of particles downstream of the filter medium (per unit time, per unit flow rate)

捕集効率は高いほど優れており、60%以上が濾材として使用可能である。また、高性能フィルタでは、用途によって90%以上、97%以上、99%以上、99.9%以上のものが使用される。   The higher the collection efficiency, the better, and 60% or more can be used as a filter medium. Moreover, in a high performance filter, the thing of 90% or more, 97% or more, 99% or more, and 99.9% or more is used according to a use.

<耐折強さ>
濾材から幅15mm、長さ110mmの試験片を各10枚採取した。各試験片について、JIS P8115に規定される方法にて、MIT試験機を使用し、500g荷重で耐折回数を測定した。得られた耐折回数の値から耐折強さを下記数式3より算出し、それぞれの濾材について、試験片10枚の平均値を比較した。
<Folding resistance>
Ten test pieces each having a width of 15 mm and a length of 110 mm were collected from the filter medium. For each test piece, the number of foldings was measured with a load of 500 g using a MIT tester by the method specified in JIS P8115. Folding strength was calculated from the obtained folding resistance value from the following Equation 3, and the average value of 10 test pieces was compared for each filter medium.

(数式3)
FE=log10
FE:耐折強さ
N :耐折回数
(Formula 3)
FE = log 10 N
FE: Folding strength N: Folding resistance

耐折強さは高いほど優れており、1.0以上が実用上必要であり、3.5以上が優れた濾材である。   The higher the bending strength, the better, and 1.0 or more is practically necessary, and 3.5 or more is an excellent filter medium.

<ミニプリーツ加工>
濾材を5cm間隔のミニプリーツに加工した際の加工し易さ、または加工時に破損や剥離などの問題がないかを下記の基準で評価した。
○:問題なく加工可能。作業性も良い。
△:剛直性などの理由により作業性は劣るが加工は可能。濾材の破損などの問題も認められない。
×:破損等の問題があり、ミニプリーツに加工できない。
<Mini-pleated processing>
The ease with which the filter medium was processed into mini-pleats with an interval of 5 cm, or whether there was a problem such as breakage or peeling during processing, was evaluated according to the following criteria.
○: Can be processed without problems. Good workability.
Δ: Workability is inferior due to rigidity, but processing is possible. There are no problems such as filter media breakage.
X: There is a problem such as breakage, and it cannot be processed into mini-pleats.

<撥水性(単位:kPa)>
濾材から約100×100mm角の試験片3枚を採取し、JIS B9927に準じて、撥水性測定装置を用い、撥水性を測定し、その最小値を比較した。
<Water repellency (unit: kPa)>
Three test pieces of about 100 × 100 mm square were collected from the filter medium, measured for water repellency using a water repellency measuring device according to JIS B9927, and compared with the minimum values.

撥水性は1kPa以上であれば実用上使用可能なレベルであり、特に5kPa以上が優れた濾材である。   If the water repellency is 1 kPa or more, it is a practically usable level, and particularly 5 kPa or more is an excellent filter medium.

<粉塵保持量A(単位:g/m)>
濾材を用いて濾材面積(30m)になるようにフィルタを作製した。粉塵保持量測定器にて、粉塵:JIS15種、風量:56m/分、粉塵濃度:70mg/mの条件でフィルタ圧力損失が300Paになるまで粉塵を負荷し、数式4にて濾材の単位面積当たりの粉塵保持容量を算出した。
<Dust retention amount A (unit: g / m 2 )>
A filter was prepared using a filter medium so as to have a filter medium area (30 m 2 ). Using a dust retention meter, load dust until the filter pressure loss reaches 300 Pa under the conditions of dust: JIS 15 types, air volume: 56 m 3 / min, dust concentration: 70 mg / m 3 The dust holding capacity per area was calculated.

(数式4)
W1=(W1a−W1b)/15
W1 :単位面積当たりの粉塵保持容量(g/m
W1a:粉塵保持容量試験終了時のフィルタユニットの質量(g)
W1b:粉塵保持容量試験開始時のフィルタユニットの質量(g)
(Formula 4)
W1 = (W1a−W1b) / 15
W1: Dust holding capacity per unit area (g / m 2 )
W1a: Mass of the filter unit at the end of the dust holding capacity test (g)
W1b: Mass of filter unit at start of dust holding capacity test (g)

粉塵保持量Aは、数字が大きいほど優れており、20g/m以上が実用上使用可能なレベルであり、特に40g/m以上が優れた濾材である。 The larger the number, the better the dust holding amount A, 20 g / m 2 or more is a practically usable level, and particularly 40 g / m 2 or more is an excellent filter medium.

<粉塵保持量B(単位:g/m)>
濾材を用いて濾材面積(30m)になるようにフィルタを作製した。粉塵保持量測定器にて、粉塵:JIS15種、風量:70m/分、粉塵濃度:70mg/mの条件でフィルタ圧力損失が1000Paになるまで粉塵を負荷し、数式5にて濾材の単位面積当たりの粉塵保持容量を算出した。
<Dust retention amount B (unit: g / m 2 )>
A filter was prepared using a filter medium so as to have a filter medium area (30 m 2 ). With a dust retention meter, load dust until the filter pressure loss reaches 1000 Pa under the conditions of dust: JIS 15 types, air volume: 70 m 3 / min, dust concentration: 70 mg / m 3 The dust holding capacity per area was calculated.

(数式5)
W2=(W2a−W2b)/30
W2 :単位面積当たりの粉塵保持容量(g/m
W2a:粉塵保持容量試験終了時のフィルタユニットの質量(g)
W2b:粉塵保持容量試験開始時のフィルタユニットの質量(g)
(Formula 5)
W2 = (W2a−W2b) / 30
W2: Dust holding capacity per unit area (g / m 2 )
W2a: Mass of the filter unit at the end of the dust holding capacity test (g)
W2b: Mass of filter unit at start of dust holding capacity test (g)

粉塵保持量Bは、数字が大きいほど優れており、40g/m以上が実用上使用可能なレベルであり、特に70g/m以上が優れた濾材である。 The larger the number, the better the dust holding amount B, and 40 g / m 2 or more is a practically usable level, and particularly 70 g / m 2 or more is an excellent filter medium.

<焼却後の灰分(単位:%)>
焼却後の灰分は、濾材を900℃の電気炉で2時間加熱燃焼させ、数式6にて灰分を算出した。
<Ashes after incineration (Unit:%)>
The ash content after incineration was calculated by calculating the ash content using Equation 6 by heating and burning the filter medium in an electric furnace at 900 ° C. for 2 hours.

(数式6)
X=(m1/m2)×100
X :灰分(%)
m1:燃焼後の濾材の質量(g)
m2:燃焼前の濾材の質量(g)
(Formula 6)
X = (m1 / m2) × 100
X: Ash content (%)
m1: Mass of filter medium after combustion (g)
m2: Mass of filter medium before combustion (g)

焼却後の灰分は数字が小さいほど、不燃ゴミの焼却減容の効果が高い。   The smaller the number of ash after incineration, the higher the incineration volume reduction effect of incombustible waste.

<繊維>
実施例および比較例で使用した繊維を表1に示した。
<Fiber>
The fibers used in Examples and Comparative Examples are shown in Table 1.

Figure 2013052324
Figure 2013052324

実施例1〜12および比較例1〜8
2mの分散タンクに水を投入後、表2〜4に示す比率で配合し、分散濃度0.2質量%で5分間分散して、ポリビニルアルコール系繊維の種類および/または含有量の異なる上流側濾材層用繊維分散液および下流側濾材層用繊維分散液を調製した。なお、撥水性を持たすため、上流側濾材層繊維分散液の調製時に、アルキルケテンダイマー系サイズ剤(商品名:AD1602、星光PMC社製)を対繊維1質量%添加して、上流側濾材層用繊維分散液を調製した。
Examples 1-12 and Comparative Examples 1-8
After adding water to a dispersion tank of 2 m 3 , blended in the ratios shown in Tables 2 to 4 and dispersed for 5 minutes at a dispersion concentration of 0.2% by mass, the upstream with different types and / or contents of polyvinyl alcohol fibers A fiber dispersion for the side filter medium layer and a fiber dispersion for the downstream filter medium layer were prepared. In order to have water repellency, at the time of preparation of the upstream filter medium layer fiber dispersion, an alkyl ketene dimer sizing agent (trade name: AD1602, manufactured by Seiko PMC Co., Ltd.) is added at 1% by mass to the upstream filter medium layer. A fiber dispersion was prepared.

長網抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて、上流側濾材層を長網抄紙機で乾燥質量40g/mになるようにウェブを形成し、下流側濾材層を円網抄紙機で乾燥質量40g/mになるようにウェブを形成して、両ウェブを乾燥させる前に抄き合わせた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cmの圧力で加圧しながら乾燥および一体化し、複合濾材1〜12および比較濾材1〜2を得た。 Using a combination paper machine in which a long net paper machine and a circular net paper machine are installed online, the upstream filter media layer is formed on the long net paper machine so that the dry mass is 40 g / m 2 , and the downstream side After forming the web so that the filter medium layer has a dry mass of 40 g / m 2 with a circular paper machine and making both webs before drying, the touch roll is set to 400 N / min with a cylinder dryer having a surface temperature of 130 ° C. pressure while drying and integrated under a pressure of cm 2, and obtain a composite filter media 12 and Comparative filter medium 1-2.

Figure 2013052324
Figure 2013052324

Figure 2013052324
Figure 2013052324

Figure 2013052324
Figure 2013052324

複合濾材1〜12および比較濾材1〜8の評価結果を表5に示す。   Table 5 shows the evaluation results of the composite filter media 1-12 and the comparative filter media 1-8.

Figure 2013052324
Figure 2013052324

実施例4、実施例9〜12、比較例1〜2の比較から、ヤング率が200cN/dtex以上のポリビニルアルコール系繊維を含有させることにより、他の特性を損なうことなく、耐折強さが高い複合濾材を得ることができる。また、実施例1〜8の比較から、実施例1は、実施例2〜8と比べると耐折強さが低く、ミニプリーツ加工が若干し難く、実施例8は、耐折強さが高いが、ミニプリーツ加工が若干し難かったことから、ポリビニルアルコール系繊維の含有量を複合濾材質量比で2%〜20%にすることにより、耐折強さとミニプリーツ加工に特に優れた複合濾材を得ることができる。   From the comparison of Example 4, Examples 9 to 12, and Comparative Examples 1 and 2, by including a polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more, the bending strength is reduced without impairing other properties. A high composite filter medium can be obtained. In addition, from the comparison of Examples 1 to 8, Example 1 has a low folding strength compared to Examples 2 to 8, and the mini-pleating process is slightly difficult, and Example 8 has a high folding resistance. However, since the mini-pleating process was slightly difficult, by making the content of polyvinyl alcohol fiber 2% to 20% by mass ratio of the composite filter medium, a composite filter medium particularly excellent in folding resistance and mini-pleating process can be obtained. Can be obtained.

また、実施例4と、比較例3の比較から、ヤング率が200cN/dtex以上のポリビニルアルコール系繊維と熱融着性繊維のいずれをも含有させずに、湿潤状態で皮膜を形成するポリビニルアルコール系繊維(繊維状ビニロンバインダー)を用いると、圧力損失が高く、捕集効率も低い。また、耐折性も低い。   Further, from the comparison between Example 4 and Comparative Example 3, the polyvinyl alcohol that forms a film in a wet state without containing any of the polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more and the heat-fusible fiber. When a system fiber (fibrous vinylon binder) is used, the pressure loss is high and the collection efficiency is low. Moreover, folding resistance is also low.

また、実施例4と、比較例4〜5の比較から、熱融着性繊維を含有させずにポリビニルアルコール系繊維状バインダーを用いると、ヤング率が200cN/dtex以上のポリビニルアルコール系繊維を含有させても、耐折性が低く、且つ、ミニプリーツ加工もし難く、特にポリビニルアルコール系繊維状バインダーの含有量が多くなると、ミニプリーツ加工時に濾材の破損が認められた。また、圧力損失も高く、捕集効率も低い。   Further, from comparison between Example 4 and Comparative Examples 4 to 5, when a polyvinyl alcohol-based fibrous binder is used without including a heat-fusible fiber, a Young's modulus of 200 cN / dtex or more is included. Even if it was made to have, the folding resistance was low and it was difficult to carry out the mini-pleating process. In particular, when the content of the polyvinyl alcohol-based fibrous binder was increased, the filter medium was damaged during the mini-pleating process. Moreover, the pressure loss is high and the collection efficiency is low.

また、実施例4と、比較例6〜7の比較から、ポリビニルアルコール系繊維状バインダーを用いると、熱融着性繊維を含有させても、十分な耐折性を得ることができない。また、圧力損失が高く、捕集効率も低い。   Further, from the comparison between Example 4 and Comparative Examples 6 to 7, if a polyvinyl alcohol-based fibrous binder is used, sufficient folding resistance cannot be obtained even if heat-fusible fibers are contained. Moreover, the pressure loss is high and the collection efficiency is low.

一方、実施例4と比較例8の比較から、ポリビニルアルコール系繊維ではない、ヤング率が200cN/dtex以上の繊維を用いても、耐折性は低い。   On the other hand, from the comparison between Example 4 and Comparative Example 8, even when a fiber having a Young's modulus of 200 cN / dtex or more, which is not a polyvinyl alcohol fiber, is used, the bending resistance is low.

実施例13〜27および比較例9〜10
表6〜8に示す比率で配合し、マイクロガラス系繊維の平均繊維径および/または含有量、上流側濾材層および下流側濾材層に含有されるマイクロガラスの含有量の比が異なる上流側濾材層用繊維分散液および下流側濾材層用繊維分散液を用いた以外は、実施例1〜12および比較例1〜8と同様の方法で、複合濾材13〜27および比較濾材9〜10を得た。
Examples 13 to 27 and Comparative Examples 9 to 10
The upstream filter medium which mix | blends by the ratio shown to Tables 6-8, and differs in the ratio of the average fiber diameter and / or content of micro glass system fiber, and the content of the micro glass contained in an upstream filter medium layer and a downstream filter medium layer Composite filter media 13 to 27 and comparative filter media 9 to 10 are obtained in the same manner as in Examples 1 to 12 and Comparative Examples 1 to 8 except that the fiber dispersion for layers and the fiber dispersion for downstream filter media layers are used. It was.

Figure 2013052324
Figure 2013052324

Figure 2013052324
Figure 2013052324

Figure 2013052324
Figure 2013052324

複合濾材13〜27および比較濾材9〜10の評価結果を表9に示す。   Table 9 shows the evaluation results of the composite filter media 13 to 27 and the comparative filter media 9 to 10.

Figure 2013052324
Figure 2013052324

実施例4、実施例13〜17、比較例9〜10の比較から、平均繊維径が0.1〜1.0μmのマイクロガラス繊維を用いることにより、捕集効率が高く、粉塵保持量が大きい複合濾材を得ることができる。特に0.3〜0.8μmのマイクロガラス繊維を用いると圧力損失を低く抑えることができる。なお、実施例18と実施例13〜17および実施例19〜27の比較より、捕集効率を高くするには、マイクロガラス繊維の含有量は複合濾材質量比で10%以上が優れているが、実施例27と実施例13〜26の比較より、マイクロガラス繊維の含有量が多いと、耐折強さが低くなるため、マイクロガラス繊維の含有量は複合濾材質量比で10〜40%が特に優れている。   From the comparison of Example 4, Examples 13 to 17 and Comparative Examples 9 to 10, by using micro glass fibers having an average fiber diameter of 0.1 to 1.0 μm, the collection efficiency is high and the dust holding amount is large. A composite filter medium can be obtained. In particular, when a micro glass fiber having a thickness of 0.3 to 0.8 μm is used, the pressure loss can be kept low. From the comparison of Example 18 with Examples 13 to 17 and Examples 19 to 27, in order to increase the collection efficiency, the content of the microglass fiber is 10% or more in terms of the mass ratio of the composite filter medium. From the comparison between Example 27 and Examples 13 to 26, if the content of the micro glass fiber is large, the bending strength is lowered. Therefore, the content of the micro glass fiber is 10 to 40% in terms of the mass ratio of the composite filter medium. Especially excellent.

また、実施例21と実施例22との比較、および実施例23と実施例24との比較から、上流側濾材層に含有されるマイクロガラスの含有量(A)と、下流側濾材層に含有されるマイクロガラスの含有量(B)の比(B)/(A)が1.0〜10.0であると、捕集効率と粉塵保持量の両方に優れている。これは、上流側濾材層中のマイクロガラス繊維の含有量が少なく、下流側濾材層中のマイクロガラス繊維の含有量が多く、(B)/(A)が10.0を超えると、捕捉した粉塵が上流側濾材層と下流側濾材層の界面付近に溜まり易く、圧力損失が上昇し易くなるためであると推測される。また、上流側濾材層中のマイクロガラス繊維の含有量が多く、下流側濾材層中のマイクロガラス繊維の含有量が少なく、(B)/(A)が1.0未満の場合には、粉塵の大半が上流側濾材層で捕捉され、やはり圧力損失が上昇し易くなるためであると推測される。   Further, from comparison between Example 21 and Example 22 and comparison between Example 23 and Example 24, the content (A) of the microglass contained in the upstream filter medium layer and contained in the downstream filter medium layer When the ratio (B) / (A) of the content (B) of the micro glass is 1.0 to 10.0, both the collection efficiency and the dust holding amount are excellent. This was captured when the content of micro glass fibers in the upstream filter medium layer was small, the content of micro glass fibers in the downstream filter medium layer was large, and (B) / (A) exceeded 10.0. This is presumably because dust tends to accumulate near the interface between the upstream filter medium layer and the downstream filter medium layer, and pressure loss tends to increase. In addition, when the content of the micro glass fiber in the upstream filter medium layer is large, the content of the micro glass fiber in the downstream filter medium layer is small, and (B) / (A) is less than 1.0, It is presumed that most of this is trapped by the upstream filter medium layer and the pressure loss is likely to increase.

更に実施例4と実施例13〜17の比較より、下流側濾材層中のマイクロガラス繊維の平均繊維径が、上流側濾材層中のマイクロガラス繊維の平均繊維径よりも小さい場合には、粉塵保持容量が多い。これは、上流側濾材層で主に大粒径粉塵を、下流側濾材層で主に小粒径粉塵を、順次捕捉することにより、粉塵保持容量が多くなり、圧力損失も低くすることができるためであると推測される。   Further, from comparison between Example 4 and Examples 13 to 17, when the average fiber diameter of the microglass fibers in the downstream filter medium layer is smaller than the average fiber diameter of the microglass fibers in the upstream filter medium layer, There is much holding capacity. This is because, by sequentially capturing mainly large particle size dust in the upstream filter medium layer and mainly small particle size dust in the downstream filter medium layer, the dust holding capacity can be increased and the pressure loss can be reduced. This is presumed.

実施例28〜32および比較例11
表10に示す比率で配合し、熱融着性繊維の種類および含有量の異なる上流側濾材層用繊維分散液および下流側濾材層用繊維分散液を用いた以外は、実施例1〜12および比較例1〜8と同様の方法で、複合濾材28〜32および比較濾材11を得た。
Examples 28-32 and Comparative Example 11
Example 1-12 except having mix | blended by the ratio shown in Table 10, and using the fiber dispersion liquid for upstream filter media layers and the fiber dispersion liquid for downstream filter media layers from which the kind and content of heat-fusible fiber differ. Composite filter media 28-32 and comparative filter media 11 were obtained in the same manner as in Comparative Examples 1-8.

Figure 2013052324
Figure 2013052324

複合濾材28〜32および比較濾材11の評価結果を表11に示す。なお、比較濾材11ではフィルタ加工時に濾材が容易に破損してしまい、フィルタを得ることができなかった。   Table 11 shows the evaluation results of the composite filter media 28 to 32 and the comparative filter media 11. In the comparative filter medium 11, the filter medium was easily damaged during filter processing, and a filter could not be obtained.

Figure 2013052324
Figure 2013052324

実施例4、28〜32と比較例11との比較より、上流側濾材層と下流側濾材層の両層に熱融着性繊維を含有させることにより、他の特性を損なうことなく、耐折強さが高い複合濾材を得ることができる。また、実施例4、28〜31と実施例32との比較より、熱融着性繊維の含有量を複合濾材質量比で25%以上とすることにより、耐折性の高い複合濾材を得ることができ、ミニプリーツ加工にも優れた複合濾材を得ることができる。但し、実施例30に示すように、熱融着性繊維の含有量が複合濾材質量比で60%を超えても複合濾材を作製することができるが、マイクロガラス繊維の含有量が相対的に少なくなり、捕集効率が低くなるため、熱融着性繊維の含有量を複合濾材質量比で25〜60%とすることにより、捕集効率と耐折性の両方に特に優れた複合濾材を得ることができる。   From the comparison between Examples 4 and 28 to 32 and Comparative Example 11, by including heat-fusible fibers in both the upstream filter medium layer and the downstream filter medium layer, the other characteristics were not impaired, and the folding resistance was improved. A composite filter medium having high strength can be obtained. Moreover, by comparing the content of the heat-fusible fiber with the composite filter medium mass ratio of 25% or more from the comparison between Examples 4 and 28 to 31 and Example 32, a composite filter medium having high folding resistance is obtained. And a composite filter medium excellent in mini-pleating can be obtained. However, as shown in Example 30, a composite filter medium can be produced even when the content of heat-fusible fibers exceeds 60% by mass ratio of the composite filter medium, but the content of microglass fibers is relatively Since the amount of heat-fusible fiber is 25 to 60% in the mass ratio of the composite filter medium, the composite filter medium particularly excellent in both the collection efficiency and folding resistance can be obtained. Can be obtained.

本発明の複合濾材は、半導体、液晶、バイオ、医薬、食品工業のクリーンルームやクリーンベンチ等用のエアフィルタ、空調用エアフィルタ、空気清浄機用エアフィルタ、ガスタービンや蒸気タービンの吸気側に使用される空気または気体中の粒子捕集に適した産業用エアフィルタ等に好適に用いることができる。また、液体濾過用フィルタとしても使用可能である。   The composite filter medium of the present invention is used for air filters for semiconductor, liquid crystal, bio, pharmaceutical, food industry clean rooms and clean benches, air filters for air conditioning, air filters for air cleaners, gas turbines and steam turbines on the intake side It can be suitably used for an industrial air filter suitable for collecting particles in air or gas. It can also be used as a liquid filtration filter.

Claims (7)

上流側濾材層と下流側濾材層の2層からなる複合濾材であって、上流側濾材層と下流側濾材層の両層に平均繊維径0.1〜1.0μmのマイクロガラス繊維と、示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維を含有し、且つ少なくとも一方の層にヤング率が200cN/dtex以上のポリビニルアルコール系繊維を含有することを特徴とする複合濾材。   A composite filter medium comprising two layers of an upstream filter medium layer and a downstream filter medium layer, wherein both the upstream filter medium layer and the downstream filter medium layer have micro glass fibers having an average fiber diameter of 0.1 to 1.0 μm, and a differential It contains a heat-fusible fiber having a melting point of 50 to 170 ° C. measured by scanning calorimetry (DSC), and at least one layer contains a polyvinyl alcohol fiber having a Young's modulus of 200 cN / dtex or more. A composite filter medium. ヤング率が200cN/dtex以上のポリビニルアルコール系繊維の総含有量が、複合濾材質量比で2〜20%である請求項1記載の複合濾材。   The composite filter medium according to claim 1, wherein the total content of polyvinyl alcohol fibers having a Young's modulus of 200 cN / dtex or more is 2 to 20% in terms of the composite filter medium mass ratio. 上流側濾材層および下流側濾材層に含有されるマイクロガラス繊維の総含有量が、複合濾材質量比で10〜40%である請求項1または2記載の複合濾材。   The composite filter medium according to claim 1 or 2, wherein the total content of the microglass fibers contained in the upstream filter medium layer and the downstream filter medium layer is 10 to 40% in terms of the composite filter medium mass ratio. 上流側濾材層に含有されるマイクロガラス繊維の含有量(A)と、下流側濾材層に含有されるマイクロガラス繊維の含有量(B)の比が(B)/(A)が1.0〜10.0である請求項1〜3のいずれか記載の複合濾材。   The ratio of the content (A) of the micro glass fiber contained in the upstream filter medium layer to the content (B) of the micro glass fiber contained in the downstream filter medium layer is 1.0 (B) / (A). The composite filter medium according to claim 1, which is ˜10.0. 下流側濾材層に含有されるマイクロガラス繊維の平均繊維径が、上流側濾材層に含有されるマイクロガラス繊維の平均繊維径よりも小さい請求項1〜4のいずれか記載の複合濾材。   The composite filter medium according to any one of claims 1 to 4, wherein an average fiber diameter of the micro glass fibers contained in the downstream filter medium layer is smaller than an average fiber diameter of the micro glass fibers contained in the upstream filter medium layer. 示差走査熱量分析(DSC)で測定した融点が50〜170℃である熱融着性繊維の総含有量が、複合濾材質量比で25〜60%である請求項1〜5のいずれか記載の複合濾材。   6. The total content of heat-fusible fibers having a melting point of 50 to 170 ° C. measured by differential scanning calorimetry (DSC) is 25 to 60% in terms of the composite filter medium mass ratio. 6. Composite filter media. 請求項1〜6のいずれか記載の複合濾材を製造する方法であって、複数の抄紙ヘッドを有するコンビネーション湿式抄紙機を用いて、上流側濾材層の湿紙ウェブと下流側濾材層の湿紙ウェブとからなる積層ウェブを形成した後に、該積層ウェブを加圧しながら、熱融着性繊維の融点より10℃以上高い表面温度の熱ロールに密着させて上流側濾材層と下流側濾材層を一体化させた後に、乾燥させてなることを特徴とする複合濾材の製造方法。   A method for producing a composite filter medium according to any one of claims 1 to 6, wherein a wet paper web of an upstream filter medium layer and a wet paper of a downstream filter medium layer are produced using a combination wet paper machine having a plurality of paper making heads. After forming the laminated web composed of the web, the upstream filter medium layer and the downstream filter medium layer are adhered to a hot roll having a surface temperature higher by 10 ° C. or higher than the melting point of the heat-fusible fiber while pressing the laminated web. A method for producing a composite filter medium, wherein the composite filter medium is dried after being integrated.
JP2011190514A 2011-09-01 2011-09-01 Composite filter medium and method for manufacturing the same Pending JP2013052324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190514A JP2013052324A (en) 2011-09-01 2011-09-01 Composite filter medium and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190514A JP2013052324A (en) 2011-09-01 2011-09-01 Composite filter medium and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013052324A true JP2013052324A (en) 2013-03-21

Family

ID=48129811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190514A Pending JP2013052324A (en) 2011-09-01 2011-09-01 Composite filter medium and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013052324A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086477A (en) * 2013-10-29 2015-05-07 三菱製紙株式会社 Nonwoven fabric made of wet method and method for producing the same
JP2015196160A (en) * 2014-03-31 2015-11-09 王子ホールディングス株式会社 Laser processing auxiliary seat
CN108978174A (en) * 2018-08-02 2018-12-11 旌德县源远新材料有限公司 A kind of heat-resisting filter bag glass and preparation method thereof
JP2019051481A (en) * 2017-09-15 2019-04-04 北越コーポレーション株式会社 Filter medium for air filter and method for manufacturing the same
CN115155157A (en) * 2022-09-06 2022-10-11 中国船舶重工集团公司第七0七研究所 Gas-liquid separation composite filter material with gradient aperture and gradient affinity and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995893A (en) * 1995-09-27 1997-04-08 Mitsubishi Paper Mills Ltd Water-absorbing and permeating sheet and its production
JP2007144415A (en) * 2005-11-07 2007-06-14 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
WO2008120572A1 (en) * 2007-03-29 2008-10-09 Toray Industries, Inc. Filter medium and filter unit
JP2009226321A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Flame-retardant electret filter medium and filter unit
JPWO2009041257A1 (en) * 2007-09-28 2011-01-20 東レ株式会社 Filter media and filter unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995893A (en) * 1995-09-27 1997-04-08 Mitsubishi Paper Mills Ltd Water-absorbing and permeating sheet and its production
JP2007144415A (en) * 2005-11-07 2007-06-14 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
JP2008049333A (en) * 2006-07-27 2008-03-06 Mitsubishi Paper Mills Ltd Composite filter medium and its manufacturing method
WO2008120572A1 (en) * 2007-03-29 2008-10-09 Toray Industries, Inc. Filter medium and filter unit
JPWO2009041257A1 (en) * 2007-09-28 2011-01-20 東レ株式会社 Filter media and filter unit
JP2009226321A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Flame-retardant electret filter medium and filter unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086477A (en) * 2013-10-29 2015-05-07 三菱製紙株式会社 Nonwoven fabric made of wet method and method for producing the same
JP2015196160A (en) * 2014-03-31 2015-11-09 王子ホールディングス株式会社 Laser processing auxiliary seat
JP2019051481A (en) * 2017-09-15 2019-04-04 北越コーポレーション株式会社 Filter medium for air filter and method for manufacturing the same
CN108978174A (en) * 2018-08-02 2018-12-11 旌德县源远新材料有限公司 A kind of heat-resisting filter bag glass and preparation method thereof
CN115155157A (en) * 2022-09-06 2022-10-11 中国船舶重工集团公司第七0七研究所 Gas-liquid separation composite filter material with gradient aperture and gradient affinity and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5096726B2 (en) Composite filter media
JP6158958B2 (en) Multilayer filter medium, filter manufacturing method and air filter
KR20070041364A (en) Filter, filter media, and methods for making same
JP2013052324A (en) Composite filter medium and method for manufacturing the same
KR20170106518A (en) Filter Medium
JP2015140495A (en) Wet nonwoven fabric and filter medium for air filter
JP2024037781A (en) Fiber structure and use thereof
WO2016017484A1 (en) Filtration material, filter element using same, and manufacturing method of filtration material
JP2008049333A (en) Composite filter medium and its manufacturing method
JP2006061789A (en) Filter medium for liquid filtering
JP2008114177A (en) Nonwoven fabric for air sucking filter
JP6152332B2 (en) Non-woven fabric for preventing fold contact
JP5797175B2 (en) Air filter media
JP7081911B2 (en) Filter material for laminated filter
JP2016137459A (en) Nonwoven fabric for filter, and filter medium for filter
JP2023128277A (en) Filter medium for liquid filter
JP2023082521A (en) Filter medium for liquid filter
JP2023132659A (en) Filter medium for liquid filter
JP2023120047A (en) Filter medium for liquid filter
JP6368184B2 (en) Filter material, filter element using the same, and filter material manufacturing method
JP2023148945A (en) Filter medium for liquid filter
JP2006055735A (en) Filter material for liquid filtration
JP2023149891A (en) Filter medium for liquid filter and manufacturing method thereof
JP7035345B2 (en) filter
JP2020093209A (en) Filter medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140806