JP2012210588A - Filter medium - Google Patents

Filter medium Download PDF

Info

Publication number
JP2012210588A
JP2012210588A JP2011077717A JP2011077717A JP2012210588A JP 2012210588 A JP2012210588 A JP 2012210588A JP 2011077717 A JP2011077717 A JP 2011077717A JP 2011077717 A JP2011077717 A JP 2011077717A JP 2012210588 A JP2012210588 A JP 2012210588A
Authority
JP
Japan
Prior art keywords
filter medium
flame retardant
fiber
phosphorus
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011077717A
Other languages
Japanese (ja)
Other versions
JP2012210588A5 (en
Inventor
Yuuko Takagi
由扶子 高木
Yasuhiro Asada
康裕 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011077717A priority Critical patent/JP2012210588A/en
Publication of JP2012210588A publication Critical patent/JP2012210588A/en
Publication of JP2012210588A5 publication Critical patent/JP2012210588A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filter medium hardly causing a fall in its bending resistance even when the filter medium is compressed in die molding or the like, thereby providing a filter with a low pressure loss suppressing the disorder of pleated shape.SOLUTION: The filter medium is made of a sheet containing fiber and a phosphorus-based flame retardant. The phosphorus-based flame retardant is provided on the surface of the fiber, and the particle diameter of 50% of the phosphorus-based flame retardant is set to 5 μm or less to provide the filter medium with a high bending resistance holding rate. It is preferable that the sheet contains vinylon as the fiber.

Description

本発明は、難燃性を有する気体透過用のろ材に関する。   The present invention relates to a gas-permeable filter medium having flame retardancy.

近年、火災に対する安全対策として、電気電子機器をはじめ建築、自動車、車両、船舶、繊維衣類など広範囲の製品に難燃性が求められており、フィルターも例外ではなく難燃性付与の要求がある。   In recent years, fire safety has been demanded for a wide range of products such as electrical and electronic equipment, architecture, automobiles, vehicles, ships, textile clothing, etc. as a safety measure against fire, and filters are no exception and there is a demand for imparting flame retardancy. .

難燃性を付与するために用いる難燃剤としては、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、無機系難燃剤が良く知られている。従来、一般に使用される難燃性ろ材には、難燃性を発現でき、経済的であることから臭素系難燃剤が使用されてきた。しかし、近年、臭素系および塩素系化合物は、焼却等によりダイオキシンなどの有害物質が発生することが判明し、これらの化合物を使用禁止にする方向で世界的に進んでいる。例えば、欧州における電気・電子機器ではRoHS指令によりPBDE(ポリブロモジフェニルエーテル)等の一部の臭素系難燃剤が使用禁止になった。   Brominated flame retardants, chlorine-based flame retardants, phosphorus-based flame retardants, and inorganic flame retardants are well known as flame retardants used for imparting flame retardancy. Conventionally, brominated flame retardants have been used for generally used flame retardant filter media because they can exhibit flame retardancy and are economical. However, in recent years, bromine-based and chlorine-based compounds have been found to generate harmful substances such as dioxins due to incineration and the like, and are proceeding worldwide in the direction of prohibiting the use of these compounds. For example, some brominated flame retardants such as PBDE (polybromodiphenyl ether) have been banned by the RoHS directive in electrical and electronic equipment in Europe.

また、自動車用途でも臭素や塩素の使用を制限する動きがある。自動車用途に関しては内装製品の難燃性規格として米国連邦自動車安全規格であるFMVSS 302「内装材料の可燃性」がある。しかし、臭素系、塩素系難燃剤以外の難燃剤を用いて、この評価方法で自消性を満足させるのは容易ではない。   There are also moves to limit the use of bromine and chlorine in automotive applications. As for automotive applications, there is the US Federal Motor Vehicle Safety Standard FMVSS 302 “Inflammability of Interior Materials” as a flame retardant standard for interior products. However, it is not easy to satisfy self-extinguishing properties with this evaluation method using a flame retardant other than bromine-based and chlorine-based flame retardants.

フィルターに用いる新規な難燃ろ材として、リン系や無機系の難燃剤を用いることが種々検討されている(特許文献1)。ろ材は、フィルターに加工する際、プリーツ加工(山谷折り)を施すものが主流になっている。これにより、規格の間口サイズの中でろ材量を増やすことで、使用時の圧力損失を小さくし、高い捕集効率および長寿命を得ることができる。フィルターの枠体としては、射出成形による樹脂枠がキャビン用途を筆頭として主流となっている。射出成形では、金型にろ材をセットし、その周辺に樹脂を流し、樹脂枠を作製する。   Various studies have been made on the use of phosphorus-based and inorganic flame retardants as novel flame-retardant filter materials used in filters (Patent Document 1). The filter medium is mainly subjected to pleating (Yamatani fold) when it is processed into a filter. Thereby, the pressure loss at the time of use can be made small by increasing the amount of filter media in the frontage size of a standard, and high collection efficiency and a long life can be obtained. As filter frames, resin frames made by injection molding are mainly used for cabin applications. In injection molding, a filter medium is set in a mold, and a resin is poured around it to produce a resin frame.

しかし、従来の難燃性ろ材を用いた場合、ろ材の厚み方向と垂直な方向に圧縮力がかかることにより剛軟度が低下するという問題が発生した。射出成形時に、ろ材が金型から圧縮力を受け、射出成形後のろ材の剛軟度が低下したため、プリーツ形状を保てずに圧力損失が増加するというかたちでフィルター性能が低下したのである。   However, when a conventional flame retardant filter medium is used, there is a problem that the bending resistance is reduced by applying a compressive force in a direction perpendicular to the thickness direction of the filter medium. At the time of injection molding, the filter medium was subjected to compressive force from the mold, and the bending resistance of the filter medium after injection molding was lowered, so that the filter performance was reduced in the form of increased pressure loss without maintaining the pleated shape.

特開2010−227758号公報JP 2010-227758 A

本発明は上記問題に鑑み、金型成型等でろ材を圧縮した場合でも、ろ材の剛軟度低下が起こりにくく、プリーツ形状にしたときの形状の乱れが少ないろ材およびそれを用いたエアフィルターを提供しようとするものである。   In view of the above problems, the present invention provides a filter medium that is less likely to cause a decrease in the bending resistance of the filter medium even when the filter medium is compressed by mold molding or the like, and has a less distorted shape when formed into a pleat shape, and an air filter using the filter medium. It is something to be offered.

即ち、本発明は、 以下の構成からなる。
(1)繊維およびリン系難燃剤を含有するシートからなるろ材であって、繊維の表面にリン系難燃剤を有し、前記リン系難燃剤の50%質量粒子径が5μm以下であることを特徴とするろ材、
(2)前記リン系難燃剤が25℃の水に対する溶解度が5質量%以下であることを特徴とする前記ろ材、
(3)繊維としてビニロン繊維を必須とする前記いずれかに記載のろ材、
(4)リン系難燃剤を液体および樹脂に混合して加工液とし、該加工液を繊維シートに含浸せしめることを特徴とする前記いずれかに記載のろ材の製造方法、
(5)前記いずれかに記載のろ材または前記製造方法で製造されたろ材にプリーツ加工を施したエアフィルター、
(6)前記フィルターに枠体を設置したエアフィルターユニット。
That is, this invention consists of the following structures.
(1) A filter medium comprising a sheet containing fibers and a phosphorus flame retardant, having a phosphorus flame retardant on the surface of the fiber, and a 50% mass particle diameter of the phosphorus flame retardant being 5 μm or less. Filter media,
(2) The filter medium, wherein the phosphorus flame retardant has a solubility in water at 25 ° C. of 5% by mass or less,
(3) The filter medium according to any one of the above, wherein a vinylon fiber is essential as a fiber,
(4) The method for producing a filter medium according to any one of the above, wherein a phosphorus-based flame retardant is mixed with a liquid and a resin to form a processing liquid, and the fiber sheet is impregnated with the processing liquid.
(5) An air filter obtained by pleating a filter medium according to any one of the above or the filter medium manufactured by the manufacturing method,
(6) An air filter unit in which a frame is installed on the filter.

本発明によるろ材は、ろ材が圧縮された場合でも剛軟度の低下を抑えることができる。そのため、プリーツフィルターにおいて剛軟度低下によるプリーツ形状の乱れを抑えることができ、圧力損失の低いフィルターを提供することができる。   The filter medium according to the present invention can suppress a decrease in bending resistance even when the filter medium is compressed. Therefore, in the pleated filter, it is possible to suppress a pleated shape disorder due to a decrease in bending resistance, and it is possible to provide a filter with a low pressure loss.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のろ材は繊維およびリン系難燃剤を含有するシートからなるろ材であって、繊維の表面にリン系難燃剤を有し、前記リン系難燃剤の50%質量粒子径が5μm以下であることを特徴とする。   The filter medium of the present invention is a filter medium comprising a sheet containing fibers and a phosphorus-based flame retardant, having a phosphorus-based flame retardant on the surface of the fiber, and a 50% mass particle diameter of the phosphorus-based flame retardant is 5 μm or less. It is characterized by that.

ろ材の好ましい難燃性は、米国連邦自動車安全規格であるFMVSS 302「内装材料の可燃性」を満たすことである。ろ材を形成する繊維としては、従来からろ材に用いられている繊維であればよく特に限定されないが、例えば、ビニルアルコール重合体若しくはその共重合体が例示され、さらにはビニロン繊維を好ましく使用することができる。ビニロン繊維は、燃焼時に炭化する挙動を示し、後述するリン系難燃剤との組み合わせにより優れた難燃性を得ることができる。ビニロン繊維を用いる場合、他の合成繊維、例えばポリエステル繊維を他の繊維として使用することも好ましい。例えばビニロン繊維の伸度が6%程度なのに対してポリエステル繊維の伸度はより高い36%程度である。そこで、ポリエステル繊維を一部に用いることでろ材の引裂強さを向上させることができる。また、フィルターのプリーツ形状を固定するために、シートを形成する繊維に熱融着性繊維を使用し、熱処理により、繊維間を融着させることも好ましい。   The preferred flame retardancy of the filter media is to meet FMVSS 302 “Flammability of Interior Materials” which is the US Federal Automobile Safety Standard. The fiber forming the filter medium is not particularly limited as long as it is a fiber conventionally used in a filter medium. For example, a vinyl alcohol polymer or a copolymer thereof is exemplified, and vinylon fiber is preferably used. Can do. The vinylon fiber exhibits a behavior of carbonization during combustion, and excellent flame retardancy can be obtained by a combination with a phosphorus-based flame retardant described later. When using a vinylon fiber, it is also preferable to use another synthetic fiber, for example, a polyester fiber as another fiber. For example, the elongation of the polyester fiber is about 36% while the elongation of the vinylon fiber is about 6%. Then, the tear strength of a filter medium can be improved by using a polyester fiber for a part. In order to fix the pleated shape of the filter, it is also preferable to use heat-fusible fibers as the fibers forming the sheet, and to fuse the fibers by heat treatment.

ろ材を形成する繊維の繊維径としては、使用する用途において目標とする通気性や集塵性能に応じて選択すればよいが、例えば1〜1000μmである。   The fiber diameter of the fibers forming the filter medium may be selected according to the target air permeability and dust collection performance in the application to be used, and is, for example, 1 to 1000 μm.

ろ材の構造は、通気性を有する繊維構造体であればよく、例えば綿状物、編物、織物、不織布、紙およびその他の三次元網状体等を挙げることができる。これらの構造をとることにより、通気性を確保しつつ、表面積を大きくとることができる。   The structure of the filter medium may be a fiber structure having air permeability, and examples thereof include cotton-like materials, knitted fabrics, woven fabrics, nonwoven fabrics, paper, and other three-dimensional networks. By adopting these structures, it is possible to increase the surface area while ensuring air permeability.

ろ材の目付けとしては、10〜500g/mが好ましく、より好ましくは30〜200g/mである。気体を通気させた際にフィルター構造を維持するのに必要な剛性が得られるために目付は高い方がよい。一方、プリーツ形状やハニカム形状に二次加工する際の取り扱い性の面からは、目付は低いほうが好ましい。以上の観点から上記範囲が好ましい。 The basis weight of the filter medium is preferably 10 to 500 g / m 2 , more preferably 30 to 200 g / m 2 . Since the rigidity necessary for maintaining the filter structure is obtained when the gas is vented, the basis weight is preferably high. On the other hand, it is preferable that the basis weight is low from the viewpoint of handleability when secondary processing into a pleated shape or a honeycomb shape. From the above viewpoint, the above range is preferable.

ろ材に難燃性を付与するために、ろ材へ難燃剤の添着加工を行う。難燃剤は、その構成成分により、それぞれ有機化合物であるリン系難燃剤、窒素系難燃剤、ハロゲン系難燃剤およびこれらの複合系などの有機系難燃剤と、水酸化マグネシウム、水酸化アルミニウム、アンチモン系、シリコーン系などの無機系難燃剤に大別される。本発明では、上記難燃剤のなかでリン系難燃剤を用いる。具体的にはリン酸のほか、リン酸エステル、リン酸アンモニウム、リン酸グアニジン、リン酸メラミン、リン酸グアニル尿素およびこれらの化合物のポリ化合物などが好ましい。リン系難燃剤は、ビニロンなどのポリビニルアルコール成分やパルプなどのセルローズ成分が燃焼した時に炭化を促進する効果が高い。またポリエステル繊維などの燃焼時に溶融するタイプの繊維が混合されても炭化を促進して燃え広がるのを防止することができる。   In order to impart flame retardancy to the filter medium, a flame retardant is attached to the filter medium. The flame retardants are organic compounds such as phosphorus flame retardants, nitrogen flame retardants, halogen flame retardants, and composite flame retardants of organic compounds, magnesium hydroxide, aluminum hydroxide, antimony, depending on their constituent components. And inorganic flame retardants such as silicone and silicone. In the present invention, a phosphorus-based flame retardant is used among the above flame retardants. Specifically, in addition to phosphoric acid, phosphate ester, ammonium phosphate, guanidine phosphate, melamine phosphate, guanylurea phosphate, and polycompounds of these compounds are preferable. The phosphorus-based flame retardant has a high effect of promoting carbonization when a polyvinyl alcohol component such as vinylon or a cellulose component such as pulp is burned. Further, even when a fiber of a type that melts at the time of combustion, such as polyester fiber, is mixed, carbonization can be promoted to prevent spreading.

リン系難燃剤の含有量は、繊維に対する質量比で、下の値としては10%以上、さらに12%以上、上の値として40%以下、さらに20%以下であることが好ましい。難燃剤の量が少ないとろ材の難燃性が得られなく、多すぎると繊維量が減少してしまうためにろ材の基本性能である通気量や寿命が低下してしまう。また、難燃剤の量が多いと、繊維シートの引張強度や硬さ(剛軟度)が低下する傾向がある。プリーツフィルターに適した繊維シートの剛軟度は3mN以上である。なお、剛軟度は実施例の欄の測定方法(2)項に記載の方法によるものである。   The content of the phosphorus-based flame retardant is preferably 10% or more, further 12% or more as a lower value, and 40% or less and further 20% or less as an upper value in terms of a mass ratio to the fiber. If the amount of the flame retardant is small, the flame retardancy of the filter medium cannot be obtained. If the amount is too large, the amount of fibers decreases, so the air flow rate and the life as the basic performance of the filter medium are reduced. Moreover, when there is much quantity of a flame retardant, there exists a tendency for the tensile strength and hardness (flexibility) of a fiber sheet to fall. The bending resistance of the fiber sheet suitable for the pleated filter is 3 mN or more. The bending resistance is based on the method described in the section of measurement method (2) in the column of Examples.

リン系難燃剤は親水性でないものが好ましく、例えば25℃の水に対する溶解度は、5質量%以下であることが好ましい。より好ましくは3質量%以下、さらに好ましくは1質量%以下である。溶解度が5質量%を超えると、リン系難燃剤の親水性が高くなり、吸湿作用によりシートの剛軟度が低下する傾向がある。なお、溶解度は実施例の欄の測定方法(4)項に記載した方法によって測定した値をいう。リン系難燃剤の溶解度を5質量%以下にする手段としては、例えばリン酸の重縮合によってポリ合物とする方法が知られている。また、ポリフェノール化合物等を用いて、ろ材に抗アレルゲン性と難燃性を同時に付与する場合、ポリフェノール化合物等のポリ化合物抗アレルゲン性を阻害しない点で、リン酸アンモニウム、リン酸メラミンおよびこれらを併用することが好ましい。   The phosphorus-based flame retardant is preferably not hydrophilic. For example, the solubility in water at 25 ° C. is preferably 5% by mass or less. More preferably, it is 3 mass% or less, More preferably, it is 1 mass% or less. When the solubility exceeds 5% by mass, the hydrophilicity of the phosphorus-based flame retardant increases, and the bending resistance of the sheet tends to decrease due to the hygroscopic action. In addition, solubility means the value measured by the method described in the measurement method (4) item of the Example column. As a means for reducing the solubility of the phosphorus-based flame retardant to 5% by mass or less, for example, a method of forming a poly compound by polycondensation of phosphoric acid is known. In addition, when using a polyphenol compound, etc. to simultaneously give anti-allergenicity and flame retardancy to the filter medium, ammonium phosphate, melamine phosphate, and these are used in combination in that they do not interfere with the anti-allergenicity of polycompounds such as polyphenol compounds. It is preferable to do.

また、リン系難燃剤は有機物である樹脂や無機化合物を含んだ被覆材で被覆し、複合粒子、いわゆるマイクロカプセルとすることもできる。なかでも酸化ケイ素のようなケイ素化合物を含んだ被覆材で被覆されたものが好ましい。ケイ素系化合物には、リン系難燃剤の水に対する溶解度を低減させる効果があり、さらには難燃剤とポリフェノール化合物の相互作用を抑制し、共存状態を安定に保つことができるようになる。ケイ素系化合物としては、素材自体の難燃性にも優れ、かつ不活性でポリフェノールや他の樹脂バインダー成分と反応しないシリコーン樹脂が好ましい。   Further, the phosphorus-based flame retardant can be coated with a coating material containing an organic resin or an inorganic compound to form composite particles, so-called microcapsules. Of these, those coated with a coating material containing a silicon compound such as silicon oxide are preferred. The silicon-based compound has an effect of reducing the solubility of the phosphorus-based flame retardant in water, and further suppresses the interaction between the flame retardant and the polyphenol compound, so that the coexistence state can be kept stable. As the silicon-based compound, a silicone resin that is excellent in the flame retardancy of the material itself and is inert and does not react with polyphenol or other resin binder components is preferable.

リン系難燃剤の粒子径は、被覆材で被覆する場合、しない場合のいずれにおいても、50%粒子径が5μm以下であることが耐圧縮性を得るために重要である。上記繊維シートが含有するリン系難燃剤が大きいと、射出成形時にろ材にかかる圧縮力により、フィルター圧損は増加する傾向となる。通常は、繊維シートにリン系難燃剤が凝集した状態で付着するため、繊維シートに射出成形による圧縮力が加わると、凝集部分でクラックが発生し剛軟度が低下すると考えられる。そこで、粒子径を小さくすることにより、分散性を上げ凝集粒子径を小さくすることで、圧縮力を加える前後で剛軟度が大幅に低下しないと考えている。その観点から本発明のろ材は、後述の実施例の欄の圧縮性試験で示した方法で圧縮した後のガーレ法剛軟度の保持率が85%以上であることが好ましい。   In order to obtain compression resistance, it is important that the particle size of the phosphorus-based flame retardant is 50% or less when it is coated with a coating material. When the phosphorus flame retardant contained in the fiber sheet is large, the filter pressure loss tends to increase due to the compressive force applied to the filter medium during injection molding. Usually, since the phosphorus-based flame retardant adheres to the fiber sheet in an aggregated state, it is considered that when the compression force by injection molding is applied to the fiber sheet, a crack occurs in the aggregated portion and the bending resistance is lowered. Therefore, it is considered that by reducing the particle size, the dispersibility is increased and the aggregated particle size is reduced, so that the bending resistance is not significantly reduced before and after the compression force is applied. From this point of view, the filter medium of the present invention preferably has a Gurley bending resistance retention of 85% or more after being compressed by the method shown in the compressibility test in the column of Examples described later.

さらに、粒子径を小さくすることで難燃剤の表面積を増やすことができ、高い難燃効果も得ることができる。50%粒子径が5μm以下のリン径難燃剤を得る方法としては、50%粒子径が5μmよりも大きい粒子を粉砕し、篩い分けする方法を用いることができる。   Furthermore, by reducing the particle size, the surface area of the flame retardant can be increased, and a high flame retardant effect can also be obtained. As a method for obtaining a phosphorus-size flame retardant having a 50% particle size of 5 μm or less, a method in which particles having a 50% particle size larger than 5 μm are pulverized and sieved can be used.

上記ろ材に上記リン系難燃剤を含有する方法として、リン系難燃剤とバインダー樹脂と液体とを混合した加工液を、含浸法によってシート状の繊維に付着させ乾燥させる方法がある。
加工液は、リン系難燃剤をバインダー樹脂と共に分散させたものである。バインダー樹脂としては、アクリル樹脂、スチレンーアクリル共重合体樹脂、エポキシ樹脂、ウレタン樹脂、SBR樹脂、ポリエステル樹脂などを使用することが可能である。中でもスチレンーアクリル樹脂は、低コストでかつ加工液を含浸させるシートの剛性が得られやすい点で好ましい。分散性を向上させるために界面活性剤等の分散剤を添加してもよい。また、より難燃性を向上させるため難燃性樹脂を用いることもできる。
加工液を含浸させたシートは液体が残っているので、通常は乾燥させる。乾燥方法は特に限定されないが、熱風乾燥方式、ヤンキードラム方式が好ましく使用される。乾燥温度は、液体が気化し、用いたバインダー樹脂が十分に硬化する温度で且つ繊維シートの軟化点以下であることが好ましい。バインダー樹脂が十分に硬化しなければろ材の剛軟度が低下し、繊維シートの軟化点以上でろ材の剛軟度が低下する。
As a method for containing the phosphorus-based flame retardant in the filter medium, there is a method in which a processing liquid obtained by mixing a phosphorus-based flame retardant, a binder resin, and a liquid is attached to a sheet-like fiber by an impregnation method and dried.
The processing liquid is obtained by dispersing a phosphorus-based flame retardant together with a binder resin. As the binder resin, acrylic resin, styrene-acrylic copolymer resin, epoxy resin, urethane resin, SBR resin, polyester resin, and the like can be used. Of these, a styrene-acrylic resin is preferable because it is low in cost and easily obtains the rigidity of the sheet impregnated with the processing liquid. In order to improve dispersibility, a dispersant such as a surfactant may be added. Moreover, in order to improve a flame retardance more, a flame retardant resin can also be used.
Since the sheet impregnated with the processing liquid remains, it is usually dried. The drying method is not particularly limited, but a hot air drying method and a Yankee drum method are preferably used. The drying temperature is preferably a temperature at which the liquid is vaporized and the used binder resin is sufficiently cured and is equal to or lower than the softening point of the fiber sheet. If the binder resin is not sufficiently cured, the bending resistance of the filter medium decreases, and the bending resistance of the filtering medium decreases above the softening point of the fiber sheet.

本発明のろ材は、極細繊維からなる不織布シートを積層してフィルター用ろ材として用いることも好ましい。例えば直行流型フィルターとして使用する場合においては、気体の下流側に極細繊維からなる不織布シートを積層すれことで、高い捕集効率化が可能となる。   The filter medium of the present invention is also preferably used as a filter medium by laminating non-woven sheets made of ultrafine fibers. For example, when used as a direct flow filter, a high collection efficiency can be achieved by laminating a nonwoven fabric sheet made of ultrafine fibers on the downstream side of the gas.

さらにこの極細繊維からなる不織布シートがエレクトレット処理されていれば、なお好ましい。エレクトレット処理がされていることにより、通常では除去しにくいサブミクロンサイズやナノサイズの微細塵を静電気力により捕集することができる。   Furthermore, it is still more preferable if the nonwoven fabric sheet which consists of this ultrafine fiber is electret-treated. By performing the electret treatment, fine dust of submicron size or nano size, which is difficult to remove normally, can be collected by electrostatic force.

エレクトレット不織布を構成する材料としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリブチレンテレフタレート、ポリテトラフルオロエチレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリカーボネート樹脂等の合成高分子材料等の、高い電気抵抗率を有する材料が好ましい。   Examples of the material constituting the electret nonwoven fabric include polyolefin resins such as polypropylene, polyethylene, polystyrene, polybutylene terephthalate, and polytetrafluoroethylene, aromatic polyester resins such as polyethylene terephthalate, and synthetic polymer materials such as polycarbonate resins. A material having a high electrical resistivity is preferred.

本発明のろ材は、エアフィルター用途、とくに、車両用のエアフィルター用途、更には自動車用のキャビンフィルタ用ろ材として好適に用いることができる。車両用や自動車用のキャビンフィルタには車両用としての難燃性が要求されている。また車両用のフィルターは通気風速が速いため、風圧に対し十分な強度を有し、プリーツなどの形状に加工した場合、その形状を維持して形状変化による圧力損失の上昇を抑制できること、プリーツ等の形状に成形する際の加工性に優れること、等の要求を満足しうるろ材が好ましい。本発明の抗アレルゲン性難燃ろ材は剛性を損なうことなく、難燃性と抗アレルゲン性を発揮できる点で、車両用、特に自動車用キャビンフィルタ用途に好適に用いることができる。   The filter medium of the present invention can be suitably used as an air filter application, particularly as an air filter application for vehicles, and further as a filter medium for cabin filters for automobiles. Vehicle and automobile cabin filters are required to have flame resistance for vehicles. In addition, because the vehicle filter has a high ventilation wind speed, it has sufficient strength against wind pressure, and when processed into a shape such as pleats, it can maintain its shape and suppress an increase in pressure loss due to shape change, pleats, etc. It is preferable to use a filter medium that can satisfy requirements such as excellent workability when it is formed into a shape. The anti-allergenic flame retardant filter material of the present invention can be suitably used for a vehicle, particularly an automobile cabin filter, because it can exhibit flame retardancy and anti-allergenicity without impairing rigidity.

以下、実施例を挙げて、本発明をさらに詳しく説明するが、本発明は下記の実施例に何等限定されるものではない。まず、本実施例で用いたろ材の試験方法を以下に示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to the following Example at all. First, the test method of the filter medium used in this example is shown below.

(1)粒径測定
難燃剤の粒径は、レーザ回折式粒度分布装置(島津製作所製 SALD-2100)を用いて平均回数を64とし粒度分布を測定した。なお屈折率は標準屈折率(1.70-0.10i)を、分布基準は体積を選択した。粒子量の積算値(%)が50%となる粒径を50%粒子径とした。
(1) Particle size measurement The particle size distribution of the flame retardant was measured using a laser diffraction particle size distribution device (SALD-2100 manufactured by Shimadzu Corporation) with an average number of 64. The standard refractive index (1.70-0.10i) was selected as the refractive index, and the volume was selected as the distribution criterion. The particle size at which the integrated value (%) of the particle amount was 50% was defined as the 50% particle size.

(2)剛軟度
剛軟度はJIS L 1096:1999(ガーレ法)に準拠し、幅25mm、長さ90mmのサンプルを、ガーレ式剛軟度試験機を用いて測定した。n数は5として、その平均値の値を測定した。
(2) Bending softness Bending softness was measured in accordance with JIS L 1096: 1999 (Gurley method) using a Gurley type bending resistance tester for a sample having a width of 25 mm and a length of 90 mm. The number of n was 5, and the average value was measured.

(3)難燃性
難燃性試験は、JIS L−1091:1999 の水平法を用いて評価した。N数は5として、その平均値が5cm以下のものを「優れている」と評価し、表1中「○」印で表記した。その平均値が5cmを越えるものを「劣る」と評価し、表1中「×」印で表記した。
(3) Flame retardancy The flame retardancy test was evaluated using the horizontal method of JIS L-1091: 1999. N number was set to 5, and those having an average value of 5 cm or less were evaluated as “excellent” and indicated by “◯” in Table 1. Those whose average value exceeded 5 cm were evaluated as “inferior” and represented by “x” in Table 1.

(4)溶解度測定
対象化合物が塊状の場合はあらかじめ乳鉢で細かく粉砕して粒径を100μm以下にする。100gの純水を用意し、水温を25℃の一定温度に保ちながら、対象化合物が飽和するまで攪拌溶解する。水に不溶となった分はろ過して除去し、ろ液を減圧留去する。得られたものを100℃で完全に熱乾燥し、質量を測定しこれを溶解質量(A)とした。次に以下式により溶解度を算出した。
溶解度(質量%)=A/(100+A)×100 。
(4) When the compound to be measured for solubility is in the form of a lump, it is finely pulverized in advance with a mortar to make the particle size 100 μm or less. 100 g of pure water is prepared and dissolved while stirring until the target compound is saturated while keeping the water temperature at a constant temperature of 25 ° C. The portion insoluble in water is removed by filtration, and the filtrate is distilled off under reduced pressure. The obtained product was completely heat-dried at 100 ° C., the mass was measured, and this was taken as the dissolved mass (A). Next, the solubility was calculated by the following formula.
Solubility (mass%) = A / (100 + A) × 100.

(5)圧縮性試験
平らな台上に得られたろ材(サイズ:25cm×25cm)を置き、ロール(直径10cm、長さ27cm、質量15kg)を15cm/sの速度で10往復転がした。
(5) Compressibility test The obtained filter medium (size: 25 cm x 25 cm) was placed on a flat table, and the roll (diameter 10 cm, length 27 cm, mass 15 kg) was rolled 10 times at a speed of 15 cm / s.

(6)湿潤試験
ろ材(サイズ:25cm×25cm)を35℃、90%RHの雰囲気下に24時間静置した。
(6) Wetting test A filter medium (size: 25 cm x 25 cm) was allowed to stand for 24 hours in an atmosphere of 35 ° C and 90% RH.

[実施例1]
(リン系難燃剤)
50%平均粒径が4.0μmであるポリリン酸アンモニウムを用いた。
(加工液)
リン系難燃剤、アクリル樹脂(Tg 30℃、粘度1000mpa・s)、水、界面活性剤を質量比25:30:44:1で分散混合し、加工液を作った。
(ろ材の製造)
それぞれ短繊維である、ビニロン繊維(φ15dtex×長さ8mm)21質量%、ビニロン繊維(φ7dtex×長さ10mm)15質量%、PET繊維(φ6dtex×長さ10mm)15質量%、PET繊維(φ0.5dtex×長さ5mm)16質量%、溶融PET繊維(φ2dtex×長さ5mm)18質量%、パルプ15質量%を湿式法に抄紙した厚み0.40mm、目付46g/m2のシートを加工液に浸し十分含浸したのち乾燥し、耐圧縮性難燃ろ材を作製した。繊維と加工液の質量比は、70:30とした。なお溶融PET繊維とは、芯をPETとし、鞘をPETのテレフタル酸構造の一部をイソフタル酸構造に置換したポリマーとした繊維である。
[Example 1]
(Phosphorus flame retardant)
Ammonium polyphosphate having a 50% average particle size of 4.0 μm was used.
(Working fluid)
Phosphorous flame retardant, acrylic resin (Tg 30 ° C., viscosity 1000 mpa · s), water, and surfactant were dispersed and mixed at a mass ratio of 25: 30: 44: 1 to prepare a working fluid.
(Manufacture of filter media)
Vinylon fiber (φ15 dtex × length 8 mm) 21 mass%, vinylon fiber (φ7 dtex × length 10 mm) 15 mass%, PET fiber (φ6 dtex × length 10 mm) 15 mass%, PET fiber (φ0. 5 dtex x 5 mm in length) 16% by mass, molten PET fiber (φ2 dtex x 5 mm in length) 18% by mass, pulp 15% by mass made by a wet method, a 0.40 mm thick sheet of 46 g / m 2 is immersed in the processing liquid. After sufficiently impregnating, it was dried to produce a compression-resistant flame retardant filter medium. The mass ratio of the fiber to the working fluid was 70:30. The molten PET fiber is a fiber in which the core is PET and the sheath is a polymer obtained by substituting a part of the terephthalic acid structure of PET with an isophthalic acid structure.

得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、溶解度、圧縮試験前後の剛軟度、湿潤試験後の剛軟度を測定した。その結果を表1に示す。   The obtained filter medium had a flame retardant attached to the fiber surface. Further, flame retardancy, solubility, bending resistance before and after the compression test, and bending resistance after the wet test were measured. The results are shown in Table 1.

[実施例2]
50%平均粒径が4.1μmであるポリリン酸メラミンを用いる以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。その結果を表1に示す。
[Example 2]
A compression-resistant flame-retardant filter medium was produced in the same manner as in Example 1 except that melamine polyphosphate having a 50% average particle size of 4.1 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

[実施例3]
50%平均粒径が3.2μmであるポリリン酸メラミンを用いた以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。結果を表1に示す。
[Example 3]
A compression-resistant flame retardant filter medium was prepared in the same manner as in Example 1 except that melamine polyphosphate having a 50% average particle diameter of 3.2 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

[実施例2]
50%平均粒径が4.8μmであるポリリン酸メラミンを用いる以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。結果を表1に示す。
[Example 2]
A compression-resistant flame retardant filter medium was produced in the same manner as in Example 1 except that melamine polyphosphate having a 50% average particle size of 4.8 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

[比較例1]
50%平均粒径が7.2μmであるポリリン酸メラミンを用いる以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。結果を表1に示す。
[Comparative Example 1]
A compression-resistant flame retardant filter medium was produced in the same manner as in Example 1 except that melamine polyphosphate having a 50% average particle diameter of 7.2 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

[比較例2]
50%平均粒径が15.0μmであるポリリン酸メラミンを用いる以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。結果を表1に示す。
[Comparative Example 2]
A compression-resistant flame retardant filter material was prepared in the same manner as in Example 1 except that melamine polyphosphate having a 50% average particle diameter of 15.0 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

[比較例3]
50%平均粒径が20.0μmであるリン酸グアニジンを用いる以外は実施例1と同様にして耐圧縮性難燃ろ材を作製した。得られたろ材は、繊維の表面に難燃剤が付着していた。また難燃性、圧縮試験前後の剛軟度を測定した。その結果を表1に示す。
[Comparative Example 3]
A compression-resistant flame-retardant filter medium was produced in the same manner as in Example 1 except that guanidine phosphate having a 50% average particle diameter of 20.0 μm was used. The obtained filter medium had a flame retardant attached to the fiber surface. In addition, flame resistance and bending resistance before and after the compression test were measured. The results are shown in Table 1.

Figure 2012210588
Figure 2012210588

これらの結果から、リン系難燃剤の50%粒子径を5μm以下とすることで、圧縮試験後もろ材の剛軟度を保持することができる。すなわち、フィルター枠体成形時に射出成形でろ材が金型から圧縮力を受けた場合でも、射出成形したろ材の剛軟度を保持することができ、フィルター性能(圧力損失)を維持することができる。さらに、水に対する溶解度を5質量%以下とすることで、湿潤試験後のろ材の剛軟度も保持することができるが、フィルターが高湿度環境で使用された場合でも、圧力損失の低減に代表されるフィルター性能を維持することができる。   From these results, by setting the 50% particle size of the phosphorus-based flame retardant to 5 μm or less, the bending resistance of the filter medium can be maintained even after the compression test. That is, even when the filter medium receives a compressive force from the mold during injection molding at the time of filter frame molding, the bending resistance of the injection molded filter medium can be maintained, and the filter performance (pressure loss) can be maintained. . Furthermore, by setting the solubility in water to 5% by mass or less, the bending resistance of the filter medium after the wet test can be maintained. However, even when the filter is used in a high humidity environment, it is representative of reducing pressure loss. Filter performance can be maintained.

本発明の難燃ろ材は、エアフィルター用途、とくに自動車用のキャビンフィルタ用ろ材として好適に用いることができる。   The flame-retardant filter medium of the present invention can be suitably used as a filter medium for cabin filters, particularly for air filters.

Claims (6)

繊維およびリン系難燃剤を含有するシートからなるろ材であって、繊維の表面にリン系難燃剤を有し、前記リン系難燃剤の50%粒子径が5μm以下であることを特徴とするろ材。   A filter medium comprising a sheet containing a fiber and a phosphorus-based flame retardant, wherein the filter medium has a phosphorus-based flame retardant on the surface of the fiber, and a 50% particle diameter of the phosphorus-based flame retardant is 5 μm or less. . 前記リン系難燃剤が25℃の水に対する溶解度が5質量%以下であることを特徴とする請求項1のろ材。   The filter medium according to claim 1, wherein the phosphorus-based flame retardant has a solubility in water at 25 ° C of 5% by mass or less. 繊維としてビニロン繊維を必須とする請求項1または2に記載のろ材。 The filter medium according to claim 1 or 2, wherein a vinylon fiber is essential as the fiber. リン系難燃剤を液体および樹脂に混合して加工液とし、該加工液を繊維シートに含浸せしめることを特徴とする請求項1〜3いずれかに記載のろ材の製造方法。   The method for producing a filter medium according to any one of claims 1 to 3, wherein a phosphorus-based flame retardant is mixed with a liquid and a resin to obtain a processing liquid, and the fiber sheet is impregnated with the processing liquid. 請求項1〜3いずれかに記載のろ材または請求項4の製造方法によって得られたろ材にプリーツ加工を施したエアフィルター。 An air filter obtained by pleating the filter medium according to any one of claims 1 to 3 or the filter medium obtained by the production method according to claim 4. 請求項5記載のエアフィルターに枠体を設置したエアフィルターユニット。 An air filter unit in which a frame is installed on the air filter according to claim 5.
JP2011077717A 2011-03-31 2011-03-31 Filter medium Pending JP2012210588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077717A JP2012210588A (en) 2011-03-31 2011-03-31 Filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077717A JP2012210588A (en) 2011-03-31 2011-03-31 Filter medium

Publications (2)

Publication Number Publication Date
JP2012210588A true JP2012210588A (en) 2012-11-01
JP2012210588A5 JP2012210588A5 (en) 2014-05-15

Family

ID=47265029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077717A Pending JP2012210588A (en) 2011-03-31 2011-03-31 Filter medium

Country Status (1)

Country Link
JP (1) JP2012210588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096462A (en) * 2012-11-08 2014-05-22 Panasonic Corp Device for measuring photoresist concentration and measuring method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131508A (en) * 1989-10-14 1991-06-05 Chisso Corp Coated ammonium polyphosphate
JP2002220782A (en) * 2001-01-18 2002-08-09 Marubishi Oil Chem Co Ltd Flameproof-finishing for textile product
JP2006263490A (en) * 2005-03-22 2006-10-05 Japan Vilene Co Ltd Flame-retardant deodorizing filter material
JP2007130632A (en) * 2005-10-14 2007-05-31 Toray Ind Inc Filtering medium and filter
JP2008080275A (en) * 2006-09-28 2008-04-10 Japan Vilene Co Ltd Filter medium for particulate removal
JP2008126097A (en) * 2006-11-16 2008-06-05 Nitto Denko Corp Filter unit, manufacturing method thereof, and filter medium
JP2009061445A (en) * 2007-08-09 2009-03-26 Toray Ind Inc Gas adsorbing sheet
JP2009226321A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Flame-retardant electret filter medium and filter unit
JP2010010518A (en) * 2008-06-30 2010-01-14 Japan Vilene Co Ltd Electromagnetic shielding nonwoven fabric
JP2010227758A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Anti-allergen flame-retardant material
WO2011027793A1 (en) * 2009-09-04 2011-03-10 株式会社Adeka Method for recycling of phenolic antioxidant agent, process for production of olefin polymer, polyolefin powder, and fibers
JP2011052332A (en) * 2009-08-31 2011-03-17 Asahi Kasei Fibers Corp Polyolefin-based crimped filament nonwoven fabric and laminate of nonwoven fabric

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131508A (en) * 1989-10-14 1991-06-05 Chisso Corp Coated ammonium polyphosphate
JP2002220782A (en) * 2001-01-18 2002-08-09 Marubishi Oil Chem Co Ltd Flameproof-finishing for textile product
JP2006263490A (en) * 2005-03-22 2006-10-05 Japan Vilene Co Ltd Flame-retardant deodorizing filter material
JP2007130632A (en) * 2005-10-14 2007-05-31 Toray Ind Inc Filtering medium and filter
JP2008080275A (en) * 2006-09-28 2008-04-10 Japan Vilene Co Ltd Filter medium for particulate removal
JP2008126097A (en) * 2006-11-16 2008-06-05 Nitto Denko Corp Filter unit, manufacturing method thereof, and filter medium
JP2009061445A (en) * 2007-08-09 2009-03-26 Toray Ind Inc Gas adsorbing sheet
JP2009226321A (en) * 2008-03-24 2009-10-08 Toray Ind Inc Flame-retardant electret filter medium and filter unit
JP2010010518A (en) * 2008-06-30 2010-01-14 Japan Vilene Co Ltd Electromagnetic shielding nonwoven fabric
JP2010227758A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Anti-allergen flame-retardant material
JP2011052332A (en) * 2009-08-31 2011-03-17 Asahi Kasei Fibers Corp Polyolefin-based crimped filament nonwoven fabric and laminate of nonwoven fabric
WO2011027793A1 (en) * 2009-09-04 2011-03-10 株式会社Adeka Method for recycling of phenolic antioxidant agent, process for production of olefin polymer, polyolefin powder, and fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096462A (en) * 2012-11-08 2014-05-22 Panasonic Corp Device for measuring photoresist concentration and measuring method

Similar Documents

Publication Publication Date Title
JP5319380B2 (en) Low basis weight air filter media
CN110302594B (en) Filter media and articles comprising dendrimers and/or other components
EP2401146B1 (en) Filter media suitable for ashrae applications
JP6045687B2 (en) Method for producing filter medium for air filter
JP5434076B2 (en) Filter media and filter unit
KR102340662B1 (en) Multilayer filtration material for filter, method for manufacturing same, and air filter
EP3562979B1 (en) Dimensionally-stable, fire-resistant melt-blown fibers and nonwoven structures including a flame retarding polymer
WO2016153062A1 (en) Filter material for air filter
US20210095405A1 (en) Ceramic-coated fibers including a flame-retarding polymer, and methods of making nonwoven structures
JP2013034941A (en) Oil proof filter
JP2007130632A (en) Filtering medium and filter
JP4815138B2 (en) Flame retardant deodorizing filter media
JP2006136809A (en) Non-halogen, non-phosphorus flame-retardant filter medium for air filter, and its production method
JP6578673B2 (en) Flame retardant support
JP2012210588A (en) Filter medium
JP6888242B2 (en) Extra fine fiber sheet
JP5797175B2 (en) Air filter media
JP5290507B2 (en) Air filter medium and air filter including the same
JP7047593B2 (en) Wet non-woven fabric
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP2018061924A (en) Nonwoven fabric filter medium for air filter
JP6900649B2 (en) Filter media, as well as filters and filter units
JP6699150B2 (en) Filter media, filters and filter units
JP2022124201A (en) Filter medium for air filters
JP2022098993A (en) Melt-blown nonwoven fabric and air filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728