JPH02191759A - High-tenacity sheet - Google Patents

High-tenacity sheet

Info

Publication number
JPH02191759A
JPH02191759A JP1002873A JP287389A JPH02191759A JP H02191759 A JPH02191759 A JP H02191759A JP 1002873 A JP1002873 A JP 1002873A JP 287389 A JP287389 A JP 287389A JP H02191759 A JPH02191759 A JP H02191759A
Authority
JP
Japan
Prior art keywords
fibers
mixed
ultrafine
fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1002873A
Other languages
Japanese (ja)
Inventor
Masataka Ikeda
昌孝 池田
Tsukasa Shima
島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1002873A priority Critical patent/JPH02191759A/en
Publication of JPH02191759A publication Critical patent/JPH02191759A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/064The fibres being mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject sheet, excellent in filter performance, heat insulating properties, etc., and useful as a heat insulating material, diapers, etc., by randomly mixing two specific kinds of fibers therein and partially and thermally binding the fibers. CONSTITUTION:The objective sheet obtained by randomly mixing ultrafine fibers (e.g. a thermoplastic polymer, such as polyester or polyolefin) having 0.1-8.0mum average fiber diameter in 20-80wt.% (based on the total amount of the fibers) mixed fibers (the same fibers as those of the ultrafine fibers are used) having compatibility with the above-mentioned ultrafine fibers, >=1.5 denier and >=30mm average fiber length, partially and thermally binding the fibers according to a thermal embossing method, etc.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は、極細熱維を含む高強力シート状物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a high-strength sheet material containing ultrafine thermal fibers.

より詳しくは、フィルター性能、バクテリアバリアー性
、吸塵性、吸液性、断熱性に優れると同時に高強力なシ
ートに関し、特に各種フィルター、ワイパー、ラップ類
、断熱材等の用途に好適な極細繊維高強力シートに関す
る。ただし本明細書でいうシートは実質的に不織布に該
当するので、以下においては不織布で説明する。
More specifically, regarding sheets that are highly strong and have excellent filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation properties, we will discuss ultrafine fiber sheets that are particularly suitable for various filters, wipers, wraps, insulation materials, etc. Regarding strong sheets. However, since the sheet referred to in this specification substantially corresponds to a nonwoven fabric, the following description will be made using a nonwoven fabric.

〔従来の技術〕[Conventional technology]

極細繊維からなる不織布、特にメルトブロー法により得
られる極細繊維不織布は、フィルター性能、バクテリア
バリアー性、吸塵性、吸液性、断熱性等にぼれ、この特
長を活かし種々の用途に用いられてきている。
Nonwoven fabrics made of ultrafine fibers, especially ultrafine fiber nonwoven fabrics obtained by melt blowing, have excellent filter performance, bacterial barrier properties, dust absorption properties, liquid absorption properties, heat insulation properties, etc., and have been used for a variety of applications by taking advantage of these characteristics. .

メルトブロー法については、インダストリアル・アンド
・エンジニアリング・ケミスlリ−(10dusLri
al and Engirieering Chesi
stry) 48巻、第8号(P、 1342〜134
6) 、1956年に基本的な装置および方法が開示さ
れている。また、特公昭56−33511号公報および
特開昭55−142757号公報にポリオレフィン、ポ
リエステル等の極細繊維の製造法が開示されている。
Regarding the melt blowing method, please refer to Industrial and Engineering Chemistry (10dusLri).
al and Engineering Chesi
stry) Volume 48, No. 8 (P, 1342-134
6), 1956, disclosed the basic apparatus and method. Further, Japanese Patent Publication No. 56-33511 and Japanese Patent Application Laid-Open No. 55-142757 disclose methods for producing ultrafine fibers such as polyolefins and polyesters.

一方、極細繊維に太い短iutを混合した不織布につい
ては以下のものが知られている。すなわち、特公昭61
−30065号公報には、極細繊維とこれより径の大き
い捲縮ステ・−プルファイバーを混合した少なくとも3
0d/gの嵩高さを有する熱絶縁体用弾性繊維質ウェブ
が開示されている。
On the other hand, the following are known as nonwoven fabrics in which thick short iut is mixed with ultrafine fibers. In other words, the special public service in 1986
Publication No. 30065 discloses that at least three fibers are a mixture of ultrafine fibers and crimped staple fibers with a larger diameter.
An elastic fibrous web for thermal insulation having a loft of 0 d/g is disclosed.

また、特開昭55−30498号公報および特開昭59
−183723号公報には、極at繊維と捲縮した太い
短繊維を含むワイパーが開示されている。
Also, JP-A-55-30498 and JP-A-59
Japanese Patent Publication No. 183723 discloses a wiper containing extremely at fibers and crimped thick short fibers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

極細繊維のみからなる不織布、特にメルトブロー法で得
られた極細繊維ウェブは、非常に小さなポアサイズを持
つ良質な多孔質体であるため、フィルター性能、バクテ
リアバリアー性、吸塵性、吸液性、断熱性等に優れると
いう特長があるが、反面、強力が低く用途が大きく限定
されるという問題があった。そのため、メルI・ブロー
ウェブ単独で使われることは極めて少なく、−a的には
、スパンボンド法不織布等のような高強力の不織布、ま
たは織編物等と張り合わせて用いられており、性能面、
コスト面で問題があった。
Nonwoven fabrics made only of ultrafine fibers, especially ultrafine fiber webs obtained by the melt-blowing method, are high-quality porous bodies with extremely small pore sizes, so they have excellent filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation properties. However, on the other hand, it has the problem of low strength, which greatly limits its applications. For this reason, it is extremely rare for Mel I/Blowweb to be used alone; in terms of -a, it is used in combination with high-strength nonwoven fabrics such as spunbond nonwoven fabrics, or woven or knitted fabrics, etc.
There was a cost problem.

一方、前述の特公昭61−30065号公報において、
太いIを縮ステーブルファイバーを極細繊維に混合する
目的はウェブの嵩高化(高空隙率化)にあり、これによ
り断熱性を高め得たものである。また、特開昭55−3
0498号公報、特りn昭59−183723号公報は
いずれも太い捲縮短繊維の混合する目的が、ウェブの空
隙率向上(嵩高化)にあり、これによりワイパーとして
の特性である吸塵性、吸液性を高めることにあった。こ
のように、公知技術の短繊維混合の狙いは、嵩高化によ
る空隙率向」二にあったものである。
On the other hand, in the aforementioned Japanese Patent Publication No. 61-30065,
The purpose of mixing thick I with compressed stable fibers and ultrafine fibers is to increase the bulk of the web (higher porosity), thereby increasing the heat insulation properties. Also, JP-A-55-3
In both Publication No. 0498 and especially Publication No. 183723/1986, the purpose of mixing thick crimped short fibers is to improve the porosity (increase in bulk) of the web, thereby improving the dust absorption and absorption characteristics of the wiper. The purpose was to increase the liquid properties. As described above, the aim of mixing short fibers in the known technique is to increase the porosity by increasing the bulk.

また、特開昭55−30498号公報の不織布の場合、
その実施例から明らかなように、極細繊維としてポリプ
ロピレン、ポリエチレン、アクリル系ポリマーを用い、
混合する極太繊維としてはポリエチレンテレフタレート
、ナイロン、ナイロン6.6といった異素材を用いてい
る。この2種の繊維どうしに相溶性がないため、熱結合
しても極細繊維と極太繊維の結合が充分ではなく、実質
的には極細繊維相互の熱結合となっている。このため極
細繊維のもつ特長がt貝なわれるのみならず、極太繊維
の補強効果が殆ど発現されないため強力向」二効果が不
充分であった。
In addition, in the case of the nonwoven fabric of JP-A No. 55-30498,
As is clear from the examples, polypropylene, polyethylene, and acrylic polymers were used as the ultrafine fibers,
Different materials such as polyethylene terephthalate, nylon, and nylon 6.6 are used as the thick fibers to be mixed. Since these two types of fibers are not compatible with each other, even if they are thermally bonded, the ultrafine fibers and the thick fibers are not sufficiently bonded, and the ultrafine fibers are essentially thermally bonded to each other. For this reason, not only the features of the ultra-fine fibers were lost, but also the reinforcing effect of the ultra-thick fibers was hardly exhibited, resulting in insufficient strength-enhancing effects.

また、この極細繊維相互の熱結合が主体の場合は、極細
繊維のもつ性能の低下が起こるのみならず、硬化したり
もろくなったりして特に引裂強力が低下するという問題
があった。また、特開昭59−1.83723号公報の
不織布の場合でも同様な問題が見られる。
In addition, when the thermal bonding between the ultrafine fibers is the main one, there is a problem that not only the performance of the ultrafine fibers deteriorates, but also the ultrafine fibers become hardened or brittle, resulting in a particularly low tear strength. A similar problem is also seen in the case of the nonwoven fabric disclosed in JP-A-59-1.83723.

本発明は、前述した極細繊維ウェブの特長を出来るだけ
1nなわずに、しかもスパンボンドのような他の高強力
不織布との張り合わせ等のような方法によらない一層タ
イブの高強力極細繊維不織布を提供することを目的とす
る。
The present invention aims to create a single-layer type high-strength ultra-fine fiber non-woven fabric that maintains the features of the above-mentioned ultra-fine fiber web as much as possible, and that does not involve lamination with other high-strength non-woven fabrics such as spunbond. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の[J的は、平均繊維径が0.1〜8.0−の極
細繊維と、1.5デニ一ル以上で平均繊維長30I以」
二であり、かつ該極細繊維と相溶性をaする繊維とがラ
ンダムに混在して成るシートであって、少なくともこの
太い繊維と前記極細繊維とが部分的に熱結合している高
強力シートによって達成される。
The objective of the present invention is to use ultrafine fibers with an average fiber diameter of 0.1 to 8.0 mm, a fiber diameter of 1.5 denier or more, and an average fiber length of 30 I or more.
2, and is made up of a random mixture of fibers that are compatible with the ultra-fine fibers, and at least the thick fibers and the ultra-fine fibers are partially thermally bonded. achieved.

本発明の極細繊維は、ポリプロピレン、ポリエチレン等
のポリオレフィン、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル、ナイロン6
、ナイロン6.6等のポリアミドおよびこれらの共重合
体、ブレンド物、ポリ塩化ビニル、アクリル系およびア
クリル系共重合体、ポリスチレン、ポリアリレーンスル
ファイド、ポリスルホン等がある。本発明においては、
極細繊維は極細繊維と混合される繊維(以下混合繊維と
いう)との熱結合力を高める目的で、熱可塑性繊維、特
に混合繊維と相溶性のある同一種の熱可塑性ポリマー繊
維である。
The ultrafine fibers of the present invention include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and nylon 6
, polyamides such as nylon 6.6, copolymers and blends thereof, polyvinyl chloride, acrylic and acrylic copolymers, polystyrene, polyarylene sulfide, polysulfone, and the like. In the present invention,
The ultrafine fibers are thermoplastic fibers, particularly thermoplastic polymer fibers of the same type that are compatible with the mixed fibers, for the purpose of increasing the thermal bonding strength between the ultrafine fibers and the fibers mixed with the fibers (hereinafter referred to as mixed fibers).

本発明でいう極細繊維としてはその平均繊維径が0.1
〜8.0−以下の繊維を用いるとよく、好ましくは平均
繊維径が0.5〜6.0p、特に好ましくは1.0〜5
.0−の範囲の平均繊維径を有する繊維であるとよい。
The ultrafine fibers referred to in the present invention have an average fiber diameter of 0.1
It is preferable to use fibers with an average fiber diameter of ~8.0- or less, preferably an average fiber diameter of 0.5-6.0p, particularly preferably 1.0-5.
.. The fibers preferably have an average fiber diameter in the range of 0-.

なお平均繊維径が0.1趨以下の場合は柔軟であるが繊
維強力が低くなり、毛羽の脱落があり用途が制限される
ので好ましくない。−方、8.0p以上では、不織布強
力は高くなるが、反面、前記した極細繊維の特長である
フィルター性能、バクテリアバリアー性、吸塵性、吸液
性、断熱性が劣るので好ましくないや 本発明の混合繊維は、極細繊維と相溶性を存する熱可塑
性繊維である。
If the average fiber diameter is less than 0.1, it is not preferable because although it is flexible, the fiber strength is low and fluff may fall off, which limits its uses. - On the other hand, if it is 8.0p or more, the strength of the nonwoven fabric will be high, but on the other hand, the above-mentioned characteristics of ultrafine fibers such as filter performance, bacterial barrier property, dust absorption property, liquid absorption property, and heat insulation property will be inferior, so this is not preferable. The mixed fibers are thermoplastic fibers that are compatible with the ultrafine fibers.

このような混合繊維としては、ポリプロピレン、ポリエ
チレンのようなポリオレフィン、ポリエチレンテレフタ
レート、ポリブチレンテレフタレートのようなポリエス
テル1ナイロン6、ナイロン6.6のようなポリアミド
やポリアクリルニトリルなどの素材から選ばれ、これら
の共重合物、ブレンド物があげれらる。また、素材成分
の数が2種以にあってもよい。
Such mixed fibers are selected from materials such as polypropylene, polyolefins such as polyethylene, polyester 1 nylon 6 such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6.6, and polyacrylonitrile. Examples include copolymers and blends of. Further, the number of material components may be two or more.

極細繊維と混合繊維とが相溶性を有する組合せとしては
、この2種繊維が同一素材系どうしの場合であり、たと
えば、極Ia繊維(A)がポリオレフィンの時は混合繊
維(B)もポリオレフィン、Aがポリエステルの時はB
もポリエステル、Aがポリアミドの時はBもポリアミド
といった組合せ等であり、これらが共重合体やブレンド
物であってもよい。特に、Aがポリプロピレンの時はB
もポリプロピレン、Aがポリエチレンテレフタレートの
時はBもポリエチレンテレフタレート、Aがナイロン6
の時はBもナイロン6といった、全く同一素材の組合せ
が熱結合し易く強力の面で最も好ましい。極細繊維と混
合繊維とが相溶性を有する組合せにすることによって、
この2種の繊維間で適度の熱結合が生じ、不織布の引張
り強力、さらに特に引裂強力が大巾に向上するという効
果が生じる。
A combination in which ultrafine fibers and mixed fibers are compatible is when these two types of fibers are of the same material system. For example, when the ultra-Ia fiber (A) is polyolefin, the mixed fiber (B) is also polyolefin, When A is polyester, B
When A is polyester, B is also polyamide, and these may be a copolymer or a blend. In particular, when A is polypropylene, B
is polypropylene, and when A is polyethylene terephthalate, B is also polyethylene terephthalate and A is nylon 6.
In this case, a combination of the same materials, such as B and nylon 6, is most preferable in terms of easy thermal bonding and strength. By creating a compatible combination of ultrafine fibers and mixed fibers,
Appropriate thermal bonding occurs between these two types of fibers, resulting in the effect that the tensile strength, and especially the tear strength, of the nonwoven fabric is greatly improved.

本発明の混合繊維は捲縮があっても無くてもよいが、捲
縮があった方が極細繊維不織布が嵩高となり、吸塵性、
吸液性が向上しワイパー用途として好ましい。また、I
畏縮があった方が断熱性も向上するため断熱材として用
いた場合も好ましい。
The mixed fibers of the present invention may or may not be crimped, but if they are crimped, the ultrafine fiber nonwoven fabric will be bulkier and will have better dust absorption properties.
It has improved liquid absorption and is suitable for wiper applications. Also, I
It is also preferable to use it as a heat insulating material because it improves the heat insulation properties when there is shrinkage.

更には、圧力1R失、粉塵保持量も向−トするためフィ
ルター用途とした場合も好ましい方向である。
Furthermore, since the pressure loss of 1R and the amount of dust retained are also reduced, this is also a preferable direction when used as a filter.

捲縮率は15%以上が好ましい。The crimp ratio is preferably 15% or more.

本発明において、混合繊維のデニール(繊維径)、繊維
長は不織布強力に影響し重要である。
In the present invention, the denier (fiber diameter) and fiber length of the mixed fibers are important as they affect the strength of the nonwoven fabric.

混合繊維のデニールは1.5デニ一ル以上、好ましくは
2〜25デニール、特に3〜20デニールが好ましい。
The mixed fiber has a denier of 1.5 denier or more, preferably 2 to 25 denier, particularly 3 to 20 denier.

1.5デニ一ル未満では引裂強力向上効果が充分ではな
い。混合繊維のデニールは大きいはど引裂強力は高まる
が、25デニールを超えると不織布が硬く、手触り不良
となり好ましくない。
If it is less than 1.5 denier, the effect of improving tear strength is not sufficient. The larger the denier of the mixed fibers, the higher the tear strength, but if the denier exceeds 25, the nonwoven fabric will be hard and have a poor feel, which is not preferable.

また、混合繊維の平均繊維長は30Illf11以上、
好ましくは35〜110++ua、特に50〜8011
111が好ましい。
In addition, the average fiber length of the mixed fiber is 30Illf11 or more,
Preferably 35-110++ua, especially 50-8011ua
111 is preferred.

30IW未満では引裂強力向上効果が不充分である。If it is less than 30 IW, the effect of improving tear strength is insufficient.

混合繊維の平均繊維長を長くするほど引裂強力が高まる
が、110mm以上長くしても引裂強力は殆んど高まら
ずほぼ飽和状態となる。また混合繊維の・V均繊維長が
長すぎると極細繊維に均一に分散させることが困難とな
り、場合によっては引裂強力が低下することがある。
The longer the average fiber length of the mixed fibers, the higher the tear strength, but even if the fiber length is increased by 110 mm or more, the tear strength hardly increases and becomes almost saturated. Furthermore, if the average fiber length of the mixed fibers is too long, it becomes difficult to uniformly disperse the fibers into the ultrafine fibers, and in some cases, the tear strength may decrease.

本発明においては、混合繊維として1.5デニール以ト
であり、平均繊維長が30聞以上を同時に満たず場合に
引裂強力が最も高まる。
In the present invention, the tear strength is maximized when the mixed fiber has a denier of 1.5 denier or more and the average fiber length does not exceed 30 fibers at the same time.

混合繊維の引張り強度は高い程、不織布の引裂協力、引
張り強力が高まる。混合繊維の引張り強度は少なくとも
2g/デニール、特に3〜10g/デニールが好ましい
The higher the tensile strength of the mixed fibers, the higher the tear cooperation and tensile strength of the nonwoven fabric. The tensile strength of the blended fibers is preferably at least 2 g/denier, especially 3 to 10 g/denier.

本発明において引裂強力が向上する現象については必ず
しも明解ではないが、次の様に村えられる。すなわち、
不織布の引裂強力は、極細繊維より強力の高い混合繊維
の切断でほぼ決定されるが、この混合繊維の強力((デ
ニール当りの強度)×(デニール))が大きいほど不織
布の引裂強力が高まる。更に、この混合繊維が不織糸中
に堅固に固定されており、すり抜は等が起らないことが
、混合繊維の強力を充分発揮させる1−で必要なことで
ある。本発明の不織布は、極細繊維と混合繊維とが相溶
性を有するため、この両者が充分に熱結合し、しかも混
合繊維の繊維長が比較的長いため極細繊維との熱結合に
加え混合繊維相互の熱結合も多く生じ、この結果、混合
繊維が不織布中に堅固に固定されるものと考えられる。
Although the phenomenon in which the tear strength is improved in the present invention is not necessarily clear, it can be summarized as follows. That is,
The tear strength of a nonwoven fabric is almost determined by the cutting of the mixed fibers, which are stronger than the ultrafine fibers, and the greater the strength ((strength per denier) x (denier)) of the mixed fibers, the higher the tear strength of the nonwoven fabric. Furthermore, it is necessary for the mixed fibers to be firmly fixed in the nonwoven yarn and not to be pulled out, etc., in order to fully exhibit the strength of the mixed fibers. In the nonwoven fabric of the present invention, since the ultrafine fibers and the mixed fibers are compatible, they can be thermally bonded sufficiently, and since the fiber length of the mixed fibers is relatively long, in addition to the thermal bonding with the ultrafine fibers, the mixed fibers can also be bonded to each other. It is thought that a large amount of thermal bonding occurs, and as a result, the mixed fibers are firmly fixed in the nonwoven fabric.

本発明の不織布では、混合繊維が極細繊維中に実質的に
単繊維状にランダムに混合しているのが好ましい。この
ような混合状態により、前記した極細繊維の特長を殆ど
損なわずに高強力化が達成できる。混合繊維の全繊維量
に対する混合割合(重置)は20〜80%、好ましくは
30〜70%、特に40〜60%が好ましい、20%以
下であると熱結合力が低く充分な強力が得にくい0.一
方、80%以上であると前述の極細繊維の特長が損なわ
れるので好ましくない。
In the nonwoven fabric of the present invention, it is preferable that the mixed fibers are randomly mixed substantially in the form of single fibers in the ultrafine fibers. With such a mixed state, high strength can be achieved without substantially impairing the features of the ultrafine fibers described above. The mixing ratio (overlap) of the mixed fibers to the total amount of fibers is 20 to 80%, preferably 30 to 70%, especially 40 to 60%. If it is 20% or less, the thermal bonding force is low and sufficient strength is not obtained. Difficult 0. On the other hand, if it is 80% or more, the above-mentioned characteristics of the ultrafine fiber will be impaired, which is not preferable.

また、極![il!II維も単繊維状にランダムに分散
していると、前記した各種性能が高まり更に好ましい、
また、本発明の不織布は、第3の素材、繊径、形態等の
異なる繊維、粉体等が混合されてあってもよい。
Also, Kiwami! [il! It is more preferable that the II fibers are also randomly dispersed in the form of single fibers, since the above-mentioned various performances are enhanced.
Further, the nonwoven fabric of the present invention may be a mixture of a third material, fibers with different fiber diameters, shapes, etc., powder, etc.

本発明の不織布は、混合繊維として低融点成分を含む腹
合繊維を混合してあってもよい、複合繊維を混在させる
と相乗効果として引裂強力に加え引張り強力も高まり好
ましい。
The nonwoven fabric of the present invention may contain a composite fiber containing a low melting point component as a mixed fiber.It is preferable to mix composite fibers to increase tensile strength as well as tear strength as a synergistic effect.

また、メルトブロー法で得られた極細繊維は極めて小さ
な繊維径を有しているため、繊維の平均長さを推定する
ことが難しいが、30I!111以上、多くの場合は1
00〜500maと推定される。
Furthermore, since the ultrafine fibers obtained by the melt blowing method have extremely small fiber diameters, it is difficult to estimate the average length of the fibers, but 30I! 111 or more, often 1
Estimated to be 00-500ma.

本発明の不織布の日付量は10〜200g/nf、好ま
しくは20〜1.50g/ポ、特に25〜100 g 
/ボが好ましい。
The weight of the nonwoven fabric of the present invention is 10 to 200 g/nf, preferably 20 to 1.50 g/nf, especially 25 to 100 g
/bo is preferred.

本発明の極細繊維不織布を得る方法としては、メルトブ
ロー法、フラッシュ紡糸法、スーパードロー法または複
合紡糸法と通常の乾式や湿式不織布法の組合せ等特に限
定されないが、特にメルトブロー法が好ましい。
The method for obtaining the ultrafine fiber nonwoven fabric of the present invention is not particularly limited, such as a combination of a melt blowing method, a flash spinning method, a super draw method, or a composite spinning method and a conventional dry or wet nonwoven fabric method, but the melt blowing method is particularly preferred.

混合繊維の混合法としては、たとえばメルトブロー法、
フラッシュ紡糸法では、−たん捲縮短繊維のウェブを作
成し、これをリッケリンロール等で紡糸中の極細繊維群
中に飛走させて混合し、シート状物として得る方法、ま
たは、捲縮短繊維を−たんスライバー状としコーミング
ロール(多数の歯の付いたロール状物)で解繊、飛走さ
せて前記と同様に混合し、シート状物を得る方法がある
Examples of mixing methods for mixed fibers include melt blowing,
In the flash spinning method, a web of crimped short fibers is created, and this is mixed into a group of ultrafine fibers being spun using a Rickerin roll or the like to obtain a sheet-like product; There is a method in which a sliver is made into a sliver, defibrated using a combing roll (a roll with many teeth), and then mixed in the same manner as described above to obtain a sheet.

また、スーパードロー法、海島繊維法で得た極細繊維と
混合する短繊維をさらにカットして2種の繊維を混合さ
せたスラリーを作成し抄紙法でシート化する方法がある
。これらの繊維シートは−たん交絡処理を施してあって
もよい。
Another method is to further cut the short fibers mixed with the ultrafine fibers obtained by the super draw method or the sea-island fiber method to prepare a slurry in which two types of fibers are mixed, and then form the slurry into a sheet using the papermaking method. These fiber sheets may be subjected to a tantalization treatment.

熱結合方法としては、熱エンボス法、熱カングー法、熱
風法、超音波結合法等があげられる。特に熱風結合法、
超音波結合法は不織布に加圧プレスすることなく熱結合
できるので、嵩高な不織布がG)られ、前述の極細繊維
の特長が充分に発揮されるので好ましい。熱結合温度は
熱結合が生じる湯境以上あればよく、−船釣には極細繊
維の軟化意思−Lあればよい。一方、極細繊維の融点以
上に高めると、極細繊維の熱結合が多く生じ好ましくな
い、したがって、本発明は、極細繊維の軟化点以上で極
細繊維の融点以下が好ましい。
Examples of the thermal bonding method include a hot embossing method, a hot Kangoo method, a hot air method, and an ultrasonic bonding method. Especially the hot air bonding method,
The ultrasonic bonding method is preferred because it can thermally bond the nonwoven fabric without pressurizing it, resulting in a bulky nonwoven fabric and fully exhibiting the features of the ultrafine fibers described above. It is sufficient that the thermal bonding temperature is above the temperature at which thermal bonding occurs, and for boat fishing, it is sufficient that the ultrafine fiber is softened. On the other hand, if the temperature is raised above the melting point of the ultrafine fibers, the ultrafine fibers will undergo a lot of thermal bonding, which is undesirable. Therefore, in the present invention, it is preferable that the softening point of the ultrafine fibers be higher than the melting point of the ultrafine fibers.

本発明の不織布は種りの後処理を行うことができる。た
とえば、コロナ放電法などによりエレクトレット化する
ことによりフィルター性能、吸塵力を更に高めることも
可能である。
The nonwoven fabric of the present invention can be subjected to seed post-treatment. For example, it is possible to further improve the filter performance and dust suction power by converting it into an electret using a corona discharge method or the like.

r実施例〕 以下に実施例を挙げて本発明を更に具体的に説明する。r Example] EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例及び比較例中に示される諸物性の定義と測定方法
を下記に示す。
The definitions and measurement methods of various physical properties shown in Examples and Comparative Examples are shown below.

◎平均繊維径(崗) サンプルの任意な10箇所を電子顕微鏡で倍率2000
倍で10枚の写真撮影を行う。1枚の写真につき任意の
10本の繊維の直径を測定し、これを10枚の写真につ
いて行う。合計100本の繊維径測定値を求め平均値を
計算する。
◎Average fiber diameter (grain) Ten arbitrary points on the sample were examined using an electron microscope at a magnification of 2000.
Take 10 photos at double magnification. Measure the diameter of 10 arbitrary fibers for each photograph, and do this for each of the 10 photographs. A total of 100 fiber diameter measurements are obtained and the average value is calculated.

◎厚み(ffill) ビーフ・ンク型厚み針を用い、130g/cdの一定荷
重で測定した。
◎Thickness (ffill) Measured using a beef-ink type thickness needle under a constant load of 130 g/cd.

◎引張強力(g/目付) サンプルとして20m1ltlx 160mm長をとり
、万能型引張試験機(テンシロン)を用い、把持長10
0mm、荷重容量100kg、引張速度100m/分で
測定し値を、1CIl中当り、単位日付(Ig/nf)
当りに換算した。
◎Tensile strength (g/fabric weight) A sample of 20ml x 160mm was taken, and using a universal tensile tester (Tensilon), the gripping length was 10.
0mm, load capacity 100kg, tensile speed 100m/min, value per 1 CIl, unit date (Ig/nf)
It was converted into a hit.

◎引裂強力(g/目付) サンプルとして6〇−中×65■長さをとり、サンプル
をサンプル台に止め、ナイフで切れ込みを入れる。エレ
メンドルフ引裂試験機を用い最大振度を読みとる。この
値を単位目付(1g/ryf)当りに換算した。
◎Tear Strength (g/Weight) Take a 60-medium x 65-inch length sample, place the sample on a sample stand, and make a cut with a knife. Read the maximum vibration using an Elmendorf tear tester. This value was converted into per unit weight (1 g/ryf).

◎捕集効率(%)、圧力損失(ta Ht O)リオン
に、  K社製のパーティクルカウンター(型式にC−
01B)を用い、大気吸引法で0.3μm以上の粉塵を
吸引空気量0.51/分の条件で測定した。
◎Collection efficiency (%), pressure loss (ta HtO) In addition, a particle counter manufactured by K company (model C-
01B), dust particles of 0.3 μm or more were measured using the atmospheric suction method at a suction air rate of 0.51/min.

■ 捕集効率 サンプル有と無(ブランク)の粒子数をバーチイルカウ
ンターで読みとり、下記の式で計算する。
■ Collection efficiency Read the number of particles with and without sample (blank) using a vertile counter and calculate using the following formula.

■ 圧力)置火 サンプル前後の差圧を徴差圧針で読む。■ Pressure) Fire Read the differential pressure before and after the sample with the differential pressure needle.

◎ワイピング性能(吸油性) ダストとして、灯油を用いて、アクリル板上に各々を散
布し、実際に拭取った場合の拭取り残渣の大小で評価し
た。
◎ Wiping Performance (Oil Absorption) Kerosene was used as the dust, and each was sprinkled onto an acrylic plate, and evaluated by the size of the wiping residue when actually wiped.

◎捲縮率(%) 繊維の未捲縮長と捲縮長との差を捲縮長で割り100倍
した値である。
◎Crimp ratio (%) This is the value obtained by dividing the difference between the uncrimped length and the crimped length of the fiber by the crimped length and multiplying it by 100.

◎混合率(%) 混合された繊維重量を全不滅布重量で割り100倍した
値である。
◎Mixing ratio (%) This is the value obtained by dividing the weight of the mixed fibers by the weight of the total immortal fabric and multiplying it by 100.

ポリプロピレンをメルトブロー法により紡糸して平均繊
維径1.7μの極細繊維群とした。この繊維の融点はD
SCで測定したところ158°Cであった。一方混合繊
維として6デニール、長さ64111II、引張り強度
3.5g/デニール、捲縮率40%のポリプロピレン繊
維を用いこの繊維をスライバー状とし、このスライバー
の多数本をコーミングロールで解繊しながら短繊維を飛
走させ、先の掘細繊維群中に混合させた。下方に設けた
移動するネット面上でこの混合された繊維群を捕集して
20cm11のウェブを得た。このウェブは、捲縮短繊
維の固まりがなく、実質的に単繊維状に分散されており
ランダムで均一なものであった。捲縮短繊維の混合率は
50%であった。
Polypropylene was spun using a melt-blowing method to obtain a group of ultrafine fibers with an average fiber diameter of 1.7 μm. The melting point of this fiber is D
When measured by SC, it was 158°C. On the other hand, polypropylene fibers of 6 denier, length 64111II, tensile strength 3.5 g/denier, and crimp ratio 40% are used as mixed fibers, and this fiber is made into a sliver. The fibers were allowed to fly and mixed into the previously dug fiber group. The mixed fibers were collected on a moving net surface provided below to obtain a 20 cm 11 web. This web had no lumps of crimped short fibers, and was substantially dispersed in the form of single fibers, which were random and uniform. The mixing ratio of crimped short fibers was 50%.

このウェブを斜め(45°)ごばん目状の模様の付いた
巾30cmの熱エンボスロールを通過させて熱結合させ
た。この時の熱ロールの温度は130゛C、プレス圧は
10kg/cdG、処理スピードは6m/分であった。
This web was thermally bonded by passing through a heat embossing roll having a width of 30 cm and having a diagonal (45°) grid pattern. At this time, the temperature of the hot roll was 130°C, the press pressure was 10 kg/cdG, and the processing speed was 6 m/min.

この不織布の仕置、物性を表1に示した。比較として、
)在線短繊維を混合しない極細繊維のみの熱結合不織布
(比較品l)、及び、混合させる1在縮短繊維としてポ
リエチレンテレフタレート繊維を用いた以外は実施例1
に記載した方法と全く同様にして得た不織布(比較品2
)の値も表1に併せ示した。
Table 1 shows the storage and physical properties of this nonwoven fabric. As a comparison,
) Example 1 except that a thermally bonded nonwoven fabric containing only ultrafine fibers without mixed short fibers (comparative product 1) and polyethylene terephthalate fibers as the short fibers to be mixed were used.
A nonwoven fabric obtained in exactly the same manner as described in (Comparative product 2)
) values are also shown in Table 1.

表  1 この表から明らかなように、本発明品は強力(特に引裂
強力)が著しく向トし、単独使用が可能であった。しか
も吸油性にも優れたものであることが判った。
Table 1 As is clear from this table, the strength (especially tear strength) of the product of the present invention was significantly improved, and it was possible to use it alone. Moreover, it was found to have excellent oil absorption properties.

実施■又 実施例1と同様にしてポリプロピレンをメルトブローし
極細繊維群を用意し、一方混合するポリプロピレン短繊
維のデニール、繊維長を種々変化させて実施例1と同様
にしてランダムで均一に混繊させた目付50g/rdの
ウェブを得た。ポリプロピレン短繊維の引張り強度は3
〜6g/デニルであった。捲縮短繊維の混合率は50%
であった。
Implementation ■ Also, in the same manner as in Example 1, polypropylene was melt-blown to prepare a group of ultrafine fibers, and on the other hand, the denier and fiber length of the polypropylene short fibers to be mixed were varied, and the fibers were randomly and uniformly mixed in the same manner as in Example 1. A web with a basis weight of 50 g/rd was obtained. The tensile strength of short polypropylene fibers is 3
~6 g/denyl. Mixing ratio of crimped short fibers is 50%
Met.

このウェブを幅30cmの熱プレス機(金属/ゴムロー
ル)を用い、金属ロールのi度を140 ’C、プレス
圧力を10kg/cdG、処理スピードを6m/分にし
て全面熱接着を行った。
This web was thermally bonded over the entire surface using a 30 cm wide heat press machine (metal/rubber roll) at a metal roll temperature of 140'C, a press pressure of 10 kg/cdG, and a processing speed of 6 m/min.

この不織布の物性を表2に示した。Table 2 shows the physical properties of this nonwoven fabric.

表2 裂強力が高まることが判る。Table 2 It can be seen that the cracking strength increases.

尚、実験k14は強力は優れているが、不織布がやや硬
く、また手触りも若干劣るものであった。
In addition, although the strength of Experiment k14 was excellent, the nonwoven fabric was somewhat hard and the feel was also slightly inferior.

1旅Mユ 実施例1において、混合短繊維の混合率を種々変化させ
て、他は全く同様にして混繊不織布を得た。この結果を
表3に示す。
A mixed fiber nonwoven fabric was obtained in exactly the same manner as in Example 1, except that the mixing ratio of the mixed short fibers was varied. The results are shown in Table 3.

表3 この表2から明らかなように、混合短繊維が1.5デニ
一ル以上、繊維長は38mm以上で特に引この表3から
混合短繊維の混合率は20〜80%が、不織布の強力と
フィルター性能の両面から好ましいことが判る。
Table 3 As is clear from this Table 2, the mixed short fibers are 1.5 denier or more, the fiber length is 38 mm or more, and especially from Table 3, the mixing ratio of the mixed short fibers is 20 to 80%. It turns out that it is preferable in terms of both strength and filter performance.

実施11千− ポリエチレンテレフタレートをメルトブロー法により紡
糸して平均繊維径2.5μ晩の極細繊維群とした。この
繊維の融点は258°Cであった。一方混合繊維として
、8デニール、長さ30mm、捲縮率(10%のポリエ
チレンテレフタレト繊維をカード法で1.5m中のシー
[とし、このシートをリッケ」ン!:l−ルで解繊、飛
走させて飛走極m繊維群中に均一・に混合し、移動する
ネット面、トでこの繊維群を捕集し1.5m中のランダ
ムに混繊したウェブを得た。捲縮短繊維の混合率は70
%であった。
Example 11: Polyethylene terephthalate was spun using a melt blow method to obtain a group of ultrafine fibers with an average fiber diameter of 2.5 μm. The melting point of this fiber was 258°C. On the other hand, as a mixed fiber, a polyethylene terephthalate fiber of 8 denier, length 30 mm, crimp rate (10%) was made into a 1.5 m sheet by the carding method, and this sheet was solved with a ricken! The fibers were allowed to fly and mixed uniformly into the flying fibers, and the fibers were collected by the moving net surface to obtain a randomly mixed web of 1.5 m. The mixing ratio of shortened fibers is 70
%Met.

ごのつニブを不連続な丸状模様をもつ熱エンボスロール
を用い、ito”cで熱接着させた。
The gonotsu nib was thermally bonded with ito''c using a hot embossing roll with a discontinuous circular pattern.

得られた不織布の[1付は1.00 g / xd 、
厚みは0.65am、引張強力12.7g/目付、引裂
強力は20.48 / ofであり、フィルター性能に
も優れたものであった。
The weight of the obtained nonwoven fabric was 1.00 g/xd,
The thickness was 0.65 am, the tensile strength was 12.7 g/fabric weight, the tear strength was 20.48/of, and the filter performance was also excellent.

実=旋桝五 ポリエチレンテレフタレートをメルトブローして平均繊
維径0.9nの極細繊維群(融点258°C)とした、
6デニール、長さ75閤の捲縮したポリエチレンテレフ
タレート繊維を実施例1と同様にして均一に混繊させた
。混合率は30%であった。
Fruit = Lathe 5 Polyethylene terephthalate was melt-blown to form a group of ultrafine fibers with an average fiber diameter of 0.9n (melting point 258°C),
Crimped polyethylene terephthalate fibers of 6 denier and 75 strands in length were uniformly mixed in the same manner as in Example 1. The mixing ratio was 30%.

このウェブを14.0“Cの熱風を用いて熱結合した。This web was thermally bonded using hot air at 14.0"C.

得られた不織布は目付80g/d、厚み1.1 ya、
引張強力10.8 g /目付、引裂強力13.7 g
 / [J付であり、フィルター性能、断熱性にも優れ
たものであった。
The obtained nonwoven fabric had a basis weight of 80 g/d, a thickness of 1.1 ya,
Tensile strength 10.8 g / fabric weight, tear strength 13.7 g
/ [It was rated J and had excellent filter performance and heat insulation properties.

[発明の効果] 本発明の不織布は前述のように構成されているので、極
細繊維不織布の有する(Iれた特製であるフィルター性
能、バクテリアバリアー性、吸塵性、吸液性、断熱性を
殆ど1員なうことなく、しかも強力特に引裂強力が著し
く向上しているため、他の高強力シート物の張り合わせ
等の補強を行わずに単独で使用することが可能となる。
[Effects of the Invention] Since the nonwoven fabric of the present invention is configured as described above, it has almost all of the filter performance, bacteria barrier properties, dust absorption properties, liquid absorption properties, and heat insulation properties that ultrafine fiber nonwoven fabrics have. Since it does not require any single member and has significantly improved strength, especially tear strength, it can be used alone without reinforcing it by pasting it with other high-strength sheets.

このため、各種フィルター、ワイパー、ラップ類、断熱
材のみならず、屋根材、壁材等の土木材、サージカルガ
ウン、シート類、おしめ、ナプキン類のメディカル材や
衛生材等として広く使用可能となった。
For this reason, it can be widely used not only as various filters, wipers, wraps, and insulation materials, but also as civil engineering materials such as roofing materials and wall materials, and medical and sanitary materials such as surgical gowns, sheets, diapers, and napkins. Ta.

しかも、他のシート状物等の張り合わせが不要であり工
程的にも有利であるため、コスト的にも優れたものであ
り、したがってこの発明の工業的意義は大きいものであ
る。
Moreover, it is advantageous in terms of process since it does not require pasting other sheet-like materials, etc., and is therefore excellent in terms of cost. Therefore, the present invention has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims]  平均繊維径が0.1〜8.0μmの極細繊維と、1.
5デニール以上で平均繊維長30mm以上であり、かつ
該極細繊維と相溶性を有する繊維とがランダムに混在し
て成るシートであって、少なくともこの太い繊維と前記
極細繊維とが部分的に熱結合している高強力シート。
Ultrafine fibers having an average fiber diameter of 0.1 to 8.0 μm; 1.
A sheet consisting of a random mixture of fibers having a denier of 5 denier or more, an average fiber length of 30 mm or more, and having compatibility with the ultrafine fibers, wherein at least the thick fibers and the ultrafine fibers are partially thermally bonded. High strength sheet.
JP1002873A 1989-01-11 1989-01-11 High-tenacity sheet Pending JPH02191759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002873A JPH02191759A (en) 1989-01-11 1989-01-11 High-tenacity sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002873A JPH02191759A (en) 1989-01-11 1989-01-11 High-tenacity sheet

Publications (1)

Publication Number Publication Date
JPH02191759A true JPH02191759A (en) 1990-07-27

Family

ID=11541473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002873A Pending JPH02191759A (en) 1989-01-11 1989-01-11 High-tenacity sheet

Country Status (1)

Country Link
JP (1) JPH02191759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341233A (en) * 2005-06-10 2006-12-21 Japan Vilene Co Ltd Sterilization filter medium and sterilization filter
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US11090407B2 (en) 2017-03-09 2021-08-17 The Procter & Gamble Company Thermoplastic polymeric materials with heat activatable compositions
US11110013B2 (en) 2014-09-10 2021-09-07 The Procter & Gamble Company Nonwoven webs with hydrophobic and hydrophilic layers
US11129919B2 (en) 2016-03-09 2021-09-28 The Procter & Gamble Company Absorbent article with activatable material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341233A (en) * 2005-06-10 2006-12-21 Japan Vilene Co Ltd Sterilization filter medium and sterilization filter
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US9974700B2 (en) 2013-03-15 2018-05-22 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US10016319B2 (en) 2013-03-15 2018-07-10 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US10993855B2 (en) 2013-03-15 2021-05-04 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US11110013B2 (en) 2014-09-10 2021-09-07 The Procter & Gamble Company Nonwoven webs with hydrophobic and hydrophilic layers
US11129919B2 (en) 2016-03-09 2021-09-28 The Procter & Gamble Company Absorbent article with activatable material
US11090407B2 (en) 2017-03-09 2021-08-17 The Procter & Gamble Company Thermoplastic polymeric materials with heat activatable compositions

Similar Documents

Publication Publication Date Title
EP2496738B1 (en) Polypropylene fibrous elements and processes for making same
KR101187219B1 (en) Fiber for wetlaid non-woven fabric
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JP4350625B2 (en) Ultra-thin fiber nonwoven fabric, production method thereof and use thereof
JP2008000696A (en) Fiber laminate body for filter
JP2003535982A (en) Multi-layer wipe
CN109648958B (en) Composite non-woven fabric and preparation method and application thereof
JPH0192415A (en) Heat-bondable fiber and nonwoven fabric thereof
JPH03279452A (en) High-strength nonwoven sheet
JP4670471B2 (en) Chargeable fiber and non-woven fabric, processed non-woven fabric using them
JP5126463B2 (en) Maleic anhydride-containing fiber
JPH02191759A (en) High-tenacity sheet
JP4028965B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JPH0291262A (en) High-tenacity nonwoven fabric
JP2009185417A (en) Cellulose nano-fiber nonwoven sheet
JP5812607B2 (en) Split type composite fiber and fiber assembly using the same
JP4281474B2 (en) Nonwoven fabric and method for producing the same
JP2005015990A (en) Heat adhesive bicomponent fiber and nonwoven fabric using the same
JP2003089955A (en) Ultra fine fiber-made nonwoven fabric and method for manufacturing the same
JP2000117025A (en) Filter base material and production thereof and mask
JP2001159026A (en) Polypropylene-containing fiber and fiber sheet
JPS6392723A (en) Wettable composite fiber and nonwoven cloth made thereof
JP2534272B2 (en) Manufacturing method of multi-component fiber entangled nonwoven fabric
JPH02112460A (en) Sheet having high strength