JPH02112460A - Sheet having high strength - Google Patents

Sheet having high strength

Info

Publication number
JPH02112460A
JPH02112460A JP63259418A JP25941888A JPH02112460A JP H02112460 A JPH02112460 A JP H02112460A JP 63259418 A JP63259418 A JP 63259418A JP 25941888 A JP25941888 A JP 25941888A JP H02112460 A JPH02112460 A JP H02112460A
Authority
JP
Japan
Prior art keywords
fibers
fiber
ultrafine
melting point
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259418A
Other languages
Japanese (ja)
Inventor
Masataka Ikeda
昌孝 池田
Tsukasa Shima
島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63259418A priority Critical patent/JPH02112460A/en
Publication of JPH02112460A publication Critical patent/JPH02112460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a high-strength sheet having excellent filtration performance, dust-collecting property, etc., by using ultrafine fibers having a specific average fiber diameter and thick fibers composed of a thermoplastic fiber having a melting point lower than the melting point of the ultrafine fiber and partially bonding the ultrafine fiber to the thick fiber with heat. CONSTITUTION:The objective sheet having excellent bacteria-barrierness, liquid- absorbing property and heat-insulation and suitable as various filters, wipers, laps, heat-insulation materials, etc., is a random mixture of (A) ultrafine fibers having an average fiber diameter of 0.1-0.8mum and composed of polypropylene, polyethylene terephthalate, etc., and (B) thick thermoplastic fibers having an average fiber diameter of >=10mum and a meting point lower than that of the ultrafine fiber by 10-200 deg.C (e.g., fiber of nylon 6 or polypropylene). The sheet is produced by partially bonding the ultrafine fibers A and the thick fibers B with heat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極細繊維を含む高強力シート状物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a high-strength sheet material containing ultrafine fibers.

より詳しくは、フィルター性能、バクテリアバリアー性
、吸塵性、吸液性、断熱性に優れると同時に高強力なシ
ート状物に関し、特に各種フィルター、ワイパー、ラッ
プ類、断熱材等の用途に好適な極細繊維高強力シート状
物に関する。
More specifically, regarding sheet-like materials that have excellent filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation properties, and are also highly strong, we will focus on ultra-fine sheets that are particularly suitable for various filters, wipers, wraps, insulation materials, etc. This invention relates to a high-strength fiber sheet.

ただし本明細書でいうシート状物は実質的に不織布に該
当するので、以下においては不織布で説明する。
However, since the sheet-like material referred to in this specification substantially corresponds to a nonwoven fabric, the nonwoven fabric will be described below.

〔従来の技術〕[Conventional technology]

極細繊維からなる不織布、特にメルトブロー法により得
られる極細繊維不織布は、フィルター性能、ハタテリア
バリアー性、吸塵性、吸液性、断熱性等に優れ、この特
−長を活かし種々の用途に用いられてきている。
Nonwoven fabrics made of ultrafine fibers, especially ultrafine fiber nonwoven fabrics obtained by melt blowing, have excellent filter performance, grouper barrier properties, dust absorption properties, liquid absorption properties, heat insulation properties, etc., and are used in a variety of applications by taking advantage of these characteristics. It's coming.

メルトブロー法については、インダストリアル・アンド
・エンジニアリング・ケミストリー(Industri
al and Engineering Chemis
try) 48巻、第8号(P、1342〜1346)
 、1956年に基本的な装置および方法が開示されて
いる。また、特公昭56−33511号公報および特開
昭55−1.42757号公報にポリオレフィン、ポリ
エステル等の極細繊維の製造法が開示されている。
For melt blowing methods, see Industrial and Engineering Chemistry.
al and Engineering Chemises
try) Volume 48, No. 8 (P, 1342-1346)
, 1956, disclosed the basic apparatus and method. Additionally, Japanese Patent Publication No. 56-33511 and Japanese Patent Application Laid-open No. 55-1.42757 disclose methods for producing ultrafine fibers such as polyolefins and polyesters.

一方、極細繊維に太い短繊維を混合した不織布について
は以下のものが知られている。すなわち、特公昭61−
30065号報には1極IH繊維とこれより径の大きい
捲縮ステープルファイバーを混合した少なくとも30c
ra/gの嵩高さを有する熱絶縁体用弾性繊維質ウェブ
が開示されている。
On the other hand, the following are known as nonwoven fabrics in which thick short fibers are mixed with ultrafine fibers. In other words, Special Public Interest Publication 1986-
No. 30065 states that at least 30cm is a mixture of monopolar IH fiber and crimped staple fiber with a larger diameter.
An elastic fibrous web for thermal insulation having a loft of ra/g is disclosed.

また、特開昭55−30498号報およ0特開昭591
83723号報には、極細繊維と捲縮した太い短繊維を
含むワイパーが開示されている。
Also, JP-A-55-30498 and JP-A-591
No. 83723 discloses a wiper containing ultrafine fibers and crimped thick short fibers.

〔発明が解決しようとする課題] 極細繊維のみからなる不織布、特にメルトブロー法で得
られた極細繊維ウェブは、非常に小さなポアサイズを持
つ良質な多孔質体であるため、フィルター性能、バクテ
リアバリアー性、吸塵性、吸液性、断熱性等に優れると
いう特長があるが、反面、強力が低く用途が大きく限定
されるという問題があった。そのため、メルトブローウ
ェブ単独で使われることは極めて少なく、一般的には、
スパンポンド法不織布等のような高強力の不織布、また
はtJ ’tH物等と張り合わせて用いられており、性
能面、コスト面で間Jがあった。
[Problems to be solved by the invention] Nonwoven fabrics made only of ultrafine fibers, especially ultrafine fiber webs obtained by melt blowing, are high-quality porous bodies with extremely small pore sizes, so they have excellent filter performance, bacterial barrier properties, It has the advantage of being excellent in dust absorption, liquid absorption, heat insulation, etc., but on the other hand, it has the problem of being low in strength and its uses are greatly limited. Therefore, melt blown webs are rarely used alone, and generally,
It is used by laminating it with a high-strength nonwoven fabric such as a spunpond nonwoven fabric or a tJ'tH material, and there is a problem in terms of performance and cost.

一方、前述の特公昭61−30065号報にお0て、太
い捲縮ステープルファイバーを極11I繊維に混合する
目的はウェブの嵩高化(高空隙率化)にあり、これによ
り断熱性を裔め得たものである。また、特開詔55−3
0498繊維、特開昭59−183723号報はいず1
も太い捲縮短繊維の混合する目的が、ウェブの空隙率向
上(嵩高化)にあり、これによりワイパーとしての特性
である吸塵性、吸液性を高めることにあった。このよう
に、公知技術の短繊維混合の狙いは1.嵩高化による空
隙率向上にあったものである。
On the other hand, in the above-mentioned Japanese Patent Publication No. 61-30065, the purpose of mixing thick crimped staple fibers with pole 11I fibers is to increase the bulk of the web (increase porosity), thereby improving insulation properties. That's what I got. Also, Unexamined Patent Publication Edict 55-3
0498 Textile, JP-A-59-183723 No. 1
The purpose of mixing thick crimped short fibers was to improve the porosity (increase bulk) of the web, thereby increasing the dust absorption and liquid absorption properties that are the characteristics of a wiper. In this way, the aims of short fiber mixing in the known technology are 1. This is due to the increase in porosity due to increased bulk.

また、特開昭55−30498号報の不0特の場合、そ
の実施例から明らかなように、極細繊維としてポリプロ
ピレン、ポリエチレン、アクリル系ポリマーを用い、混
合する極太繊維としてはポリエチレンテレフタレート、
ナイロン、ナイロン6.6といった異素材を用いている
のみならず、極細繊維の融点より高い融点を有する極大
繊維を用いている。
Furthermore, in the case of JP-A No. 55-30498, as is clear from the examples, polypropylene, polyethylene, and acrylic polymers are used as the ultra-fine fibers, and polyethylene terephthalate and polyethylene terephthalate are used as the ultra-thick fibers to be mixed.
Not only are different materials such as nylon and nylon 6.6 used, but also extra-large fibers with a melting point higher than that of ultra-fine fibers are used.

したがって熱結合しても極細繊維と極大繊維の結合が充
分ではなく、実質的には極細繊維相互の熱結合となって
いる。このため極細繊維、のもつ特長が…なわれるのみ
ならず、極太繊維の補強効果が殆ど発現されないため強
力向上効果が不充分であった。一方、極細繊維と極太繊
維との熱結合を生じさせるには比較的高温を必要とする
ため、この場合は低融点素材の極細繊維の損傷が著しく
、硬化し7たりもろくなったりして極細繊維のもつ性能
の低下が起こるのみならず強力も殆ど向上せず、逆に強
ツノ(特に引裂強力)が低下することが多いという問題
があった。また、特開昭59−183723号報の不織
1も場合でも同様な問題が見られる。
Therefore, even if thermally bonded, the ultrafine fibers and the ultralarge fibers are not sufficiently bonded, and the ultrafine fibers are essentially thermally bonded to each other. As a result, not only the characteristics of the ultra-fine fibers were lost, but also the reinforcing effect of the ultra-thick fibers was hardly exhibited, resulting in an insufficient strength-improving effect. On the other hand, since a relatively high temperature is required to create a thermal bond between the ultra-fine fibers and the thick fibers, in this case, the ultra-fine fibers made of low-melting point materials are severely damaged, hardening and becoming brittle. There was a problem in that not only did the performance of the material deteriorate, but also the strength hardly improved, and on the contrary, the strength (particularly the tear strength) often decreased. Further, the same problem can be seen in the case of the non-woven fabric 1 disclosed in Japanese Patent Application Laid-Open No. 59-183723.

本発明は、前述した極細繊維ウェブの特長を出来るだけ
損なわずに、しかもスパンボンドのような他の高強力不
織布との張り合わせ等のような方法によらない一層タイ
ブの高強力極細繊維不織布を提供することを目的とづる
The present invention provides a single-layer type high-strength micro-fiber nonwoven fabric that does not impair the features of the micro-fiber web described above as much as possible, and does not involve lamination with other high-strength non-woven fabrics such as spunbond. The purpose is to do something.

[課題を解決するための手段〕 本発明の目的は、平均繊維径が0.1〜8. O/Rn
の極細繊維と、平均繊維径が10−以上の繊維がランダ
ムに混在したシート状物であって、前記太い繊維が、極
細繊維の融点より10〜200″C低い融点を有する熱
可塑性繊維であり、かつ、少なくともこの低融点熱可塑
性繊維と前記極細繊維とが部分的に熱結合している高強
力シート状物によって達成される。
[Means for Solving the Problems] An object of the present invention is to provide fibers with an average fiber diameter of 0.1 to 8. O/Rn
A sheet-like material in which ultrafine fibers of , and is achieved by a high-strength sheet material in which at least the low melting point thermoplastic fibers and the ultrafine fibers are partially thermally bonded.

本発明の極細繊維は、ポリプロピレン、ポリエチレン等
のポリオレフィン、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル、ナイロン6
、ナイロン6.6等のポリアミドおよびこれらの共重合
体、ポリ塩化ビニル、アクリル系およびアクリル系共重
合体、ポリスチレン、ポリアリレーンスルファイド、ポ
リスルホン、無機繊維等がある。本発明においては、極
細繊維が混合繊維との熱結合力を高める目的で、熱可塑
性繊維、特に混合繊維と相溶性のある同一種の熱可塑性
ポリマー繊維を選ぶのが好ましい。
The ultrafine fibers of the present invention include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and nylon 6
, polyamides such as nylon 6.6 and their copolymers, polyvinyl chloride, acrylic and acrylic copolymers, polystyrene, polyarylene sulfide, polysulfone, and inorganic fibers. In the present invention, it is preferable to select thermoplastic fibers, particularly thermoplastic polymer fibers of the same type that are compatible with the mixed fibers, in order to increase the thermal bonding strength between the ultrafine fibers and the mixed fibers.

本発明でいう極細繊維としてはその平均繊維径が0.1
〜8.0μm以下の繊111を用いるとよく、好ましく
は平均繊維径が0.5〜6.0卿、特に好ましくは1.
0〜5.0μInの範囲の平均繊維径を有する繊維であ
るとよい。なお平均繊jnf:径が0.1p以下の場合
は柔軟であるが繊維強力が低くなり、毛羽の脱落があり
用途が制限されるので好ましくない。
The ultrafine fibers referred to in the present invention have an average fiber diameter of 0.1
It is preferable to use fibers 111 with a diameter of ~8.0 μm or less, preferably an average fiber diameter of 0.5 to 6.0 μm, particularly preferably 1.0 μm.
The fibers preferably have an average fiber diameter in the range of 0 to 5.0 μIn. If the average fiber jnf: diameter is 0.1p or less, it is not preferable because although it is flexible, the fiber strength is low and the fluff may fall off, which limits its uses.

方、8.0−以上では、不織布強力は高くなるが、反面
、前記した極IIl ta維の特長であるフィルター性
能、バクテリアバリアー性、吸塵性、吸液性、断熱性が
劣るので好ましくない。
On the other hand, if it is 8.0 or more, the strength of the nonwoven fabric becomes high, but on the other hand, it is not preferable because the above-mentioned features of the extremely high quality fibers, such as filter performance, bacterial barrier properties, dust absorption properties, liquid absorption properties, and heat insulation properties, are inferior.

本発明の混合繊維は、極細繊維の融点より10〜200
℃低い融点を有する熱可塑性繊維である。
The mixed fiber of the present invention has a melting point of 10 to 200% higher than the melting point of the ultrafine fiber.
It is a thermoplastic fiber with a low melting point.

このような混合繊維としては、ポリプロピレン、ポリエ
チレンのようなポリオレフィン、ポリエチレンテレフタ
レート、ポリブチレンテレフタレートのようなポリエス
テル、ナイロン6、ナイロン6.6のようなポリアミド
やポリアクリルニトリルなどの素材から選ばれ、これら
の共重合物、ブレンド物があげられる。本発明では共重
合体や比較的低重合度のものが低融点化させ易く好まし
い。
Such mixed fibers are selected from materials such as polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon 6.6, and polyacrylonitrile. Examples include copolymers and blends of In the present invention, copolymers and those with a relatively low degree of polymerization are preferred because they can easily lower the melting point.

また、素材成分の数が2種以上あってもよい。Further, the number of material components may be two or more.

本発明の混合繊維は捲縮があっても無くてもよいが、捲
縮があった方が極細繊維不織布が嵩高となり、吸塵性、
吸液性が向上しワイパー用途として好ましい。また、捲
縮があった方が断熱性も向上するため断熱材として用い
た場合も好ましい。
The mixed fibers of the present invention may or may not be crimped, but if they are crimped, the ultrafine fiber nonwoven fabric will be bulkier and will have better dust absorption properties.
It has improved liquid absorption and is suitable for wiper applications. In addition, it is also preferable to use the material as a heat insulating material because crimping improves heat insulating properties.

更には、圧力損失、粉塵保持Uも向上するためフィルタ
ー用途とした場合も好ましい方向である。
Furthermore, since pressure loss and dust retention U are improved, it is also preferable for use in filters.

捲縮率は15%以上が好ましい。The crimp ratio is preferably 15% or more.

混合繊維の繊径(デニール)は不織布強力に影響し重要
である。本発明において平均繊径が10μ以上の繊維を
用いるとよく、好ましくは15〜60趨、特に好ましく
は20〜45nである。平均繊径は大きい方が同一重量
割合の混合において不織布の引張強力、引裂強力ともに
向上し、10μ以上で充分な強力が得られることが見出
された。複合繊維の繊維長は特に限定されず、短繊維で
あっても長繊維であってもよい。極細繊維中にランダム
にかつ均一に混合するには短繊維が好ましく、3〜10
0mm、特に10〜80 mmが好ましい。
The fiber diameter (denier) of the mixed fibers is important because it affects the strength of the nonwoven fabric. In the present invention, it is preferable to use fibers having an average fiber diameter of 10 μm or more, preferably 15 to 60 nm, particularly preferably 20 to 45 nm. It has been found that the larger the average fiber diameter, the better the tensile strength and tear strength of the nonwoven fabric when mixed at the same weight ratio, and that sufficient strength can be obtained when the average fiber diameter is 10μ or more. The fiber length of the composite fibers is not particularly limited, and may be short fibers or long fibers. Short fibers are preferred in order to mix randomly and uniformly in ultrafine fibers, and 3 to 10
0 mm, especially 10-80 mm is preferred.

混合繊維の融点は、極細繊維の融点より10〜200″
C低いことが必要である。好ましくは、20〜150℃
1特に好ましくは25〜100℃である。
The melting point of the mixed fiber is 10 to 200" higher than the melting point of the ultrafine fiber.
It is necessary that C is low. Preferably 20-150°C
1 Particularly preferably 25 to 100°C.

この融点差が10℃より小さいと、混合繊維と極細繊維
の融点が接近しすぎているため、熱接着工程で混合繊維
による接着に加えて極細繊維相互の熱接着も多く発生し
、極細繊維ウェブの有する前記した種々の特長が著しく
減少するのみならず、引裂強力の低下が起こり、風合も
著しく硬いものになる。
If this melting point difference is less than 10°C, the melting points of the mixed fibers and the ultrafine fibers are too close, and in the thermal bonding process, in addition to adhesion by the mixed fibers, there is also a lot of thermal adhesion between the ultrafine fibers, resulting in a web of ultrafine fibers. Not only are the various above-mentioned features of the material significantly reduced, but the tear strength also decreases and the hand becomes extremely hard.

一方、融点差が200″Cを超えると、混合繊維の融点
が低すぎ”ζその後の使用条件により剥がれ等の問題が
起こる。
On the other hand, if the melting point difference exceeds 200"C, the melting point of the mixed fibers is too low"ζ, which may cause problems such as peeling depending on the conditions of subsequent use.

この様に、継点差が10〜200’Cの範囲においては
じめて、極細繊維ウェブの特長であるフィルター性能、
バクテリアバリアー性、吸塵性、吸液性、断熱性を殆ど
tilなうことなく、高強力化が達成できる。
In this way, only when the joining point difference is in the range of 10 to 200'C, the filter performance, which is a feature of the ultrafine fiber web, can be improved.
High strength can be achieved with almost no loss in bacterial barrier properties, dust absorption properties, liquid absorption properties, and heat insulation properties.

この現象については必ずしも明解ではないが、次の様に
考えられる。すなわち、極細繊維と混合繊維の融点差が
10℃以上あるため、極細繊維相互の熱融着は殆ど発生
させずに熱融着結合することが可能であり、このため極
細繊維のもつ特徴を殆ど損なうことがない。また、この
極細繊維相互の熱結合が多くあると、補強繊維、すなわ
ち混合繊維のない部分は特に引裂強力が低くなり、この
部分から破れ等が発生するので好ましくない。しかもI
Ir、i合繊維の交点を中心とした熱結合が可能となり
、また、熱融着結合後でも混合繊維は繊維形状をほぼ保
つことが可能で、このため高強力が達成できる。
Although this phenomenon is not necessarily clear, it can be considered as follows. In other words, because the difference in melting point between ultrafine fibers and mixed fibers is more than 10°C, it is possible to heat-seal and bond the ultrafine fibers with almost no thermal adhesion between them. It will not be damaged. Further, if there is a large amount of mutual thermal bonding between the ultrafine fibers, the tear strength will be particularly low in the part where there are no reinforcing fibers, that is, mixed fibers, and tearing will occur from this part, which is not preferable. Moreover, I
Thermal bonding is possible centered on the intersection of the Ir and i composite fibers, and even after heat fusion bonding, the mixed fibers can maintain almost their fiber shape, thus achieving high strength.

本発明でいう融点は一般的にはDSC(示差走査熱量計
)で測定可能であり、吸熱ピークとして現れる。非結晶
構造のものは融点が必ずしも明確に現れないものも中に
はあるが、この場合は一般的に言われている軟化点で代
用される。この様なものでも先のDSCで測定すれば吸
熱ピークが現れるものが殆どであり、この点を意味する
The melting point in the present invention can generally be measured with a DSC (differential scanning calorimeter), and appears as an endothermic peak. There are some materials with an amorphous structure that do not necessarily have a clearly defined melting point, but in this case, the generally known softening point is used as a substitute. This is because most of these materials exhibit endothermic peaks when measured using the DSC described above.

また、軟化点は示差熱分析(DTA)を利用することが
できる。軟化点はDTAグラフの傾斜が初めて変化する
温度である。
Further, the softening point can be determined using differential thermal analysis (DTA). The softening point is the temperature at which the slope of the DTA graph changes for the first time.

本発明の不織布は、’t’f1合繊維が極1.■繊維中
に実質的に単繊維状にランダムに混合している。このよ
うな混合状態により、前記した極細繊維の特長を殆ど損
なわずに高強力化が達成できる。混合繊維の全繊維量に
対する混合割合(重量)は20〜80%、好ましくは3
0〜70%、特に40〜60%が好ましい。20%以下
であると熱結合力が低く充分な強力が得にくい。一方、
80%以上であると前述の極細繊維の特長が…なわれる
ので好ましくない。
In the nonwoven fabric of the present invention, the 't'f1 synthetic fiber is extremely 1. ■It is mixed randomly in the fiber in the form of substantially single fibers. With such a mixed state, high strength can be achieved without substantially impairing the features of the ultrafine fibers described above. The mixing ratio (weight) of the mixed fibers to the total fiber amount is 20 to 80%, preferably 3
0-70%, especially 40-60% is preferred. If it is less than 20%, the thermal bonding strength will be low and it will be difficult to obtain sufficient strength. on the other hand,
If it exceeds 80%, the above-mentioned characteristics of the ultrafine fibers will be lost, which is not preferable.

また、極細繊維も単繊維状にランダムに分散しているf
iと、前記した各種性能が高まり更に好ましい。また、
本発明の不織布は、第3の素材、繊径、形態等の異なる
繊維、粉体等が混合されてあってもよい。
In addition, ultrafine fibers are also randomly dispersed in the form of single fibers.
i is more preferable because the various performances described above are improved. Also,
The nonwoven fabric of the present invention may be a mixture of a third material, fibers with different fiber diameters, shapes, etc., powder, and the like.

また、メルトブロー法で得られた極細繊維は極めて小さ
な繊維径を有しているため、繊維の平均長さを推定する
ことが難しいが、30mm以上、多くの場合は100〜
500mmと推定される。
In addition, since the ultrafine fibers obtained by the melt-blowing method have an extremely small fiber diameter, it is difficult to estimate the average length of the fibers, but it is 30 mm or more, and in many cases 100 to 100 mm.
Estimated to be 500mm.

本発明の極細繊維不織布を得る方法としては、メルトブ
ロー法、フラッシュ紡糸法、スーパードロー法または複
合繊維法と抄紙法の組合せ等特に限定されないが、特に
メルトブロー法が好ましい。
The method for obtaining the ultrafine fiber nonwoven fabric of the present invention is not particularly limited, such as a melt blow method, a flash spinning method, a super draw method, or a combination of a composite fiber method and a paper making method, but the melt blow method is particularly preferred.

混合繊維の混合法としては、たとえばメルI・ブロー法
、フラッシュ紡糸法では、−たん捲縮短繊維のウェブを
作成し、これをリッケリンロール等で紡糸中の極細繊維
群中に飛走させて混合し、シート状物として得る方法、
または、捲縮短繊維を−たんスライバー状としコーミン
グロール(多数の歯の付いたロール状物)で解繊、飛走
させて前記と同様に混合し、シート状物を得る方法があ
る。また、スーパードロー法、海鳥繊維法で得た極細繊
維と混合する短繊維を−たん3〜30mm、好ましくは
5〜10mmにカットしてこの2種を混合させたスラリ
ーを作成し抄紙法でシート化する方法がある。これらの
極111繊維シートは−たん交絡処理を施してあっても
よい。
As a method for mixing mixed fibers, for example, in the Mel I blow method and the flash spinning method, a web of crimped short fibers is created, and this is made to fly through the ultrafine fiber group being spun using a Rickerin roll or the like. A method of mixing and obtaining a sheet-like product,
Alternatively, there is a method in which the crimped short fibers are made into slivers, defibrated and flung using a combing roll (roll-like material with many teeth), and mixed in the same manner as described above to obtain a sheet-like material. In addition, the short fibers to be mixed with the ultrafine fibers obtained by the super draw method or seabird fiber method are cut into 3 to 30 mm, preferably 5 to 10 mm, to create a slurry in which these two types are mixed, and sheets are made by the papermaking method. There is a way to do this. These polar 111 fiber sheets may be subjected to a -tan entanglement treatment.

熱結合方法としては、熱エンボス法、熱カングー法、熱
風法、超音波結合法等があげられる。特に熱風結合法は
不織布に加圧プレスすることなく熱結合できるので、嵩
高な不織布が得られ、前記した極細繊維の特長が充分に
発揮されるので好ましい。熱結合温度は熱結合が生じる
温度以−ヒあればよく、−船釣には?昆合繊維の軟化点
以上あればよい。一方、極細繊維の融点以上に富めると
、極細繊維の熱結合が多く生じ好ましくない。したがっ
て、本発明は、混合繊維の軟化点以上で極細繊維の融点
以下が好ましい。
Examples of the thermal bonding method include a hot embossing method, a hot Kangoo method, a hot air method, and an ultrasonic bonding method. In particular, the hot air bonding method is preferable because it can thermally bond the nonwoven fabric without pressurizing it, yielding a bulky nonwoven fabric and fully exhibiting the features of the ultrafine fibers described above. Thermal bonding temperature only needs to be higher than the temperature at which thermal bonding occurs. - For boat fishing? It is sufficient if it is above the softening point of the kongo fiber. On the other hand, if the content is higher than the melting point of the ultrafine fibers, the ultrafine fibers will be undesirably thermally bonded to each other. Therefore, in the present invention, it is preferable that the softening point of the mixed fiber is higher than the melting point of the ultrafine fiber.

本発明の不織布は種々の後処理を行うことができる。た
とえば、コロナ放電法などによりエレクトレット化する
ことによりフィルター性能、吸塵力を更に高めることも
可能である。
The nonwoven fabric of the present invention can be subjected to various post-treatments. For example, it is possible to further improve the filter performance and dust suction power by converting it into an electret using a corona discharge method or the like.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を更に具体的に説明する。 EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例及び比較例中に示される諸物性の定義と測定方法
を下記に示す。
The definitions and measurement methods of various physical properties shown in Examples and Comparative Examples are shown below.

◎平均繊維径(R1) サンプルの任意な10箇所を電子顕微鏡で倍率2000
倍で10枚の写真撮影を行う。1枚の写真につき任意の
10本の繊維の直径を測定し、これを10枚の写真につ
いて行う。合計100本の繊維径測定値を求め平均値を
計算する。
◎Average fiber diameter (R1) Ten arbitrary points on the sample were examined using an electron microscope at a magnification of 2000.
Take 10 photos at double magnification. Measure the diameter of 10 arbitrary fibers for each photograph, and do this for each of the 10 photographs. A total of 100 fiber diameter measurements are obtained and the average value is calculated.

◎厚み(mm) ピーコック型厚み計を用い、130g/cflの一定荷
重で測定した。
◎Thickness (mm) Measured using a peacock type thickness gauge under a constant load of 130 g/cfl.

◎引張強力(8/目付) サン2°ルとして20mm巾X 160mm長をとり、
万能型引張試験R(テンシロン)を用い、把持c io
◎Tensile strength (8/fabric weight) Take a 20mm width x 160mm length as a 2° sample.
Using a universal tensile test R (Tensilon), grip c io
.

値、荷重容!it 10okg、引張速度100mm/
分で測定し値を、1 coo ljl当り、単位目付(
1g / rd )当りに換算した。
Value, load capacity! it 10okg, tensile speed 100mm/
The value is measured in minutes per 1 coo ljl, unit basis weight (
1g/rd).

◎引裂強力(g/目付) サンプルとして60血n中X65mm長さをとり、1ナ
ンプルをサンプル台に止め、ナイフで切れ込みを入れる
。エレメンドルフ引裂試験機を用い最大振度を読みとる
。この値を単位日付(Ig/rrr)当りに換算した。
◎Tear Strength (g/Weight) Take a sample of 60 mm x 65 mm in length, stop one sample on the sample stand, and make a cut with a knife. Read the maximum vibration using an Elmendorf tear tester. This value was converted per unit date (Ig/rrr).

◎捕集効率(%)、圧力1n失(mm It z O)
リオンに、  K社製のパーティクルカウンター(型式
Kc−01B)を用い、大気吸引法で0.3声、1以上
の粉塵を吸引空気ff10.5ffi/分の条件で狙[
定した。
◎Collection efficiency (%), pressure 1n loss (mm It z O)
Using a particle counter manufactured by K Company (model Kc-01B) on the Rion, use the atmospheric suction method to target dust particles of 0.3 and 1 or more under the conditions of suction air ff10.5ffi/min [
Established.

■tilj集効率 サンプル有と無(ブランク)の粒子数をバーチイルカウ
ンターで読みとり、下記の式で計算する。
(2) Tilj Collection Efficiency The number of particles with and without sample (blank) is read with a vertile counter and calculated using the following formula.

■圧力損失 サンプル前後の差圧を微差圧計で読む。■Pressure loss Read the differential pressure before and after the sample with a differential pressure gauge.

◎捲縮率(%) 繊維の未捲縮長と捲縮長との差を捲縮長で割りlOO任
τしたイ直である。
◎Crimp ratio (%) This is calculated by dividing the difference between the uncrimped length and the crimped length of the fiber by the crimped length.

◎混合率(%) 混合された繊維重量を仝不織布重量で割り100倍した
(直である。
◎Mixing ratio (%) The weight of the mixed fibers was divided by the weight of the nonwoven fabric and multiplied by 100 (directly).

実萄」目−」Uダ願よ、i ポリプロピレンをメルトブロー法により紡糸して平均繊
維径1.7庫の極細繊維群とした。この繊維の融点はD
SCで測定したところ158℃であった。繊径25ハ、
長さ64wn、捲縮率40%のポリエチレン、(融点1
32℃)、をスライバー状とし、このスライバーの多数
本をコーミングロールで解繊しながら短繊維を飛走させ
、先の極細繊維群中に混合させた。下方に設けた移動す
るネット面上でこの混合繊維群を捕集して20cm11
のつLプを得た。このウェブは、捲縮短繊維の固まりが
なく、実質的に単繊維状に分散されておりランダムで均
一なものであった。捲縮短繊維の混合率は50%であっ
た。
Polypropylene was spun using a melt blow method to obtain a group of ultrafine fibers with an average fiber diameter of 1.7. The melting point of this fiber is D
When measured by SC, the temperature was 158°C. Thin diameter 25cm,
Polyethylene, length 64wn, crimp rate 40%, (melting point 1
(32° C.) was made into a sliver, and while a large number of these slivers were defibrated with a combing roll, the short fibers were made to fly and mixed into the ultrafine fiber group at the tip. This mixed fiber group is collected on the moving net surface provided below, and 20cm11
I got Notsu Lp. This web had no lumps of crimped short fibers, and was substantially dispersed in the form of single fibers, which were random and uniform. The mixing ratio of crimped short fibers was 50%.

このウェブを斜め(45”)ごばん目状の模様の付いた
中30cmの熱エンボスロールを通過させて熱結合させ
た。この時の熱ロールの温度は130℃、プレス圧は1
0 kg/ c+M G、処理スピードは6m/分であ
った。
This web was thermally bonded by passing through a medium 30 cm heat embossing roll with a diagonal (45") grid-like pattern. At this time, the temperature of the heat roll was 130°C, and the press pressure was 1
0 kg/c+MG, processing speed was 6 m/min.

この不繊布の性■、物性を表1に示した。比較として、
捲縮短繊維を混合しない極細繊維のみの熱結合不織布(
比較品1)、及び、ど捏合させる捲縮短繊維としてポリ
エチレンテレフタシー1代維を用いた以外は実施例1に
記載した方法と全く同様にして得た不織布(比較品2)
の値も表1に併せ示した。
Table 1 shows the properties (1) and physical properties of this nonwoven fabric. As a comparison,
A thermally bonded nonwoven fabric made only of ultrafine fibers without mixing crimped short fibers (
Comparative product 1), and a nonwoven fabric (comparative product 2) obtained in exactly the same manner as described in Example 1, except that polyethylene terephthalate single fibers were used as the crimped short fibers to be kneaded.
The values are also shown in Table 1.

表   1 この表から明らかなように、本発明品は強力が著しく向
上し、単独使用が可能であった。しかも驚くべきごとに
フィルター性能までも向上し、しかも吸油性にも優れた
ものであることが判った。
Table 1 As is clear from this table, the strength of the product of the present invention was significantly improved and it was possible to use it alone. What's more, it was surprisingly found that the filter performance was improved, and it also had excellent oil absorption.

↓羞ルは− ポリエチレンテレフタレートをメルトブロー法により紡
糸して平均繊維径2. Otnhの極細繊維群とした。
↓Jiru is made by spinning polyethylene terephthalate using the melt-blowing method to create an average fiber diameter of 2. The ultrafine fiber group of Otnh was used.

この繊維の融点ば258℃であった。繊径16胛(4d
)、長さ30 m、)査線率50%の融点が種々前なる
共重合ポリエステル(テレフタル酸とポリエチレンに対
し第三成分としてジエチレングリコールを用いたランダ
ム共重合ポリエステル)繊維をカード法で1.5m巾の
シートとし、このシートをリッケリンロールで解繊、飛
走されて飛走極細繊維君Y中に均一に混合し、移・助」
−るネット面上でこの繊維群を捕集し1.5 m Il
lのフンダムに温風したウェブを得た。1査縮短繊¥1
Fの?IL合率は70%であった。
The melting point of this fiber was 258°C. Diameter 16 (4d)
), length 30 m, ) Copolyester fibers with various melting points (random copolyester using diethylene glycol as the third component for terephthalic acid and polyethylene) with a scanning line rate of 50% were made into 1.5 m fibers using a card method. This sheet is made into a wide sheet, defibrated with a Rickerin roll, and mixed uniformly into Hisou Ultrafine Fiber Y, which is then transferred and processed.
This fiber group was collected on the net surface of the
A web was obtained which was heated with warm air in the fundum of l. 1 scan shortened fiber ¥1
F's? The IL rate was 70%.

このウェブを熱風を用いて熱結合させた。This web was thermally bonded using hot air.

得られた不織布(目付100 g / n()の物性を
表2に示す。
Table 2 shows the physical properties of the obtained nonwoven fabric (fabric weight: 100 g/n).

以下余白 表 繊径を9側とする以外は他は実施例1と全く同様にして
不織布を得た。
A nonwoven fabric was obtained in exactly the same manner as in Example 1 except that the margin surface fiber diameter was set to the 9 side.

この不織布の目付は65g/nf、厚みは0.28mm
であり、引張り強力は8.6g/日付、引裂強力は2.
7g/目付と低いため単独使用は困難であった。
The basis weight of this nonwoven fabric is 65g/nf, and the thickness is 0.28mm.
The tensile strength is 8.6g/date, and the tearing strength is 2.
It was difficult to use alone due to its low basis weight of 7 g/fabric weight.

この表から明らかなように、極ta繊維と混合ポリエス
テル繊維の融点差が20〜200″Cにおいて強力、フ
ィルター性能の両者を同時に満たした優れたシート状物
となることが判る。
As is clear from this table, when the melting point difference between the extra ta fiber and the mixed polyester fiber is 20 to 200''C, an excellent sheet-like product can be obtained that satisfies both strength and filter performance at the same time.

几較開l 実施例1において混合するポリエチレン繊維の〔発明の
効果〕 本発明の不織布は、極細繊維不繊布の有する優れた特長
であるフィルター性能、バクテリアバリアー性、吸塵性
、吸液性、断熱性を殆ど1■なうことなく、逆に向上さ
せることが可能であり、しかも強力が著しく向上してい
るため、他の高強力シート物の張り合わせ等の補強を行
わずに単独で使用することが可能となる。このため、各
種フィルター、ワイパー、ラップ類、断熱材のみならず
、屋根材、壁材等の土木材、サージカルガウン、シート
!、おしめ、ナプキン類のメディカル材や衛生材等とし
て広く使用可能となった。しかも、他のシート状物等の
張り合わせが不要であり工程的にも有利であるため、コ
スト的にも優れたものであり、この発明の工業的意義は
大きいものである。
Comparison of Polyethylene Fibers Mixed in Example 1 [Effects of the Invention] The nonwoven fabric of the present invention has excellent features of ultrafine fiber nonwoven fabrics such as filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation. On the contrary, it is possible to improve the properties with almost no loss, and the strength is significantly improved, so it can be used alone without reinforcing it by pasting it with other high-strength sheets. becomes possible. For this reason, we use not only various filters, wipers, wraps, and insulation materials, but also civil engineering materials such as roofing materials, wall materials, surgical gowns, and sheets! It can now be widely used as medical and sanitary materials such as diapers, napkins, etc. Moreover, it is advantageous in terms of process since it does not require pasting other sheet-like materials, etc., and therefore it is excellent in terms of cost, and the industrial significance of this invention is great.

Claims (1)

【特許請求の範囲】[Claims]  平均繊維径が0.1〜8.0μmの極細繊維と、平均
繊維径が10μm以上の繊維がランダムに混在したシー
ト状物であって、前記太い繊維が、極細繊維の融点より
10〜200℃低い融点を有する熱可塑性繊維であり、
かつ、少なくともこの低融点熱可塑性繊維と前記極細繊
維とが部分的に熱結合している高強力シート状物。
A sheet-like material in which ultrafine fibers with an average fiber diameter of 0.1 to 8.0 μm and fibers with an average fiber diameter of 10 μm or more are randomly mixed, the thick fibers being heated at a temperature of 10 to 200°C above the melting point of the ultrafine fibers. It is a thermoplastic fiber with a low melting point,
and a high-strength sheet-like article in which at least the low melting point thermoplastic fibers and the ultrafine fibers are partially thermally bonded.
JP63259418A 1988-10-17 1988-10-17 Sheet having high strength Pending JPH02112460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259418A JPH02112460A (en) 1988-10-17 1988-10-17 Sheet having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259418A JPH02112460A (en) 1988-10-17 1988-10-17 Sheet having high strength

Publications (1)

Publication Number Publication Date
JPH02112460A true JPH02112460A (en) 1990-04-25

Family

ID=17333829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259418A Pending JPH02112460A (en) 1988-10-17 1988-10-17 Sheet having high strength

Country Status (1)

Country Link
JP (1) JPH02112460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168066A1 (en) * 2013-04-11 2014-10-16 東レ株式会社 Mixed-fiber nonwoven fabric and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168066A1 (en) * 2013-04-11 2014-10-16 東レ株式会社 Mixed-fiber nonwoven fabric and method for manufacturing same
CN105074075A (en) * 2013-04-11 2015-11-18 东丽株式会社 Mixed-fiber nonwoven fabric and method for manufacturing same
KR20150140655A (en) * 2013-04-11 2015-12-16 도레이 카부시키가이샤 Mixed-fiber nonwoven fabric and method for manufacturing same
US20160074790A1 (en) * 2013-04-11 2016-03-17 Toray Industries, Inc. Mixed fiber nonwoven fabric and a production method therefor (as amended)
JPWO2014168066A1 (en) * 2013-04-11 2017-02-16 東レ株式会社 Mixed fiber nonwoven fabric and method for producing the same

Similar Documents

Publication Publication Date Title
JP5449567B2 (en) Polypropylene fiber element and manufacturing method thereof
JPH01201564A (en) Oriented melt blow fiber and its production and web
JP5075679B2 (en) Filter nonwoven fabric
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP2012017529A (en) Spun-bonded nonwoven fabric and filter using the same
WO1994008083A1 (en) Nonwoven cloth of ultrafine fibers and method of manufacturing the same
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JP2003003334A (en) Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same
JPH0192415A (en) Heat-bondable fiber and nonwoven fabric thereof
JPH03279452A (en) High-strength nonwoven sheet
JPH0291262A (en) High-tenacity nonwoven fabric
JPH0450353A (en) Melt-blown nonwoven fabric
JPH02191759A (en) High-tenacity sheet
JPH02112460A (en) Sheet having high strength
WO2018225671A1 (en) Long-fiber nonwoven fabric and filter reinforcement material using same
JP7459800B2 (en) Long fiber nonwoven fabric and filter reinforcement material using it
JP7287385B2 (en) Long fiber nonwoven fabric and filter reinforcing material using the same
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP2001336033A (en) Polyester-based conjugate yarn and nonwoven fabric using the same
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JP2508833B2 (en) Thermal adhesive composite fiber
JP2021004431A (en) Sea-island fiber
JPH01213452A (en) Production of bulky nonwoven fabric
JP2003089955A (en) Ultra fine fiber-made nonwoven fabric and method for manufacturing the same
JPH0482949A (en) Nonwoven fabric and production thereof