JPH0291262A - High-tenacity nonwoven fabric - Google Patents

High-tenacity nonwoven fabric

Info

Publication number
JPH0291262A
JPH0291262A JP63238871A JP23887188A JPH0291262A JP H0291262 A JPH0291262 A JP H0291262A JP 63238871 A JP63238871 A JP 63238871A JP 23887188 A JP23887188 A JP 23887188A JP H0291262 A JPH0291262 A JP H0291262A
Authority
JP
Japan
Prior art keywords
fibers
ultrafine
fiber
melting point
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63238871A
Other languages
Japanese (ja)
Inventor
Masataka Ikeda
昌孝 池田
Tsukasa Shima
島 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63238871A priority Critical patent/JPH0291262A/en
Publication of JPH0291262A publication Critical patent/JPH0291262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide the subject nonwoven fabric composed of ultrafine fibers and conjugate fibers containing a thermoplastic component having larger average fiber diameter and lower melting point than the ultrafine fiber, having excellent filtering performance, bacteria barrierness, dust-adsorptivity, liquid-absorbing property and heat-insulation and useful for various filters, laps, etc. CONSTITUTION:The objective nonwoven fabric is produced at a reduced cost by randomly mixing (A) ultrafine fibers (e.g., polyethylene terephthalate fiber) with (B) 20-80wt.% of conjugate fibers containing a thermoplastic component having an average fiber diameter larger than that of the ultrafine fiber and a melting point lower than that of the ultrafine fiber by 10-200 deg.C (e.g., copolymerized polyester) and thermally bonding the low-melting thermoplastic components with each other. The fabric has a single-layer structure composed solely of ultrafine fiber without deteriorating the characteristic features of ultrafine fiber web.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、極細繊維を含む高強力不織布に関する。より
詳しくは、フィルター性能、バクテリアバリアー性、吸
塵性、吸液性、断熱性に優れると同時に高強力な不織布
に関し、特に各種フィルタ、ワイパー、ラップ類、断熱
材等の用途に好適な極細繊維高強力不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high-strength nonwoven fabric containing ultrafine fibers. More specifically, regarding nonwoven fabrics that have excellent filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation properties, as well as high strength, we will discuss ultrafine fibers that are particularly suitable for various filters, wipers, wraps, insulation materials, etc. Regarding strong nonwoven fabrics.

〔従来の技術〕[Conventional technology]

極細繊維からなる不織布、特にメルトプロー法により得
られる極細繊維不織布は、フィルター性能、バクテリア
バリアー性、吸塵性、吸液性、断熱性等に優れ、この特
長を活かし種々の用途に用いられてきている。
Nonwoven fabrics made of ultrafine fibers, especially ultrafine fiber nonwoven fabrics obtained by melt blowing, have excellent filter performance, bacterial barrier properties, dust absorption, liquid absorption, and heat insulation properties, and have been used for a variety of applications by taking advantage of these characteristics. .

メルトブロー法については、インダストリアル・アンド
・エンジニアリング・ケミストリー(Industri
al and Engineering Chemis
try) 48巻、第8号(P、 1342〜1346
) 、1956年に基本的な装置および方法が開示され
ている。また、特公昭56−33511号公報および特
開昭55−142757号公報にポリオレフィン、ポリ
エステル等の極細繊維の製造法が開示されている。
For melt blowing methods, see Industrial and Engineering Chemistry.
al and Engineering Chemises
try) Volume 48, No. 8 (P, 1342-1346
), 1956, disclosed the basic apparatus and method. Further, Japanese Patent Publication No. 56-33511 and Japanese Patent Application Laid-Open No. 55-142757 disclose methods for producing ultrafine fibers such as polyolefins and polyesters.

一方、極細繊維に太い短繊維を混合した不織布について
は以下のものが知られている。すなわち、特公昭61−
30065号報には1極細繊維とこれより径の大きい)
巻縮ステープルファイバーを混合した少なくとも30c
+fl/gの嵩高さを有する熱絶縁体用弾性繊維質ウェ
ブが開示されている。
On the other hand, the following are known as nonwoven fabrics in which thick short fibers are mixed with ultrafine fibers. In other words, Special Public Interest Publication 1986-
No. 30065 includes 1 ultrafine fiber and a larger diameter)
At least 30c mixed with crimped staple fibers
An elastic fibrous web for thermal insulation having a loft of +fl/g is disclosed.

また、特開昭55−30498号報およ5特開昭591
83723号報には、極細繊維と捲縮した太い短繊維を
含むワイパーが開示されている。
Also, JP-A-55-30498 and JP-A-591
No. 83723 discloses a wiper containing ultrafine fibers and crimped thick short fibers.

[発明が解決しようとする課題〕 極細繊維のみからなる不織布、特にメルトブロー法で得
られた極細繊維ウェブは、非常に小さなポアサイズを持
つ良質な多孔質体であるため、フィルター性能、バクテ
リアバリアー性、吸塵性、吸液性、断熱性等に優れると
いう特長があるが、反面、強力が低く用途が大きく限定
されるという問題があった。そのため、メルトプローウ
ェブ単独で使われることは極めて少なく、−1般的には
、スパンボンド法不織布等のような高強力の不織布、ま
たは織編物等と張り合わせて用いられており、性能面、
コスト面で問題があった。
[Problems to be Solved by the Invention] Nonwoven fabrics made only of ultrafine fibers, especially ultrafine fiber webs obtained by melt blowing, are high-quality porous bodies with extremely small pore sizes, so they have excellent filter performance, bacterial barrier properties, It has the advantage of being excellent in dust absorption, liquid absorption, heat insulation, etc., but on the other hand, it has the problem of being low in strength and its uses are greatly limited. For this reason, melt-blown webs are rarely used alone; -1. Generally, they are used in combination with high-strength nonwoven fabrics such as spunbond nonwoven fabrics, or woven or knitted fabrics.
There was a cost problem.

一方、前述の特公昭61−30065号報にお5て、太
い捲縮ステープルファイバーを極細繊維に混合する目的
はウェブの嵩高化(高空隙率化)にあり、これにより断
熱性を高め得たものである。また、特開昭55−304
98号報、特5特59−183723号報はいず1も太
い捲縮短繊維の混合する目的が、ウェブの空隙率向上(
嵩高化)にあり、これによりワイパーとしての特性であ
る吸塵性、吸液性を高めることにあった。このように、
公知技術の短繊維混合の狙いは、嵩高化による空隙率向
上にあったものである。
On the other hand, in the above-mentioned Japanese Patent Publication No. 61-30065, the purpose of mixing thick crimped staple fibers with ultra-fine fibers is to increase the bulk of the web (increase porosity), thereby increasing the heat insulation properties. It is something. Also, JP-A-55-304
In Report No. 98 and Japanese Patent No. 59-183723, the purpose of mixing very thick crimped short fibers is to improve the porosity of the web (
The aim was to increase the dust absorption and liquid absorption properties of wipers. in this way,
The aim of mixing short fibers in the known technique is to improve the porosity by increasing the bulk.

また、特開昭55−30498号報の不5特の場合、そ
の実施例から明らかなように、極細繊維としてポリプロ
ピレン、ポリエチレン、アクリル系ポリマーを用い、混
合する極太繊維としてはポリエチレンテレフタレート、
ナイロン、ナイロン6.6といった異素材を用いている
のみならず、極細繊維の融点より高い融点を有する極太
繊維を用いている。
Furthermore, in the case of JP-A No. 55-30498, as is clear from the examples, polypropylene, polyethylene, and acrylic polymers are used as the ultra-fine fibers, and polyethylene terephthalate and polyethylene terephthalate are used as the ultra-thick fibers to be mixed.
Not only are different materials such as nylon and nylon 6.6 used, but also extra-thick fibers with a melting point higher than that of extra-fine fibers are used.

したがって熱結合しても極細mmと極太繊維の結合が充
分ではなく、実質的には極細繊維相互の熱結合となって
いる。このため極細繊維のもつ特長が損なわれるのみな
らず、極太繊維の補強効果が殆ど発現されないため強力
向上効果が不充分であった。一方、極細繊維と極太繊維
との熱結合を生じさせるには比較的高温を必要とするた
め、この場合は低融点素材の極細繊維の損傷が著しく、
硬化したりもろくなったりして極細繊維のもつ性能の低
下が起こるのみならず強力も殆ど向上せず、逆に強力(
特に引裂強力)が低下することが多いという問題があっ
た。また、特開昭59−183723号報の不織1も場
合でも同様な問題が見られる。
Therefore, even if the fibers are thermally bonded, the ultrafine fibers and the thick fibers are not sufficiently bonded, and the ultrafine fibers are essentially thermally bonded to each other. For this reason, not only the characteristics of the ultra-fine fibers were impaired, but also the reinforcing effect of the ultra-thick fibers was hardly exhibited, resulting in an insufficient strength-improving effect. On the other hand, since a relatively high temperature is required to create a thermal bond between the ultra-fine fiber and the thick fiber, in this case, the ultra-fine fiber of the low-melting point material is significantly damaged.
Not only does the performance of ultrafine fibers deteriorate due to hardening and brittleness, but there is also little improvement in strength;
In particular, there was a problem in that the tear strength (tear strength) often decreased. Further, the same problem can be seen in the case of the non-woven fabric 1 disclosed in Japanese Patent Application Laid-Open No. 59-183723.

本発明は、前述した極細繊維ウェブの特長を出来るだけ
損なわずに、しかもスパンボンドのような他の高強力不
織布との張り合わせ等のような方法によらない一層タイ
ブの高強力極細繊維不織布を提供することを目的とする
The present invention provides a single-layer type high-strength micro-fiber nonwoven fabric that does not impair the features of the micro-fiber web described above as much as possible, and does not involve lamination with other high-strength non-woven fabrics such as spunbond. The purpose is to

〔課題を解決するための手段] 本発明の目的は極細繊維と、該極細繊維よりも太い平均
繊維径を有し、且つ極細繊維の融点よりもlO°C〜2
00’C低い融点を有する熱可塑性成分をその一部とし
て含む複合繊維とがランダムに混在して成る不織布であ
って、該不織布中の構成繊維同志の接合が少なくとも前
記極細繊維と前記複合繊維の低融点熱可塑性成分間の熱
接合によって形成されている高強力不織布によって達成
される。
[Means for Solving the Problems] The object of the present invention is to provide ultrafine fibers having an average fiber diameter larger than the ultrafine fibers, and having an average fiber diameter of 10°C to 2
00'C A nonwoven fabric randomly mixed with conjugate fibers containing a thermoplastic component having a low melting point as a part thereof, wherein the bonding of the constituent fibers in the nonwoven fabric is at least the ultrafine fibers and the conjugate fibers. This is achieved by a high-strength nonwoven fabric that is formed by thermal bonding between low-melting thermoplastic components.

本発明の極細繊維は、ポリプロピレン、ポリエチレン等
のポリオレフィン、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル、ナイロン6
、ナイロン6.6等のポリアミドおよびこれらの共重合
体、ポリ塩化ビニル、アクリル系およびアクリル系共重
合体、ポリスチレン、ポリアリレーンスルファイド、ポ
リスルホン、無機繊維等がある。本発明においては、極
細繊維が混合短繊維との熱結合力を高める目的で、熱可
塑性繊維、特に混合複合繊維の低融点成分と相溶性のあ
る同一種の熱可塑性ポリマー繊維を選ぶのが好ましい。
The ultrafine fibers of the present invention include polyolefins such as polypropylene and polyethylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and nylon 6
, polyamides such as nylon 6.6 and their copolymers, polyvinyl chloride, acrylic and acrylic copolymers, polystyrene, polyarylene sulfide, polysulfone, and inorganic fibers. In the present invention, in order to increase the thermal bonding strength between the ultrafine fibers and the mixed short fibers, it is preferable to select thermoplastic fibers, especially thermoplastic polymer fibers of the same type that are compatible with the low melting point component of the mixed composite fibers. .

本発明でいう極細繊維としてはその平均繊維径が8. 
Otn+以下の繊維を用いるとよく、好ましくは平均繊
維径が0.5〜6.0卿、特に好ましくは1.0〜5.
0卿の範囲の平均繊維径を有する繊維であるとよい。な
お平均繊維径が0.1声以下の場合は柔軟であるが繊維
強力が低くなり、毛羽の脱落があり用途が制限されるの
で好ましくない。一方、8.0声以上では、不織布強力
は高くなるが、反面、前記した極細繊維の特長であるフ
ィルター性能、バクテリバリアー性、吸塵性、吸液性、
断熱性が劣るので好ましくない。
The ultrafine fibers referred to in the present invention have an average fiber diameter of 8.
It is good to use fibers of Otn+ or less, preferably those having an average fiber diameter of 0.5 to 6.0 mm, particularly preferably 1.0 to 5.0 mm.
Preferably, the fibers have an average fiber diameter in the range of 0.0 mm. If the average fiber diameter is 0.1 tones or less, it is not preferable because although it is flexible, the fiber strength is low and the fluff may fall off, which limits its uses. On the other hand, when the temperature is 8.0 or more, the strength of the nonwoven fabric increases, but on the other hand, the above-mentioned features of ultrafine fibers such as filter performance, bacterial barrier properties, dust absorption properties, liquid absorption properties, etc.
It is not preferred because its insulation properties are poor.

本発明の不織布における極細繊維に混合される繊維は、
極細繊維よりも太い平均繊維径を有し、且つ極細繊維の
融点より10〜20Q’C低い融点を有する熱可塑性成
分を一部成分として含む複合繊維である。
The fibers mixed with the ultrafine fibers in the nonwoven fabric of the present invention are:
It is a composite fiber containing as a part of a thermoplastic component which has an average fiber diameter larger than that of the ultrafine fiber and has a melting point 10 to 20 Q'C lower than the melting point of the ultrafine fiber.

このような複合繊維としては、ポリオレフィン、ポリエ
ステル、ポリアミド、ポリアクリルニトリルなどの素材
から選ばれ、これらの共重合体、ブレンド物も含まれる
。複合形態としては、並列型(Side−by−3id
e)、鞘芯型(Sheath−Core) 、偏芯型が
あげられるがこれらに限定されず、また、素材成分の数
も2種以上であってもよいが、低融点成分の少なくとも
一部は繊維の表面に位置していることが必要である。代
表的な複合繊維としては、ポリオレフィン系としては、
ポリプロピレンとポリエチレンの組合せ(商品名:ES
繊維)、ポリエステル系としては、ポリエチレンテレフ
タレートと低融点成分として共重合ポリエステルの組合
せ(商品名:ヘルコンビ0)また、ポリエチレンとポリ
エチレンテレフタレートなどのポリエステルとの組合せ
などがあげられるがこれらに限定されるものではない。
Such composite fibers are selected from materials such as polyolefin, polyester, polyamide, and polyacrylonitrile, and also include copolymers and blends thereof. As a composite form, parallel type (Side-by-3id
e), Sheath-Core type, and eccentric type, but are not limited to these.Also, the number of material components may be two or more, but at least some of the low melting point components It is necessary to be located on the surface of the fiber. Typical composite fibers include polyolefins,
Combination of polypropylene and polyethylene (product name: ES
Examples of polyester-based materials include, but are not limited to, combinations of polyethylene terephthalate and copolymerized polyester as a low-melting point component (product name: Helcombi 0), and combinations of polyethylene and polyesters such as polyethylene terephthalate. isn't it.

本発明の複合繊維は捲縮があっても無くてもよいが、捲
縮があった方が極細繊維不織布が嵩高となり、吸塵性、
吸液性が向上しワイパー用途として好ましい。また、捲
縮があった方が断熱性も向上するため断熱材として用い
た場合も好ましい。
The composite fiber of the present invention may or may not be crimped, but if it is crimped, the ultrafine fiber nonwoven fabric will be bulkier and will have better dust absorption properties.
It has improved liquid absorption and is suitable for wiper applications. In addition, it is also preferable to use the material as a heat insulating material because crimping improves heat insulating properties.

更には、圧力損失、粉塵保持量も向上するためフィルタ
ー用途とした場合も好ましい方向である。
Furthermore, since the pressure loss and the amount of dust retained are improved, it is also preferable to use it as a filter.

1441率は15%以上が好ましい。The 1441 ratio is preferably 15% or more.

複合繊維の繊径(デニール)は不織布強力に影響し重要
である。本発明において極細繊維よりも太い平均繊径を
有する繊維として平均繊径が10μ以上の繊維を用いる
とよく、好ましくは15〜60趨、特に好ましくは20
〜45−である。平均繊径は大きい方が同一重量割合の
混合において不織布の引張強力、引裂強力ともに向上し
、10μ以上で充分な強力が得られることが見出された
。複合繊維の繊維長は特に限定されず、短繊維であって
も長繊維であってもよい。極細繊維中にランダムにかつ
均一に混合するには短繊維が好ましく、3〜100mm
、特に10〜80鵬が好ましい。
The fiber diameter (denier) of the composite fiber is important because it affects the strength of the nonwoven fabric. In the present invention, it is preferable to use fibers with an average fiber diameter of 10μ or more as fibers having an average fiber diameter larger than that of ultrafine fibers, preferably 15 to 60μ, particularly preferably 20μ.
~45-. It has been found that the larger the average fiber diameter, the better the tensile strength and tear strength of the nonwoven fabric when mixed at the same weight ratio, and that sufficient strength can be obtained when the average fiber diameter is 10μ or more. The fiber length of the composite fibers is not particularly limited, and may be short fibers or long fibers. Short fibers are preferable in order to mix randomly and uniformly in the ultrafine fibers, and the length of the fibers is 3 to 100 mm.
, particularly preferably 10 to 80 peng.

複合繊維を構成する熱可塑性成分の融点は、極細繊維の
融点より10〜200″C低いことが必要である。好ま
しくは、20〜150°C1特に好ましくは25〜10
0℃である。
The melting point of the thermoplastic component constituting the composite fiber must be 10 to 200"C lower than the melting point of the ultrafine fiber. Preferably 20 to 150"C, particularly preferably 25 to 10
It is 0°C.

この融点差力用0°Cより小さいと、複合短繊維と極細
繊維の融点が接近しすぎているため、熱接着工程で複合
繊維による接着に加えて極細繊維相互の熱接着も多く発
生し、極細繊維ウェブの有する前記した種々の特長が著
しく減少するのみならず、引裂強力の低下が起こり、風
合も著しく硬いものになる。
If this melting point difference is smaller than 0°C, the melting points of the composite short fibers and the ultrafine fibers are too close, and in the thermal bonding process, there will be a lot of thermal adhesion between the ultrafine fibers in addition to the adhesion by the composite fibers. Not only are the above-mentioned features of the ultrafine fiber web significantly reduced, but the tear strength also decreases and the texture becomes extremely hard.

一方、融点差が200°Cを超えると、複合繊維の低融
点成分の融点が低すぎてその後の使用条件により剥がれ
等の問題が起こる。
On the other hand, if the melting point difference exceeds 200°C, the melting point of the low melting point component of the composite fiber will be too low and problems such as peeling will occur depending on the subsequent usage conditions.

この様に、融点差が10〜200°Cの範囲においては
じめて、極細繊維ウェブの特長であるフィルター性能、
バクテリアバリアー性、吸塵性、吸液性、断熱性を殆ど
損なうことなく、高強力化が達成できる。
In this way, only when the melting point difference is in the range of 10 to 200°C, the filter performance, which is a feature of the ultrafine fiber web, can be improved.
High strength can be achieved with almost no loss in bacterial barrier properties, dust absorption properties, liquid absorption properties, and heat insulation properties.

この現象については必ずしも明解ではないが、次の様に
考えられる。すなわち、極細繊維と混合繊維の低融点成
分の融点差が10″C以上あるため、極細繊維相互の熱
融着は殆ど発生させずに熱融着結合することが可能であ
り、このため極細繊維のもつ特徴を殆ど損なうことがな
い。また、この極細繊維相互の熱結合が多くあると、補
強繊維、すなわち複合繊維のない部分は特に引裂強力が
低くなり、この部分から破れ等が発生するので好ましく
ない。しかも混合される繊維が複合繊維であるため、繊
維の交点を中心とした熱結合が可能となり、また、熱融
着結合後でも混合繊維は繊維形状を保っており、このた
め高強力が達成できる。
Although this phenomenon is not necessarily clear, it can be considered as follows. In other words, since the difference in melting point between the low melting point components of the ultrafine fibers and the mixed fibers is 10"C or more, it is possible to thermally bond the ultrafine fibers with each other with almost no heat fusion. In addition, if there is a lot of thermal bonding between these ultrafine fibers, the tear strength of the reinforcing fibers, that is, the parts without composite fibers, will be particularly low, and tears will occur from these parts. Unfavorable.Moreover, since the fibers to be mixed are composite fibers, thermal bonding is possible centering on the intersections of the fibers, and the mixed fibers maintain their fiber shape even after heat fusion bonding, resulting in high strength. can be achieved.

極細繊維(A)と複合繊維の低融点成分(B)の組合せ
としては、たとえば、Aがポリエチレンテレフタレート
(融点258°C)とBが共重合ポリエステル(テレフ
タル酸とポリエチレンに対し第0成分としてジエチレン
グリコールの量を種々変化させたランダム共重合ポリエ
ステル:融点60〜248’C) 、Aがポリエチレン
テレフタレート(融点258°C)とBがポリプロピレ
ン(融点161″C)、Aがポリエチレンテレフタレー
ト(融点258°C)、とBがポリエチレン(融点13
2°C)、Aがポリプロピレン(融点158℃)とBが
ポリエチレン(融点132°C)等を用いることができ
る。
As a combination of the ultrafine fiber (A) and the low melting point component (B) of the composite fiber, for example, A is polyethylene terephthalate (melting point 258°C) and B is a copolymerized polyester (diethylene glycol as the zero component for terephthalic acid and polyethylene). A is polyethylene terephthalate (melting point 258°C), B is polypropylene (melting point 161°C), A is polyethylene terephthalate (melting point 258°C), and A is polyethylene terephthalate (melting point 258°C). ), and B is polyethylene (melting point 13
2°C), A may be polypropylene (melting point 158°C), B may be polyethylene (melting point 132°C), etc.

本発明でいう融点は一般的にはDSC(示差走査熱量計
)で測定可能であり、吸熱ピークとして現れる。非結晶
構造のものは融点が必ずしも明確に現れないものも中に
はあるが、この場合は一般的に言われている軟化点で代
用される。この様なものでも先のDSCで測定すれば吸
熱ピークが現れるものが殆どであり、この点を意味する
The melting point in the present invention can generally be measured with a DSC (differential scanning calorimeter), and appears as an endothermic peak. There are some materials with an amorphous structure that do not necessarily have a clearly defined melting point, but in this case, the generally known softening point is used as a substitute. This is because most of these materials exhibit endothermic peaks when measured using the DSC described above.

また、軟化点は示差熱分析(DTA)を利用することが
できる。軟化点はDTAグラフの傾斜が初めて変化する
温度である。
Further, the softening point can be determined using differential thermal analysis (DTA). The softening point is the temperature at which the slope of the DTA graph changes for the first time.

本発明の不織布は、複合繊維が極細繊維中に実質的に単
繊維状にランダムに混合している。このような混合状態
により、前記した極細繊維の特長を殆ど損なわずに高強
力化が達成できる。複合繊維の全繊維量に対する混合割
合(重量)は20〜80%、好ましくは30〜70%、
特に40〜60%が好ましい。20%以下である−と熱
結合力が低く充分な強力が得にくい。一方、80%以上
であると前述の極細繊維の特長が損なわれるので好まし
くない。
In the nonwoven fabric of the present invention, the conjugate fibers are randomly mixed in substantially single fibers among the ultrafine fibers. With such a mixed state, high strength can be achieved without substantially impairing the features of the ultrafine fibers described above. The mixing ratio (weight) of the composite fiber to the total fiber amount is 20 to 80%, preferably 30 to 70%,
In particular, 40 to 60% is preferable. If it is less than 20%, the thermal bonding strength is low and it is difficult to obtain sufficient strength. On the other hand, if it is 80% or more, the above-mentioned characteristics of the ultrafine fiber will be impaired, which is not preferable.

また、極細繊維も単繊維状にランダムに分散しているこ
とが前記した各種性能が高まり更に好ましい。また、本
発明の不織布は、第3の素材、繊径、形態等の異なる繊
維、粉体等が混合されてあってもよい。
Further, it is further preferable that the ultrafine fibers are also randomly dispersed in the form of single fibers, since the above-mentioned various performances are enhanced. Further, the nonwoven fabric of the present invention may be a mixture of a third material, fibers with different fiber diameters, shapes, etc., powder, etc.

また、メルトブロー法で得られた極細繊維は極めて小さ
な繊維径を有しているため、繊維の平均長さを推定する
ことが難しいが、30mm以上、多くの場合は100〜
500mmと推定される。
In addition, since the ultrafine fibers obtained by the melt-blowing method have an extremely small fiber diameter, it is difficult to estimate the average length of the fibers, but it is 30 mm or more, and in many cases 100 to 100 mm.
Estimated to be 500mm.

本発明の極細繊維不織布を得る方法としては、メルトブ
ロー法、フラッシュ紡糸法、スーパードロー法または複
合繊維法と抄紙法の組合せ等特に限定されないが、特に
メルトブロー法が好ましい。
The method for obtaining the ultrafine fiber nonwoven fabric of the present invention is not particularly limited, such as a melt blow method, a flash spinning method, a super draw method, or a combination of a composite fiber method and a paper making method, but the melt blow method is particularly preferred.

複合繊維の混合法としては、たとえばメルトブロー法、
フラッシュ紡糸法では、−たん捲縮複合短繊維のウェブ
を作成し、これをリッケリンロール等で紡糸中の極細繊
維群中に飛走させて混合シ数の歯の付いたロール状物)
で解繊、飛走させて前記と同様に混合し、シート状物を
得る方法がある。また、スーパードロー法、海島繊維法
で得た極細繊維と混合する短繊維を−たん3〜30mm
、好ましくは5〜10mmにカットしてこの2種を混合
させたスラリーを作成し抄紙法でシート化する方法があ
る。これらの極細繊維シートは−たん交絡処理を施して
あってもよい。
Examples of mixing methods for composite fibers include melt blowing,
In the flash spinning method, a web of crimped composite staple fibers is created, and this web is flown through a group of ultrafine fibers being spun using a Rickerin roll, etc., to create a roll-like object with a number of teeth in the mixture.
There is a method in which a sheet-like material is obtained by defibrating the fibers, flying them, and mixing them in the same manner as described above. In addition, the short fibers mixed with the ultrafine fibers obtained by the super draw method and the sea-island fiber method are
Preferably, there is a method of cutting into pieces of 5 to 10 mm, mixing these two types to prepare a slurry, and forming the slurry into a sheet using a papermaking method. These ultrafine fiber sheets may be subjected to -tan entangling treatment.

熱結合方法としては、熱エンボス法、熱カングー法、熱
風法、超音波結合法等があげられる。特に熱風結合法は
不織布に加圧プレスすることなく熱結合できるので、嵩
高な不織布が得られ、前記した極細繊維の特長が充分に
発揮されるので好ましい。熱結合温度は熱結合が生じる
温度以上あればよく、−船釣には混合短繊維の低融点成
分の軟化点以上あればよい。一方、極細繊維の融点以上
に高めると、極細繊維の熱結合が多く生じ好ましくない
。したがって、本発明は、混合繊維の低融点成分の軟化
点以上で極細繊維の融点以下が好ましい。
Examples of the thermal bonding method include a hot embossing method, a hot Kangoo method, a hot air method, and an ultrasonic bonding method. In particular, the hot air bonding method is preferable because it can thermally bond the nonwoven fabric without pressurizing it, yielding a bulky nonwoven fabric and fully exhibiting the features of the ultrafine fibers described above. The thermal bonding temperature need only be above the temperature at which thermal bonding occurs, and - for boat fishing, it is sufficient to be above the softening point of the low melting point component of the mixed short fibers. On the other hand, if the temperature is increased above the melting point of the ultrafine fibers, the ultrafine fibers will be thermally bonded to a large extent, which is not preferable. Therefore, in the present invention, it is preferable that the softening point of the low melting point component of the mixed fiber is higher than the softening point and lower than the melting point of the ultrafine fiber.

本発明の不織布は種々の後処理を行うことができる。た
とえば、コロナ放電法などによりエレクトレット化する
ことによりフィルター性能、吸塵力を更に高めることも
可能である。
The nonwoven fabric of the present invention can be subjected to various post-treatments. For example, it is possible to further improve the filter performance and dust suction power by converting it into an electret using a corona discharge method or the like.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を更に具体的に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例及び比較例中に示される諸物性の定義と測定方法
を下記に示す。
The definitions and measurement methods of various physical properties shown in Examples and Comparative Examples are shown below.

◎平均繊維径(癖) サンプルの任意なlO箇所を電子顕微鏡で倍率2000
倍で10枚の写真撮影を行う。1枚の写真につき任意の
10本の繊維の直径を測定し、これを10枚の写真につ
いて行う。合計100本の繊維径測定値を求め平均値を
計算する。
◎Average fiber diameter (distortion) An arbitrary lO location of the sample was examined using an electron microscope at a magnification of 2000.
Take 10 photos at double magnification. Measure the diameter of 10 arbitrary fibers for each photograph, and do this for each of the 10 photographs. A total of 100 fiber diameter measurements are obtained and the average value is calculated.

◎厚み(mm) ピーコック型厚み計を用い、130g/ciの一定荷重
で測定した。
◎Thickness (mm) Measured using a peacock type thickness meter under a constant load of 130 g/ci.

◎引張強力(g/日付) サンプルとして20mm巾X 160mm長をとり、万
能型引張試験Ja(テンシロン)を用い、把持長100
胴、荷重容量100kg、引張速度100mm/分で測
定しく直を、1 cmm場当、単位目イ寸(Ig/n(
)当りに換算した。
◎Tensile strength (g/date) A sample with a width of 20 mm and a length of 160 mm was taken, and using a universal tensile test Ja (Tensilon), the grip length was 100.
The cylinder has a load capacity of 100 kg and a tensile speed of 100 mm/min.
) per unit.

◎引裂強力(g/目付) サンプルとして601u[II巾X65mm長さをとり
、サンプルをサンプル台に止め、ナイフで切れ込みを入
れる。エレメンドルフ引裂試験機を用い最大振度を読み
とる。この値を単位目付(1g/rtf)当りに換算し
た。
◎Tear strength (g/fabric weight) Take a 601u [II width x 65mm length] sample, stop the sample on the sample stand, and make a cut with a knife. Read the maximum vibration using an Elmendorf tear tester. This value was converted into per unit area weight (1 g/rtf).

◎捕集効率(%)、圧力損失(mm 1Izo)リオン
に、に社製のパーティクルカウンター(型式Kc−01
B)を用い、大気吸引法で0.3 tnn以上の粉塵を
吸引空気filO,5j2/分の条件で測定した。
◎Collection efficiency (%), pressure loss (mm)
Using B), dust of 0.3 tnn or more was measured by the atmospheric suction method under conditions of suction air filO, 5j2/min.

■捕集効率 サンプル有と無(ブランク)の粒子数をバーチイルカウ
ンターで読みとり、下記の式で計算する。
■Collection efficiency Read the number of particles with and without sample (blank) using a vertile counter and calculate using the following formula.

■圧力1員失 ザンプル前後の差圧を微差圧計で読む。■One member lost pressure Read the differential pressure before and after the sample with a differential pressure gauge.

◎1壱縮率(%) 繊維の末路縮長と捲縮長との差を捲縮長で割り100倍
した値である。
◎1 Crinkage rate (%) This is the value obtained by dividing the difference between the fiber end shrinkage length and the crimp length by the crimp length and multiplying it by 100.

◎混合率(%) 混合された繊維重量を全不織布重量で割り100倍した
値である。
◎Mixing ratio (%) This is the value obtained by dividing the mixed fiber weight by the total nonwoven fabric weight and multiplying it by 100.

二と     1       ”11,2ポリプロピ
レンをメルトブロー法により紡糸して平均繊維径1.7
陶の極細繊維群とした。この繊維の融点はDSCで測定
したところ158°Cであった。繊径20m(6d)、
長さ64mm、捲縮率40%の偏芯型複合繊維〔芯部:
ポリプロピレン、融点161°C1鞘部:ポリエチレン
、融点132°C1(商品名:ES繊維、チッソに、 
K社製)〕をスライバー状とし、このスライバーの多数
本をコーミングロールで解繊しながら短繊維を飛走させ
、先の極細繊維群中に混合させた。下方に設けた移動す
るネット面上でこの混合繊維群を捕集して20印巾のウ
ェブを得た。このウェブは、捲縮複合繊維の固まりがな
く、実質的に単繊維状に分散されておりランダムで均一
なものであった。捲縮短繊維の混合率は50%であった
2 and 1" 11,2 polypropylene is spun using the melt blow method to obtain an average fiber diameter of 1.7.
It was made into a group of ceramic microfibers. The melting point of this fiber was 158°C as measured by DSC. Fiber diameter 20m (6d),
Eccentric composite fiber with a length of 64 mm and a crimp rate of 40% [core:
Polypropylene, melting point 161°C1 Sheath: Polyethylene, melting point 132°C1 (Product name: ES fiber, Chisso,
(manufactured by Company K)] was made into a sliver, and a large number of the slivers were defibrated with a combing roll to fly short fibers and mixed into the ultrafine fiber group at the tip. This mixed fiber group was collected on a moving net provided below to obtain a web with a width of 20 stamps. This web had no lumps of crimped conjugate fibers, and was substantially dispersed in the form of single fibers, which were random and uniform. The mixing ratio of crimped short fibers was 50%.

このウェブを斜め(45°)ごばん目状の模様の付いた
中30cmの熱エンボスロールを通過させて熱結合させ
た。この時の熱ロールの温度は130°C、プレス圧は
10kg/c這G1処理スピードは6m/分であった。
This web was thermally bonded by passing through a 30 cm medium heat embossing roll with a diagonal (45°) grid pattern. At this time, the temperature of the hot roll was 130°C, the press pressure was 10 kg/c, and the G1 processing speed was 6 m/min.

この不織布の重量、物性を表1に示した。比較として、
捲縮短繊維を混合しない極細繊維のみの熱結合不織布(
比較品1)、及び、混合させる捲縮短繊維としてポリエ
チレンテレフタレート繊維を用いた以外は実施例1に記
載した方法と全く同様にして得た不織布(比較品2)の
値も表1に併せ示した。
Table 1 shows the weight and physical properties of this nonwoven fabric. As a comparison,
A thermally bonded nonwoven fabric made only of ultrafine fibers without mixing crimped short fibers (
The values of comparative product 1) and the nonwoven fabric (comparative product 2) obtained in exactly the same manner as described in Example 1 except that polyethylene terephthalate fibers were used as the crimped short fibers to be mixed are also shown in Table 1. .

表   1 この表から明らかなように、本発明品は強力が著しく向
上し、単独使用が可能であった。しがも驚くべきことに
フィルター性能までも向上し、しかも吸油性にもイ憂れ
たものであることが判った。
Table 1 As is clear from this table, the strength of the product of the present invention was significantly improved and it was possible to use it alone. Surprisingly, however, it was found that even the filter performance improved, and the oil absorption was also disappointing.

夫隻桝I ポリエチレンテレフタレートをメルトブロー法により紡
糸して平均繊維径2.5卿の極細繊維群とした。この繊
維の融点は258°Cであった。繊径16jM(4d)
、長さ30mm、捲縮率60%の並列型複合繊維(ポリ
プロピレン融点161°C;ポリエチレン、融点132
°C)をカード法で1.5m巾のシートとし、このシー
トをリッケリンロールで解繊、飛走されて飛走極細繊維
群中に均一に混合し、移動するネット面上でこの繊維群
を捕集し1.5ml】のランダムに混繊したウェブを得
た。捲縮短繊維の混合率は70%であった。
Fusenmasu I Polyethylene terephthalate was spun using a melt blow method to obtain a group of ultrafine fibers with an average fiber diameter of 2.5 mm. The melting point of this fiber was 258°C. Fiber diameter 16jM (4d)
, length 30 mm, parallel type composite fiber with crimp rate 60% (polypropylene melting point 161°C; polyethylene, melting point 132
°C) is made into a 1.5 m wide sheet using a card method, this sheet is defibrated with a Rickerin roll, and the fibers are uniformly mixed into the flying ultrafine fibers on the moving net surface. A randomly mixed web of 1.5 ml was obtained. The mixing ratio of crimped short fibers was 70%.

このウェブを不連続な丸状模様をもつ熱エンボスロール
を用い、100’Cで熱接着させた。
This web was thermally bonded at 100'C using a hot embossing roll with a discontinuous circular pattern.

得られた不織布の目付は100g/rd、厚みは0.6
2mm、引張強力は20.4 g /日付、引裂強力は
14.8 g /rr?であり、フィルター性能にも優
れたものであった。
The fabric weight of the obtained nonwoven fabric is 100 g/rd, and the thickness is 0.6
2mm, tensile strength is 20.4 g/date, tear strength is 14.8 g/rr? The filter performance was also excellent.

夫旌炭主 ポリエチレンテレフタレートをメルトプローして平均繊
維径0.9−の極細繊維群(融点258°C)とした。
Polyethylene terephthalate, mainly polyethylene terephthalate, was melt-blown to obtain a group of ultrafine fibers (melting point: 258°C) with an average fiber diameter of 0.9-.

繊径20卿(4d)、長さ51醜の捲縮した鞘芯複合繊
維〔芯部:ポリエチレンテレフタレート、融点257°
C3鞘部:共重合ポリエステル、融点(軟化点)110
°C1(商品名:ベルコンビ、鐘紡に、に社製)〕を実
施例1と同様にして均一に混繊させた。混合率は30%
であった。
A crimped sheath-core composite fiber with a diameter of 20 mm (4 d) and a length of 51 mm [core: polyethylene terephthalate, melting point 257°
C3 sheath: copolymerized polyester, melting point (softening point) 110
°C1 (trade name: Bell Combi, manufactured by Kanebo Co., Ltd.)] was uniformly mixed in the same manner as in Example 1. Mixing rate is 30%
Met.

このウェブを120’Cの熱風を用いて熱結合した。This web was thermally bonded using hot air at 120'C.

得られた不織布は目付80 g/rd、厚み1.0 m
m、引張強力16.7 g /目付、引裂強カフ、8g
/目付であり、フィルター性能、断熱性にも優れたもの
であった。
The obtained nonwoven fabric has a basis weight of 80 g/rd and a thickness of 1.0 m.
m, tensile strength 16.7 g / fabric weight, tear-resistant cuff, 8 g
/ basis weight, and had excellent filter performance and heat insulation properties.

ル較■主 実施例2.において混合する複合繊維の繊径を9nとす
る以外は他は実施例2と全く同様にして不織布を得た。
Comparison Main Example 2. A nonwoven fabric was obtained in exactly the same manner as in Example 2, except that the fiber diameter of the composite fibers mixed in step was 9n.

この不織布の目付は100g/rd、厚みは0.54m
mであり、引張強力は10.9 g /目付、引張強力
は3.2g/目付と低いため単独使用は困難であった。
The basis weight of this nonwoven fabric is 100g/rd, and the thickness is 0.54m.
m, the tensile strength was 10.9 g/fabric weight, and the tensile strength was as low as 3.2 g/fabric weight, so it was difficult to use it alone.

〔発明の効果〕〔Effect of the invention〕

本発明の不織布は前述のように構成されているので、極
細繊維不織布の有する優れた特長であるフィルター性能
、バクテリアバリアー性、吸塵性、吸液性、断熱性を殆
ど(貝なうことなく、逆に向上させることが可能であり
、しかも強力が著しく向上しているため、他の高強力シ
ート物の張り合わせ等の補強を行わずに単独で使用する
ことが可能となる。このため、各種フィルター、ワイパ
ーラップ類、断熱材のみならず、屋根材、壁材等の土木
材、サージカルガウン、シート類、おしめ、ナプキン類
のメディカル材や衛生材等として広く使用可能となった
。しかも、他のシート状物等の張り合わせが不要であり
工程的にも有利であるため、コスト的にも優れたもので
あり、したがってこの発明の工業的意義は大きいもので
ある。
Since the nonwoven fabric of the present invention is configured as described above, it has almost all of the excellent features of the ultrafine fiber nonwoven fabric, such as filter performance, bacterial barrier properties, dust absorption properties, liquid absorption properties, and heat insulation properties (without forming shells). On the contrary, it is possible to improve the strength of the filter, and the strength is significantly improved, so it can be used alone without reinforcement such as pasting with other high-strength sheets.For this reason, various filters can be used. It can now be used not only as wiper wraps and insulation materials, but also as civil engineering materials such as roofing materials and wall materials, medical materials and sanitary materials such as surgical gowns, sheets, diapers, and napkins. This invention does not require pasting together sheet-like materials and is advantageous in terms of process, and is therefore excellent in terms of cost. Therefore, the present invention has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] 極細繊維と、該極細繊維よりも太い平均繊維径を有し、
且つ極細繊維の融点よりも10℃〜200℃低い融点を
有する熱可塑性成分をその一部として含む複合繊維とが
ランダムに混在して成る不織布であって、該不織布中の
構成繊維同志の接合が少なくとも前記極細繊維と前記複
合繊維の低融点熱可塑性成分間の熱接合によって形成さ
れている高強力不織布。
having ultrafine fibers and an average fiber diameter larger than the ultrafine fibers,
A nonwoven fabric randomly mixed with composite fibers containing a thermoplastic component having a melting point 10°C to 200°C lower than the melting point of the ultrafine fibers, wherein the bonding of the constituent fibers in the nonwoven fabric is A high-strength nonwoven fabric formed by thermal bonding between at least the ultrafine fiber and the low melting point thermoplastic component of the composite fiber.
JP63238871A 1988-09-26 1988-09-26 High-tenacity nonwoven fabric Pending JPH0291262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238871A JPH0291262A (en) 1988-09-26 1988-09-26 High-tenacity nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238871A JPH0291262A (en) 1988-09-26 1988-09-26 High-tenacity nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH0291262A true JPH0291262A (en) 1990-03-30

Family

ID=17036498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238871A Pending JPH0291262A (en) 1988-09-26 1988-09-26 High-tenacity nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH0291262A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626187A1 (en) * 1993-05-26 1994-11-30 Chisso Corporation A filtering medium and a process for producing the same
JP2008527190A (en) * 2005-01-06 2008-07-24 ビーケイアイ・ホールディング・コーポレーション High strength and high elongation wiper
KR100888276B1 (en) * 2007-04-27 2009-03-11 (주) 신우피앤씨 Manufacturing method of a multifunctional complex filter
WO2013089213A1 (en) * 2011-12-16 2013-06-20 東レ株式会社 Mixed-fiber non-woven fabric, laminate sheet, filter, and method for producing mixed-fiber non-woven fabric
JP2015161041A (en) * 2014-02-27 2015-09-07 東レ株式会社 Mixed fiber nonwoven fabric
WO2021039981A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Air filter filtration material and air filter product
WO2021039980A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
CN114144548A (en) * 2019-08-30 2022-03-04 株式会社大赛璐 Method for producing fiber article

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626187A1 (en) * 1993-05-26 1994-11-30 Chisso Corporation A filtering medium and a process for producing the same
JP2008527190A (en) * 2005-01-06 2008-07-24 ビーケイアイ・ホールディング・コーポレーション High strength and high elongation wiper
KR100888276B1 (en) * 2007-04-27 2009-03-11 (주) 신우피앤씨 Manufacturing method of a multifunctional complex filter
WO2013089213A1 (en) * 2011-12-16 2013-06-20 東レ株式会社 Mixed-fiber non-woven fabric, laminate sheet, filter, and method for producing mixed-fiber non-woven fabric
US9266046B2 (en) 2011-12-16 2016-02-23 Toray Industries, Inc. Mixed-fiber nonwoven fabric, laminated sheet and filter, and process for producing mixed-fiber nonwoven fabric
JP2015161041A (en) * 2014-02-27 2015-09-07 東レ株式会社 Mixed fiber nonwoven fabric
WO2021039981A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Air filter filtration material and air filter product
JPWO2021039981A1 (en) * 2019-08-30 2021-03-04
WO2021039980A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
CN114051544A (en) * 2019-08-30 2022-02-15 株式会社大赛璐 Fibrous article
CN114144548A (en) * 2019-08-30 2022-03-04 株式会社大赛璐 Method for producing fiber article
CN114340760A (en) * 2019-08-30 2022-04-12 大金工业株式会社 Air filter medium and air filter product

Similar Documents

Publication Publication Date Title
JP5609334B2 (en) Spunbond nonwoven fabric and filter using the same
KR101441593B1 (en) Nonwoven fabric for filters and process for production of the same
US6468651B2 (en) Nonwoven fabric containing fine fiber, and a filter material
JP6158958B2 (en) Multilayer filter medium, filter manufacturing method and air filter
JP2013508573A (en) Polypropylene fiber element and manufacturing method thereof
JP5075679B2 (en) Filter nonwoven fabric
EP1208900A1 (en) Process of manufacturing a triboelectrically charged nonwoven
WO2007040104A1 (en) Nonwoven fabric for filters
KR20120022732A (en) Laminated non-woven fabric
JP4905661B2 (en) Fiber laminate for filter
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
US20090288558A1 (en) Nonwovens of controlled stiffness and retained foldability
JPH0291262A (en) High-tenacity nonwoven fabric
JP4369572B2 (en) Non-woven fabric and filter medium using the same
CA3102518A1 (en) Spunbond nonwoven fabric for use in filters, and manufacturing method thereof
JPH03279452A (en) High-strength nonwoven sheet
JP2019199668A (en) Mask filter and face mask
JPH10314520A (en) Filtration material and filter in which the material is used
JPH06184905A (en) Production of polypropylene-based nonwoven fabric
JPH11192406A (en) Filter base material and filter device
JPH02191759A (en) High-tenacity sheet
JP3017507B2 (en) Laminated non-woven fabric
JPH11293555A (en) Highly air-permeable nonwoven fabric and its production, and filter material made thereof
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP7459800B2 (en) Long fiber nonwoven fabric and filter reinforcement material using it