JP2020065956A - Filter material for air filter and manufacturing method therefor - Google Patents

Filter material for air filter and manufacturing method therefor Download PDF

Info

Publication number
JP2020065956A
JP2020065956A JP2018198461A JP2018198461A JP2020065956A JP 2020065956 A JP2020065956 A JP 2020065956A JP 2018198461 A JP2018198461 A JP 2018198461A JP 2018198461 A JP2018198461 A JP 2018198461A JP 2020065956 A JP2020065956 A JP 2020065956A
Authority
JP
Japan
Prior art keywords
fiber
binder
mass
content
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018198461A
Other languages
Japanese (ja)
Other versions
JP7215871B2 (en
Inventor
佐藤 正
Tadashi Sato
正 佐藤
栄子 目黒
Eiko Meguro
栄子 目黒
智彦 楚山
Tomohiko Soyama
智彦 楚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Corp
Original Assignee
Hokuetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Corp filed Critical Hokuetsu Corp
Priority to JP2018198461A priority Critical patent/JP7215871B2/en
Publication of JP2020065956A publication Critical patent/JP2020065956A/en
Application granted granted Critical
Publication of JP7215871B2 publication Critical patent/JP7215871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Paper (AREA)

Abstract

To provide a filter material for an air filter which improves pleat processing suitability by preventing crack in fold peak during pleat processing while maintaining respective physical properties of high collection efficiency, low pressure loss, flame resistance, and high rigidity as features of a glass fiber filter material, and which contains a glass fiber as a main component.SOLUTION: A filter material for an air filter contains a glass fiber as a main component, and further, contains a binder fiber having a core-sheath structure in which an adhesive component is a sheath part, and a non-fibrous binder resin. A binder fiber content in the filter material is 3 to 25% by mass, and a content of total binder, which comprises the binder fiber and the binder resin, in the filter material is 8 to 30% by mass.SELECTED DRAWING: None

Description

本発明は、半導体製造などの各種クリーンルーム、ビル空調等の用途において、気体中の粒子状物質を濾過するために用いられる、ガラス繊維を主成分とするエアフィルタ用濾材に関する。   TECHNICAL FIELD The present invention relates to a filter material for an air filter containing glass fiber as a main component, which is used for filtering particulate matter in a gas in applications such as various clean rooms such as semiconductor manufacturing and building air conditioning.

気体中の粒子状物質を濾過するために用いられるエアフィルタにおいては、ガラス繊維を主成分とするエアフィルタ用濾材が広く用いられている。ガラス繊維濾材が広く用いられている理由としては、非常に細い繊維径とすることが可能なため、目が細かく捕集効率が高い濾材が得られる、繊維が剛直であるため、高い空隙率を維持して圧力損失が低く通気性が高い濾材が得られる、難燃性を有する濾材が得られること等が挙げられる。   In the air filter used for filtering the particulate matter in the gas, a filter material for an air filter containing glass fiber as a main component is widely used. The reason why glass fiber filter media is widely used is that it is possible to make the fiber diameter very small, so that a filter material with fine mesh and high collection efficiency can be obtained. It is possible to obtain a filter medium having a low pressure loss and high air permeability while maintaining, and a flame-retardant filter medium.

エアフィルタ用濾材は、通常、濾過面積を大きくするためにプリーツ加工機でジグザグ状に折られる、いわゆるプリーツ加工され、エアフィルタユニットの形で用いられる。ガラス繊維濾材は、シートが比較的剛直であるため、支持体を別途使用しなくとも、濾材のみでジグザグ状のフィルタユニット形状を維持しやすく、さらに通風時の変形による圧力損失の上昇(構造圧損)を起こしにくい利点がある。しかしながら、その一方で、折り曲げに対しては脆弱であるため、プリーツ加工時に折った折山部分が割れやすく、プリーツ加工における生産速度や製品歩留を低下させるという問題がある。   The filter material for an air filter is usually used in the form of an air filter unit, which is so-called pleated, which is folded in a zigzag shape by a pleating machine in order to increase the filtration area. Since the glass fiber filter medium has a relatively rigid sheet, it is easy to maintain the zigzag filter unit shape only with the filter medium without using a support, and the pressure loss increases due to deformation during ventilation (structural pressure loss). ) Has the advantage that it is difficult to cause. However, on the other hand, since it is vulnerable to bending, there is a problem that the folded mountain portion that is folded during the pleating process is easily broken, and the production speed and the product yield in the pleating process are reduced.

一方で、エアフィルタ用濾材に用いられる細径ガラス繊維としては、耐熱性、耐薬品性及び高い強度を有する硼珪酸ガラス繊維が広く用いられているが、半導体製造用のクリーンルームにおいては、この硼珪酸ガラスから空気中に離脱した硼素がp型ドーパントして作用し、シリコンウエハを汚染する問題がある。これを解決する手段として、低硼素含有量のガラス繊維が用いられているが、これは硼珪酸ガラス繊維に比べて脆弱なため、上述したような折山部分が割れる問題がさらに顕著となる。   On the other hand, borosilicate glass fibers having heat resistance, chemical resistance, and high strength are widely used as thin glass fibers used for filter media for air filters. There is a problem that boron that is released from the silicate glass into the air acts as a p-type dopant and contaminates the silicon wafer. As a means for solving this, glass fibers having a low boron content have been used, but they are more fragile than borosilicate glass fibers, so that the above-mentioned problem of breaking the folds becomes more remarkable.

ガラス繊維濾材のプリーツ加工適性を向上させる方法としては、ガラス繊維以外の繊維を用いる方法が提案されており、例えば、繊維形態を保持しながら膨潤したポリビニルアルコール繊維状バインダーを含む濾材(特許文献1)、接着成分が鞘部である芯鞘構造を有するバインダー繊維と、非繊維状のバインダー樹脂からなる全バインダー分の濾材中含有量が3.5〜7.5質量%である濾材(特許文献2)、B含有量0.01重量%以下のガラス繊維が80〜20重量%、繊維径1〜70μmで繊維長が1〜15mmの有機繊維が20〜80重量%である濾材(特許文献3)等が提案されている。 As a method for improving the pleat processing suitability of a glass fiber filter medium, a method using a fiber other than glass fiber has been proposed. For example, a filter medium containing a polyvinyl alcohol fibrous binder swollen while maintaining the fiber form (Patent Document 1). ), A binder fiber having a core-sheath structure in which an adhesive component is a sheath portion, and a total content of the binder composed of a non-fibrous binder resin in the filter medium is 3.5 to 7.5% by mass (Patent Document) 2), a filter medium comprising 80 to 20% by weight of glass fibers having a B 2 O 3 content of 0.01% by weight or less, and 20 to 80% by weight of organic fibers having a fiber diameter of 1 to 70 μm and a fiber length of 1 to 15 mm ( Patent Document 3) and the like have been proposed.

特開2003−159507号公報JP, 2003-159507, A 特開2014−54595号公報JP, 2014-54595, A 特開平9−70512号公報JP, 9-70512, A

本発明の課題は、ガラス繊維濾材の特徴である高捕集効率、低圧力損失、難燃性、高剛度の各物性を維持しつつ、プリーツ加工時の折山の割れを防ぐことにより、プリーツ加工適性を向上させた、ガラス繊維を主成分とするエアフィルタ用濾材を提供することである。   An object of the present invention is to prevent pleats from cracking at the time of pleating while maintaining physical properties such as high collection efficiency, low pressure loss, flame retardancy, and high rigidity, which are characteristics of glass fiber filter media. It is intended to provide a filter medium for an air filter, which has glass fibers as a main component and has improved processability.

本発明者らは、鋭意検討した結果、ガラス繊維を接着するバインダーとして、接着成分が鞘部である芯鞘構造を有するバインダー繊維と、非繊維状のバインダー樹脂を含有し、かつ、バインダー繊維及び全バインダー分の濾材中含有量を一定の範囲内とすることにより、前記の課題が解決されることを見出した。すなわち、本発明は、ガラス繊維を主成分とするエアフィルタ用濾材に関する発明であり、接着成分が鞘部である芯鞘構造のバインダー繊維と、非繊維状のバインダー樹脂を含有し、バインダー繊維の濾材中含有量が3〜25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8〜30質量%であることを特徴とする。   As a result of intensive studies, the present inventors have found that, as a binder for adhering glass fibers, the adhesive component contains a binder fiber having a core-sheath structure having a sheath portion, and a non-fibrous binder resin, and a binder fiber and It was found that the above-mentioned problems can be solved by setting the content of the total binder in the filter medium within a certain range. That is, the present invention is an invention relating to a filter material for an air filter having a glass fiber as a main component, an adhesive component contains a binder fiber having a core-sheath structure having a sheath portion, and a non-fibrous binder resin. The content in the filter medium is 3 to 25% by mass, and the content in the filter medium of the total binder consisting of the binder fiber and the binder resin is 8 to 30% by mass.

さらに、本発明の第2の実施形態は、ガラス繊維のB含有量が0.1質量%以下であることを特徴とする前記エアフィルタ用濾材である。 Further, the second embodiment of the present invention is the filter medium for an air filter, characterized in that B 2 O 3 content of the glass fiber is not more than 0.1 mass%.

さらに、本発明の第3の実施形態は、バインダー繊維の芯部が、ポリエステル又はポリオレフィンであることを特徴とする前記エアフィルタ用濾材である。   Further, a third embodiment of the present invention is the air filter material, wherein the core portion of the binder fiber is polyester or polyolefin.

さらに、本発明の第4の実施形態は、ガラス繊維と、接着成分が鞘部である芯鞘構造を有するバインダー繊維を含む水性スラリーを得る分散工程と、得られた水性スラリーを湿式抄紙して湿潤状態のシートを得る抄紙工程と、前記湿潤状態のシートに、バインダー樹脂を含む溶液または分散液を含浸させてシートに付着させる含浸工程と、前記溶液又は分散液を含浸させた湿潤状態のシートを乾燥する乾燥工程を有し、バインダー繊維の濾材中含有量が3〜25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8〜30質量%であることを特徴とする、ガラス繊維を主成分とするエアフィルタ用濾材の製造方法である。   Further, in the fourth embodiment of the present invention, a dispersion step of obtaining an aqueous slurry containing glass fibers and a binder fiber having a core-sheath structure in which an adhesive component is a sheath, and a wet papermaking of the obtained aqueous slurry. A papermaking step of obtaining a sheet in a wet state, an impregnation step of impregnating the sheet in a wet state with a solution or a dispersion containing a binder resin and adhering it to the sheet, and a sheet in a wet state impregnated with the solution or the dispersion The content of the binder fiber in the filter medium is 3 to 25% by mass, and the total content of the binder composed of the binder fiber and the binder resin in the filter medium is 8 to 30% by mass. This is a method for producing a filter medium for an air filter, which comprises glass fiber as a main component.

本発明によれば、接着成分が鞘部である芯鞘構造のバインダー繊維とバインダー樹脂を使用することにより、プリーツ加工適性に優れ、さらに、ガラス繊維濾材の特徴である高捕集効率、低圧力損失、難燃性、高剛度を有しているガラス繊維を主成分とするエアフィルタ用濾材を得ることができる。   According to the present invention, by using the binder fiber and the binder resin of the core-sheath structure in which the adhesive component is the sheath portion, the pleat processing suitability is excellent, and further, the high collection efficiency and the low pressure which are the characteristics of the glass fiber filter medium. It is possible to obtain a filter medium for an air filter, which has a loss, flame retardancy, and high rigidity as a main component of glass fiber.

本発明のエアフィルタ用濾材は主成分であるガラス繊維に加えてバインダー繊維を含有する。当該バインダー繊維は、鞘部がガラス繊維に接着するとともに、芯部が繊維の形態を維持することにより、折山部の加工時においてガラス繊維及びバインダー樹脂をつなぎとめるとともに、折山部にかかる応力を吸収することにより、折山部の割れを防ぐ効果を奏する。また、バインダー樹脂は繊維表面同士を広範囲にわたって接着することにより、実用上必要とされる強度を付与する効果を奏する。   The filter material for an air filter of the present invention contains binder fiber in addition to glass fiber as the main component. The binder fiber is such that the sheath portion adheres to the glass fiber and the core portion maintains the fiber form, so that the glass fiber and the binder resin are held together during the processing of the folded portion, and the stress applied to the folded portion is reduced. By absorbing, it has the effect of preventing cracks in the folds. In addition, the binder resin has an effect of imparting strength required for practical use by adhering the fiber surfaces to each other over a wide range.

本発明で使用されるバインダー繊維は、複合型のポリマー繊維であり芯部と鞘部が異なる物性を有する芯鞘構造の繊維である。その中でも、本発明においては、接着成分が鞘部である芯鞘構造を有する繊維を使用する。芯部の成分は、水分散、湿式抄紙、乾燥等からなる濾材の製造工程を経て製造された濾材中においてほとんど溶解又は溶融せずに繊維の形態を維持しうる不溶性、強度及び耐熱性を有し、かつ、プリーツ加工時に割れを生じにくくする可撓性を有するポリマーから選択される。芯部の成分の例としては、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタン、ポリアクリロニトリル、セルロース系ポリマー等がある。その中でも、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィンが好ましい。鞘部の成分は、濾材の製造工程において、加熱されることにより、溶解又は溶融してガラス繊維に接着するポリマーから選択される。鞘部の成分の例としては、ポリエチレンテレフタレート等のポリエステル、ポリエチレンやポリプロピレン等のポリオレフィン、ポリ(エチレン−酢酸ビニル)、ポリビニルアルコール、ポリ(エチレン−ビニルアルコール)等がある。より好ましくは、鞘部の成分として、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリ(エチレン−酢酸ビニル)、ポリエチレンを使用することが好ましい。   The binder fiber used in the present invention is a composite type polymer fiber having a core-sheath structure in which the core and the sheath have different physical properties. Among them, in the present invention, a fiber having a core-sheath structure in which the adhesive component is a sheath is used. The core component has insolubility, strength and heat resistance capable of maintaining the fiber form with almost no dissolution or melting in the filter medium produced through the process of producing the filter medium including water dispersion, wet papermaking, drying and the like. However, it is selected from the polymers having flexibility that makes cracks less likely to occur during pleating. Examples of the core component include polyester, polyolefin, polyamide, polyurethane, polyacrylonitrile, and cellulosic polymer. Among them, polyester such as polyethylene terephthalate and polyolefin such as polyethylene and polypropylene are preferable. The component of the sheath portion is selected from polymers that are melted or melted and adhered to the glass fiber by being heated in the manufacturing process of the filter medium. Examples of components of the sheath include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, poly (ethylene-vinyl acetate), polyvinyl alcohol, poly (ethylene-vinyl alcohol), and the like. More preferably, polyethylene terephthalate, modified polyethylene terephthalate, poly (ethylene-vinyl acetate), or polyethylene is preferably used as the sheath component.

本発明で使用されるバインダー繊維の形状は、ガラス繊維とともに水中で混合分散され、湿式抄紙法によりシート化させることのできる短繊維であることが好ましい。バインダー繊維の繊維径は、好ましくは3〜30μm、より好ましくは6〜20μmである。繊維径が細すぎると、水中での分散性が悪くなることがあり、さらに、濾材の圧力損失を不必要に上昇させる。繊維径が太すぎると、濾材中に存在する繊維本数が少なくなり、折山部の割れ防止効果が十分に得られない。バインダー繊維の繊維長は、好ましくは3〜20mm、より好ましくは3〜10mmである。繊維長が短すぎると、折山部の割れ防止効果が十分に得られない。繊維長が長すぎると、水中での分散性が悪くなる。さらに、バインダー繊維の繊度を0.5 〜4.0dtx、好ましくは、1.0〜2.5dtxの範囲とすることが好ましい。   The shape of the binder fiber used in the present invention is preferably short fiber which can be mixed and dispersed in water with glass fiber and formed into a sheet by a wet papermaking method. The fiber diameter of the binder fiber is preferably 3 to 30 μm, more preferably 6 to 20 μm. If the fiber diameter is too small, the dispersibility in water may deteriorate, and further, the pressure loss of the filter medium is unnecessarily increased. If the fiber diameter is too large, the number of fibers present in the filter medium will decrease, and the effect of preventing cracks in the folds will not be sufficiently obtained. The fiber length of the binder fiber is preferably 3 to 20 mm, more preferably 3 to 10 mm. If the fiber length is too short, the effect of preventing cracks in the folded portion cannot be sufficiently obtained. If the fiber length is too long, the dispersibility in water will deteriorate. Furthermore, it is preferable that the fineness of the binder fiber is in the range of 0.5 to 4.0 dtx, preferably 1.0 to 2.5 dtx.

本発明のエアフィルタ用濾材は、ガラス繊維およびバインダー繊維に加えて、非繊維状のバインダー樹脂を含有する。本発明で使用される非繊維状のバインダー樹脂は、ガラス繊維同士を接着し、強度を付与することのできるポリマーから選択されればよく、水又は有機溶媒に溶解又は分散された状態で、ガラス繊維に付与されるものである。バインダー樹脂の成分の例としては、ポリアクリル酸エステル樹脂、ポリ(スチレン−ブタジエン)樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、エポキシ樹脂等がある。バインダー樹脂の溶液又は分散液は、任意の濃度となるように希釈して、ガラス繊維に付与することができる。また、必要に応じて、十分な強度が得られる範囲で、撥水剤、耐水化剤、界面活性剤、消泡剤、pH調整剤等の薬剤を適宜添加することができる。   The filter material for an air filter of the present invention contains a non-fibrous binder resin in addition to the glass fiber and the binder fiber. The non-fibrous binder resin used in the present invention may be selected from a polymer capable of adhering glass fibers to each other and imparting strength, in a state of being dissolved or dispersed in water or an organic solvent, glass. It is applied to fibers. Examples of the component of the binder resin include polyacrylic acid ester resin, poly (styrene-butadiene) resin, polyolefin resin, polyurethane resin, epoxy resin and the like. The binder resin solution or dispersion may be diluted to have an arbitrary concentration and applied to the glass fiber. Further, if necessary, chemicals such as a water repellent, a water resistant agent, a surfactant, an antifoaming agent, and a pH adjusting agent can be appropriately added within a range in which sufficient strength can be obtained.

本発明で使用されるバインダー繊維の濾材中含有量は、3〜25質量%である。好ましくは4〜19質量%であり、より好ましくは5〜15質量%であり、さらに好ましくは6〜11質量%である。バインダー繊維が3質量%未満であると、実用上必要とされる強度が得られない。バインダー繊維が25質量%を超えると、捕集効率が低下し、難燃性が低下する。   The content of the binder fiber used in the present invention in the filter medium is 3 to 25% by mass. It is preferably 4 to 19% by mass, more preferably 5 to 15% by mass, and further preferably 6 to 11% by mass. If the binder fiber content is less than 3% by mass, the strength required for practical use cannot be obtained. If the binder fiber content exceeds 25% by mass, the collection efficiency will decrease and the flame retardancy will decrease.

本発明で使用される、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量は、8〜30質量%であり、好ましくは9〜24質量%であり、より好ましくは10〜20質量%であり、さらに好ましくは11〜16質量%である。全バインダー分が8質量未満であると、実用上必要とされる強度が得られない。全バインダー分が30質量%を超えると、捕集効率が低下し、難燃性が低下する。また、バインダー樹脂の含有量としては、例えば、バインダー繊維の含有量が3〜25質量%であり、全バインダー分の濾材中含有量が8〜30質量%となるように調製されれば良いが、例えば、4.0〜7.5質量%であり、さらに5.0〜6.5質量%であってよい。   The content of the total binder content of the binder fiber and the binder resin used in the present invention in the filter medium is 8 to 30% by mass, preferably 9 to 24% by mass, and more preferably 10 to 20% by mass. And more preferably 11 to 16 mass%. If the total binder content is less than 8 mass, the strength required for practical use cannot be obtained. If the total binder content exceeds 30% by mass, the collection efficiency decreases and the flame retardancy decreases. As the content of the binder resin, for example, the content of the binder fiber may be 3 to 25% by mass, and the content of the total binder in the filter medium may be 8 to 30% by mass. , For example, 4.0 to 7.5% by mass, and further 5.0 to 6.5% by mass.

本発明で主体繊維、主成分として、ガラス繊維が使用される。捕集効率が高く、低圧力損失であり、難燃性に優れ、高剛度のエアフィルタ濾材が得られるからである。ガラス繊維(主体繊維)の含有量としては、エアフィルタ濾材中において、60〜92 質量%であり、好ましくは、65〜90質量%、例えば、68〜88質量%である。使用されるガラス繊維の形態としては、火炎延伸法やロータリー法により製造されるウール状の極細ガラス繊維や、所定の繊維径となるように紡糸されたガラス繊維の束を所定の繊維長に切断して製造されるチョップドストランドガラス繊維等があるこれらの中から、必要とされる物性に応じて、種々の繊維径や繊維長を有するものが選択され、単独または混合して使用される。例えば、本発明では、平均繊維径が1μm未満のサブミクロンガラス繊維と、平均繊維径が1μm以上のミクロンガラス繊維を併用することができる。ミクロンガラス繊維の平均繊維径は、好ましくは1〜20μmであり、より好ましくは1〜10μmである。例えば、本発明においては、主体繊維中、すなわち、全ガラス繊維中において、サブミクロンガラス繊維を40〜97質量%、さらには45〜95質量%、または50〜95 質量%の割合で使用することができる。   In the present invention, glass fiber is used as the main fiber and the main component. This is because an air filter medium having high collection efficiency, low pressure loss, excellent flame retardancy, and high rigidity can be obtained. The content of the glass fibers (main fibers) in the air filter medium is 60 to 92% by mass, preferably 65 to 90% by mass, for example 68 to 88% by mass. As the form of the glass fiber used, a wool-like ultrafine glass fiber produced by a flame drawing method or a rotary method or a bundle of glass fibers spun to have a predetermined fiber diameter is cut into a predetermined fiber length. Among these, there are chopped strand glass fibers and the like produced, and those having various fiber diameters and fiber lengths are selected according to the required physical properties, and they are used alone or as a mixture. For example, in the present invention, submicron glass fibers having an average fiber diameter of less than 1 μm and micron glass fibers having an average fiber diameter of 1 μm or more can be used together. The average fiber diameter of the micron glass fiber is preferably 1 to 20 μm, more preferably 1 to 10 μm. For example, in the present invention, the sub-micron glass fiber is used in the main fiber, that is, in the total glass fiber in an amount of 40 to 97% by mass, further 45 to 95% by mass, or 50 to 95% by mass. You can

ガラス繊維の組成としては、従来広く用いられている硼珪酸ガラスを始めとする種々の組成のガラス繊維を使用できる。半導体製造用のクリーンルームにおける硼素によるシリコンウエハ汚染を防止する目的で、低硼素ガラス繊維またはシリカガラス繊維を使用することができ、例えば、B含有量が0.1質量%以下である低硼素ガラス繊維を使用することができる。 As the composition of the glass fiber, glass fibers of various compositions including borosilicate glass which has been widely used in the past can be used. Low boron glass fibers or silica glass fibers can be used for the purpose of preventing contamination of silicon wafers with boron in a clean room for semiconductor production, and for example, a low B 2 O 3 content of 0.1% by mass or less can be used. Boron glass fibers can be used.

本発明のエアフィルタ用濾材は、湿式抄紙法によって製造される。まず、ガラス繊維とバインダー繊維を水中で均一に混合分散し、得られた繊維スラリーをワイヤー上に積層し、脱水することにより抄紙(シート化)する。ここで、分散及び抄紙に用いられる水は、ガラス繊維の分散を均一にするために、酸を添加してpHが約2〜4に調整することが好ましい。次に、バインダー樹脂の溶液又は分散液を、湿式抄紙されたシートに付与する。バインダー液の付与方法としては、含浸、スプレー、ロール転写等の方法が用いられる。余分に付与されたバインダー液は、負圧吸引等により除去することが好ましい。その後、湿潤状態のシートを、熱風乾燥機、ロータリー乾燥機等を用いて乾燥し、最終的なエアフィルタ用濾材を得る。この時の乾燥温度は、シートを乾燥状態にするとともに、バインダー繊維の鞘部は溶解又は溶融するが、バインダー繊維の芯部は溶解又は溶融しない温度となるように調整される。   The filter material for an air filter of the present invention is manufactured by a wet papermaking method. First, glass fibers and binder fibers are uniformly mixed and dispersed in water, the obtained fiber slurry is laminated on a wire, and dehydrated to make a paper (sheet). Here, the water used for dispersion and papermaking is preferably adjusted to a pH of about 2 to 4 by adding an acid in order to make the dispersion of the glass fibers uniform. Next, the solution or dispersion of the binder resin is applied to the wet papermaking sheet. As a method for applying the binder liquid, a method such as impregnation, spraying or roll transfer is used. The excess binder solution is preferably removed by negative pressure suction or the like. Then, the wet sheet is dried using a hot air drier, a rotary drier or the like to obtain a final filter material for an air filter. The drying temperature at this time is adjusted so that the sheet is dried and the sheath portion of the binder fiber melts or melts, but the core portion of the binder fiber does not melt or melt.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は、これら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

<実施例1>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)26質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)4質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙に、アクリル樹脂バインダー(ボンコートAC−501、DIC(株)製)を湿紙の固形分100質量部に対する固形分付着量が6質量部となるように含浸により付与した後、ロータリードライヤーを用いて乾燥し、坪量70g/mのエアフィルタ用濾材を得た。
<Example 1>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 26 parts by mass of a low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, a polyethylene terephthalate core, and a modified polyethylene terephthalate core. 4 parts by mass of a core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Ltd.) in acidic water of pH 3.0 using a pulper It disaggregated and the raw material slurry was obtained. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. After the acrylic resin binder (Boncoat AC-501, manufactured by DIC Corporation) was impregnated on the obtained wet paper so as to have a solid content adhesion amount of 6 parts by mass with respect to 100 parts by mass of the solid content of the wet paper, It was dried using a rotary dryer to obtain a filter material for an air filter having a basis weight of 70 g / m 2 .

<実施例2>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Example 2>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 22 parts by mass of low-boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and having an amount of 0.1% by mass or less, polyethylene terephthalate as a core, and modified polyethylene terephthalate as a sheath. Same as Example 1 except that 8 parts by mass of the core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin Limited) was used as the raw material slurry. Then, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<実施例3>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)11質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)19質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Example 3>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 11 parts by mass of a low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, a polyethylene terephthalate core, and a modified polyethylene terephthalate core. Same as Example 1 except that 19 parts by mass of the core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) was used as the raw material slurry. Then, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<実施例4>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)5質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)25質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Example 4>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 5 parts by mass of a low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, a polyethylene terephthalate core, and a modified polyethylene terephthalate sheath. The same as Example 1 except that 25 parts by mass of the core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin Limited) was used as the raw material slurry. Then, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<実施例5>
バインダー繊維を、芯がポリプロピレン、鞘がポリ(エチレン−酢酸ビニル)の芯鞘構造バインダー繊維(NBF(E)、繊度2.2dtx、繊維長5mm、繊維径17μm、ダイワボウポリテック(株)製)8質量部とした以外は、実施例2と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Example 5>
Binder fiber is a core-sheath structure binder fiber having a polypropylene core and a poly (ethylene-vinyl acetate) sheath (NBF (E), fineness 2.2 dtx, fiber length 5 mm, fiber diameter 17 μm, manufactured by Daiwabo Polytech Co., Ltd.) 8 A filter material for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 2 except that the parts by weight were used.

<実施例6>
平均繊維径0.65μmの硼珪酸ガラス繊維(B−06−F、Lauscha Fiber International Co.製)70質量部と、平均繊維径2.44μmの硼珪酸ガラス繊維(B−26−R、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙に、アクリル樹脂バインダー(ボンコートAC−501、DIC(株)製)を湿紙の固形分100質量部に対する固形分付着量が6質量部となるように含浸により付与した後、ロータリードライヤーを用いて乾燥し、坪量70g/mのエアフィルタ用濾材を得た。
<Example 6>
70 parts by mass of borosilicate glass fiber (B-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and borosilicate glass fiber (B-26-R, Lauscha Fiber) having an average fiber diameter of 2.44 μm 22 parts by mass of International Co.), a core-sheath structure binder fiber having a core of polyethylene terephthalate and a sheath of modified polyethylene terephthalate (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin (stock) 8 parts by mass) was disaggregated with a pulper in acidic water having a pH of 3.0 to obtain a raw material slurry. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. After the acrylic resin binder (Boncoat AC-501, manufactured by DIC Corporation) was impregnated on the obtained wet paper so as to have a solid content adhesion amount of 6 parts by mass with respect to 100 parts by mass of the solid content of the wet paper, It was dried using a rotary dryer to obtain a filter material for an air filter having a basis weight of 70 g / m 2 .

<比較例1>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)30質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Comparative Example 1>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content Example 1 except that 30 parts by mass of a low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and having an amount of 0.1% by mass or less was used as a raw material slurry. In the same manner as above, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<比較例2>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)28質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)2質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Comparative example 2>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 28 parts by mass of a low boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and an amount of 0.1% by mass or less, a polyethylene terephthalate core, and a modified polyethylene terephthalate sheath. Same as Example 1 except that 2 parts by mass of the core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin Limited) was used as the raw material slurry. Then, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<比較例3>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)30質量部を原料スラリーに用いた以外は、実施例1と同様にして、坪量70g/mのエアフィルタ用濾材を得た。
<Comparative example 3>
70 parts by mass of low boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having a B 2 O 3 content of 0.1% by mass or less and an average fiber diameter of 0.65 μm, and a core of polyethylene terephthalate, A core-sheath structure binder fiber whose sheath is modified polyethylene terephthalate (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, Teijin Ltd.) was used in the raw slurry except that 30 parts by mass was used. In the same manner as in Example 1, a filter material for an air filter having a basis weight of 70 g / m 2 was obtained.

<比較例4>
含有量が0.1質量%以下である平均繊維径0.65μmの低硼素ガラス繊維(A−06−F、Lauscha Fiber International Co.製)70質量部と、B含有量が0.1質量%以下である平均繊維径2.44μmの低硼素ガラス繊維(A−26−F、Lauscha Fiber International Co.製)22質量部と、芯がポリエチレンテレフタレート、鞘が変性ポリエチレンテレフタレートの芯鞘構造バインダー繊維(テピルス(登録商標)TJ04CN、繊度1.1dtx、繊維長5mm、繊維径12μm、帝人(株)製)8質量部を、pH 3.0の酸性水中でパルパーを用いて離解し、原料スラリーを得た。得られた原料スラリーを、傾斜ワイヤー抄紙機を用いて湿式抄紙を行い、湿紙を得た。得られた湿紙を、ロータリードライヤーを用いて乾燥し、坪量70g/mのエアフィルタ用濾材を得た。
<Comparative example 4>
70 parts by mass of low-boron glass fiber (A-06-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 0.65 μm and having a B 2 O 3 content of 0.1% by mass or less, and a B 2 O 3 content 22 parts by mass of low-boron glass fiber (A-26-F, manufactured by Lauscha Fiber International Co.) having an average fiber diameter of 2.44 μm and having an amount of 0.1% by mass or less, polyethylene terephthalate as a core, and modified polyethylene terephthalate as a sheath. Core-sheath structure binder fiber (Tepyrus (registered trademark) TJ04CN, fineness 1.1 dtx, fiber length 5 mm, fiber diameter 12 μm, manufactured by Teijin Limited) of 8 parts by mass in acidic water of pH 3.0 using a pulper. It disaggregated and the raw material slurry was obtained. The obtained raw material slurry was subjected to wet papermaking using an inclined wire paper machine to obtain a wet paper. The obtained wet paper was dried using a rotary dryer to obtain a filter material for an air filter having a basis weight of 70 g / m 2 .

実施例及び比較例において得られた濾材の評価は、次に示す方法で行った。   The filter media obtained in Examples and Comparative Examples were evaluated by the methods described below.

圧力損失は、有効面積100cmの濾材に、空気を面風速5.3cm/秒で通過させた時の差圧を、マノメーターを用いて測定した。 The pressure loss was measured by using a manometer to measure a differential pressure when air was passed through the filter medium having an effective area of 100 cm 2 at a surface wind velocity of 5.3 cm / sec.

PAO透過率は、有効面積100cmの濾材に、ラスキンノズルを用いた発生させたPAO(ポリアルファオレフィン Durasyn 164、BP Amoco Chemical Co.製)を含む空気を面風速5.3cm/秒で通過させた時の上流及び下流の個数比からのPAO透過率を、レーザーパーティクルカウンター(Lasair Model 1001、Particle Measuring Systems,Inc.製)を用いて測定した。なお、対象粒子径は0.10〜0.15μmとした。 The PAO transmittance was such that air containing PAO (polyalphaolefin Durasyn 164, manufactured by BP Amoco Chemical Co.) generated using a Ruskin nozzle was passed through a filter medium having an effective area of 100 cm 2 at a surface wind velocity of 5.3 cm / sec. The PAO transmittances from the upstream and downstream number ratios were measured using a laser particle counter (Lasair Model 1001, manufactured by Particle Measuring Systems, Inc.). The target particle size was 0.10 to 0.15 μm.

PF値は、圧力損失とDOP透過率の測定値から、数1に示す式を用いて算出した。なお、対象粒子径は0.10〜0.15μmとした。このPF値が高いほど、エアフィルタ用濾材が、高捕集効率かつ低圧力損失であると言える。本発明においては、9.0以上のPF値であることが好ましい。

Figure 2020065956
The PF value was calculated from the measured values of pressure loss and DOP transmittance by using the formula shown in Formula 1. The target particle size was 0.10 to 0.15 μm. It can be said that the higher the PF value, the higher the collection efficiency and the lower the pressure loss of the air filter medium. In the present invention, it is preferable that the PF value is 9.0 or more.
Figure 2020065956

引張強度は、MD方向を長さ方向として幅25mm、長さ150mmで切り出したサンプルについて、つかみ間隔(試験長さ)100mm、伸長速度15mm/分の条件で、卓上型精密万能試験機(オートグラフAGS−X、(株)島津製作所製)を用いて測定した最大応力を、試験幅(25mm)で除して、kN/mの単位で求めた。   For the tensile strength, a sample cut out with a width of 25 mm and a length of 150 mm with the MD direction as the length direction was clamped at a gripping interval (test length) of 100 mm and an extension speed of 15 mm / min. The maximum stress measured using AGS-X, manufactured by Shimadzu Corporation, was divided by the test width (25 mm) to obtain a unit of kN / m.

折目付引張強度は、MD方向を長さ方向として、幅25mm、長さ150mmで切り出したサンプルについて、CD方向に縁を合わせた厚さ1mmの板の縁に沿わせて長さ方向の半分の位置で180°折り曲げて2つ折りにし、次いで、2つ折り状態のサンプルの上に98Paの圧力となるように面積100mm×100mm、質量100gの板を載せて5分間加圧して折目を付けたサンプルについて、前記の引張強度と同様に測定した。   The crease tensile strength is half of the longitudinal direction along the edge of a plate with a thickness of 1 mm, which is aligned with the CD direction, for a sample cut out with a width of 25 mm and a length of 150 mm, with the MD direction as the longitudinal direction. A sample in which a plate having an area of 100 mm × 100 mm and a mass of 100 g is placed on the sample in the folded state in a folded state by 180 ° so as to have a pressure of 98 Pa and pressed for 5 minutes to make a crease. Was measured in the same manner as the above tensile strength.

剛度は、JIS L 1085:1998「不織布しん地試験方法」に準拠して、ガーレーステフネステスター(熊谷理機工業(株)製)を用いて測定した。   The rigidity was measured using a Gurley Tefnes Tester (manufactured by Kumagai Riki Kogyo Co., Ltd.) in accordance with JIS L 1085: 1998 “Nonwoven fabric test method”.

難燃性は、JACA No.11A−2003「空気清浄装置用ろ材燃焼性試験方法」に準拠して、燃焼性試験器(UL−94HBF、スガ試験機(株)製)を用いて測定した。燃焼性の区分は、クラス1、クラス2、クラス3の順に燃焼し難くなり、すなわち、難燃性が高くなる。   Flame retardancy is based on JACA No. In accordance with 11A-2003 "Method for testing filter media flammability for air purifier", the flammability tester (UL-94HBF, manufactured by Suga Test Instruments Co., Ltd.) was used for measurement. In the combustibility classification, it becomes difficult to combust in the order of class 1, class 2, and class 3, that is, the flame retardancy increases.

実施例及び比較例の評価結果を、表1に示した。   Table 1 shows the evaluation results of the examples and the comparative examples.

表1の結果より、接着成分が鞘部である芯鞘構造のバインダー繊維と非繊維状のバインダー樹脂をバインダーとして用い、バインダー繊維の濾材中含有量を3〜25質量%とし、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量を8〜30質量%とすることにより、高いPF値、高剛度、優れた難燃性を維持しつつ、プリーツ加工に耐えるために十分な折目付引張強度(例えば、0.45kN/m以上)を有するエアフィルタ用濾材が得られることがわかる。   From the results in Table 1, the binder component of the core-sheath structure in which the adhesive component is the sheath and the non-fibrous binder resin are used as the binder, the content of the binder fiber in the filter medium is 3 to 25% by mass, and the binder fiber By setting the content of the total binder consisting of the binder resin and the binder resin in the filter medium to 8 to 30% by mass, it is possible to maintain a high PF value, a high rigidity and an excellent flame retardancy, and to fold it enough to withstand pleating. It can be seen that an air filter medium having a basis weight tensile strength (for example, 0.45 kN / m or more) can be obtained.

それに対して、バインダー繊維の量が少ないエアフィルタ用濾材は、十分な折目付引張強度が得られずプリーツ加工に耐えることができないことが判明し(比較例1および2)、また、バインダー繊維が多量に含まれているエアフィルタ用濾材は、捕集効率が低下し、難燃性が低下することが判明した(比較例3)。さらに、非繊維状のバインダー樹脂を含まないエアフィルタ用濾材は、十分な折目付引張強度が得られず、強度、剛度が不足していることが判明した(比較例4)。   On the other hand, it was found that the filter material for an air filter having a small amount of binder fiber cannot obtain sufficient crease tensile strength and cannot withstand pleating (Comparative Examples 1 and 2). It was found that the filter material for an air filter contained in a large amount had a lower collection efficiency and a lower flame retardancy (Comparative Example 3). Further, it was found that the filter material for an air filter that does not contain a non-fibrous binder resin could not obtain sufficient crease strength and was insufficient in strength and rigidity (Comparative Example 4).

Figure 2020065956
Figure 2020065956

Claims (6)

主成分としてガラス繊維を含有し、さらに、接着成分が鞘部である芯鞘構造を有するバインダー繊維と、非繊維状のバインダー樹脂を含有し、バインダー繊維の濾材中含有量が3〜25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8〜30質量%であることを特徴とするエアフィルタ用濾材。   Containing glass fiber as a main component, further containing binder fiber having a core-sheath structure in which the adhesive component is a sheath and a non-fibrous binder resin, and the content of the binder fiber in the filter medium is 3 to 25% by mass. And the content of the total binder content of the binder fiber and the binder resin in the filter medium is 8 to 30% by mass. ガラス繊維中のB含有量が0.1質量%以下であることを特徴とする、請求項1に記載のエアフィルタ用濾材。 Wherein the content of B 2 O 3 in the glass fiber is not more than 0.1 wt%, medium for an air filter according to claim 1. バインダー繊維の芯部が、ポリエステル又はポリオレフィンであることを特徴とする、請求項1及び2に記載のエアフィルタ用濾材。   The filter material for an air filter according to claim 1 or 2, wherein the core portion of the binder fiber is polyester or polyolefin. ガラス繊維と、接着成分が鞘部である芯鞘構造を有するバインダー繊維を含む水性スラリーを得る分散工程と、得られた水性スラリーを湿式抄紙して湿潤状態のシートを得る抄紙工程と、前記湿潤状態のシートに、バインダー樹脂を含む溶液又は分散液を含浸させてシートに付着させる含浸工程と、前記溶液又は分散液を含浸させた湿潤状態のシートを乾燥する乾燥工程を有し、バインダー繊維の濾材中含有量が3〜25質量%であり、かつ、バインダー繊維とバインダー樹脂からなる全バインダー分の濾材中含有量が8〜30質量%であることを特徴とする、ガラス繊維を主成分として含有するエアフィルタ用濾材の製造方法。   A dispersion step of obtaining an aqueous slurry containing glass fibers and a binder fiber having a core-sheath structure in which an adhesive component is a sheath, a papermaking step of obtaining a sheet in a wet state by wet-papermaking the obtained aqueous slurry, and the wetting The sheet in the state is impregnated with a solution or dispersion containing a binder resin and attached to the sheet, and a drying step of drying the wet sheet impregnated with the solution or dispersion is performed. The content in the filter medium is 3 to 25% by mass, and the total content of the binder composed of the binder fiber and the binder resin in the filter medium is 8 to 30% by mass, with glass fiber as the main component. A method for producing a filter material for an air filter containing the same. ガラス繊維のB含有量が0.1質量%以下であることを特徴とする、請求項4に記載のエアフィルタ用濾材の製造方法。 The method for producing a filter medium for an air filter according to claim 4, wherein the B 2 O 3 content of the glass fiber is 0.1% by mass or less. バインダー繊維の芯部が、ポリエステル又はポリオレフィンであることを特徴とする、請求項4及び5に記載のエアフィルタ用濾材の製造方法。   The method for producing a filter medium for an air filter according to claim 4, wherein the core portion of the binder fiber is polyester or polyolefin.
JP2018198461A 2018-10-22 2018-10-22 AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF Active JP7215871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018198461A JP7215871B2 (en) 2018-10-22 2018-10-22 AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198461A JP7215871B2 (en) 2018-10-22 2018-10-22 AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2020065956A true JP2020065956A (en) 2020-04-30
JP7215871B2 JP7215871B2 (en) 2023-01-31

Family

ID=70389122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198461A Active JP7215871B2 (en) 2018-10-22 2018-10-22 AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP7215871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102652678B1 (en) * 2023-05-22 2024-04-01 주식회사 엔바이오니아 Insulator For Road Pavement and Method Of Manufacturing The Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970512A (en) * 1995-09-05 1997-03-18 Hokuetsu Paper Mills Ltd Filter material for air filter and air filter
JP2006007209A (en) * 2004-05-28 2006-01-12 Nippon Muki Co Ltd Filter medium for mid-performance air filter, production method therefor, and mid-performance air filter
JP2014054595A (en) * 2012-09-12 2014-03-27 Hokuetsu Kishu Paper Co Ltd Filter medium for air filter
WO2014171165A1 (en) * 2013-04-15 2014-10-23 北越紀州製紙株式会社 Filter material for air filter, method for manufacturing same, and air filter provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970512A (en) * 1995-09-05 1997-03-18 Hokuetsu Paper Mills Ltd Filter material for air filter and air filter
JP2006007209A (en) * 2004-05-28 2006-01-12 Nippon Muki Co Ltd Filter medium for mid-performance air filter, production method therefor, and mid-performance air filter
JP2014054595A (en) * 2012-09-12 2014-03-27 Hokuetsu Kishu Paper Co Ltd Filter medium for air filter
WO2014171165A1 (en) * 2013-04-15 2014-10-23 北越紀州製紙株式会社 Filter material for air filter, method for manufacturing same, and air filter provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102652678B1 (en) * 2023-05-22 2024-04-01 주식회사 엔바이오니아 Insulator For Road Pavement and Method Of Manufacturing The Same

Also Published As

Publication number Publication date
JP7215871B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP5319380B2 (en) Low basis weight air filter media
KR101795201B1 (en) Filter material for air filter, method for manufacturing same, and air filter provided with same
EP2401146B1 (en) Filter media suitable for ashrae applications
JP6668203B2 (en) Manufacturing method of filter medium for air filter
JP4823291B2 (en) Filter material for air filter and method for producing the same
JP6527800B2 (en) Filter paper for filter and manufacturing method thereof
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
JP6158061B2 (en) Air filter media
JP6691497B2 (en) Method for manufacturing filter material for air filter and method for manufacturing air filter
JP2008049333A (en) Composite filter medium and its manufacturing method
JP5797175B2 (en) Air filter media
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP2006136809A (en) Non-halogen, non-phosphorus flame-retardant filter medium for air filter, and its production method
JPH1080612A (en) Filter material and air filter
JP5290507B2 (en) Air filter medium and air filter including the same
JP3669798B2 (en) Flame retardant volume reducing high performance air filter medium and method for producing the same
JPH1147522A (en) Filter paper for air purification filter, method for producing filter paper, and air purification filter using filter paper
JPH0757293B2 (en) Filter material for air filter
JP6964033B2 (en) Filter material for air filter
JP7453375B2 (en) Filter medium for air filter and its manufacturing method
WO2023062964A1 (en) Filter medium for high-performance air filter, and method for manufacturing same
JP2003159507A (en) Filter medium for air filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220323

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220330

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220415

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220420

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220810

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221116

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221207

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230111

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7215871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150