JP4922664B2 - Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP4922664B2
JP4922664B2 JP2006143273A JP2006143273A JP4922664B2 JP 4922664 B2 JP4922664 B2 JP 4922664B2 JP 2006143273 A JP2006143273 A JP 2006143273A JP 2006143273 A JP2006143273 A JP 2006143273A JP 4922664 B2 JP4922664 B2 JP 4922664B2
Authority
JP
Japan
Prior art keywords
inorganic
electrolyte battery
separator
fiber
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006143273A
Other languages
Japanese (ja)
Other versions
JP2007317405A (en
Inventor
裕治 片桐
昌司 杉山
芳信 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006143273A priority Critical patent/JP4922664B2/en
Publication of JP2007317405A publication Critical patent/JP2007317405A/en
Application granted granted Critical
Publication of JP4922664B2 publication Critical patent/JP4922664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、耐熱性、電解液保持性に優れ、また、250〜300℃付近の高温でのリフローに耐える非水電解液電池用セパレータ及びそれを用いた非水電解液電池に関する。   The present invention relates to a separator for a nonaqueous electrolyte battery that is excellent in heat resistance and electrolyte retention, and that can withstand reflow at a high temperature around 250 to 300 ° C., and a nonaqueous electrolyte battery using the same.

従来、塩化チオニル−金属リチウム電池、リチウムイオン二次電池等の非水電解液電池用セパレータでは、ガラス繊維不織布やポリオレフィンからなる微多孔質膜等が使用されている。   Conventionally, in a separator for a nonaqueous electrolyte battery such as a thionyl chloride-metal lithium battery or a lithium ion secondary battery, a glass fiber nonwoven fabric, a microporous film made of polyolefin, or the like is used.

近年、通信機器・ゲーム携帯機器等のポータブル電子機器の急速な普及に伴い、コンデンサ、キャパシタ及び電池の適用範囲と需要が著しく拡大している。これら機器に装着される場合、機器の小型化・軽量化につながる電子部品が要求され、それに伴い、小型で長寿命・高容量の非水電解液電池の要求も増している。また、環境面からハンダの鉛フリー化が進められており、その鉛フリーハンダは融点が高く、電子部品に高い耐熱性が要求されるようになってきた。そのため、例えばリフローに使用されるリチウムイオン二次電池自体にも耐熱性が要求され、一般的にセパレータとして使用されるシャットダウン機能のあるオレフィン系微多孔膜では高温リフローには耐えられない。   In recent years, with the rapid spread of portable electronic devices such as communication devices and portable game devices, the application range and demand of capacitors, capacitors and batteries have been remarkably expanded. When mounted on these devices, electronic components that lead to a reduction in size and weight of the devices are required, and accordingly, there is an increasing demand for non-aqueous electrolyte batteries having a small size, a long life, and a high capacity. Further, lead-free solder is being promoted from the environmental aspect, and the lead-free solder has a high melting point, and high heat resistance is required for electronic components. Therefore, for example, a lithium ion secondary battery itself used for reflow is required to have heat resistance, and an olefinic microporous membrane having a shutdown function generally used as a separator cannot withstand high temperature reflow.

例えば、特許文献1に記載されるように、リチウムイオン二次電池用セパレータとして、ポリフェニレンスルフィド不織布、ガラス繊維不織布、アルミナ繊維不織布、セラミック繊維不織布が提案されている。特許文献1にはこれら無機繊維不織布に関する詳細な記述はないが、一般的には有機バインダーが添加された不織布が使用される。ただし、ガラス繊維不織布の場合、ガラス平均繊維径が1.5μm以下でシート化されている物では無機繊維100%で市販されているが、その強度は低く取り扱いし難い。
また、特許文献2に記載されている非水電解液電池では、セパレータにガラス繊維不織布が開示されているが、その内容からは無機繊維のみの構成と見られる。
一方、特許文献3にあるように、塩化チオニル−金属リチウム電池では、その電解液の強い酸化力のため、セパレータには、ガラス繊維不織布が使用されており、有機バインダーで結着されているのが一般的である。
For example, as described in Patent Document 1, a polyphenylene sulfide nonwoven fabric, a glass fiber nonwoven fabric, an alumina fiber nonwoven fabric, and a ceramic fiber nonwoven fabric have been proposed as a separator for a lithium ion secondary battery. Although there is no detailed description about these inorganic fiber nonwoven fabrics in patent document 1, generally the nonwoven fabric to which the organic binder was added is used. However, in the case of a glass fiber non-woven fabric, a sheet having an average glass fiber diameter of 1.5 μm or less is commercially available with 100% inorganic fiber, but its strength is low and difficult to handle.
Moreover, in the non-aqueous electrolyte battery described in Patent Document 2, a glass fiber non-woven fabric is disclosed in the separator.
On the other hand, as disclosed in Patent Document 3, in the thionyl chloride-metal lithium battery, because of the strong oxidizing power of the electrolyte, a glass fiber nonwoven fabric is used for the separator and is bound by an organic binder. Is common.

通常、高い耐熱性や高い化学的耐性を得るには、無機繊維100%からなる不織布が考えられるが、無機繊維は自己接着性がなく、無機繊維の絡み合いだけでは、無機繊維として1μm以下の微細径繊維を使用しても、不織布として十分な機械的強度を得ることは難しい(特許文献4)。しかも、非水電解液電池用セパレータは通常、厚さが200μm以下、特にリチウムイオン二次電池用途では60μm以下であり、セパレータを構成する不織布の坪量は50g/m2以下の低坪量が主流となっており、このような低坪量では、やはり無機繊維の絡み合いだけで十分な機械的強度を得ることは難しい。 Usually, in order to obtain high heat resistance and high chemical resistance, a non-woven fabric composed of 100% inorganic fibers can be considered. However, inorganic fibers do not have self-adhesive properties. Even if a diameter fiber is used, it is difficult to obtain sufficient mechanical strength as a nonwoven fabric (Patent Document 4). Moreover, the separator for a non-aqueous electrolyte battery usually has a thickness of 200 μm or less, particularly 60 μm or less for lithium ion secondary battery applications, and the basis weight of the nonwoven fabric constituting the separator is a low basis weight of 50 g / m 2 or less. With such a low basis weight, it is difficult to obtain sufficient mechanical strength simply by entanglement of inorganic fibers.

よって、従来の無機繊維からなる不織布では、坪量が50g/m2を超える高坪量であったり多量の有機バインダーを添加していたり、つまり、有機樹脂のバインダー液(エマルジョン、樹脂溶液等)を無機繊維不織布に含浸または塗布したり(特許文献5)、あるいは、有機樹脂の繊維状物を予め添加して無機繊維不織布を作製しこれを熱処理あるいは熱カレンダーすることで、無機繊維同士を有機樹脂で結着して所定の機械的強度を得るようにしている(特許文献6、7)。
つまり、坪量が50g/m2以下の低坪量で、実質的に無機材料のみで構成され、耐熱性が高くて作業性の良くなる十分な機械的強度を有した無機繊維不織布はこれまで存在していない。
Therefore, in a nonwoven fabric made of conventional inorganic fibers, the basis weight is higher than 50 g / m 2 or a large amount of organic binder is added, that is, an organic resin binder liquid (emulsion, resin solution, etc.) Inorganic fiber nonwoven fabric is impregnated or coated (Patent Document 5), or a fibrous material of an organic resin is added in advance to prepare an inorganic fiber nonwoven fabric, which is then heat-treated or heat-calendered to make the inorganic fibers organic. A predetermined mechanical strength is obtained by binding with resin (Patent Documents 6 and 7).
In other words, inorganic fiber nonwoven fabrics having a low basis weight of 50 g / m 2 or less, substantially composed only of inorganic materials, high heat resistance, and sufficient mechanical strength to improve workability have hitherto been used. Does not exist.

特開2004−259524号公報JP 2004-259524 A 特開平08−138686号公報Japanese Patent Laid-Open No. 08-138686 特開平02−170346号公報JP 02-170346 A 特開昭61−16465号公報Japanese Patent Laid-Open No. 61-16465 特開平03−252047号公報Japanese Patent Laid-Open No. 03-252047 国際公開公報第96/30954号パンフレットWO96 / 30954 pamphlet 特開昭59−180966号公報JP 59-180966 A

有機樹脂のバインダー液を含浸または塗布して無機繊維同士を結着させたり、あるいは、有機樹脂の繊維状物を加熱または加圧溶融して無機繊維同士を結着させると、無機繊維の交点のみを結着するのではなく、無機繊維の交差部分及びそれ以外の繊維表面や、更には、無機繊維間の間隙部分にまで、有機樹脂による皮膜が形成され、無機繊維の良好な濡れ性が奪われ、不織布、すなわち、セパレータの電解液保液性や電解液浸透性が低下するという問題がある。また、添加する有機物の量が多くなると耐熱性が低下し、高温リフロー時にセパレータが収縮して内部短絡を引き起こす可能性がある。さらに、有機物を多く含むセパレータを非水電解液電池に長期に使用すると、非水電解液電池内で有機物起源による分解生成物(ガスや有機化合物)を発生させ、非水電解液電池の寿命を低下させたり、電池を破裂させることが考えられる。   When impregnating or applying an organic resin binder liquid to bind inorganic fibers, or heating or pressure melting an organic resin fibrous material to bind inorganic fibers, only the intersection of inorganic fibers Rather than binding, an inorganic resin film is formed on the crossing portion of the inorganic fiber, the surface of the other fiber, and even the gap between the inorganic fibers, and the good wettability of the inorganic fiber is lost. However, there exists a problem that the electrolyte solution retention property and electrolyte solution permeability of a nonwoven fabric, ie, a separator, fall. Further, when the amount of the organic substance to be added is increased, the heat resistance is lowered, and the separator may shrink during high temperature reflow and cause an internal short circuit. Furthermore, if a separator containing a large amount of organic substances is used in a non-aqueous electrolyte battery for a long period of time, decomposition products (gases and organic compounds) originating from organic substances are generated in the non-aqueous electrolyte battery, thereby extending the life of the non-aqueous electrolyte battery. It can be reduced or the battery can burst.

本発明は、このような従来の問題点に鑑み、湿式抄造法により製造でき、無機繊維を主体とし実質的に無機材料のみで構成させることのできる、坪量50g/m2以下の低坪量でありながら十分な機械的強度を有する無機繊維紙からなり、電解液濡れ性が良好で、耐熱性が優れ不燃性であり、有機物起源による分解生成物を発生させることのない非水電解液電池用セパレータとそれを用いた非水電解液電池を提供することを目的とする。 In view of such a conventional problem, the present invention can be manufactured by a wet papermaking method, and can be made of inorganic fibers as a main component and substantially composed only of an inorganic material, and has a low basis weight of 50 g / m 2 or less. But non-aqueous electrolyte battery made of inorganic fiber paper with sufficient mechanical strength, good electrolyte wettability, excellent heat resistance and non-flammability, and does not generate decomposition products due to organic matter It is an object of the present invention to provide a separator for use and a non-aqueous electrolyte battery using the same.

本発明の非水電解液電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、平均繊維径4μm以下の無機繊維60〜97質量%と、BET法による比表面積当たりの水酸基の量が20μmol/m2以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダー3〜40質量%との材料より製造され、前記無機繊維が前記無機バインダーによって結着され、実質的に無機材料のみで構成され、坪量50g/m2以下である無機繊維紙からなることを特徴とする。
また、請求項2記載の電気二重層キャパシタ用セパレータは、請求項1記載の非水電解液電池用セパレータにおいて、前記無機繊維紙が、前記無機繊維75〜97質量%と、前記シリカ系鱗片状無機物を主体とする無機バインダー3〜25質量%との材料より製造されることを特徴とする。
また、請求項3記載の非水電解液電池用セパレータは、請求項1または2記載の非水電解液電池用セパレータにおいて、前記無機繊維が、平均繊維径1.5μm以下の無機繊維であることを特徴とする。
また、請求項4記載の非水電解液電池用セパレータは、請求項1乃至3の何れかに記載の非水電解液電池用セパレータにおいて、前記シリカ系鱗片状無機物が、鱗片状シリカであることを特徴とする。
また、請求項5記載の非水電解液電池用セパレータは、請求項1乃至4の何れかに記載の非水電解液電池用セパレータにおいて、前記無機繊維紙が、坪量30g/m2以下であることを特徴とする。
また、請求項6記載の非水電解液電池用セパレータは、請求項1乃至5の何れかに記載の非水電解液電池用セパレータにおいて、前記無機繊維が、ガラス繊維であることを特徴とする。
また、請求項7記載の非水電解液電池用セパレータは、請求項1乃至6の何れかに記載の非水電解液電池用セパレータにおいて、300℃、3時間後の加熱線収縮率が0.3%未満であることを特徴とする。
また、本発明の非水電解液電池は、前記目的を達成するべく、請求項8に記載の通り、請求項1乃至7の何れかに記載の非水電解液電池用セパレータを用いたことを特徴とする。
In order to achieve the above object, the separator for a nonaqueous electrolyte battery according to the present invention has 60 to 97% by mass of inorganic fibers having an average fiber diameter of 4 μm or less and hydroxyl groups per specific surface area according to the BET method. Is produced from a material with an inorganic binder of 3 to 40% by weight mainly composed of a silica-based scaly inorganic material having an amount of 20 μmol / m 2 or more, an average particle size by laser scattering of 2 μm or less, and an aspect ratio of 10 or more, The inorganic fibers are bound by the inorganic binder, and are substantially composed only of an inorganic material, and are made of inorganic fiber paper having a basis weight of 50 g / m 2 or less.
The separator for an electric double layer capacitor according to claim 2 is the separator for a non-aqueous electrolyte battery according to claim 1, wherein the inorganic fiber paper is 75 to 97% by mass of the inorganic fiber and the silica-based scaly shape. It is manufactured from a material of 3 to 25% by mass of an inorganic binder mainly composed of an inorganic substance.
The non-aqueous electrolyte battery separator according to claim 3 is the non-aqueous electrolyte battery separator according to claim 1 or 2, wherein the inorganic fiber is an inorganic fiber having an average fiber diameter of 1.5 μm or less. It is characterized by.
The separator for a nonaqueous electrolyte battery according to claim 4 is the separator for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the silica-based scale-like inorganic substance is scale-like silica. It is characterized by.
The separator for a nonaqueous electrolyte battery according to claim 5 is the separator for a nonaqueous electrolyte battery according to any one of claims 1 to 4, wherein the inorganic fiber paper has a basis weight of 30 g / m 2 or less. It is characterized by being.
The separator for a nonaqueous electrolyte battery according to claim 6 is the separator for a nonaqueous electrolyte battery according to any one of claims 1 to 5, wherein the inorganic fiber is a glass fiber. .
The separator for a non-aqueous electrolyte battery according to claim 7 is the separator for a non-aqueous electrolyte battery according to any one of claims 1 to 6, wherein the heating linear shrinkage after 3 hours at 300 ° C is 0. It is characterized by being less than 3%.
The nonaqueous electrolyte battery of the present invention uses the nonaqueous electrolyte battery separator according to any one of claims 1 to 7 as described in claim 8 in order to achieve the object. Features.

本発明によれば、主に湿式抄造法により製造される、無機繊維と無機バインダーを材料とし前記無機繊維を前記無機バインダーで結着してなる、実質的に無機材料のみで構成される坪量50g/m2以下の無機繊維紙からなる非水電解液電池用セパレータにおいて、前記無機繊維として平均繊維径4μm以下の微細径無機繊維60〜97質量%と、前記無機バインダーとしてBET法による比表面積当たりの水酸基の量が20μmol/m2以上で表面に多数の水酸基を有し、レーザー散乱法による平均粒径が2μm以下で、アスペクト比が10以上である自己接着性に優れたシリカ系鱗片状無機物を主体とする無機バインダー3〜40質量%を使用するようにしたので、前記微細径無機繊維による絡み合いの効果と前記無機バインダーによるバインダー効果の複合効果により、50g/m2以下、更には30g/m2以下の低坪量であっても十分な機械的強度が得られるとともに、実質的に無機材料のみで構成されるので、電解液濡れ性や電解液保持性や電解液浸透性が良好で、300℃程度の高温でも収縮・変形・破断がない優れた耐熱性を有し、非水電解液電池用セパレータの水分除去時の乾燥効率や水分除去率を向上でき、また高温リフロー対応の電池にも適用でき、化学的耐性が高く分解生成物を発生させることがなく非水電解液電池性能を劣化させる要因を生じさせることのない非水電解液電池用セパレータを提供することができる。 According to the present invention, the basis weight mainly composed of an inorganic material, which is produced mainly by a wet papermaking method and is formed by binding inorganic fibers and inorganic binders with the inorganic binders. In a separator for a nonaqueous electrolyte battery made of inorganic fiber paper of 50 g / m 2 or less, the inorganic fiber has an average fiber diameter of 60 to 97% by mass with an average fiber diameter of 4 μm or less, and the inorganic binder has a specific surface area by BET method. Silica scale having excellent self-adhesiveness with an amount of hydroxyl groups per unit of 20 μmol / m 2 or more, a large number of hydroxyl groups on the surface, an average particle size of 2 μm or less by laser scattering method, and an aspect ratio of 10 or more Since 3 to 40% by mass of an inorganic binder mainly composed of an inorganic substance is used, the effect of entanglement by the fine-diameter inorganic fibers and the buffer by the inorganic binder are used. Due to the combined effect of the Inder effect, sufficient mechanical strength can be obtained even at a low basis weight of 50 g / m 2 or less, and even 30 g / m 2 or less, and it is substantially composed of only an inorganic material. Excellent wettability, electrolyte retention and electrolyte penetration, excellent heat resistance without shrinkage, deformation and rupture even at high temperatures of around 300 ° C, when removing water from non-aqueous electrolyte battery separators It can improve the drying efficiency and moisture removal rate of the battery, and can also be applied to batteries that support high temperature reflow. It has high chemical resistance and does not generate decomposition products, causing non-aqueous electrolyte battery performance to deteriorate. It is possible to provide a separator for a non-aqueous electrolyte battery that does not have any.

本発明の非水電解液電池用セパレータは、平均繊維径4μm以下の無機繊維60〜97質量%と、BET法による比表面積当たりの水酸基の量が20μmol/m2以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダー3〜40質量%との材料より製造され、前記無機繊維が前記無機バインダーによって結着され、実質的に無機材料のみで構成される坪量50g/m2以下の無機繊維紙からなるものである。 The separator for a non-aqueous electrolyte battery according to the present invention comprises 60 to 97% by mass of inorganic fibers having an average fiber diameter of 4 μm or less, the amount of hydroxyl groups per specific surface area by the BET method is 20 μmol / m 2 or more, and average particles by a laser scattering method. Manufactured from a material of 3 to 40% by mass of an inorganic binder mainly composed of a silica-based flaky inorganic material having a diameter of 2 μm or less and an aspect ratio of 10 or more, and the inorganic fibers are bound by the inorganic binder and are substantially inorganic. It consists of inorganic fiber paper having a basis weight of 50 g / m 2 or less, which is composed of only the material.

前記無機繊維紙は、前記無機繊維の交絡構造を基本とし、該無機繊維の繊維同士を前記無機バインダーにより結着した構造をなした紙であり、紙の骨格を形成する前記無機繊維として平均繊維径が4μm以下の細径繊維を使用したことによる繊維の絡み合いの効果と、前記特徴の無機バインダーのバインダー効果により、紙の強度を得ている。   The inorganic fiber paper is a paper having a structure in which the inorganic fibers are bound together by the inorganic binder based on the entangled structure of the inorganic fibers, and the average fiber as the inorganic fibers forming the paper skeleton. The strength of the paper is obtained by the effect of entanglement of fibers due to the use of fine fibers having a diameter of 4 μm or less and the binder effect of the inorganic binder having the above characteristics.

前記無機繊維紙に使用する平均繊維径4μm以下の無機繊維としては、ガラス繊維、シリカ繊維、アルミナ繊維、シリカ−アルミナ繊維、ロックウール、スラグウール等の人造非晶質系繊維、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー等の針状結晶質繊維等の工業的に入手が容易な無機繊維の中から、1種または2種以上を選択して使用することができるが、比較的安価であり1μm以下の微細径繊維も容易に得ることができるガラス繊維を主に使用するのが好ましい。   Examples of the inorganic fibers having an average fiber diameter of 4 μm or less used for the inorganic fiber paper include glass fibers, silica fibers, alumina fibers, silica-alumina fibers, rock wool, slag wool and other artificial amorphous fibers, potassium titanate whiskers. Among inorganic fibers that are easily available industrially, such as acicular crystalline fibers such as calcium carbonate whiskers, one or more types can be selected and used, but they are relatively inexpensive and 1 μm or less. It is preferable to mainly use glass fibers that can be easily obtained.

尚、前記無機繊維は、無機繊維紙に使用する無機繊維全体の平均繊維径が規定の範囲内になるのであれば、平均繊維径の異なる2種類以上の無機繊維材料を混合使用するようにしてもよい。このようにすることで、無機繊維紙はより締まった紙となり、同じ平均繊維径の無機繊維を単独使用した場合に比べて、紙の密度が高くなりやや空隙率が低下するものの、紙の強度が向上する。また、紙を高密度化できるので、非水電解液電池の内部短絡を防止する効果が増す。   In addition, as for the said inorganic fiber, if the average fiber diameter of the whole inorganic fiber used for inorganic fiber paper is in a prescribed range, it is recommended to use a mixture of two or more kinds of inorganic fiber materials having different average fiber diameters. Also good. By doing so, the inorganic fiber paper becomes a tighter paper, and the paper density is slightly higher than the case where the inorganic fiber having the same average fiber diameter is used alone, but the porosity is slightly reduced, but the strength of the paper Will improve. Moreover, since the density of the paper can be increased, the effect of preventing an internal short circuit of the nonaqueous electrolyte battery is increased.

また、前記無機繊維は、平均繊維径が1.5μm以下であれば、前述した無機繊維同士の絡み合いの効果が高まり、無機繊維紙の坪量を小さくした場合にも、バインダーを多量に用いることなく、無機繊維紙の強度を高め易くなるため、好ましい。同様の理由により、前記無機繊維の平均繊維径が1.0μm以下であれば更に良い。   In addition, if the average fiber diameter of the inorganic fiber is 1.5 μm or less, the effect of entanglement between the inorganic fibers described above is enhanced, and a large amount of binder is used even when the basis weight of the inorganic fiber paper is reduced. And it is easy to increase the strength of the inorganic fiber paper, which is preferable. For the same reason, it is better if the average fiber diameter of the inorganic fibers is 1.0 μm or less.

前記無機繊維紙に使用するバインダーは、前述の通り、BET法による比表面積当たりの水酸基の量が20μmol/m2以上で表面に多数の水酸基を有し、レーザー散乱法による平均粒径が2μm以下で、アスペクト比が10以上である自己接着性に優れたシリカ系鱗片状無機物を主体とする無機バインダーであり、このような特徴により、湿式抄造後の乾燥工程で、無機バインダー同士の水酸基による脱水縮合や無機バインダーの水酸基と無機繊維表面の水酸基による脱水縮合が多く起こり、より強固な化学結合力を得ることができる。このような特徴のシリカ系鱗片状無機物を主体とする無機バインダーを使用することにより、湿式抄造時の不純物の含有量が少なく、耐水性及び柔軟性が良好で、十分な強度と高い空隙率を有する無機繊維紙を得ることができるようになる。また、このような特徴のシリカ系鱗片状無機物を主体とする無機バインダーは、無機繊維紙に対して有効なバインダー効果を付与する本来の機能とともに、無機繊維紙の孔構造を複雑化し、非水電解液電池の内部短絡を防止する機能も発揮する。尚、前記アスペクト比とは、シリカ系鱗片状無機物の厚さに対する最長長さの比である。 As described above, the binder used for the inorganic fiber paper has a hydroxyl group amount of 20 μmol / m 2 or more per specific surface area according to the BET method and a large number of hydroxyl groups on the surface, and an average particle size by the laser scattering method is 2 μm or less. It is an inorganic binder mainly composed of silica-based scaly inorganic material having an aspect ratio of 10 or more and excellent in self-adhesiveness. Due to such characteristics, dehydration by a hydroxyl group between inorganic binders in a drying process after wet papermaking. Many condensation and dehydration condensation by the hydroxyl group of the inorganic binder and the hydroxyl group on the surface of the inorganic fiber occur, and a stronger chemical bond strength can be obtained. By using an inorganic binder mainly composed of silica-based scaly inorganic substances with such characteristics, the content of impurities during wet papermaking is low, water resistance and flexibility are good, sufficient strength and high porosity. An inorganic fiber paper having the same can be obtained. In addition, the inorganic binder mainly composed of silica-based scaly inorganic materials having such characteristics has a natural function of imparting an effective binder effect to the inorganic fiber paper, and also complicates the pore structure of the inorganic fiber paper, thereby making it non-aqueous. It also demonstrates the function of preventing internal short circuit of the electrolyte battery. In addition, the said aspect ratio is ratio of the longest length with respect to the thickness of a silica type scale-like inorganic substance.

前記特徴を有するシリカ系鱗片状無機物としては、鱗片状シリカ、鱗片状シリカ−チタニア等が使用できるが、不純物が少なく表面に多数の水酸基を有し平均粒径が2μm以下のものが工業的に合成され入手し易い点で、鱗片状シリカの使用が好ましい。   As the silica-based scaly inorganic substance having the above-mentioned characteristics, scaly silica, scaly silica-titania and the like can be used, but those having few impurities and having a large number of hydroxyl groups on the surface and having an average particle diameter of 2 μm or less are industrially used. The use of scaly silica is preferred because it is easily synthesized and available.

また、前記無機バインダーとして、前記シリカ系鱗片状無機物と共に、セピオライト、アタパルジャイト等の固結性のある鉱物微細繊維、カオリン、クレー等の固結性のある粘土鉱物、シリカゾル、アルミナゾル、チタニアゾル、ジルコニアゾル等から形成されるゲル状物等の無機バインダーを使用できる。ただし、前記鉱物微細繊維や前記粘土鉱物を使用する場合は、天然物であり少なからず不純物を含むので、補助材として5質量%程度以下(無機繊維紙の全配合量中)のごく少量の使用に留めるのが好ましい。また、前記ゲル状物を使用する場合も、多量に使用すると無機繊維紙の柔軟性が低下してロール状に巻き取ることができなくなる等の不都合が生じるため、補助材として5質量%程度以下(無機繊維紙の全配合量中)のごく少量の使用に留めるのが好ましい。   Further, as the inorganic binder, together with the silica-based scaly inorganic substance, solidified mineral fine fibers such as sepiolite and attapulgite, clay minerals having a caking property such as kaolin and clay, silica sol, alumina sol, titania sol, zirconia sol An inorganic binder such as a gel-like material formed from the like can be used. However, when the mineral fine fiber or the clay mineral is used, since it is a natural product and contains impurities, a small amount of about 5% by mass or less (in the total amount of inorganic fiber paper) is used as an auxiliary material. It is preferable that In addition, when using the gel-like material, if it is used in a large amount, the flexibility of the inorganic fiber paper is lowered and it becomes impossible to wind it into a roll. It is preferable to use only a very small amount (in the total amount of inorganic fiber paper).

前記無機繊維紙は、前述の通り、前記無機繊維60〜97質量%と、前記シリカ系鱗片状無機物を主体とする無機バインダー3〜40質量%との材料より製造されるものである。前記鱗片状無機物を主体とする無機バインダーの添加量が40質量%を超えると、湿式抄造時に水抜けが悪く(濾水性が高く)なり抄紙が困難となるため好ましくない。このため、前記無機バインダーの添加量は25質量%以下であればより好ましい。また、無機バインダーの添加量を多くし過ぎると、無機繊維紙の骨格を形成するための無機繊維の添加量が少なくなり過ぎ、無機繊維紙の強度が得られにくくなるため好ましくない。このため、前記無機繊維の添加量は75質量%以上であればより好ましい。また、前記無機バインダーの添加量が3質量%未満であると、無機バインダーによるバインダー効果が発揮されにくく無機繊維紙の強度が十分に得られないため好ましくない。実際の無機バインダーの添加量は、使用する無機繊維の平均繊維径や、使用する無機バインダー材料種等の条件により、3〜40質量%の範囲で適宜設定される。また、前述の通り、前記無機繊維紙の強度は、無機繊維の絡み合いの効果と無機バインダーのバインダー効果との複合効果によって得られているため、無機繊維の平均繊維径が小さい程、無機バインダーの添加量は少なくて済む。   As described above, the inorganic fiber paper is manufactured from a material composed of 60 to 97% by mass of the inorganic fiber and 3 to 40% by mass of an inorganic binder mainly composed of the silica-based scaly inorganic material. When the amount of the inorganic binder mainly composed of the scaly inorganic substance exceeds 40% by mass, water drainage is poor during wet papermaking (high drainage) and papermaking becomes difficult. For this reason, if the addition amount of the said inorganic binder is 25 mass% or less, it is more preferable. Moreover, when the amount of the inorganic binder added is excessively large, the amount of the inorganic fiber added to form the skeleton of the inorganic fiber paper is excessively decreased, and it is difficult to obtain the strength of the inorganic fiber paper. For this reason, the addition amount of the inorganic fiber is more preferably 75% by mass or more. Moreover, when the addition amount of the inorganic binder is less than 3% by mass, the binder effect due to the inorganic binder is hardly exhibited, and the strength of the inorganic fiber paper cannot be obtained sufficiently. The actual addition amount of the inorganic binder is appropriately set in the range of 3 to 40% by mass depending on conditions such as the average fiber diameter of the inorganic fiber to be used and the kind of the inorganic binder material to be used. In addition, as described above, the strength of the inorganic fiber paper is obtained by the combined effect of the entanglement effect of the inorganic fibers and the binder effect of the inorganic binder. Therefore, the smaller the average fiber diameter of the inorganic fibers, Addition amount is small.

尚、前記シリカ系鱗片状無機物は、前述の通り、本来無機繊維の交絡構造体である無機繊維紙に機械的強度を与えるために添加されるバインダー材であるが、その鱗片状(フレーク状)構造により、無機繊維紙の孔構造を複雑化して、非水電解液電池用セパレータに求められる内部短絡を防ぐ効果も与える。   As described above, the silica-based scale-like inorganic substance is a binder material added to give mechanical strength to the inorganic fiber paper which is originally an entangled structure of inorganic fibers. The structure complicates the pore structure of the inorganic fiber paper and also provides an effect of preventing internal short circuit required for the separator for nonaqueous electrolyte batteries.

次に、本発明の実施例について比較例と共に詳細に説明する。
(実施例1)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)70質量%と、無機バインダーとして平均粒径0.5μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−050,BET法による比表面積当たりの水酸基の量が20〜70μmol/m2,アスペクト比10〜200)30質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量11.9g/m2、厚さ50μmの無機繊維紙を得た。これを実施例1の非水電解液電池用セパレータとした。
Next, examples of the present invention will be described in detail together with comparative examples.
Example 1
70% by mass of C-glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and scaly silica (manufactured by Asahi Glass S-Tech Co., Ltd.) having an average particle size of 0.5 μm (laser scattering method) as inorganic binders Sun Lovely LFS HN-050, the amount of hydroxyl group per specific surface area by BET method is 20-70 μmol / m 2 , aspect ratio 10-200) 30% by mass is dispersed and mixed in water, and polymer flocculant is added. Then, wet paper making is performed with a square sheet machine for hand making, a pressure of 0.2 MPa is applied with a press machine, and then dried at 150 ° C. to obtain a basis weight of 11.9 g / m 2 , thickness A 50 μm inorganic fiber paper was obtained. This was used as the separator for the nonaqueous electrolyte battery of Example 1.

(実施例2)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)75質量%及び繊維径6.5μmで繊維長6mmのEガラスチョップ繊維(ユニチカ社製UPDE)5質量%と、無機バインダーとして平均粒径0.2μm(レーザー散乱法)の鱗片状シリカ(旭硝子エスアイテック社製サンラブリーLFS HN−020,BET法による比表面積当たりの水酸基の量が20〜70μmol/m2,アスペクト比10〜200)20質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.1MPaの圧力を掛けた後、150℃にて乾燥して、坪量12.7g/m2、厚さ50μmの無機繊維紙を得た。これを実施例2の非水電解液電池用セパレータとした。
(Example 2)
75% by mass of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers, and 5% by mass of E glass chopped fibers (UPDE manufactured by Unitika Ltd.) having a fiber diameter of 6.5 μm and a fiber length of 6 mm; As an inorganic binder, scaly silica having an average particle diameter of 0.2 μm (laser scattering method) (Sun Lovely LFS HN-020, manufactured by Asahi Glass Stech Co., Ltd.), the amount of hydroxyl groups per specific surface area by BET method is 20 to 70 μmol / m 2 , aspect ratio 20 to 20% by weight in a ratio of 10 to 200) is dispersed and mixed in water, a polymer flocculant is further added, wet papermaking is performed with a square sheet machine for handmaking, and the pressure is 0.1 MPa with a press And dried at 150 ° C. to obtain an inorganic fiber paper having a basis weight of 12.7 g / m 2 and a thickness of 50 μm. This was used as the separator for the nonaqueous electrolyte battery of Example 2.

(実施例3)
無機繊維として平均繊維径0.4μmのCガラス短繊維(ジョーンズマンビル社製#102)50質量%及び平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)20質量%及び平均繊維径4.0μmのCガラス短繊維(日本板硝子社製CMLF114)10質量%と、無機バインダーとして実施例1で使用した平均粒径0.5μmの鱗片状シリカ20質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量12.2g/m2、厚さ50μmの無機繊維紙を得た。これを実施例3の非水電解液電池用セパレータとした。
(Example 3)
As inorganic fibers, 50% by mass of C glass short fibers (# 102, manufactured by Jones Manville) having an average fiber diameter of 0.4 μm and 20% by mass of C glass short fibers (CMLF 306, manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm are used. Disperse in water 10% by mass of C glass short fiber (CMLF114 manufactured by Nippon Sheet Glass Co., Ltd.) having a fiber diameter of 4.0 μm and 20% by mass of scaly silica having an average particle diameter of 0.5 μm used in Example 1 as an inorganic binder. Mix, further add a polymer flocculant, wet papermaking with a square sheet machine for handmaking, apply a pressure of 0.2 MPa with a press machine, and then dry at 150 ° C. An inorganic fiber paper having an amount of 12.2 g / m 2 and a thickness of 50 μm was obtained. This was used as the separator for the nonaqueous electrolyte battery of Example 3.

(実施例4)
無機繊維として平均繊維径0.4μmのCガラス短繊維(ジョーンズマンビル社製#102)20質量%及び平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)40質量%及び平均繊維径4.0μmのCガラス短繊維(日本板硝子社製CMLF114)10質量%及び繊維径6.5μmで繊維長6mmのEガラスチョップ繊維(ユニチカ社製UPDE)5質量%と、無機バインダーとして実施例1で使用した平均粒径0.5μmの鱗片状シリカ25質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量13.3g/m2、厚さ50μmの無機繊維紙を得た。これを実施例4の非水電解液電池用セパレータとした。
Example 4
As inorganic fibers, 20% by mass of C glass short fibers (# 102 manufactured by Jones Manville) having an average fiber diameter of 0.4 μm and 40% by mass of C glass short fibers (CMLF 306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm and an average 10% by mass of C glass short fiber (CMLF114 manufactured by Nippon Sheet Glass Co., Ltd.) having a fiber diameter of 4.0 μm and 5% by mass of E glass chopped fiber (UPDE manufactured by Unitika Ltd.) having a fiber diameter of 6.5 μm and a fiber length of 6 μm are used as an inorganic binder. Disperse and mix 25% by mass of scaly silica having an average particle size of 0.5 μm used in Example 1 in water, add a polymer flocculant, and wet form with a square sheet machine for hand-making. After applying a pressure of 0.2 MPa with a press machine, the film was dried at 150 ° C. to obtain an inorganic fiber paper having a basis weight of 13.3 g / m 2 and a thickness of 50 μm. This was used as the separator for the nonaqueous electrolyte battery of Example 4.

(比較例1)
無機繊維として平均繊維径4.0μmのCガラス短繊維(日本板硝子社製CMLF114)65質量%及び繊維径6.5μmで繊維長6mmのEガラスチョップ繊維(ユニチカ社製UPDE)5質量%と、無機バインダーとして実施例2で使用した平均粒径0.2μmの鱗片状シリカ30質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量12.9g/m2、厚さ50μmの無機繊維紙を得た。これを比較例1の非水電解液電池用セパレータとした。
(Comparative Example 1)
65% by mass of C glass short fibers (CMLF114 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 4.0 μm as inorganic fibers, and 5% by mass of E glass chopped fibers (UPDE manufactured by Unitika Ltd.) having a fiber diameter of 6.5 μm and a fiber length of 6 mm; 30% by mass of scaly silica having an average particle diameter of 0.2 μm used in Example 2 as an inorganic binder was dispersed and mixed in water, and a polymer flocculant was added to the square sheet machine for handmaking. Wet paper making, applying a pressure of 0.2 MPa with a press machine, and then drying at 150 ° C. to obtain an inorganic fiber paper having a basis weight of 12.9 g / m 2 and a thickness of 50 μm. This was used as the non-aqueous electrolyte battery separator of Comparative Example 1.

(比較例2)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)98質量%と、無機バインダーとして実施例2で使用した平均粒径0.2μmの鱗片状シリカ2質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量9.2g/m2、厚さ50μmの無機繊維紙を得た。これを比較例2の非水電解液電池用セパレータとした。
(Comparative Example 2)
98% by mass of C-glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers and 2% by mass of scaly silica having an average particle size of 0.2 μm used in Example 2 as inorganic binders Disperse and mix in water, add polymer flocculant, wet form with square sheet machine for hand making, apply 0.2MPa with press and dry at 150 ° C Thus, an inorganic fiber paper having a basis weight of 9.2 g / m 2 and a thickness of 50 μm was obtained. This was used as the non-aqueous electrolyte battery separator of Comparative Example 2.

(比較例3)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)55質量%と、無機バインダーとして実施例1で使用した平均粒径0.5μmの鱗片状シリカ45質量%とを水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量14.2g/m2、厚さ50μmの無機繊維紙を得た。これを比較例3の非水電解液電池用セパレータとした。
(Comparative Example 3)
55% by mass of C glass short fibers (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fibers and 45% by mass of scaly silica having an average particle size of 0.5 μm used in Example 1 as an inorganic binder Disperse and mix in water, add polymer flocculant, wet form with square sheet machine for hand making, apply 0.2MPa with press and dry at 150 ° C Thus, an inorganic fiber paper having a basis weight of 14.2 g / m 2 and a thickness of 50 μm was obtained. This was used as the non-aqueous electrolyte battery separator of Comparative Example 3.

(比較例4)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)95質量%と、固形分で5質量%付着するように水系アクリル樹脂エマルジョン(大日本インキ化学工業社製ボンコート)を添加して、水中で分散・混合し、更に高分子凝集剤を添加して、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量9.3g/m2、厚さ50μmの無機繊維紙を得た。これを比較例4の非水電解液電池用セパレータとした。
(Comparative Example 4)
95% by mass of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an inorganic fiber, and a water-based acrylic resin emulsion (Boncoat manufactured by Dainippon Ink & Chemicals, Inc.) so as to adhere 5% by mass. , Dispersed and mixed in water, further added a polymer flocculant, wet papermaking with a hand-made square sheet machine, after applying a pressure of 0.2 MPa with a press machine, By drying at 150 ° C., an inorganic fiber paper having a basis weight of 9.3 g / m 2 and a thickness of 50 μm was obtained. This was used as the separator for the nonaqueous electrolyte battery of Comparative Example 4.

(比較例5)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)80質量%と、繊度1.1dtex、繊維長5mmの130℃熱融着性ポリエステル繊維(ユニチカ社製メルティ)20質量%とを水中で分散・混合し、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.5MPaの圧力を掛けた後、110℃にて乾燥してから、160℃にて3分間加熱処理して、坪量9.8g/m2、厚さ50μmの不織布を得た。これを比較例5の非水電解液電池用セパレータとした。
(Comparative Example 5)
80% by mass of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) having an average fiber diameter of 0.6 μm as inorganic fiber, 130 ° C. heat-fusible polyester fiber (Melty manufactured by Unitika Co., Ltd.) having a fineness of 1.1 dtex and a fiber length of 5 mm 20 % By weight is dispersed and mixed in water, wet-made with a square sheet machine for hand-making, subjected to a pressure of 0.5 MPa with a press machine, dried at 110 ° C., and then 160 ° C. For 3 minutes to obtain a nonwoven fabric having a basis weight of 9.8 g / m 2 and a thickness of 50 μm. This was used as the non-aqueous electrolyte battery separator of Comparative Example 5.

(比較例6)
無機繊維として平均繊維径0.6μmのCガラス短繊維(日本板硝子社製CMLF306)100質量%を水中で分散・混合し、手抄き用角型シートマシンにて湿式抄造し、プレス機にて0.2MPaの圧力を掛けた後、150℃にて乾燥して、坪量9.0g/m2、厚さ50μmの無機繊維紙を得た。これを比較例6の非水電解液電池用セパレータとした。
(Comparative Example 6)
Disperse and mix 100% by mass of C glass short fiber (CMLF306 manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber diameter of 0.6 μm as an inorganic fiber in water, wet form it with a square sheet machine for hand making, and press After applying a pressure of 0.2 MPa, it was dried at 150 ° C. to obtain an inorganic fiber paper having a basis weight of 9.0 g / m 2 and a thickness of 50 μm. This was used as the separator for non-aqueous electrolyte batteries of Comparative Example 6.

次に、上記にて得られた実施例1〜4及び比較例1〜6の各セパレータについて、以下の方法によりセパレータの諸特性を評価した。また、前記各セパレータを使用して以下の方法により非水電解液電池の試験用セルを作製し、以下の方法により非水電解液電池の諸特性を評価した。その結果を表1に示す。
<セパレータ諸特性の評価方法>
[厚さ]
ダイヤルシックネスゲージを用いて、加重19.6kPaにて測定した。
[坪量]
0.1m2の重量(g)を測定し、これを10倍して坪量(g/m2)とした。
[密度]
坪量(g/m2)÷厚さ(μm)の計算値。
[常温引張伸度]
後述する常温引張強度試験において、引張り破断時のチャック間距離T(mm)を測定した。測定始めのチャック間距離が100mmであるので、次式により常温引張伸度を算出した。
常温引張伸度(%)=T−100
[常温引張強度]
等速度引張試験機により常温での引張強度(N/25mm幅)を測定した。測定条件は、引張速度25mm/分、チャック間距離100mmとした。
[300℃加熱後の引張強度]
空気中300℃にて3時間加熱後、常温にて等速度引張試験機により引張強度(N/25mm幅)を測定し、加熱後の引張強度とした。引張強度の測定条件は、引張速度25mm/分、チャック間距離100mmとした。
[300℃加熱後の加熱線収縮率]
幅25mm、長さ200mmの長方形状の試験片を空気中300℃にて3時間加熱後、常温にて長さM(mm)を測定し、次式により加熱線収縮率を算出した。
加熱線収縮率(%)=(200−M)/200×100
[電解液保持率]
セパレータを100mm×100mmの正方形状に切り取って試料とし、重量(W0)を測定後、下記非水電解液電池の作製方法で述べる電解液面に浮かべて全体に電解液を浸透させた後、取り出して、試料の一角を持って垂直状態に保ち、2分経過後の重量(W1)を測定し、次式により電解液保持率を算出した。
電解液保持率=(W1−W0)/W0×100
Next, about each separator of Examples 1-4 obtained by the above and Comparative Examples 1-6, the various characteristics of the separator were evaluated with the following method. Moreover, the test cell of a nonaqueous electrolyte battery was produced with the following method using each said separator, and the various characteristics of the nonaqueous electrolyte battery were evaluated with the following method. The results are shown in Table 1.
<Evaluation method of separator characteristics>
[thickness]
Measurement was performed using a dial thickness gauge at a load of 19.6 kPa.
[Basis weight]
A weight (g) of 0.1 m 2 was measured, and this was multiplied by 10 to obtain a basis weight (g / m 2 ).
[density]
Calculated value of basis weight (g / m 2 ) ÷ thickness (μm).
[Normal temperature tensile elongation]
In the normal temperature tensile strength test described later, the chuck distance T (mm) at the time of tensile fracture was measured. Since the distance between chucks at the start of measurement was 100 mm, the normal temperature tensile elongation was calculated by the following formula.
Normal temperature tensile elongation (%) = T-100
[Normal temperature tensile strength]
Tensile strength at normal temperature (N / 25 mm width) was measured with a constant velocity tensile tester. The measurement conditions were a tensile speed of 25 mm / min and a distance between chucks of 100 mm.
[Tensile strength after heating at 300 ° C]
After heating in air at 300 ° C. for 3 hours, the tensile strength (N / 25 mm width) was measured with a constant-speed tensile tester at room temperature to obtain the tensile strength after heating. The tensile strength was measured under the conditions of a tensile speed of 25 mm / min and a chuck distance of 100 mm.
[Heat shrinkage after heating at 300 ° C]
A rectangular test piece having a width of 25 mm and a length of 200 mm was heated in air at 300 ° C. for 3 hours, and then the length M (mm) was measured at room temperature.
Heating linear shrinkage (%) = (200−M) / 200 × 100
[Electrolytic solution retention]
After the separator was cut into a 100 mm × 100 mm square and used as a sample, and the weight (W 0 ) was measured, the separator was floated on the electrolyte surface described in the method for producing a nonaqueous electrolyte battery below, and the electrolyte was infiltrated throughout. The sample was taken out and held in a vertical state with one corner of the sample, the weight (W 1 ) after 2 minutes was measured, and the electrolyte retention rate was calculated by the following formula.
Electrolyte retention rate = (W 1 −W 0 ) / W 0 × 100

<非水電解液電池の作製方法>
[正極の作製]
マンガン酸リチウムと粉末状カーボンブラックと、粉末フッ素樹脂とを、質量比で85:10:5で混合し、円盤状に鋳型成形し、真空中にて250℃で2時間乾燥して、正極を作製した。
[負極の作製]
アルミニウム−マンガン合金中のマンガンの割合が1質量%のアルミニウム−マンガン合金にリチウムを電気化学的に挿入することにより作製したリチウム−アルミニウム−マンガン合金を円盤状に打ち抜き負極を作製した。
[非水電解液の作製]
ジエチレングリコールジメチルエーテルを溶媒とし、溶質リチウムビス(トリフルオロメチルスルホニル)イミドを1mol/リットルを溶解させて、非水電解液を作製した。
[電池の組み立て]
上記の正極、負極及び非水電解液を用いて、コイン形の電池(電池寸法:外径4mm、厚さ1.5mm)を組み立てた。
<Method for producing non-aqueous electrolyte battery>
[Production of positive electrode]
Lithium manganate, powdered carbon black, and powdered fluororesin are mixed at a mass ratio of 85: 10: 5, molded into a disk shape, dried in vacuum at 250 ° C. for 2 hours, Produced.
[Production of negative electrode]
A lithium-aluminum-manganese alloy produced by electrochemically inserting lithium into an aluminum-manganese alloy having a manganese content of 1% by mass in the aluminum-manganese alloy was punched into a disk shape to produce a negative electrode.
[Preparation of non-aqueous electrolyte]
Diethylene glycol dimethyl ether was used as a solvent, and 1 mol / liter of solute lithium bis (trifluoromethylsulfonyl) imide was dissolved to prepare a nonaqueous electrolytic solution.
[Battery assembly]
A coin-shaped battery (battery dimensions: outer diameter 4 mm, thickness 1.5 mm) was assembled using the above positive electrode, negative electrode, and non-aqueous electrolyte.

<非水電解液電池の諸特性の評価方法>
[リフロー後の内部抵抗上昇率]
電池作製直後の各電池の内部抵抗(R0)を25℃で測定し、200℃で1分間余熱させた後、最高温度が300℃、出入り口付近の最低温度が200℃になったリフロー炉内を1分間かけて通過させた後、再度25℃において、リフロー後の電池の内部抵抗(R1)を測定した。次式によりリフロー後の内部抵抗上昇率を算出した。
リフロー後の内部抵抗上昇率(%)=(R1−R0)/R0×100
[リフロー後の電池短絡率]
また、短絡していない作製直後の電池10個に対して、リフロー後短絡した電池の数を、次式によりリフロー後の電池短絡率(%)とした。
リフロー後の電池短絡率(%)=リフロー後の短絡電池数/10×100
<Methods for evaluating various characteristics of nonaqueous electrolyte battery>
[Internal resistance increase after reflow]
The internal resistance (R 0 ) of each battery immediately after battery preparation was measured at 25 ° C. and after preheating at 200 ° C. for 1 minute, the maximum temperature was 300 ° C. and the minimum temperature near the entrance / exit was 200 ° C. Was passed over 1 minute, and then the internal resistance (R 1 ) of the battery after reflowing was measured again at 25 ° C. The rate of increase in internal resistance after reflow was calculated by the following formula.
Internal resistance increase rate after reflow (%) = (R 1 −R 0 ) / R 0 × 100
[Battery short-circuit rate after reflow]
In addition, the number of short-circuited batteries after reflowing was determined as the battery short-circuiting rate (%) after reflowing according to the following equation for 10 batteries immediately after fabrication that were not short-circuited.
Battery short-circuit rate after reflow (%) = number of short-circuited batteries after reflow / 10 × 100

Figure 0004922664
Figure 0004922664

表1の結果から以下のことが分かった。
(1)本発明の実施例1〜4のセパレータは、無機繊維と無機バインダーよりなる実質的に無機材料のみからなる低坪量のセパレータでありながら、前記無機繊維として微細径繊維を使用するとともに、前記無機バインダーとして粒径が小さく自己接着性に優れたシリカ系鱗片状無機物を使用したことから、常温及び300℃加熱後の引張強度が4.0N/25mm幅以上を有し、十分な機械的強度を有したセパレータとなり、バインダーを使用せず無機繊維のみで構成した比較例6のセパレータ、有機バインダーを使用した比較例4,5のセパレータに比較して、引張強度の向上が図れた。しかも、常温から300℃加熱後での引張強度の強度低下が殆どなく、また、300℃加熱後の加熱線収縮率も0%であり、耐熱性が高い。また、実質的に無機物100%で構成したため、従来の有機樹脂のバインダー液を含浸または塗布したり有機樹脂の繊維状物を加熱溶融して無機繊維同士を結着させたセパレータのように、有機樹脂の皮膜が無機繊維の良好な濡れ性を奪うようなことがなく、良好な電解液濡れ性を確保し、550%以上の高い電解液保持率を確保できた。
(2)比較例1のセパレータは、無機繊維の平均繊維径が4.2μmと太いため、無機繊維同士の絡み合いが極端に少なくなり、自己接着性に優れる無機バインダーを30質量%添加しても十分な引張強度を得ることができなかった。また、比較例2のセパレータは、無機繊維の平均繊維径を0.6μmとし、自己接着性に優れる無機バインダーを使用したものの、無機バインダーの添加量が2質量%と少なかったため、十分な引張強度を得ることができなかった。また、比較例3のセパレータは、無機繊維の平均繊維径を0.6μmとし、自己接着性に優れる無機バインダーを使用したものの、無機バインダーの添加量が45質量%と多かったため、引張強度はある程度確保できたが、引張伸度が低くなり無機繊維紙としてのしなやかさが失われて脆い紙となるとともに、湿式抄造時の水抜け性が悪くなり生産性が低下した。このような脆い無機繊維紙では、わずかなせん断応力がかかっただけで紙が突然に破断するので、セパレータを電池に組み込む際の作業性が極端に悪化する。
(3)実施例1〜4のセパレータは、耐熱性が高く、引張強度も有機バインダーを使用した無機繊維紙と比べても高いため、内部抵抗の上昇も少なく、リフロー後の内部短絡もないことから高温リフローにも対応できる。なお、比較例2及び比較例6は、リフロー後の電池短絡はないが、機械的な強度が低いため電池作製直後(リフロー前)、既に少なからず短絡していたので、それらを除外してリフロー試験を行っている。
(4)尚、本実施例は、種々の条件が設定できる中で、工業的な実状に照らして、セパレータの厚さが約50μmで坪量が約15g/m2以下(電池の特性上)、無機繊維の平均繊維径が0.4μm以上(材料のコスト上)、シリカ系鱗片状無機物の粒径が0.2μm以上(材料のコスト上)といった条件下で得られるセパレータについて一例を取り上げたにすぎないものであるため、無機繊維と無機バインダーが70:30〜80:20の組成比となるセパレータしか示すことができなかったが、例えば、セパレータの坪量が約50g/m2、無機繊維の平均繊維径が約0.1μm以下、シリカ系鱗片状無機物の粒径が約0.1μm以下といった条件に設定すれば、上記セパレータ諸特性と電池諸特性を満足し無機繊維と無機バインダーが80:20〜97:3の組成比となるセパレータを得ることができる。
From the results in Table 1, the following was found.
(1) While the separator of Examples 1-4 of this invention is a low basic weight separator which consists only of an inorganic material which consists of an inorganic fiber and an inorganic binder, while using a fine diameter fiber as said inorganic fiber, Since the silica-based scaly inorganic material having a small particle size and excellent self-adhesiveness is used as the inorganic binder, the tensile strength after heating at room temperature and 300 ° C. is 4.0 N / 25 mm width or more, and a sufficient machine As a result, the tensile strength was improved as compared with the separator of Comparative Example 6 using only inorganic fibers without using a binder and the separators of Comparative Examples 4 and 5 using an organic binder. Moreover, there is almost no drop in tensile strength after heating at room temperature to 300 ° C., and the heat shrinkage after heating at 300 ° C. is also 0%, which is high in heat resistance. In addition, since it is substantially composed of 100% inorganic material, it is organic like a separator that impregnates or coats a conventional organic resin binder solution or heats and melts the organic resin fibrous material to bind inorganic fibers together. The resin film did not detract from the good wettability of the inorganic fibers, ensuring good electrolyte wettability and ensuring a high electrolyte solution retention of 550% or more.
(2) Since the separator of Comparative Example 1 has an inorganic fiber having a large average fiber diameter of 4.2 μm, the entanglement between the inorganic fibers is extremely reduced, and even if 30% by mass of an inorganic binder having excellent self-adhesiveness is added. A sufficient tensile strength could not be obtained. Moreover, although the separator of the comparative example 2 used the inorganic fiber which made the average fiber diameter of inorganic fiber 0.6 micrometer and was excellent in self-adhesiveness, since the addition amount of the inorganic binder was as few as 2 mass%, sufficient tensile strength Could not get. Moreover, although the separator of Comparative Example 3 uses an inorganic binder having an average fiber diameter of 0.6 μm and excellent self-adhesiveness, the amount of the inorganic binder added is as large as 45% by mass, so that the tensile strength is somewhat Although it could be secured, the tensile elongation was lowered and the flexibility as an inorganic fiber paper was lost, resulting in a brittle paper, and the water drainability during wet papermaking deteriorated and the productivity decreased. In such a brittle inorganic fiber paper, the paper breaks suddenly only by applying a slight shear stress, so that the workability when the separator is incorporated into the battery is extremely deteriorated.
(3) Since the separators of Examples 1 to 4 have high heat resistance and high tensile strength compared to inorganic fiber paper using an organic binder, there is little increase in internal resistance and there is no internal short circuit after reflow. To high temperature reflow. In Comparative Example 2 and Comparative Example 6, there is no battery short circuit after reflow. However, since the mechanical strength is low, the short circuit is already short circuited immediately after the battery production (before reflow). I am testing.
(4) In the present example, while various conditions can be set, the separator thickness is about 50 μm and the basis weight is about 15 g / m 2 or less (in terms of battery characteristics) in light of the industrial situation. An example of a separator obtained under such conditions that the average fiber diameter of inorganic fibers is 0.4 μm or more (in terms of material cost) and the particle size of silica-based scale-like inorganic substances is 0.2 μm or more (in terms of cost of materials). However, only the separator in which the inorganic fiber and the inorganic binder have a composition ratio of 70:30 to 80:20 can be shown. For example, the basis weight of the separator is about 50 g / m 2 and inorganic. If the conditions are such that the average fiber diameter of the fibers is about 0.1 μm or less and the particle size of the silica-based scale-like inorganic substance is about 0.1 μm or less, the above-mentioned separator characteristics and battery characteristics are satisfied, and the inorganic fibers and the inorganic binder 80 20 to 97: it is possible to obtain a separator which is a 3 composition ratio.

Claims (8)

平均繊維径4μm以下の無機繊維60〜97質量%と、BET法による比表面積当たりの水酸基の量が20μmol/m2以上、レーザー散乱法による平均粒径が2μm以下、アスペクト比が10以上のシリカ系鱗片状無機物を主体とする無機バインダー3〜40質量%との材料より製造され、前記無機繊維が前記無機バインダーによって結着され、実質的に無機材料のみで構成され、坪量50g/m2以下である無機繊維紙からなることを特徴とする非水電解液電池用セパレータ。 Silica having an inorganic fiber having an average fiber diameter of 4 μm or less, 60 to 97% by mass, silica having an amount of hydroxyl group per specific surface area of 20 μmol / m 2 or more by the BET method, an average particle diameter of 2 μm or less by the laser scattering method, and an aspect ratio of 10 or more It is manufactured from a material of 3 to 40% by mass of an inorganic binder mainly composed of a scale-like inorganic substance, the inorganic fiber is bound by the inorganic binder, and is substantially composed only of an inorganic material, and has a basis weight of 50 g / m 2. A separator for a non-aqueous electrolyte battery, comprising the following inorganic fiber paper. 前記無機繊維紙が、前記無機繊維75〜97質量%と、前記シリカ系鱗片状無機物を主体とする無機バインダー3〜25質量%との材料より製造されることを特徴とする請求項1記載の非水電解液電池用セパレータ。   The said inorganic fiber paper is manufactured from the material of the said inorganic fiber 75-97 mass% and the inorganic binder 3-25 mass% which has the said silica-type scale-like inorganic substance as a main, The feature of Claim 1 characterized by the above-mentioned. Nonaqueous electrolyte battery separator. 前記無機繊維が、平均繊維径1.5μm以下の無機繊維であることを特徴とする請求項1または2記載の非水電解液電池用セパレータ。   The non-aqueous electrolyte battery separator according to claim 1, wherein the inorganic fiber is an inorganic fiber having an average fiber diameter of 1.5 μm or less. 前記シリカ系鱗片状無機物が、鱗片状シリカであることを特徴とする請求項1乃至3の何れかに記載の非水電解液電池用セパレータ。   The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the silica-based scale-like inorganic substance is scale-like silica. 前記無機繊維紙が、坪量30g/m2以下であることを特徴とする請求項1乃至4の何れかに記載の非水電解液電池用セパレータ。 The non-aqueous electrolyte battery separator according to any one of claims 1 to 4, wherein the inorganic fiber paper has a basis weight of 30 g / m 2 or less. 前記無機繊維が、ガラス繊維であることを特徴とする請求項1乃至5の何れか記載の非水電解液電池用セパレータ。   The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 5, wherein the inorganic fiber is a glass fiber. 300℃、3時間後の加熱線収縮率が0.3%未満であることを特徴とする請求項1乃至6の何れかに記載の非水電解液電池用セパレータ。   The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 6, wherein the heat shrinkage after 3 hours at 300 ° C is less than 0.3%. 請求項1乃至7の何れかに記載の非水電解液電池用セパレータを用いたことを特徴とする非水電解液電池。   A non-aqueous electrolyte battery using the non-aqueous electrolyte battery separator according to claim 1.
JP2006143273A 2006-05-23 2006-05-23 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery Active JP4922664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143273A JP4922664B2 (en) 2006-05-23 2006-05-23 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143273A JP4922664B2 (en) 2006-05-23 2006-05-23 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2007317405A JP2007317405A (en) 2007-12-06
JP4922664B2 true JP4922664B2 (en) 2012-04-25

Family

ID=38851094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143273A Active JP4922664B2 (en) 2006-05-23 2006-05-23 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4922664B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180073A1 (en) 2012-05-28 2013-12-05 株式会社クラレ Separator for nonaqueous cell and nonaqueous cell
US10020124B2 (en) 2012-12-26 2018-07-10 Kuraray Co., Ltd. Separator for electric double layer capacitors, and electric double layer capacitor
US11757155B2 (en) 2018-09-03 2023-09-12 Lg Energy Solution, Ltd. Separator for secondary batteries having no separator substrate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376622B2 (en) * 2008-04-18 2013-12-25 日立マクセル株式会社 Electrochemical element separator and electrochemical element
JP2012190729A (en) * 2011-03-13 2012-10-04 Seiko Instruments Inc Coin-type nonaqueous electrolyte secondary battery
JP5752584B2 (en) * 2011-12-16 2015-07-22 日本板硝子株式会社 Separator
US20150111085A1 (en) * 2012-05-09 2015-04-23 Kyushu University, National University Corporation Separator for Electrochemical Element and Fabrication Method for Same
CN102856522B (en) * 2012-10-09 2015-04-29 中国海诚工程科技股份有限公司 High temperature-resistant cellulose fiber base material-containing lithium ion battery diaphragm and preparation method of the same
JP6337777B2 (en) * 2012-12-12 2018-06-06 日本電気株式会社 Separator, electrode element, power storage device, and method for manufacturing the separator
WO2014208596A1 (en) * 2013-06-25 2014-12-31 日立化成株式会社 Separator for electrochemical elements and lithium ion secondary battery
JP6135399B2 (en) * 2013-08-23 2017-05-31 日本ゼオン株式会社 Porous film composition for lithium ion secondary battery, separator with protective layer for lithium ion secondary battery, electrode with protective layer for lithium ion secondary battery, and lithium ion secondary battery
WO2016152876A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Lithium-ion secondary cell and method for manufacturing same
JP6186548B1 (en) * 2016-03-01 2017-08-23 日本板硝子株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
KR101918448B1 (en) 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery insulating porous layer
WO2022244681A1 (en) * 2021-05-19 2022-11-24 エンテックアジア株式会社 Nonwoven fabric for lead acid storage batteries, said nonwoven fabric using glass fibers and thermally adhesive binder fibers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262067A (en) * 2000-03-23 2001-09-26 Dokai Chemical Industries Co Ltd Curable composition for heat insulating coating material containing scaly silica particle and heat insulating cured product
CN101098998B (en) * 2004-11-24 2010-05-12 日本板硝子株式会社 Inorganic fiber paper
JP4616132B2 (en) * 2005-09-13 2011-01-19 日本板硝子株式会社 Electric double layer capacitor separator and electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180073A1 (en) 2012-05-28 2013-12-05 株式会社クラレ Separator for nonaqueous cell and nonaqueous cell
US9748543B2 (en) 2012-05-28 2017-08-29 Kuraray Co., Ltd. Separator for nonaqueous cell and nonaqueous cell
US10020124B2 (en) 2012-12-26 2018-07-10 Kuraray Co., Ltd. Separator for electric double layer capacitors, and electric double layer capacitor
US11757155B2 (en) 2018-09-03 2023-09-12 Lg Energy Solution, Ltd. Separator for secondary batteries having no separator substrate

Also Published As

Publication number Publication date
JP2007317405A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4922664B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
EP1816258B1 (en) Inorganic fiber paper
JP4364940B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP6449888B2 (en) Separator paper for chemical batteries
JP6100250B2 (en) Nonaqueous battery separator and nonaqueous battery
JP5265636B2 (en) Lithium ion secondary battery separator base material and lithium ion secondary battery separator
JP6292625B2 (en) Lithium ion battery separator
JP4577819B2 (en) Wet nonwoven fabric, method for producing wet nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor, lithium ion secondary battery
RU2686305C2 (en) Reduced water loss bonded board for lead-acid accumulators
JP2006310274A (en) Separator for liquid type lead acid battery and liquid type lead acid battery
JP5128988B2 (en) Separator base material for lithium ion secondary battery
JP2015060686A (en) Separator for molten salt battery
JP2008227296A (en) Separator for electric double layer capacitor and electric double layer capacitor
JP2004017041A (en) Filter medium for high performance air filter and high performance air filter using filter medium
JP2008269795A (en) Separator for battery, its manufacturing method, and battery comprising it
JP4616132B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP2006188770A (en) Nonwoven fabric, method for producing nonwoven fabric, separator for electric double layer capacitor by using nonwoven fabric, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery
JP2019212479A (en) Lithium ion secondary battery separator
WO2019017354A1 (en) Separator for electrochemical element
JP4490732B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP4468790B2 (en) Nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor and lithium ion secondary battery
JP2005100808A (en) Separator for lead storage battery
JP4919585B2 (en) Nonwoven fabric for separator, method for producing nonwoven fabric for separator, and separator for electric double layer capacitor comprising the same
JP4965327B2 (en) Fiber sheet and method for producing fiber sheet
JP2006089872A (en) Method for producing nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250