JP2004015759A - Atmセル送受信制御回路及びその方法 - Google Patents

Atmセル送受信制御回路及びその方法 Download PDF

Info

Publication number
JP2004015759A
JP2004015759A JP2002170605A JP2002170605A JP2004015759A JP 2004015759 A JP2004015759 A JP 2004015759A JP 2002170605 A JP2002170605 A JP 2002170605A JP 2002170605 A JP2002170605 A JP 2002170605A JP 2004015759 A JP2004015759 A JP 2004015759A
Authority
JP
Japan
Prior art keywords
layer device
physical layer
atm
response signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002170605A
Other languages
English (en)
Inventor
Hiroyuki Saito
齋藤 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Saitama Ltd
Original Assignee
NEC Saitama Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Saitama Ltd filed Critical NEC Saitama Ltd
Priority to JP2002170605A priority Critical patent/JP2004015759A/ja
Publication of JP2004015759A publication Critical patent/JP2004015759A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する応答信号を受信してATMレイヤデバイスと物理レイヤデバイスとの間でセルを送受信する際に、セル抜けを生じさせず、かつ、セル送信レートの低下を引き起こさないバスを構成することを可能とする、ATMセル送受信制御回路及びその方法を提供する。
【解決手段】複数の論理アドレスを有する物理レイヤデバイスからの第1の応答信号(TxCLAV)を、一定期間の間マスクする制御を行う第1のマスク回路と、複数の論理アドレスを有する物理レイヤデバイスからの第2の応答信号(RxCLAV)を、マスクする制御を行う第2のマスク回路と、を備える。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明はATM(Asynchronous Transfer Mode:非同期転送モード)セル送受信制御回路及びその方法に関し、特にATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する応答信号を受信してATMレイヤデバイスと物理レイヤデバイスとの間でセルを送受信する際に、セル抜けを生じさせず、かつ、セル送信レートの低下を引き起こさないバスを構成することを可能とする、ATMセル送受信制御回路及びその方法に関する。
【0002】
【従来の技術】
ATMセルの多重・分離などを行うATM装置において、ATMレイヤデバイスと物理レイヤデバイスとの間の標準化されたインタフェースとして、UTOPIA(Universal Test and Operation PHY(Physical Layer Protocol) Interface for ATM )と名づけられたインタフェースがATMフォーラムによって提唱されている。UTOPIAのインタフェースにはいくつかのレベルがあり、そのうちのUTOPIAレベル2と称されるインタフェースは、主に、1つのATMレイヤデバイスと複数の物理レイヤデバイスとの間のインタフェースについて定義している。
【0003】
ATMレイヤデバイスと複数の物理レイヤデバイスとの間でセルを送受信する際には、UTOPIAレベル2インタフェースのハンドシェーク制御を利用して、ATMレイヤデバイスから物理レイヤデバイスに対するポーリングを行い、このポーリングに対する応答信号を受信してからセルの送受信を行うようになっている。
【0004】
このようなUTOPIAレベル2インタフェースのハンドシェーク制御を利用したセル送受信方式の一例として、特開2001−156781号公報記載の「ATMトラヒックシェーピング装置」が知られている。この公報では、ATMセルのトラヒックシェーピング制御を行うシェーピング装置に関する技術が記載されている。
【0005】
上記公報には、UTOPIAレベル2インタフェースのハンドシェーク制御に関する記載が成されているため、先ず以下において、上記公報を参照しつつ、図9、図10、図11を参照して、UTOPIAレベル2インタフェースのハンドシェーク制御についての説明を行っておくものとする。
【0006】
図9は、UTOPIAレベル2インタフェースを説明するためのATMスイッチと複数のPHYとの構成図である。なお、図9において、ATMスイッチ11はATMレイヤデバイスの一例であり、PHY12(12−1、12−2)は物理レイヤデバイスの一例である。
【0007】
先ず、UTOPIAレベル2インタフェースのTx側(ATMスイッチ11からセルを送信する方向)について説明する。
【0008】
図9において、TxADDR信号は各PHY12を表すアドレス(以下UTOPIAアドレスという)で、5ビット(TxADDR[0〜4]の[0〜4]が、0ビット目から4ビット目までの5ビットであることを示している)で構成されているため、UTOPIAアドレスの「0(ゼロ)」から「30」までを表すことが可能である(「31」(16進数で記すと「1Fh」である)は予約語となっており、UTOPIAアドレスとしては使用不可である)。
【0009】
TxDATAは、8ビットパラレル([0〜7])で1セル長53バイト(1セルの送信に53クロックを要す)分のATMセルデータであり、TxSOC信号はセルの先頭を1クロック幅の「H(High)」レベルで示すセルパルス信号、TxENB信号はセルデータの有効性を「L(Low)」レベルで示すイネーブル信号である。
【0010】
TxCLAV信号は、ポーリングによりTxADDRで示されたPHY12におけるセルの受信可否を表す信号であり、「H」レベルで受信可能を示し、「L」レベルで受信不可を示すようになっている。
【0011】
次に、UTOPIAレベル2インタフェースのRx側(ATMスイッチ11がPHY12からセルを受信する方向)について説明する。
【0012】
図9において、RxADDR信号は各PHY12を表すUTOPIAアドレスで、TxADDR信号と同様に5ビットで構成されているため、UTOPIAアドレスの「0」から「30」までを表すことが可能である。
【0013】
RxDATAは、8ビットパラレルで1セル長53バイト分のATMセルデータであり、RxSOC信号はセルの先頭を1クロック幅の「H」レベルで示すセルパルス信号、RxENB信号はセルデータの有効性を「L」レベルで示すイネーブル信号である。
【0014】
RxCLAV信号は、ポーリングによりRxADDRで示されたPHY12に、送信すべきセルが存在するか否かを表す信号であり、「H」レベルでセルの存在を示し、「L」レベルでセル無しを示すようになっている。
【0015】
次に、図10、図11を参照して、UTOPIAレベル2インタフェースの動作について説明する。図10は、UTOPIAレベル2インタフェースのTx側の動作を示すタイミングチャートである。
【0016】
図10を参照すると、ATMスイッチ11は1クロックおきにTxADDR信号(例えば0、1、2、、、)を出力し、PHY12に対しポーリングを行う。ここで、TxADDR信号が「0」及び「1」(クロック42及びクロック44)の時、その次のクロックタイミング(クロック43、45)でTxCLAV信号が「H」レベルとなっており、これはPHY12−1(UTOPIAアドレスとして「0」を有するものとする)とPHY12−2(UTOPIAアドレスとして「1」を有するものとする)がセル受信可能であることを示している。
【0017】
ATMスイッチ11はポーリング区間(クロック1〜クロック53)が終わると、どのPHY12にセルを出力するかを決定する(クロック54:PHY選択)。そしてPHY12−1を選択した場合には、クロック54においてTxADDR信号を「0」とし、次のクロックタイミング(クロック1)でTxSOCに「H」を出力すると共に、クロック1以降にPHY12−1に送信するセルデータ即ちTxDATA信号を出力し、かつ、TxENBに「L」を出力する。PHY12−1では、TxADDRに「0」が出力され(クロック54)、次のクロックタイミング(クロック1)でTxSOCに「H」、及びTxENBに「L」が出力されることにより、自身に対するセル出力と認識してセルをTxDATA信号として受信する。また、ATMスイッチ11は、PHY12−1に対するセル送信を開始した後、クロック2以降において、他のPHY12に対するポーリングを再開する(クロック2でUTOPIAアドレス6へのポーリングを行っており、クロック4でUTOPIAアドレス7へのポーリングを行っている。)。
【0018】
なお、UTOPIAレベル2インタフェースにおいては、1セルデータを送信する際にかかる時間、即ち1セル時間は、ポーリング区間とPHY選択区間を合わせて54クロック分となる(以降において、この54クロック分を1基本サイクルと称することとする)。
【0019】
図11は、UTOPIAレベル2インタフェースのRx側の動作を示すタイミングチャートである。
【0020】
図11を参照すると、ATMスイッチ11は1クロックおきにRxADDR信号(例えば0、1、2、、、)を出力し、PHY12に対しポーリングを行う。ここで、RxADDR信号が「0」及び「1」(クロック42及びクロック44)の時、その次のクロックタイミング(クロック43、45)でRxCLAV信号が「H」レベルとなっており、これはPHY12−1(UTOPIAアドレスとして「0」を有するものとする)とPHY12−2(UTOPIAアドレスとして「1」を有するものとする)に、ATMスイッチ11に対して送信すべきセルが存在することを示している。
【0021】
ATMスイッチ11はポーリング区間(クロック1〜クロック53)が終わると、どのPHY12からセルを受信するかを決定する(クロック54:PHY選択)。そしてPHY12−2を選択した場合には、クロック54においてRxADDR信号を「1」とし、次のクロックタイミング(クロック1)でRxENBに「L」を出力する。PHY12−2では、RxADDRに「1」が出力され(クロック54)、次のクロックタイミング(クロック1)でRxENBに「L」が出力されることにより、自身がセル送信を行えると認識して、次のクロックタイミング(クロック2)以降にATMスイッチ11に送信するセルデータ即ちRxDATA信号を出力してセルの送信を行うと共に、セルの先頭を送信する際(クロック2)にRxSOCに「H」を出力する。ATMスイッチ11は、クロック2以降、PHY12−2からのセルをRxDATA信号として受信する。また、ATMスイッチ11は、PHY12−2からのセル受信を開始した後、クロック2以降において、他のPHY12に対するポーリングを再開する(クロック2でUTOPIAアドレス6へのポーリングを行っており、クロック4でUTOPIAアドレス7へのポーリングを行っている。)。
【0022】
【発明が解決しようとする課題】
図9に示した構成図について再度説明を行う。
【0023】
図9において、ATMレイヤデバイスであるところのATMスイッチ11と、物理レイヤデバイスであるところの複数のPHY12(12−1、12−2)との間は、UTOPIAレベル2に準拠したインタフェースバス(UTOPIAレベル2バスと称することとする)にて接続されている。
【0024】
ATMスイッチ11は、その内部で論理アドレスとUTOPIAアドレスとを管理するようになっている。論理アドレスは、ATMスイッチ11の内部で管理されるPHY12ごとに割り当てられた論理的なアドレスを示し、論理アドレス単位で、セルの送出間隔を制御するピークレートシェーピングを行うことが可能となっている。UTOPIAアドレスは、UTOPIAレベル2インタフェース上のアドレスを示し、PHY12のポーリングを行う際のアドレスであり、ポーリングするUTOPIAアドレスは、ATMスイッチ11の設定により「0」から「30」までを選択することが可能となっている。そして、論理アドレスとUTOPIAアドレスとは、1対1に対応するようになっている。
【0025】
PHY12は、UTOPIAレベル2インタフェースと高速シリアルインタフェース(例えば、PECL(Positive ECL(emitter−coupled logic) )などの高速ロジック)との変換を担うデバイスであり、内部レジスタに物理アドレスを設定可能となっている。そして、PHY12−1の物理アドレスは「0」と設定され、PHY12−2の物理アドレスは「1」と設定されているものとする。
【0026】
UTOPIAレベル2バスの通常の接続形態では、ATMスイッチ11の論理アドレス毎に1つのPHY12を接続するようにしているため、論理アドレスとPHY12に設定された物理アドレスとは1対1に対応するようになっているが、UTOPIAレベル2バスの接続形態を変更することにより、1つの物理アドレスに複数の論理アドレスを対応させることが可能である。一例として、図12を参照して説明する。
【0027】
図12は、UTOPIAレベル2バスの接続形態の一例を示す図である。なお、図12においては、UTOPIAレベル2バスのうちのTxADDR[0〜4]及びRxADDR[0〜4]の信号線の接続形態のみを示しており、図9に示した他の信号線(TxDATA[0〜7]、TxSOC、など)については図示を省略している。
【0028】
図12において、PHY12−2については、TxADDR[0〜4]信号線の5本の信号線(TxADDR0(TxADDR[0〜4]の内の「0」ビット目を示す。以下同様)、TxADDR1、、、TxADDR4)が全てATMスイッチ11に接続されており、RxADDR[0〜4]信号線についても同様に、5本の信号線(RxADDR0〜RxADDR4)が全てATMスイッチ11に接続されている。
【0029】
しかし、PHY12−1については、TxADDR[0〜4]信号線のうちのTxADDR0だけがATMスイッチ11に接続されており、他のTxADDR1〜TxADDR4の4本の信号線はアースされている。RxADDR[0〜4]も同様に、RxADDR0だけがATMスイッチ11に接続されており、他のRxADDR1〜RxADDR4の4本の信号線はアースされている。
【0030】
このような接続形態をとると、PHY12−1においては、その内部レジスタに物理アドレス「0」が設定されているため、TxADDR0信号線に「0」が出力された場合に(TxADDR1〜TxADDR4が「0」又は「1」の何れであっても)、自PHY12−1のアドレスが出力されたものと認識するようになり、結果として、図12のPHY12−1のアドレス表に示すように、TxADDR[0〜4]に偶数アドレスが出力された時に、自PHY12−1のアドレスが出力されたものと認識するようになる。RxADDR[0〜4]についても同様であり、RxADDR[0〜4]に偶数アドレスが出力された時に、自PHY12−1のアドレスが出力されたものと認識する。
【0031】
以上、図12を参照して説明したように、PHY12−1については、1つの物理アドレス「0」を有する1つのデバイスに、ATMスイッチ11内での複数の論理アドレス(すなわち偶数アドレス)を対応させることが可能となる。そしてこの場合、ATMスイッチ11からPHY12のポーリングが行われると、PHY12−1は、ポーリングされた偶数アドレスの全てに対して、TxCLAV信号或いはRxCLAV信号を応答として返すこととなる。
【0032】
次に、図9に示した構成において、ATMスイッチ11とPHY12との間でセル送受信を行う場合の課題について説明する。ここで、ATMスイッチ11とPHY12−1、12−2とは、図12に示した接続形態のバスで接続されているものとし、かつ、PHY12−1、12−2はそれぞれ、セル送受信のためのFIFO(First In First Out)バッファメモリを有しており、Tx側(ATMスイッチ11から送信しPHY12にて受信する場合)、Rx側(PHY12から送信しATMスイッチ11にて受信する場合)共に、3セル分のFIFOを有しているものとする。
【0033】
このとき、第1の課題は、PHY12−1に割り当てられた複数の論理アドレスに対し、ATMスイッチ11から複数のセルを送信した場合、セル抜けが生じてしまう場合がある、という点である。その理由は、ATMスイッチ11からTx側のポーリングを行ったとき、PHY12−1からはPHY12−1に割り当てられた論理アドレスの数と同数のTxCLAV信号が応答として返されるが、このTxCLAV信号の数とPHY12−1の空きFIFO数との間で、状態不一致が生じてしまうからである。
【0034】
第2の課題は、PHY12−2からATMスイッチ11に対して送信するセルの送信レートを低下させてしまう、という点である。その理由は、ATMスイッチ11からRx側のポーリングを行ったとき、PHY12−1がセルを1つでも有していると、PHY12−1に割り当てられた論理アドレス数と同数のRxCLAV信号が応答として返され、その結果、ATMスイッチ11は1つのセルをPHY12−1から受信した後にも、残りのセルを受信するものと認識して、空の受信サイクルを行ってしまうことになるからである。
【0035】
以下、上述の2つの課題について詳述する。なお、説明の容易化のため、ATMスイッチ11がポーリングを行う際のUTOPIAアドレスは「0」から「7」迄であるものとする。
【0036】
先ず、第1の課題について、図13、図14を参照して説明する。
【0037】
図13は、ATMスイッチ11からPHY12−1へのセル送信動作を模式的に示す図である。
【0038】
ATMスイッチ11は、高速にセルの送信を行うために送信予約の機能を有している。ATMスイッチ11からUTOPIAアドレスへのポーリングを行った際、TxCLAV信号を「H」レベルで応答したUTOPIAアドレスへのセル送信を予約できる機能である。そして、送信予約が行われたUTOPIAアドレスに対して、その後連続的に順次、セルを送信していくようになっている。
【0039】
図13の基本サイクル[1]において、ATMスイッチ11からUTOPIAアドレス「0」へのポーリングを行うと、PHY12−1には空きFIFO数が「3」あるため、セル受信可能としてTxCLAV信号を「H」として応答する。そこで、ATMスイッチ11は、UTOPIAアドレス「0」への送信予約を行い、次の基本サイクル[2]において、UTOPIAアドレス「0」へのセル送信を開始する。ATMスイッチ11はセル送信を開始した後、他のUTOPIAアドレス「2」「4」「6」へのポーリングを平行して行う。このとき、PHY12−1の空きFIFO数は「2」となっているが、セルの受信は未だ可能であるため、UTOPIAアドレス「2」「4」「6」それぞれに対し、TxCLAV信号を「H」として応答し、ATMスイッチ11はUTOPIAアドレス「2」「4」「6」への送信予約を完了してしまう。図13の基本サイクル[1][2]の詳細について、図14を参照して説明する。
【0040】
図14は、図13の詳細動作を示す図である。
【0041】
図14の基本サイクル[1]のクロック52において、ATMスイッチ11が、UTOPIAアドレス「0」へのポーリングを行うと、PHY12−1は自アドレスへのポーリングであるため、クロック53においてTxCLAV信号を「H」として応答する。そこでATMスイッチ11は、UTOPIAアドレス「0」への送信予約を行う。そして、ATMスイッチ11は、UTOPIAアドレス「0」へのセル送信を決定し、PHY選択を行うクロック54においてTxADDR信号を「0」とし、次の基本サイクル[2]のクロック1から順次、セルデータをTxDATA信号として送信している。
【0042】
ATMスイッチ11は、基本サイクル[2]においてUTOPIAアドレス「0」に対するセル送信を行うと同時に、他のUTOPIAアドレス「2」へのポーリングを行い(クロック4)、PHY12−1は自アドレスへのポーリングであるため、次のクロックタイミング(クロック5)でTxCLAV信号を「H」として応答する。その結果、ATMスイッチ11は、UTOPIAアドレス「2」への送信予約を行う。同様にクロック8、9でUTOPIAアドレス「4」への送信予約を行い、クロック12、13でUTOPIAアドレス「6」への送信予約を行っている。なお、ATMスイッチ11は、基本サイクル[2]のクロック2、3にて、UTOPIAアドレス「1」(すなわちPHY12−2)への送信予約を行っているが、第1の課題には関係しないので、詳細説明は省略するものとする。
【0043】
図13に戻り、図13の基本サイクル[2]におけるUTOPIAアドレス「0」に対するセル送信が終了すると、ATMスイッチ11は、基本サイクル[2]にて送信予約を行ったUTOPIAアドレス「2」に対するセル送信を、基本サイクル[3]で行う。基本サイクル[3]では、同時にUTOPIAアドレス「4」「6」(場合によっては「0」も含め)へのポーリングを行う。基本サイクル[3]では、PHY12−1の空きFIFO数は「1」に減少しているが、未だセルの受信は可能であるため、UTOPIAアドレス「4」「6」それぞれに対し、TxCLAV信号を「H」として応答する。
【0044】
基本サイクル[3]におけるUTOPIAアドレス「2」に対するセル送信が終了すると、ATMスイッチ11は同様に、基本サイクル[2]にて送信予約を行ったUTOPIAアドレス「4」へのセル送信を基本サイクル[4]で行うと同時に、UTOPIAアドレス「6」(場合によっては「0」「2」も含め)へのポーリングを行う。この時、PHY12−1は、既に3セル目の受信中であるため、PHY12−1の有する3セル分のFIFOは全て使用中のフル状態になっており、PHY12−1の空きFIFO数は「0」となっている。そのため、PHY12−1は、セルの受信不可能を示すために、TxCLAV信号を「L」レベルとして応答を返す。
【0045】
基本サイクル[4]で、TxCLAV信号を「L」として応答し、セルの受信不可能を通知しても、ATMスイッチ11では、既に基本サイクル[2]においてUTOPIAアドレス「6」への送信予約を完了しているために、基本サイクル[5]において、UTOPIAアドレス「6」へのセル送信を行う。しかし、PHY12−1の空きFIFO数は既に「0」となっており、従って、基本サイクル[5]で送信されたセルを受信することは出来ず、該セルを廃棄してしまう結果となる。
【0046】
以上説明したように、第1の課題が生ずる原因は、PHY12−1が応答として返すTxCLAV信号の数と、PHY12−1の空きFIFO数との間で、状態不一致が生じてしまう点にある。
【0047】
次に、第2の課題について、図15を参照して説明する。
【0048】
図15は、ATMスイッチ11のPHY12−1からのセル受信動作を模式的に示す図である。
【0049】
ATMスイッチ11は、図13で述べたと同様に、高速にセルの受信を行うために受信予約の機能を有している。ATMスイッチ11からUTOPIAアドレスへのポーリングを行った際、RxCLAV信号を「H」レベルで応答したUTOPIAアドレスからのセル受信を予約できる機能である。そして、受信予約が行われたUTOPIAアドレスから、その後連続的に順次、セルを受信するようになっている。
【0050】
図15の基本サイクル[1]において、ATMスイッチ11からUTOPIAアドレス「0」〜「7」へのポーリングを行うと、PHY12−1が送信したいセルを1つでも有していると、PHY12−1はUTOPIAアドレス「0」「2」「4」「6」の全てに対し、送信すべきセルが存在するとして、RxCLAV信号を「H」として応答する。そこで、ATMスイッチ11は、UTOPIAアドレス「0」「2」「4」「6」からの受信予約を行い、次の基本サイクル[2]において、UTOPIAアドレス「0」からのセル受信を開始する。
【0051】
ATMスイッチ11はセル受信を開始した後、他のUTOPIAアドレス「2」「4」「6」へのポーリングを平行して行う。このとき、PHY12−1は送信すべきセルを送信中で他のセルは有していないため、UTOPIAアドレス「2」「4」「6」それぞれに対し、RxCLAV信号を「L」として応答する。しかし、ATMスイッチ11は、基本サイクル[1]において、UTOPIAアドレス「2」「4」「6」からの受信予約を完了している。従って、PHY12−1が基本サイクル[2]においてRxCLAV信号を「L」として応答しても、ATMスイッチ11は、基本サイクル[3]においてもUTOPIAアドレス「2」に対するセル受信の受信サイクルを実行する。しかし、この時、PHY12−1は送信すべきセルを有していないので、基本サイクル[3]では空の受信サイクルを行ってしまうこととなる。基本サイクル[4][5]においても同様に、UTOPIAアドレス「4」「6」に対する空の受信サイクルを行うこととなる。
【0052】
従って、基本サイクル[3]〜[5]の間に、もう一方のPHY12−2がセルを送信したい状況となったとしても、ATMスイッチ11はPHY12−2からのセル受信を待ち合わせねばならない状況となり、結果として、PHY12−2からのセル送信レートを低下させてしまうものとなる。
【0053】
以上説明したように、第2の課題が生ずる原因は、PHY12−1が応答として返すRxCLAV信号の数と、PHY12−1の有するセルの数との間で、不一致が生じてしまう点にある。
【0054】
本発明は、上述した事情を改善するために成されたものであり、本発明の目的は、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する応答信号を受信してATMレイヤデバイスと物理レイヤデバイスとの間でセルを送受信する際に、セル抜けを生じさせず、かつ、セル送信レートの低下を引き起こさないバスを構成することを可能とする、ATMセル送受信制御回路及びその方法を提供することにある。
【0055】
【課題を解決するための手段】
本発明のATMセル送受信制御回路は、ATM(Asynchronous Transfer Mode:非同期転送モード)レイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号を受信して、前記ATMレイヤデバイスから前記物理レイヤデバイスへセルを送信するようにしたATM装置におけるATMセル送受信制御回路であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1のマスク回路を備える、ことを特徴とする。
【0056】
また、前記第1のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの全ての論理アドレスを設定する第1のアドレス設定部と、マスク期間を設定するマスク期間設定部と、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、前記マスク期間設定部に設定されている一定期間の間マスクする制御を行う第1のマスク部と、を備えることを特徴とする。
【0057】
さらに、前記バスはUTOPIA(Universal Test and Operation PHY(Physical Layer Protocol) Interface for ATM )レベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号である、ことを特徴とする。
【0058】
また、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第2の応答信号を受信して、前記ATMレイヤデバイスが前記物理レイヤデバイスからセルを受信するようにしたATM装置におけるATMセル送受信制御回路であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2のマスク回路を備える、ことを特徴とする。
【0059】
さらに、前記第2のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの一部の論理アドレスを設定する第2のアドレス設定部と、前記第2のアドレス設定部に設定されているアドレスからの前記第2の応答信号をマスクする制御を行う第2のマスク部と、を備えることを特徴とする。
【0060】
また、前記バスはUTOPIAレベル2バスであり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする。
【0061】
さらに、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号あるいは第2の応答信号を受信して、前記ATMレイヤデバイスと前記物理レイヤデバイスとの間でセルを送受信するようにしたATM装置におけるATMセル送受信制御回路であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1のマスク回路と、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2のマスク回路と、を備えることを特徴とする。
【0062】
また、前記第1のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの全ての論理アドレスを設定する第1のアドレス設定部と、マスク期間を設定するマスク期間設定部と、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、前記マスク期間設定部に設定されている一定期間の間マスクする制御を行う第1のマスク部と、を備え、
前記第2のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの一部の論理アドレスを設定する第2のアドレス設定部と、前記第2のアドレス設定部に設定されているアドレスからの前記第2の応答信号をマスクする制御を行う第2のマスク部と、を備えることを特徴とする。
【0063】
さらに、前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号であり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする。
【0064】
本発明のATMセル送受信制御方法は、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号を受信して、前記ATMレイヤデバイスから前記物理レイヤデバイスへセルを送信するようにしたATM装置におけるATMセル送受信制御方法であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1の制御ステップを有する、ことを特徴とする。
【0065】
また、前記第1の制御ステップは、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されることを検出するステップと、前記セルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行うステップと、を有することを特徴とする。
【0066】
さらに、前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号である、ことを特徴とする。
【0067】
また、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第2の応答信号を受信して、前記ATMレイヤデバイスが前記物理レイヤデバイスからセルを受信するようにしたATM装置におけるATMセル送受信制御方法であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2の制御ステップを有する、ことを特徴とする。
【0068】
さらに、前記バスはUTOPIAレベル2バスであり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする。
【0069】
また、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号あるいは第2の応答信号を受信して、前記ATMレイヤデバイスと前記物理レイヤデバイスとの間でセルを送受信するようにしたATM装置におけるATMセル送受信制御方法であって、
複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1の制御ステップと、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2の制御ステップと、を有することを特徴とする。
【0070】
さらに、前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号であり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする。
【0071】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して説明する。
【0072】
図1は、本発明のATMセル送受信制御回路の一実施形態を示すブロック図である。
【0073】
図1に示す本実施の形態は、ATM(Asynchronous Transfer Mode:非同期転送モード)フォーラムで規定されているATM標準インタフェースであるUTOPIA(Universal Test and Operation PHY(Physical Layer Protocol) Interface for ATM )レベル2インタフェースを有するATMスイッチ1と、同じくUTOPIAレベル2インタフェースを有するPHY2(PHY2−1、PHY2−2)と、から構成されており、ATMスイッチ1とPHY2とは、UTOPIAレベル2に準拠したインタフェースバスであるところのUTOPIAレベル2バス3で接続されている。そして、本実施形態は更に、UTOPIAレベル2バス3の内のTxADDR信号とTxENB信号をモニターして、PHY2−1から出力されるTxCLAV信号をマスクし、ATMスイッチ1へMTxCLAV信号を出力する第1のマスク回路4と、UTOPIAレベル2バス3の内のRxADDR信号をモニターして、PHY2−1から出力されるRxCLAV信号をマスクし、ATMスイッチ1へMRxCLAV信号を出力する第2のマスク回路5と、を備えて構成されている。
【0074】
ATMスイッチ1は、ATMセルのスイッチングを行うATMレイヤデバイスであり、UTOPIAレベル2インタフェースのハンドシェーク制御を介して、PHY2との間でセルの送受信を行う。
【0075】
ATMスイッチ1は、その内部で論理アドレスとUTOPIAアドレスとを管理するようになっている。論理アドレスは、ATMスイッチ1の内部で管理されるPHY2ごとに割り当てられた論理的なアドレスを示し、論理アドレス単位で、セルの送出間隔を制御するピークレートシェーピングを行うことが可能となっている。UTOPIAアドレスは、UTOPIAレベル2インタフェース上のアドレスを示し、PHY2のポーリングを行う際のアドレスである。そして、論理アドレスとUTOPIAアドレスとは、1対1に対応するようになっている。なお、本実施形態においては、ポーリングするUTOPIAアドレスは「0」から「7」迄であるものとする。
【0076】
PHY2は、UTOPIAレベル2インタフェースと、例えばPECL(Positive ECL(emitter−coupled logic) )などの高速シリアルインタフェースとの変換を担う物理レイヤデバイスであり、内部レジスタに物理アドレスを設定可能となっている。そして、PHY2−1の物理アドレスは「0」と設定され、PHY2−2の物理アドレスは「1」と設定されているものとする。
【0077】
また、PHY2−1、PHY2−2はそれぞれ、セル送受信のためのFIFO(First In First Out)バッファメモリを有しており、Tx側(ATMスイッチ1から送信しPHY2にて受信する場合)、Rx側(PHY2から送信しATMスイッチ1にて受信する場合)共に、3セル分のFIFOを有しているものとする。
【0078】
ここで、UTOPIAレベル2バス3の各信号線についての説明を行っておく。
【0079】
先ず、図1におけるUTOPIAレベル2バス3のTx側(ATMスイッチ1からセルを送信する方向)について説明する。
【0080】
図1において、TxADDR信号は各PHY2を表すアドレス(上述のUTOPIAアドレスである)で、5ビット(TxADDR[0〜4]の[0〜4]が、0ビット目から4ビット目までの5ビットであることを示している)で構成されているため、UTOPIAアドレスの「0(ゼロ)」から「30」までを表すことが可能である(「31」(16進数で記すと「1Fh」である)は予約語となっており、UTOPIAアドレスとしては使用不可である)。なお、本実施形態においては、上述したように、ポーリングするUTOPIAアドレスは「0」から「7」迄であるものとする。
【0081】
TxDATAは、8ビットパラレル([0〜7])で1セル長53バイト(1セルの送信に53クロックを要す)分のATMセルデータであり、TxSOC信号はセルの先頭を1クロック幅の「H(High)」レベルで示すセルパルス信号、TxENB信号はセルデータの有効性を「L(Low)」レベルで示すイネーブル信号である。
【0082】
TxCLAV信号は、ポーリングによりTxADDRで示されたPHY2におけるセルの受信可否を表す信号であり、「H」レベルで受信可能を示し、「L」レベルで受信不可を示すようになっている。
【0083】
次に、UTOPIAレベル2バス3のRx側(ATMスイッチ1がPHY2からセルを受信する方向)について説明する。
【0084】
図1において、RxADDR信号は各PHY2を表すUTOPIAアドレスで、TxADDR信号と同様に5ビットで構成されているため、UTOPIAアドレスの「0」から「30」までを表すことが可能である。なお、本実施形態においては、上述したように、ポーリングするUTOPIAアドレスは「0」から「7」迄であるものとする。
【0085】
RxDATAは、8ビットパラレルで1セル長53バイト分のATMセルデータであり、RxSOC信号はセルの先頭を1クロック幅の「H」レベルで示すセルパルス信号、RxENB信号はセルデータの有効性を「L」レベルで示すイネーブル信号である。
【0086】
RxCLAV信号は、ポーリングによりRxADDRで示されたPHY2に、送信すべきセルが存在するか否かを表す信号であり、「H」レベルでセルの存在を示し、「L」レベルでセル無しを示すようになっている。
【0087】
次に、図2を参照して、図1に示したUTOPIAレベル2バス3と各PHY2との接続形態について説明する。
【0088】
図2は、UTOPIAレベル2バスの接続形態を示す図である。なお、図2においては、UTOPIAレベル2バス3のうちのTxADDR[0〜4]及びRxADDR[0〜4]の信号線の接続形態のみを示しており、図1に示した他の信号線(TxDATA[0〜7]、TxSOC、など)については図示を省略している。
【0089】
図2において、PHY2−2については、TxADDR[0〜4]信号線の5本の信号線(TxADDR0(TxADDR[0〜4]の内の「0」ビット目を示す。以下同様)、TxADDR1、、、TxADDR4)が全てUTOPIAレベル2バス3を介してATMスイッチ1に接続されており、RxADDR[0〜4]信号線についても同様に、5本の信号線(RxADDR0〜RxADDR4)が全てATMスイッチ1に接続されている。
【0090】
一方、PHY2−1については、TxADDR[0〜4]信号線のうちのTxADDR0だけがATMスイッチ1に接続されており、他のTxADDR1〜TxADDR4の4本の信号線はアースされている。RxADDR[0〜4]も同様に、RxADDR0だけがATMスイッチ1に接続されており、他のRxADDR1〜RxADDR4の4本の信号線はアースされている。
【0091】
このような接続形態をとることにより、PHY2−1においては、その内部レジスタに物理アドレス「0」が設定されているため、TxADDR0信号線に「0」が出力された場合に(TxADDR1〜TxADDR4が「0」又は「1」の何れであっても)、自PHY2−1のアドレスが出力されたものと認識するようになり、結果として、図2のPHY2−1のアドレス表に示すように、TxADDR[0〜4]に偶数アドレスが出力された時に、自PHY2−1のアドレスが出力されたものと認識するようになる。RxADDR[0〜4]についても同様であり、RxADDR[0〜4]に偶数アドレスが出力された時に、自PHY2−1のアドレスが出力されたものと認識する。
【0092】
以上、図2を参照して説明したように、PHY2−1については、1つの物理アドレス「0」を有する1つのデバイスに、ATMスイッチ1内での複数の論理アドレス(すなわち偶数アドレスであり、本実施形態においてはアドレス「0」「2」「4」「6」である)を対応させることが可能となる。そしてこの場合、ATMスイッチ1からPHY2のポーリングが行われると、PHY2−1は、ポーリングされた偶数アドレスの全てに対して、TxCLAV信号或いはRxCLAV信号を応答として返すようになっている。
【0093】
なお、PHY2−2については、1つの物理アドレス「1」を有するデバイスに、1つの論理アドレス「1」が対応するようになっている。
【0094】
次に、図3を参照して、第1のマスク回路4の構成について説明する。
【0095】
図3は、第1のマスク回路の一例を示すブロック図である。
【0096】
図3において、第1のマスク回路4は、UTOPIAレベル2バス3の内のTxADDR信号とTxENB信号をモニターし、ATMスイッチ1からPHY2−1へのセル送信中は、PHY2−1からのTxCLAV信号を一定期間マスクし、PHY2−2からのTxCLAV信号はマスクせずに透過させる制御を行って、MTxCLAV信号を生成しこれをATMスイッチ1に出力するマスク部41と、PHY2−1の論理アドレスすなわちUTOPIAアドレスを設定しておくアドレス設定部42と、マスク部41によるマスク期間を設定しておくマスク期間設定部43と、から構成されている。
【0097】
マスク部41は、TxADDR信号とTxENB信号をモニターし、ATMスイッチ1からPHY2−1(即ちアドレス設定部42に設定されているアドレスを有するPHY)へのセル送信中は、PHY2−1(即ちアドレス設定部42に設定されているアドレスを有するPHY)からのTxCLAV信号を一定期間(即ちマスク期間設定部43に設定されている期間)マスクする。なお、本実施形態においては、アドレス設定部42には、PHY2−1の論理アドレスであるところのアドレス「0」「2」「4」「6」が設定されており、マスク期間設定部43には、1セルデータを送信する際にかかる時間(即ち1セル時間=54クロック)の2倍の時間(即ち108クロック)が設定されているものとする。なお、本実施形態においては、上述の1セル時間=54クロックを、1基本サイクルと称するものとする。
【0098】
次に、図4を参照して、第2のマスク回路5の構成について説明する。
【0099】
図4は、第2のマスク回路の一例を示すブロック図である。
【0100】
図4において、第2のマスク回路5は、PHY2−1の論理アドレスすなわちUTOPIAアドレスの内の一部のアドレスを設定しておくアドレス設定部52と、UTOPIAレベル2バス3の内のRxADDR信号をモニターし、PHY2−1からのRxCLAV信号の内、アドレス設定部52に設定されているアドレスからのRxCLAV信号をマスクし、アドレス設定部52に設定されていないアドレスからのRxCLAV信号はマスクせずに透過させる制御を行って、MRxCLAV信号を生成しこれをATMスイッチ1に出力するマスク部51と、から構成されている。
【0101】
そして、本実施形態においては、アドレス設定部52には、PHY2−1の論理アドレスすなわちUTOPIAアドレスの内の一部のアドレスであるところのアドレス「2」「4」「6」が設定されているものとし、「0」は設定されていないものとする。
【0102】
なお、上述のMTxCLAV信号及びMRxCLAV信号の名称は、マスク(Mask)されたTxCLAV信号及びRxCLAV信号という意から、TxCLAV及びRxCLAVの前に「M」を付加した名称としたものであり、従って、MTxCLAV信号或いはMRxCLAV信号が入力されるATMスイッチ1は、UTOPIAレベル2インタフェースのTxCLAV信号或いはRxCLAV信号が入力されたと同等の動作を行うものである。
【0103】
次に、図5、図6、図7、図8を参照し、本実施形態の動作について説明する。
【0104】
図5は、本実施形態のATMスイッチからPHYへのセル送信動作を模式的に示す図である。
【0105】
ATMスイッチ1は、高速にセルの送信を行うために送信予約の機能を有している。ATMスイッチ1からUTOPIAアドレスへのポーリングを行った際、MTxCLAV信号を「H」レベルで応答したUTOPIAアドレスへのセル送信を予約できる機能である。そして、送信予約が行われたUTOPIAアドレスに対して、その後連続的に順次、セルを送信していくようになっている。
【0106】
図5の基本サイクル[1]において、ATMスイッチ1からUTOPIAアドレス「0」へのポーリングを行うと、PHY2−1には空きFIFO数が「3」あるため、セル受信可能としてTxCLAV信号を「H」として応答する。
【0107】
基本サイクル[1]では、未だ何れのUTOPIAアドレスへもセル送信が行われていないため、第1のマスク回路4はマスクを行っておらず、第1のマスク回路4へ入力された前記TxCLAV信号は「H」レベルのままでMTxCLAV信号となり、ATMスイッチ1に出力される。
【0108】
そこで、ATMスイッチ1は、UTOPIAアドレス「0」への送信予約を行い、次の基本サイクル[2]において、UTOPIAアドレス「0」へのセル送信を開始する。ATMスイッチ1はセル送信を開始した後、他のUTOPIAアドレス「2」「4」「6」へのポーリングを平行して行う。このとき、PHY2−1の空きFIFO数は「2」となっているが、セルの受信は未だ可能であるため、UTOPIAアドレス「2」「4」「6」それぞれに対し、TxCLAV信号を「H」として応答する。
【0109】
しかし、第1のマスク回路4は、基本サイクル[2]ではUTOPIAアドレス「0」へのセル送信が行われていることを、TxADDR信号及びTxENB信号をモニターすることにより認識し、基本サイクル[2]及び次の基本サイクル[3]の2基本サイクルの間、マスクを行うことになるため、第1のマスク回路4に入力された前記TxCLAV信号(UTOPIAアドレス「2」「4」「6」からの)は全てマスクされ、「L」レベルのMTxCLAV信号としてATMスイッチ1に出力される。そのため、ATMスイッチ1においては、UTOPIAアドレス「2」「4」「6」へのアドレス予約は行われない。図5の基本サイクル[1][2]の詳細について、図6を参照して説明する。
【0110】
図6は、図5の詳細動作を示す図である。
【0111】
図6の基本サイクル[1]のクロック52において、ATMスイッチ1が、UTOPIAアドレス「0」へのポーリングを行うと、PHY2−1は自アドレスへのポーリングであるため、クロック53においてTxCLAV信号を「H」として応答する。基本サイクル[1]では、未だ何れのUTOPIAアドレスへもセル送信が行われていないため、第1のマスク回路4はマスクを行っておらず、第1のマスク回路4へ入力された前記TxCLAV信号は「H」レベルのままでMTxCLAV信号となり、ATMスイッチ1に出力される。そこでATMスイッチ1は、UTOPIAアドレス「0」への送信予約を行う(クロック53)。
【0112】
そして、ATMスイッチ1は、UTOPIAアドレス「0」へのセル送信を決定し、PHY選択を行うクロック54においてTxADDR信号を「0」とすることによりPHY2−1を選択し、次の基本サイクル[2]のクロック1から順次、セルデータをTxDATA信号として送信している。
【0113】
第1のマスク回路4は、TxADDR信号とTxENB信号をモニターしており、クロック54にてTxADDRに「0」が出力され、かつ、次のクロック1以降にてTxENBに「L」が出力されていることから、基本サイクル[2]においてUTOPIAアドレス「0」へのセル送信が行われていることを認識し、基本サイクル[2]のクロック2以降、2基本サイクル(108クロック)の間マスクを行うようになる。
【0114】
ATMスイッチ1は、基本サイクル[2]においてUTOPIAアドレス「0」に対するセル送信を行うと同時に、他のUTOPIAアドレス「2」へのポーリングを行い(クロック4)、PHY2−1は自アドレスへのポーリングであるため、次のクロックタイミング(クロック5)でTxCLAV信号を「H」として応答する。しかし、第1のマスク回路4はマスク中であるため、該TxCLAV信号をマスクして「L」レベルとし、これをMTxCLAV信号としてATMスイッチ1に出力する。その結果、ATMスイッチ1は、クロック4でのポーリングに対するクロック5での応答信号(MTxCLAV)が「L」レベルであるため、UTOPIAアドレス「2」への送信予約は行わない。
【0115】
同様に、クロック8にてポーリングしたUTOPIAアドレス「4」からのクロック9での応答信号(MTxCLAV)も「L」レベルとなり、UTOPIAアドレス「4」への送信予約は行われない。クロック12にてポーリングしたUTOPIAアドレス「6」についても、送信予約は行われない。
【0116】
なお、ATMスイッチ1は、基本サイクル[2]のクロック2、3にて、UTOPIAアドレス「1」(すなわちPHY2−2)への送信予約を行っているが、これは、第1のマスク回路4のアドレス設定部42には、PHY2−1の論理アドレス、すなわち、「0」「2」「4」「6」だけが設定されており、PHY2−2の論理アドレス「1」は設定されていないため、第1のマスク回路4がマスク中であっても、PHY2−2からのTxCLAV信号はマスクせず、MTxCLAV信号を「H」レベルのままATMスイッチ1に出力するようになっているためである。
【0117】
図5に戻り、図5の基本サイクル[2]におけるUTOPIAアドレス「0」に対するセル送信が終了すると、基本サイクル[3]において、ATMスイッチ1によるポーリングが行われ、PHY2−1はTxCLAV信号により、UTOPIAアドレス「0」「2」「4」「6」にてセル受信可能(「H」レベル)であると通知する。しかし、基本サイクル[3]においては、第1のマスク回路4はマスク中であるために、これらのTxCLAV信号は全てマスクされて「L」レベルのMTxCLAV信号としてATMスイッチ1に出力される。従って、基本サイクル[3]においては、PHY2−1への送信予約は行われない。
【0118】
基本サイクル[4]になると、第1のマスク回路4のマスクが解除される。従って、基本サイクル[4]でATMスイッチ1によるポーリングが行われると、PHY2−1はTxCLAV信号により、UTOPIAアドレス「0」「2」「4」「6」にてセル受信可能(「H」レベル)であると通知する。そして、これらのTxCLAV信号はマスクされずに、「H」レベルのままMTxCLAV信号としてATMスイッチ1に出力される。
【0119】
ATMスイッチ1は、UTOPIAアドレス「2」へのセルの送信予約を行い、次の基本サイクル[5]にてUTOPIAアドレス「2」へのセル送信を行う。セル送信開始後、基本サイクル[5][6]においては、基本サイクル[2][3]におけると同様に第1のマスク回路4はマスク中となり、2基本サイクルの間PHY2−1からのTxCLAV信号をマスクする。
【0120】
以下同様にして、基本サイクル[8]にてUTOPIAアドレス「4」へのセル送信が行われ、基本サイクル[11]にてUTOPIAアドレス「6」へのセル送信が行われるようになる。なお、図5において、PHY2−1の有する1つのFIFO内でのセル保有期間を3基本サイクルの間であるとしているため、基本サイクル[5]においては、それまで使用していた1つのFIFOが空くこととなり、空きFIFO数は「3」に戻るが、基本サイクル[5]で2番目のセルの送信を行うため、空きFIFO数は又「2」となる。
【0121】
以上説明したように、PHY2−1には3セル分のFIFOがあるにもかかわらず、本実施形態によれば、PHY2−1は1セル分のFIFOしか有していないと同様の動作を行うようになる。
【0122】
次に、図7、図8を参照して、本実施形態のATMスイッチ1のPHY2からのセル受信動作について説明する。
【0123】
図7は、本実施形態のATMスイッチのPHYからのセル受信動作を模式的に示す図である。
【0124】
ATMスイッチ1は、図5で述べたと同様に、高速にセルの受信を行うために受信予約の機能を有している。ATMスイッチ1からUTOPIAアドレスへのポーリングを行った際、MRxCLAV信号を「H」レベルで応答したUTOPIAアドレスからのセル受信を予約できる機能である。そして、受信予約が行われたUTOPIAアドレスから、その後連続的に順次、セルを受信するようになっている。
【0125】
図7の基本サイクル[1]において、ATMスイッチ1からUTOPIAアドレス「0」〜「7」へのポーリングを行うと、PHY2−1が送信したいセルを1つでも有していると、PHY2−1はUTOPIAアドレス「0」「2」「4」「6」の全てに対し、送信すべきセルが存在するとして、RxCLAV信号を「H」として応答する。しかし、第2のマスク回路5は、第2のマスク回路5のアドレス設定部52に、UTOPIAアドレスの「2」「4」「6」が設定されているために、UTOPIAアドレス「2」「4」「6」から応答されるRxCLAV信号はマスクして「L」レベルとし、UTOPIAアドレス「0」から応答されるRxCLAV信号はマスクせず「H」レベルのままとし、これらをMRxCLAV信号としてATMスイッチ1に出力する。
【0126】
従って、ATMスイッチ1は、UTOPIAアドレス「0」からだけの受信予約を行い、UTOPIAアドレス「2」「4」「6」に対する受信予約は行わない。ATMスイッチ1は、次の基本サイクル[2]において、UTOPIAアドレス「0」からのセル受信を開始する。
【0127】
ATMスイッチ1はセル受信を開始した後、他のUTOPIAアドレス「1」から「7」へのポーリングを平行して再開する。このとき、PHY2−1は送信すべきセルを送信中で他に送信すべきセルは有していないため、UTOPIAアドレス「2」「4」「6」それぞれに対し、RxCLAV信号を「L」として応答する。また、仮にPHY2−2が送信したいセルを有している場合には、UTOPIAアドレス「1」に対するRxCLAV信号を「H」として応答する。ここで第2のマスク回路5は、どの基本サイクルにおいてもUTOPIAアドレス「2」「4」「6」からのRxCLAV信号だけをマスクするようになっている為、UTOPIAアドレス「1」からのRxCLAV信号はマスクせず、これをMRxCLAV信号としてATMスイッチ1に出力する。従って、ATMスイッチ1は、基本サイクル[2]において、UTOPIAアドレス「1」の受信予約を行う。
【0128】
基本サイクル[3]になると、ATMスイッチ1は、UTOPIAアドレス「1」に対する受信予約が存在するだけであり、UTOPIAアドレス「2」「4」「6」の受信予約は行っていないため、基本サイクル[3]において、即座にUTOPIAアドレス「1」からのセル受信を行うことが可能となり、不必要なUTOPIAアドレス「2」「4」「6」からの空の受信サイクルを実行することは無い。図7の基本サイクル[1][2]の詳細について、図8を参照して説明する。
【0129】
図8は、図7の詳細動作を示す図である。
【0130】
図8の基本サイクル[1]において、ATMスイッチ1からUTOPIAアドレス「0」〜「7」へのポーリングを行う(クロック36、38、40、、、、、50、52)と、PHY2−1が送信したいセルを1つでも有していると、PHY2−1はUTOPIAアドレス「0」「2」「4」「6」の全てに対し、送信すべきセルが存在するとして、RxCLAV信号を「H」として応答する(クロック37、41、45、49(クロック45、49は不図示))。しかし、第2のマスク回路5は、第2のマスク回路5のアドレス設定部52に、UTOPIAアドレスの「2」「4」「6」が設定されているために、UTOPIAアドレス「2」「4」「6」から応答されるRxCLAV信号(クロック41、45、49)はマスクして「L」レベルとし、UTOPIAアドレス「0」から応答されるRxCLAV信号(クロック37)はマスクせず「H」レベルのままとし、これらをMRxCLAV信号としてATMスイッチ1に出力する。
【0131】
従って、ATMスイッチ1は、UTOPIAアドレス「0」からだけの受信予約を行い、UTOPIAアドレス「2」「4」「6」に対する受信予約は行わない。ATMスイッチ1は、UTOPIAアドレス「0」からのセル受信を決定し、PHY選択を行うクロック54においてRxADDR信号を「0」とすることによりPHY2−1を選択し、次の基本サイクル[2]のクロック1でRxENB信号を「L」とする。PHY2−1は、クロック54で自アドレスが出力され、かつ、クロック1でRxENBが「L」となったことにより、自PHY2−1がセル送信可能と判断し、クロック2以降においてセルの送信を開始し、ATMスイッチ1は、このUTOPIAアドレス「0」からのセル受信を開始する。
【0132】
ATMスイッチ1はセル受信を開始した後、他のUTOPIAアドレス「1」から「7」へのポーリングを平行して再開する(クロック2、クロック4など)。このとき、PHY2−1は送信すべきセルを送信中で他に送信すべきセルは有していないため、UTOPIAアドレス「2」「4」「6」それぞれに対し、RxCLAV信号を「L」として応答する(クロック5など)。また、仮にPHY2−2が送信したいセルを有している場合には、UTOPIAアドレス「1」に対するRxCLAV信号を「H」として応答する(クロック3)。ここで第2のマスク回路5は、どの基本サイクルにおいてもUTOPIAアドレス「2」「4」「6」からのRxCLAV信号だけをマスクするようになっている為、UTOPIAアドレス「1」からのRxCLAV信号はマスクせず、これをMRxCLAV信号としてATMスイッチ1に出力する(クロック3)。従って、ATMスイッチ1は、基本サイクル[2]のクロック3において、UTOPIAアドレス「1」の受信予約を行う。
【0133】
図7に戻り、前述したように基本サイクル[3]になると、ATMスイッチ1は、UTOPIAアドレス「1」に対する受信予約が存在するだけであり、UTOPIAアドレス「2」「4」「6」の受信予約は行っていないため、基本サイクル[3]において、即座にUTOPIAアドレス「1」からのセル受信を行うことが可能となり、不必要なUTOPIAアドレス「2」「4」「6」からの空の受信サイクルを実行することは無い。
【0134】
以上、図5〜図8を参照して詳細に説明したように、本実施形態によれば、複数の論理アドレスを割り当てられたPHY(PHY2−1)へのセル抜けを抑えることが可能となる、という効果を有している。その理由は、複数の論理アドレスからのTxCLAV信号を、割り当てられた1つの論理アドレスに対してセル送信が開始された時点から一定期間マスクし、擬似的にPHYの有するFIFO数を1セル分であるとATMスイッチに認識させることが出来、従って、PHYの空きFIFO数とPHYが応答として返すTxCLAV信号の数との状態不一致を無くした為である。
【0135】
また、他のPHY(PHY2−2)からのセル送信レートの低下を発生させずに、上述のセル抜けを抑えることが可能となる、という効果を有している。その理由は、複数の論理アドレスからのRxCLAV信号を、1つの論理アドレスからのRxCLAV信号に変更しているため、送信したいセル数とRxCLAV信号数との状態不一致を無くすことが出来、従ってATMスイッチに必要以上の受信サイクルを発生させない為である。
【0136】
次に、本発明の第2の実施形態について説明する。
【0137】
第2の実施形態の構成は、図1、図2、図3、図4に示した構成と全く同一である。
【0138】
そして、第2の実施形態においては、ATMスイッチ1のポーリングするUTOPIAアドレスを「0」から「30」までに拡張している。この場合、PHY2−1の論理アドレスは、「0」、「2」、「4」、、、「28」、「30」までの16個を割り当てたものとなる。また、ATMスイッチ1が全てのUTOPIAアドレスをポーリングする時に要する時間は、アドレス数(31個)×2クロック=64クロックとなり、2基本サイクルが必要となるため、第1のマスク回路4のマスク期間を4基本サイクルに延長している。すなわち、第1のマスク回路4のマスク期間設定部43に4基本サイクル(216クロック)を設定する。
【0139】
従って、第2の実施形態によれば、PHY2−1に割り当てる論理アドレス数を増大させることが可能となる、という効果を有している。
【0140】
また、PHY2−1の高速シリアルインタフェース側のレートが、UTOPIAレベル2バス3側のレートよりかなり遅い場合に、上述した第1のマスク回路4のマスク期間を4基本サイクルに延長することにより、PHY2−1は1セル分のFIFOしか有していないと同様の動作を行うようになる。従って、PHY2−1の高速シリアルインタフェース側のレートと、UTOPIAレベル2バス3側とのレートの違いによるセル抜けを防止可能となる、という効果を有するものとなる。
【0141】
【発明の効果】
以上説明したように、本発明のATMセル送受信制御回路及びその方法は、ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する応答信号を受信してATMレイヤデバイスと物理レイヤデバイスとの間でセルを送受信する際に、複数の論理アドレスを有する物理レイヤデバイスからの応答信号を一定期間の間マスクすることが出来るので、セル抜けを生じさせず、かつ、セル送信レートの低下を引き起こさないバスを構成することが可能となる、という効果を有している。
【図面の簡単な説明】
【図1】本発明のATMセル送受信制御回路の一実施形態を示すブロック図である。
【図2】UTOPIAレベル2バスの接続形態を示す図である。
【図3】第1のマスク回路の一例を示すブロック図である。
【図4】第2のマスク回路の一例を示すブロック図である。
【図5】本実施形態のATMスイッチからPHYへのセル送信動作を模式的に示す図である。
【図6】図5の詳細動作を示す図である。
【図7】本実施形態のATMスイッチのPHYからのセル受信動作を模式的に示す図である。
【図8】図7の詳細動作を示す図である。
【図9】UTOPIAレベル2インタフェースを説明するためのATMスイッチと複数のPHYとの構成図である。
【図10】UTOPIAレベル2インタフェースのTx側の動作を示すタイミングチャートである。
【図11】UTOPIAレベル2インタフェースのRx側の動作を示すタイミングチャートである。
【図12】UTOPIAレベル2バスの接続形態の一例を示す図である。
【図13】従来のATMスイッチからPHYへのセル送信動作を模式的に示す図である。
【図14】図13の詳細動作を示す図である。
【図15】従来のATMスイッチのPHYからのセル受信動作を模式的に示す図である。
【符号の説明】
1  ATMスイッチ
2  PHY
3  UTOPIAレベル2バス
4  第1のマスク回路
41  マスク部
42  アドレス設定部
43  マスク期間設定部
5  第2のマスク回路
51  マスク部
52  アドレス設定部
11  ATMスイッチ
12  PHY

Claims (16)

  1. ATM(Asynchronous Transfer Mode:非同期転送モード)レイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号を受信して、前記ATMレイヤデバイスから前記物理レイヤデバイスへセルを送信するようにしたATM装置におけるATMセル送受信制御回路であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1のマスク回路を備える、ことを特徴とするATMセル送受信制御回路。
  2. 前記第1のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの全ての論理アドレスを設定する第1のアドレス設定部と、マスク期間を設定するマスク期間設定部と、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、前記マスク期間設定部に設定されている一定期間の間マスクする制御を行う第1のマスク部と、を備えることを特徴とする請求項1に記載のATMセル送受信制御回路。
  3. 前記バスはUTOPIA(Universal Test and Operation PHY(Physical Layer Protocol) Interface for ATM )レベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号である、ことを特徴とする請求項1或いは請求項2に記載のATMセル送受信制御回路。
  4. ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第2の応答信号を受信して、前記ATMレイヤデバイスが前記物理レイヤデバイスからセルを受信するようにしたATM装置におけるATMセル送受信制御回路であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2のマスク回路を備える、ことを特徴とするATMセル送受信制御回路。
  5. 前記第2のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの一部の論理アドレスを設定する第2のアドレス設定部と、前記第2のアドレス設定部に設定されているアドレスからの前記第2の応答信号をマスクする制御を行う第2のマスク部と、を備えることを特徴とする請求項4に記載のATMセル送受信制御回路。
  6. 前記バスはUTOPIAレベル2バスであり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする請求項4或いは請求項5に記載のATMセル送受信制御回路。
  7. ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号あるいは第2の応答信号を受信して、前記ATMレイヤデバイスと前記物理レイヤデバイスとの間でセルを送受信するようにしたATM装置におけるATMセル送受信制御回路であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1のマスク回路と、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2のマスク回路と、を備えることを特徴とするATMセル送受信制御回路。
  8. 前記第1のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの全ての論理アドレスを設定する第1のアドレス設定部と、マスク期間を設定するマスク期間設定部と、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、前記マスク期間設定部に設定されている一定期間の間マスクする制御を行う第1のマスク部と、を備え、
    前記第2のマスク回路は、複数の論理アドレスを有する前記物理レイヤデバイスの一部の論理アドレスを設定する第2のアドレス設定部と、前記第2のアドレス設定部に設定されているアドレスからの前記第2の応答信号をマスクする制御を行う第2のマスク部と、を備えることを特徴とする請求項7に記載のATMセル送受信制御回路。
  9. 前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号であり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする請求項7或いは請求項8に記載のATMセル送受信制御回路。
  10. ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号を受信して、前記ATMレイヤデバイスから前記物理レイヤデバイスへセルを送信するようにしたATM装置におけるATMセル送受信制御方法であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1の制御ステップを有する、ことを特徴とするATMセル送受信制御方法。
  11. 前記第1の制御ステップは、前記ATMレイヤデバイスから複数の論理アドレスを有する前記物理レイヤデバイスへのセルの送信が開始されることを検出するステップと、前記セルの送信が開始されると、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行うステップと、を有することを特徴とする請求項10に記載のATMセル送受信制御方法。
  12. 前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号である、ことを特徴とする請求項10或いは請求項11に記載のATMセル送受信制御方法。
  13. ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、前記ATMレイヤデバイスから前記物理レイヤデバイスへポーリングを行い、このポーリングに対する第2の応答信号を受信して、前記ATMレイヤデバイスが前記物理レイヤデバイスからセルを受信するようにしたATM装置におけるATMセル送受信制御方法であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2の制御ステップを有する、ことを特徴とするATMセル送受信制御方法。
  14. 前記バスはUTOPIAレベル2バスであり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする請求項13に記載のATMセル送受信制御方法。
  15. ATMレイヤデバイスと複数の物理レイヤデバイスとがバスを介して接続され、ATMレイヤデバイスから物理レイヤデバイスへポーリングを行い、このポーリングに対する第1の応答信号あるいは第2の応答信号を受信して、前記ATMレイヤデバイスと前記物理レイヤデバイスとの間でセルを送受信するようにしたATM装置におけるATMセル送受信制御方法であって、
    複数の論理アドレスを有する前記物理レイヤデバイスからの前記第1の応答信号を、一定期間の間マスクする制御を行う第1の制御ステップと、複数の論理アドレスを有する前記物理レイヤデバイスからの前記第2の応答信号を、マスクする制御を行う第2の制御ステップと、を有することを特徴とするATMセル送受信制御方法。
  16. 前記バスはUTOPIAレベル2バスであり、前記第1の応答信号は前記物理レイヤデバイスがセル受信可能であることを示すTxCLAV信号であり、前記第2の応答信号は前記物理レイヤデバイスがセル送信可能であることを示すRxCLAV信号である、ことを特徴とする請求項15に記載のATMセル送受信制御方法。
JP2002170605A 2002-06-11 2002-06-11 Atmセル送受信制御回路及びその方法 Pending JP2004015759A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002170605A JP2004015759A (ja) 2002-06-11 2002-06-11 Atmセル送受信制御回路及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170605A JP2004015759A (ja) 2002-06-11 2002-06-11 Atmセル送受信制御回路及びその方法

Publications (1)

Publication Number Publication Date
JP2004015759A true JP2004015759A (ja) 2004-01-15

Family

ID=30436815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170605A Pending JP2004015759A (ja) 2002-06-11 2002-06-11 Atmセル送受信制御回路及びその方法

Country Status (1)

Country Link
JP (1) JP2004015759A (ja)

Similar Documents

Publication Publication Date Title
JP3516684B2 (ja) 非同期データ伝送及びソース・トラフィック制御システム
US6049837A (en) Programmable output interface for lower level open system interconnection architecture
JPH0748739B2 (ja) 多重アクセス制御方法および該方法を実施する多重アクセス制御システム
JP2002232508A (ja) 電子装置及び電子装置で使用されるインタフェース・プロトコールを自動的に切り換える方法
JPH09128315A (ja) データのフローを制御する方法及び装置
US20090300254A1 (en) Method for Connecting a Flexray user having a Microcontroller to a Flexray Communications line Via a Flexray Communications Control Device, and Flexray Communications Control Device, Flexray User, and Flexray Communications System for Realizing this Method
JPH0612905B2 (ja) 通信インターフェイス
JP3107650B2 (ja) タイムスロット割当て装置
US20020021694A1 (en) System for transmitting local area network (LAN) data frames through an asynchronous transfer mode (ATM) crossbar switch
US4989203A (en) Apparatus for providing multiple controller interfaces to a standard digital modem and including separate contention resolution
US4993023A (en) Apparatus for providing multiple controller interfaces to a standard digital modem and including multiplexed contention resolution
RU175049U1 (ru) УСТРОЙСТВО КОММУНИКАЦИОННЫХ ИНТЕРФЕЙСОВ SpaceWire
JP2004015759A (ja) Atmセル送受信制御回路及びその方法
JPH11149444A (ja) データ転送制御装置及びデータ転送制御システム並びにデータ転送制御方法
JP3597161B2 (ja) Atmセル送信制御方法および装置
US7012925B2 (en) System for transmitting local area network (LAN) data frames
JP2972659B2 (ja) Utopiaレベル2ポーリング制御方式
KR0145451B1 (ko) 아비터를 이용한 다중노드 공통 버스 송신 정합 장치
JP2000295114A (ja) データ転送回路
KR100298361B1 (ko) 비동기전송모드계층과 다중물리계층간의 비동기전송모드셀핸드쉐이킹방법
JP3613203B2 (ja) セル送信制御回路及びその方法
JP3769538B2 (ja) Atmセル送受信制御方式及びその方法並びに移動通信基地局装置
JP2008103904A (ja) Atmセル通信システム、atmレイヤデバイス及びatmセル通信方法
JP4031002B2 (ja) Atmセル転送システムおよびアドレスポーリング制御方法
JPH11220473A (ja) データ伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313