JP2004011498A - 駆動力制御装置 - Google Patents

駆動力制御装置 Download PDF

Info

Publication number
JP2004011498A
JP2004011498A JP2002164456A JP2002164456A JP2004011498A JP 2004011498 A JP2004011498 A JP 2004011498A JP 2002164456 A JP2002164456 A JP 2002164456A JP 2002164456 A JP2002164456 A JP 2002164456A JP 2004011498 A JP2004011498 A JP 2004011498A
Authority
JP
Japan
Prior art keywords
deceleration
value
road gradient
acceleration
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002164456A
Other languages
English (en)
Other versions
JP4059009B2 (ja
Inventor
Hideo Nakamura
中村 英夫
Kaikin Cho
趙 海金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002164456A priority Critical patent/JP4059009B2/ja
Publication of JP2004011498A publication Critical patent/JP2004011498A/ja
Application granted granted Critical
Publication of JP4059009B2 publication Critical patent/JP4059009B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】道路勾配に合わせて目標加減速度を補正するにあたり、誤った補正を回避する。
【解決手段】道路勾配抵抗力Fgraから道路勾配推定値graを算出するが、走行速度Vが所定値VW1以下になったら、それ以前に算出した道路勾配推定値graを保持して目標加減速度α を補正する。そして、操舵角度θが所定値θ以上になったら、右左折やUターンによって走行路が変更されたものとみなし、それまでの道路勾配推定値graを“0”に初期化する。なお、車両の旋回角度δが凡そ180°になったら車両がUターンしたとみなし、走行速度Vが所定値VW1以下になる以前に算出した道路勾配推定値graの符号逆転値を、傾斜を逆向きにした新たな道路勾配推定値graとして用いてもよい。
【選択図】 図10

Description

【0001】
【産業上の利用分野】
本発明は、車両の加減速度を目標加減速度に一致させるように駆動力を制御する駆動力制御装置に関するものである。
【0002】
【従来の技術】
このような駆動力制御装置としては、例えば特開2001−173474号公報に記載されるものがある。この駆動力制御装置では、道路勾配に比例する道路勾配抵抗力を駆動輪の加速度、つまり車輪回転速度の微分値と駆動力とから検出し、当該道路勾配抵抗力に応じて目標加減速度を補正する。つまり、道路勾配抵抗力が増加する上り坂では目標加減速度を減少し、道路勾配抵抗力が減少する下り坂では目標加減速度を増加し、その目標加減速度に車両の加減速度が一致するようにエンジントルクと変速比とをフィードバック制御する。この駆動力制御装置によれば、道路勾配から感じる運転者の加減速感を実際の道路勾配に合わせることで違和感を解消しようとしている。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の駆動力制御装置では、車両の走行速度が小さいときには車輪回転速度の検出精度が低下するので、路面勾配の推定精度も低下する。また、車両が完全に停車してしまうと、路面勾配の推定が困難である。
本発明はこれらの諸問題に鑑みて開発されたものであり、路面勾配を適切に推定し続けることができる駆動力制御装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明の駆動力制御装置は、車両の加減速度が目標加減速度に一致するようにフィードバック制御を行うと共に、道路勾配に基づいて目標加減速度を補正する駆動力制御装置において、車両の走行速度が所定値以下になったら、それ以前の道路勾配を保持し、その保持された道路勾配に基づいて目標加減速度を補正することを特徴とするものである。
【0005】
【発明の効果】
而して、本発明の駆動力制御装置によれば、車両の走行速度が小さくなり、それが所定値以下になったときには、それ以前の道路勾配を保持し、その保持された道路勾配に基づいて目標加減速度を補正する構成としたため、車両の走行速度が小さくなって路面勾配の推定精度が低下するような状況であっても、その直前の道路勾配に基づいて目標加減速度が補正されるので、加減速度が大幅に変動することがない。
【0006】
【発明の実施の形態】
以下、本発明の駆動力制御装置を車両の加減速度制御装置に適用した第1実施形態を添付図面に基づいて説明する。
図1は本実施形態の加減速度制御装置の一実施形態を示す概略構成図である。図中、符号1はエンジン、符号2は無段変速機、符号3はエンジン1と無段変速機2との間に介装されたロックアップ機構付きトルクコンバータ、符号4は駆動輪である。エンジン1は、スロットルアクチュエータ11によってスロットルバルブ12の開度を調整し、吸入空気量を制御することによりエンジントルクを制御することができるように構成されている。また、前記無段変速機2は、所謂ベルト式無段変速機であり、プライマリプーリ(入力側プーリ)13とセカンダリプーリ(出力側プーリ)14の夫々のベルト接触半径を制御することにより変速比を制御することができるように構成されている。そして、この無段変速機2のセカンダリプーリ14は、最終減速機15を介して駆動輪4に連結されている。また、前記トルクコンバータ3は、ロックアップクラッチ16を備えている。
【0007】
前記エンジン1は、エンジンコントローラ7によって制御される。そのため、エンジン1の回転速度を検出するためのクランク角センサ21を備え、その検出値に基づいてエンジン1の運転状態を制御する。また、前記無段変速機2及びトルクコンバータ3のロックアップクラッチ16は変速機コントローラ5によって制御される。そのため、前記プライマリプーリ13の回転速度、即ち変速機入力軸回転数を検出するプライマリ速度センサ22及び変速機出力軸回転数であり、車両の走行速度でもあるセカンダリプーリ14の回転速度を検出するセカンダリ速度センサ23を備え、その検出値に基づいて無段変速機2の変速比及びロックアップクラッチ16の締結状態を制御する。ちなみに、本実施形態では、ロックアップクラッチ16は極低速域でのみ解放され、停止・発進を可能とする以外は、ほとんどの速度域で締結される。
【0008】
更に、この車両は、自車両の加減速度を制御するための加減速度コントローラ6を備えている。この加減速度コントローラ6は、前記エンジントルクコントローラ7や変速機コントローラ5と高速通信線で接続され、それらの情報及びアクセルセンサ24で検出されるアクセル開度及び車輪速度センサ25で検出される車輪速度及び操舵角度センサ26で検出される操舵角度及び方向指示スイッチ27の作動状態及びブレーキスイッチ28の作動状態に基づいて自車両の加減速度を制御する。具体的には、目標とする加減速度及び変速比と実際の加減速度及び変速比との差に基づいて、変速機入力トルク及び変速比の目標値を設定し、それらを夫々エンジンコントローラ4及び変速機コントローラ5に向けて出力して、自車両の加減速度を制御する。従来のエンジントルクコントローラは、アクセル開度とエンジン回転速度とに応じてエンジントルクを制御し、従来の変速機コントローラは、アクセル開度とエンジン回転速度と走行速度とに基づいて変速比を制御しており、運転者の要求する加減速感と燃費とは或る程度両立されていたが、加減速感と燃費とのさらなる向上を図るために、車両全体を考慮した加減速度コントローラを設け、そこで算出設定された変速機入力トルク、即ちエンジントルクと変速比とに応じてそれらを制御するようにした。なお、各コントローラは、マイクロコンピュータ等の演算処理装置を備えて構成されている。
【0009】
この車両では、加減速度制御システムが図2のように構成されている。図中のプラントモデル34は自車両である。自車両の出力は、加減速度αと変速機入力軸回転速度ωである。例えば、アクセル開度Ap0と走行速度、即ち車輪速度Vとから目標加減速度α が決まると共に、エンジン回転速度、即ち変速機入力軸回転速度及びエンジントルク、即ち変速機入力トルクとから目標変速機入力軸回転速度ω が決まるとすると、フィードフォワード補償器31では、伝達関数GFF(s)に従って、前記目標加減速度α から目標変速機入力トルク指令値のフィードフォワード制御分T p−ff及び目標変速比指令値のフィードフォワード制御分I p−ffを算出設定する。一方、規範モデル部32では、所定の規範モデルG(s)に従って、規範加減速度αw−ref及び規範変速機入力軸回転速度ωp−refを算出設定し、夫々から加減算器35、36で前記加減速度α及び変速機入力軸回転速度ωを減じて加減速度差Δα及び変速機入力軸回転速度差(−Δω)を算出する。フィードバック補償器33では、この加減速度差Δα及び変速機入力軸回転速度差(−Δω)に対し、所定の伝達関数GFB(s)に従って、目標変速機入力トルク指令値のフィードバック制御分T p−fb及び目標変速比指令値のフィードバック制御分I p−fbを算出設定する。そして、前記目標変速機入力トルク指令値のフィードフォワード制御分T p−ffと目標変速機入力トルク指令値のフィードバック制御分T p−fbとを加算機37で加算して目標変速機入力トルク指令値T を算出し、前記目標変速比指令値のフィードフォワード制御分I p−ffと目標変速比指令値のフィードバック制御分I p−fbとを加算機38で加算して目標変速比指令値I を算出する。
【0010】
図3は、前記プラントモデル34である車両モデルと前記規範モデル部32のうち前記目標変速機入力トルク指令値T から規範変速機入力軸回転速度ωp− refを算出する規範変速機入力軸回転速度算出部32a及び前記加減算器36とを示したものである。まず、前記プラントモデル34である車両では、上下限リミッタ301で、変速機入力軸回転速度ωに応じて前記目標変速機入力トルク指令値T を規制し(実質的には前記フィードバック補償器33内で行われる)、その値が一次遅れ系のエンジントルク制御系302を介して変速機入力トルクTとなる。一方、もう一つの上下限リミッタ303で、車輪速度Vに応じて目標変速比指令値I を規制し(実質的には前記フィードバック補償器33内で行われる)、その値が一次遅れ系の変速比制御系304を介して変速比I及び変速比変化率I’となる。前記車輪速度Vを、除算器305で、タイヤ有効半径で除すと車輪角速度ωが得られるので、この車輪角速度ωと前記変速比変化率I’とを乗算器306で乗じ、更に乗算器307で駆動系イナーシャJと最終減速比Iとを乗じてイナーシャトルクTineとなる。
【0011】
従って、前記変速機入力トルクTからイナーシャトルクTineを加減算器308で減じた値が駆動トルクTとなる。この駆動トルクTに、乗算器309で、前記変速比Iを乗じ、更に乗算器310で、最終減速比Iを乗じ且つタイヤ有効半径Rで除すことによって駆動力Fとなる。また、走行抵抗系311では、車輪速度Vに応じた走行抵抗力Fが得られるから、前記駆動力Fから、加減算器312で走行抵抗力Fを減じた値が車輪駆動力Fとなり、これを除算器313で、車両質量Mで除すことにより車輪加速度αとなり、更に積分器314で積分して車輪速度Vとなる。また、前記変速比Iに、乗算器316で、前記車輪角速度ωを乗じ、更に乗算器317で、最終減速比Iを乗じて変速機入力軸回転速度ωとなる。なお、本実施形態では、前記車輪速度Vをバンドパスフィルタ315に通して車輪加減速度αwfを算出する。
【0012】
一方、前記規範変速機入力軸回転速度算出部32aでは、前述のようにエンジントルク制御系302を介して目標変速機入力トルク指令値T が変速機入力トルクTとなるから、この変速機入力トルクTから、目標変速機入力軸回転速度設定部318で、エンジン運転拘束マップに従って、目標変速機入力軸回転速度ω を算出設定し、この目標変速機入力軸回転速度ω を一次遅れ系の規範モデル部319で規範化して前記規範変速機入力軸回転速度ωp−refが得られる。なお、このエンジン運転拘束マップについては後段に詳述する。
【0013】
図4は、前記フィードフォワード補償器31を示したものである。このフィードフォワード補償器31では、まず前記目標加減速度α に、乗算器401で車両質量Mを乗じて目標車輪駆動力F が得られる。一方、平坦路走行抵抗力算出部402で平坦路走行抵抗マップに従って、車輪速度Vに応じた平坦路走行抵抗力Fを算出し、この平坦路走行抵抗力Fと前記目標車輪駆動力F とを加算器403で加算して目標駆動力F が得られる。この目標駆動力F に対し、乗算器404で、タイヤ有効半径Rを乗じ且つ最終減速比Iで除し、更に減算器405で、変速比Iで除すことにより、フィードフォワード制御用目標変速機入力トルク指令値T p0が得られる。フィードフォワード制御用目標変速機入力トルク指令値T p0の算出式を下記1式に示す。
【0014】
【数1】
Figure 2004011498
【0015】
そして、加減速度モデルマッチング補償器406により、前記フィードフォワード制御用目標変速機入力トルク指令値T p0から変速機入力トルク指令値のフィードフォワード制御分T p−ffが得られる。加減速度モデルマッチング補償器406の伝達関数GFF−1(s)を下記2式に示す。この加減速度モデルマッチング補償器406は、加減速度に関する規範モデルを用いて規範化する(式中の分母)と共に、出力の先方にある一次遅れ系の変速機入力トルク制御系、つまりエンジントルク制御系の応答遅れの逆数(式中の分子)を乗じて位相合わせを行っている。なお、式中のsはラプラス演算子、τengはエンジントルク制御系の応答遅れ時定数、ω、ζは目標加減速度α に対する加減速度αの規範モデル応答(二次遅れモデル)のカットオフ周波数とダンピング定数である。
【0016】
【数2】
Figure 2004011498
【0017】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記2a式で示すような、ソフトウエアで実行可能な差分方程式を求めて変速機入力トルク指令値のフィードフォワード制御分T p−ffを算出する。なお、式中のMTN0、MTN1、MTN2、MTD1、MTD2は、前記時定数τeng、カットオフ周波数ω、ダンピング定数ζ、演算処理のサンプリング周期ΔTから決まる定数である。また、(k)は今回値、(k−1)は前回値、(k−2)は前々回値を示す。
【0018】
【数3】
Figure 2004011498
【0019】
一方、前記目標駆動力F と車輪速度Vとを乗算器407で乗じると目標エンジンパワー(出力)Pが得られるので、目標変速機入力回転速度設定部408では前述したエンジン運転拘束マップを用いて当該目標エンジンパワーPを達成し且つ最適な燃費が得られる目標変速機入力回転速度ω を算出設定する。目標エンジンパワーPの算出式を下記3式に示す。
【0020】
【数4】
Figure 2004011498
【0021】
従って、除算器409で、この目標変速機入力回転速度ω を前記車輪速度Vで除し、更に乗算器410で、タイヤ有効半径Rを乗じ且つ最終減速比Iで除して、フィードフォワード制御用目標変速比I p0が得られる。フィードフォワード制御用目標変速比I p0の算出式を下記4式に示す。
【0022】
【数5】
Figure 2004011498
【0023】
そして、変速比モデルマッチング補償器411により、前記フィードフォワード制御用目標変速比I p0から変速比指令値のフィードフォワード制御分I p−ffが得られる。変速比モデルマッチング補償器411の伝達関数GFF−2(s)を下記5式に示す。この変速比モデルマッチング補償器411は、変速比に関する規範モデルを用いて規範化する(式中の分母)と共に、出力の先方にある一次遅れ系の変速比制御系の応答遅れの逆数(式中の分子)を乗じて位相合わせを行っている。なお、式中のτcvtは変速比制御系の応答遅れ時定数、τref−wpは目標変速機入力軸回転速度ω に対する変速機入力軸回転速度ωの規範モデル応答(一次遅れモデル)の時定数である。
【0024】
【数6】
Figure 2004011498
【0025】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記5a式で示すような、ソフトウエアで実行可能な差分方程式を求めて変速比指令値のフィードフォワード制御分I p−ffを算出する。なお、式中のMIN0、MIN1、MID1は、前記時定数τcvt、τref−wp、演算処理のサンプリング周期ΔTから決まる定数である。
【0026】
【数7】
Figure 2004011498
【0027】
次に、前記エンジン運転拘束マップについて図5を用いて説明する。例えば、図のように横軸にエンジン回転数ω(=変速機入力回転速度ω)をとり、縦軸にエンジントルクT(=変速機入力トルクT)をとると、同等のエンジンパワー(出力)を結んだ等出力線(図では破線)や、最適燃費点を中心とする等燃料消費線(図では一点鎖線)が描ける。等出力線上の最適燃費点を連続した曲線が最適燃費運転線となる。一般に、昨今のエンジンでは、アクセルオフの状態で燃料を噴射しないので、最適燃費点や等燃費線はエンジントルクTが正の領域にのみ存在する。従って、最適燃費運転線もエンジントルクTが正の領域にしか存在しない。逆に、エンジントルクTが負の領域では、エンジンブレーキトルクとエンジン回転速度との関係を示すエンジンブレーキ特性線が表れる。前述のように、エンジントルクTが負の領域では燃料を噴射しないので、エンジンブレーキトルクを制御するためにはエンジン回転速度を制御する必要がある。本実施形態では、変速機に無段変速機を用いているので、任意の走行速度で所望するエンジンブレーキトルクを得るためには、無段変速機の変速比を制御すればよい。これらの曲線の関係を、燃費を考慮してマップ化したものがエンジン運転拘束マップである。
【0028】
次に、本実施形態でのフィードバック補償器33の設計手法を簡潔に説明する。前述した図3の非線形制御対象モデルを、変速機入力トルク指令値T 、変速比指令値I の二入力、加減速度α、変速機入力軸回転速度差Δωの二出力の非線形制御対象モデルであると仮定する。本実施形態では、フィードバック制御系の安定性を確保する目的で、前記検出部や一部制御部を車両モデルと組合せて制御対象モデルとしている。この非線形制御対象モデルを、特定の動作点で線形近似を行って、制御系設計用の線形近似制御対象モデルを導出する。「ロバスト制御理論」の一つである「μシンセシス」を用いてフィードバック補償器を設計するためには、更に変動要素をモデル化して一般化プラントモデルに拡張する必要があるが、ここではその詳細は割愛する。
【0029】
前記フィードバック補償器33への入力は、前述のように加減速度差Δα、変速機入力軸回転速度差(−Δω)であるから、出力変速機入力トルク指令値T 、変速比指令値I を当該フィードバック補償器33の伝達関数GFB(s)で示すと下記6式となり、当該伝達関数GFB(s)の各要素は7式で表れる。
【0030】
【数8】
Figure 2004011498
【0031】
実際の車両諸元、或いは要求する応答特性を代入し、前記「μシンセシス」によって各要素G11(s)〜G22(s)を求めると、下記8式〜11式のように表れる。
【0032】
【数9】
Figure 2004011498
【0033】
これら各要素G11(s)〜G22(s)を子細に考察すると、極が虚軸上又はその近傍にある部分が存在する。この虚軸上又はその近傍にある極は、応答の遅い極であり、目標値と実際値との差を蓄積する、換言すれば積分的特性を持つ部分であるといえる。そこで、前記7式のフィードバック補償器の伝達関数を、積分的特性を有する部分G(s)と、それ以外の部分G(s)とに分離し、下記12式のように表す。
【0034】
【数10】
Figure 2004011498
【0035】
具体的な要素G11−A(s)〜G22−A(s)、G11−B(s)〜G22−B(s)は下記13式〜20式で表れる。
【0036】
【数11】
Figure 2004011498
【0037】
そして、前記加減速度α及び変速機入力軸回転速度差(−Δω)に前記積分的特性を有さない要素G11−B(s)〜G22−B(s)を施した要素をx11〜x22とし、これらの要素に前記積分的特性を有する要素G11−A(s)〜G22−A(s)をy11〜y22とすると、前記変速機入力トルク指令値のフィードバック制御分T p−fb、変速比指令値のフィードバック制御分I p−fbは、夫々、下記21式、22式で表れる。
【0038】
【数12】
Figure 2004011498
【0039】
次に、前記フィードフォワード補償器31及びフィードバック補償器33で行われる演算処理について図6のフローチャートを用いて説明する。この演算処理は、例えば10msec.程度の所定サンプリング周期ΔTで行われる。なお、この演算処理では、通信のための全てのステップを記載していないが、必要な情報は随時他のコントローラ或いは記憶装置と授受されるし、演算処理で得られた情報は随時他のコントローラ或いは記憶装置と授受される。
【0040】
この演算処理では、まずステップS1で前記アクセルセンサ24で検出されたアクセル開度Ap0を読込む。
次にステップS2に移行して、前記車輪速度センサ25で検出された車輪速度Vを読込む。
次にステップS3に移行して、前記変速機コントローラ5からプライマリ回転速度ω、セカンダリ回転速度ω、両者の比である変速比Iを読込むと共に、前記エンジントルクコントローラ7からエンジン回転速度ωを読込む。
【0041】
次にステップS4に移行して、図7に示す制御マップに従って、前記ステップS1で読込んだアクセル開度Ap0、前記ステップS2で読込んだ車輪速度Vに基づいて目標加減速度α を算出設定する。
次にステップS5に移行して、下記23式で示す伝達関数Gbp(s)のバンドパスフィルタを用い、車輪速度Vからノイズを除去した、所定周波数領域のみの車輪加減速度αを算出する。なお、式中のωは固有角周波数、ζは減衰率であり、ω、ζは、検出される車輪速度のノイズレベルによって決定される。
【0042】
【数13】
Figure 2004011498
【0043】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記23a式で示すような、ソフトウエアで実行可能な差分方程式を求めて車輪加減速度αを算出する。なお、式中のBPN0、BPN1、BPN2は、前記固有角周波数ω、減衰率ζ、サンプリング周期ΔTによって決まる定数である。
【0044】
【数14】
Figure 2004011498
【0045】
次にステップS6に移行して、例えば前回演算時の変速機入力トルク指令値T からエンジントルク応答遅れモデルによる変速機入力トルクTを算出する。このエンジントルク応答遅れモデルは、下記25式の伝達関数で示す一次遅れ系である。
【0046】
【数15】
Figure 2004011498
【0047】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記25a式で示すような、ソフトウエアで実行可能な差分方程式を求めて変速機入力トルクTを算出する。なお、式中のTEN0、TEN1、TEN2は、前記時定数τeng、サンプリング周期ΔTによって決まる定数である。
【0048】
【数16】
Figure 2004011498
【0049】
次にステップS7に移行して、後述する図10の演算処理に従って、道路勾配推定値graを算出する。
次にステップS8に移行して、前記ステップS7で算出した道路勾配推定値graから目標加減速度補正値αgraを算出する。ここでは、道路勾配推定値graが上り坂であるときに目標加減速度α が小さくなるように、また道路勾配推定値graが下り坂であるときに目標加減速度α が大きくなるようにして、テーブルデータに記憶された目標加減速度補正値αgraを道路勾配推定値graに基づいて設定する。なお、このテーブルデータは、例えば運転者に違和感を与えないように官能評価実験などによって設定する。
【0050】
次にステップS9に移行して、前記目標加減速度α に前記ステップS8で算出された目標加減速度補正値αgraを加算した値を、新たな目標加減速度α として補正する。
次にステップS10に移行して、前述したエンジン運転拘束条件による規範変速機入力軸回転速度ωp−refと変速機入力軸回転速度ωとの変速機入力軸回転数差Δωを算出する。具体的には、まず前記ステップS6で算出した変速機入力トルクTから前記最適燃費運転線又はエンジンブレーキ特性線上の変速機入力軸回転速度を目標変速機入力軸回転速度ω とし、これを下記26式の伝達関数Gref−wp(s)で示す規範モデル応答特性を用いて規範化し、規範変速機入力回転速度ωp−refを算出する。
【0051】
【数17】
Figure 2004011498
【0052】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記26a式で示すような、ソフトウエアで実行可能な差分方程式を求めて規範変速機入力回転速度ωp−refを算出する。なお、式中のPRN0、PRN1、PRD2は、前記時定数τref−wp、サンプリング周期ΔTによって決まる定数である。
【0053】
【数18】
Figure 2004011498
【0054】
そして、下記27式で示すように、求めた規範変速機入力回転速度ωp−refから前記変速機入力軸回転速度ωを減じて変速機入力軸回転速度差Δωを算出する。
【0055】
【数19】
Figure 2004011498
【0056】
次にステップS11に移行して、前記フィードフォワード補償器31により、目標変速機入力トルク指令値のフィードフォワード制御分T p−ff及び目標変速比指令値のフィードフォワード制御分I p−ffを算出する。
次にステップS12に移行して、フィードバック制御用規範加減速度αw−refと加減速度αとの加減速度差Δαを算出する。具体的には、下記28式で示す伝達関数Gref−aからなる加減速度の規範モデル応答に相当する遅れ補償(二次遅れモデル)と、同じく伝達関数Gbp(s)からなる前記加減速度算出用バンドパスフィルタに相当する遅れ補償(二次遅れモデル)とを目標加減速度α に施して規範加減速度αw−refを算出する。
【0057】
【数20】
Figure 2004011498
【0058】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記28a式で示すような、ソフトウエアで実行可能な差分方程式を求めて規範加減速度αw−refを算出する。なお、式中のREN0、REN1、REN2、REN3、REN4、RED1、RED2、RED3、RED4は、前記カットオフ周波数ω、ダンピング定数ζ、固有角周波数ω、減衰率ζ、サンプリング周期ΔTから決まる定数である。また、(k−4)は前々々回値を示す。
【0059】
【数21】
Figure 2004011498
【0060】
次にステップS13に移行して、前述したように加減速度差Δα、変速機入力軸回転速度差(−Δω)に対し、前記積分的特性を除いたフィードバック補償器G11−B(s)〜G22−B(s)による変速機入力トルク指令値のフィードバック制御分T p−fbの要素x11、x12、及び変速比指令値のフィードバック制御分I p−fbの要素x21、x22を算出する。
【0061】
次にステップS14に移行して、後述する図11の演算処理に従って、前記ステップS13で算出された変速機入力トルク指令値のフィードバック制御分T p−fbの要素x11、x12、及び変速比指令値のフィードバック制御分I p−fbの要素x21、x22に対し、前記積分的特性を有するフィードバック補償器G11−A(s)〜G22−A(s)による変速機入力トルク指令値のフィードバック制御分T p−fbの要素y11、y12、及び変速比指令値のフィードバック制御分I p−fbの要素y21、y22を算出する。
【0062】
次にステップS15に移行して、前記21式、22式に従って、前記ステップS14で算出した要素y11、y12の加算値から変速機入力トルク指令値のフィードバック制御分T p−fbを算出すると共に、前記要素y21、y22の加算値から変速比指令値のフィードバック制御分I p−fbを算出する。
次にステップS16に移行して、下記29式、30式に従って、前記変速機入力トルク指令値のフィードフォワード制御分T p−ffとフィードバック制御分T p−fbとの加算値から変速機入力トルク指令値T を算出すると共に、変速比指令値のフィードフォワード制御分I p−ffとフィードバック制御分I p−fbとの加算値から変速比指令値I を算出する。
【0063】
【数22】
Figure 2004011498
【0064】
次にステップS17に移行して、図8、図9に示す制御マップから、前記変速機入力トルク指令値T 、変速比指令値I に制限処理を施す。つまり、目標値を、実際に発生可能な制御量の上下限値で制限する。
次にステップS18に移行して、前記変速機入力トルク指令値T 、変速比指令値I を、夫々、前記エンジントルクコントローラ7、変速機コントローラ5に向けて出力してからメインプラグラムに復帰する。
【0065】
次に、前記図6の演算処理のステップS7で行われるマイナプログラムについて図10のフローチャートに従って説明する。この演算処理では、まずステップS71で、前記ブレーキスイッチ(図ではブレーキSW)28が、足離し状態を意味するオフであるか否かを判定し、当該ブレーキスイッチ28がオフである場合にはステップS72に移行し、そうでない場合には前記図6の演算処理のステップS8に移行する。
【0066】
前記ステップS72では、前記車輪速度センサ25で検出された駆動輪の車輪速度Vを車両の走行速度として捉え、当該車輪速度Vが所定値VW1以上であるか否かを判定し、当該車輪速度Vが所定値VW1以上である場合にはステップS73に移行し、そうでない場合にはステップS74に移行する。
前記ステップS73では、道路勾配推定値graを算出する。具体的には、前述したように、前記図6の演算処理のステップS6で算出した変速機入力トルクT、変速比I、最終減速比I、タイヤ有効半径Rを用いて、下記31式に従って駆動力Fを算出する。次いで、下記32式に従って、前記駆動力Fから平坦路走行抵抗力F及び前記図6の演算処理のステップS5で算出した加減速度αと車両質量Mとの積値を減じてノイズ除去前道路勾配抵抗力Fgraを算出する。更に、このノイズ除去前道路勾配抵抗力Fgraを前記車両質量Mで除してノイズ除去前道路勾配推定値grasinを算出する。
【0067】
【数23】
Figure 2004011498
【0068】
次に、下記34式の伝達関数Ggra(s)で示すローパスフィルタで不必要な高域ノイズ成分を除去して道路勾配推定値graを算出する。なお、式中のτgraはローパスフィルタのカットオフ周波数である。
【0069】
【数24】
Figure 2004011498
【0070】
但し、前述したマイクロコンピュータで演算処理を行うためには、例えばタスティン近似等で離散化して、下記34a式で示すような、ソフトウエアで実行可能な差分方程式を求めて道路勾配推定値graを算出する。なお、式中のSLPNO、SLPN1、SLPD1は、前記カットオフ周波数τgra、サンプリング周期ΔTによって決まる定数である。
【0071】
【数25】
Figure 2004011498
【0072】
一方、前記ステップS73では、前記方向指示スイッチ(図では方向指示SW)27が作動状態を示すオンであるか否かを判定し、当該方向指示スイッチ27がオンである場合にはステップS75に移行し、そうでない場合には前記図6の演算処理のステップS8に移行する。
前記ステップS75では、前記操舵角度センサ6で検出された操舵角度θが予め設定された所定値θ以上であるか否かを判定し、当該操舵角度θが所定値θ以上である場合にはステップS76に移行し、そうでない場合には前記図6の演算処理のステップS8に移行する。
【0073】
前記ステップS76では、前記道路勾配推定値graの初期化を行ってから前記図6の演算処理のステップS8に移行する。具体的には、当該道路勾配推定値graを“0”とすると共に、前記ノイズ除去前道路勾配推定値grasinも、前記34a式で用いる過去値gra(k−1)、grasin(k−1)も全て“0”とする。
【0074】
次に、前記図6の演算処理のステップS14で行われるマイナプログラムについて図11のフローチャートに従って説明する。この演算処理では、まずステップS21で、変速機入力トルク指令値の前回値T (k−1)が上限値で且つ前記加減速度差Δαが“0”以上であるか、又は変速機入力トルク指令値の前回値T (k−1)が下限値で且つ前記加減速度差Δαが“0”以下であるか否かを判定し、何れかの条件が満足される場合にはステップS22に移行し、そうでない場合にはステップS23に移行する。
【0075】
前記ステップS23では、前記変速機入力トルク指令値のフィードバック制御分T p−fbの要素x11に対し、前記積分的特性を有するフィードバック補償器G11−A(s)による変速機入力トルク指令値のフィードバック制御分T p−fbの要素y11を算出してからステップS24に移行する。具体的には、前述と同様に離散化して求めた差分方程式に基づいて要素の今回値y11(k)を更新する。
【0076】
前記ステップS22では、前記変速機入力トルク指令値のフィードバック制御分T p−fbの要素の前回値y11(k−1)を今回値y11(k)として出力してから前記ステップS24に移行する。実質的には、前記ステップS23で説明した差分方程式の要素の今回値y11(k)を更新せず、前回値y11(k−1)のまま保存する。
前記ステップS24では、変速機入力トルク指令値の前回値T (k−1)が上限値で且つ前記変速機入力軸回転速度差Δωが“0”以上であるか、又は変速機入力トルク指令値の前回値T (k−1)が下限値で且つ前記変速機入力軸回転速度差Δωが“0”以下であるか否かを判定し、何れかの条件が満足される場合にはステップS25に移行し、そうでない場合にはステップS26に移行する。
【0077】
前記ステップS26では、前記変速機入力トルク指令値のフィードバック制御分T p−fbの要素x12に対し、前記積分的特性を有するフィードバック補償器G12−A(s)による変速機入力トルク指令値のフィードバック制御分T p−fbの要素y12を算出してからステップS27に移行する。具体的には、前述と同様に離散化して求めた差分方程式に基づいて要素の今回値y12(k)を更新する。
【0078】
前記ステップS25では、前記変速機入力トルク指令値のフィードバック制御分T p−fbの要素の前回値y12(k−1)を今回値y12(k)として出力してから前記ステップS27に移行する。実質的には、前記ステップS26で説明した差分方程式の要素の今回値y12(k)を更新せず、前回値y12(k−1)のまま保存する。
前記ステップS27では、変速比指令値の前回値I (k−1)が上限値で且つ前記加減速度差Δαが所定値Δαw1以上であるか、又は変速比指令値の前回値I (k−1)が下限値で且つ前記加減速度差Δαが所定値Δαw2以下であるか否かを判定し、何れかの条件が満足される場合にはステップS28に移行し、そうでない場合にはステップS29に移行する。なお、前記所定値Δαw1は正値であって加速指令を意味し、前記所定値Δαw2は負値であって減速指令を意味する。
【0079】
前記ステップS29では、前記変速比指令値のフィードバック制御分I p−fbの要素x21に対し、前記積分的特性を有するフィードバック補償器G21−A(s)による変速比指令値のフィードバック制御分I p−fbの要素y21を算出してからステップS30に移行する。具体的には、前述と同様に離散化して求めた差分方程式に基づいて要素の今回値y21(k)を更新する。
【0080】
前記ステップS28では、前記変速比指令値のフィードバック制御分I p−fbの要素の前回値y21(k−1)を今回値y21(k)として出力してから前記ステップS30に移行する。実質的には、前記ステップS29で説明した差分方程式の要素の今回値y21(k)を更新せず、前回値y21(k−1)のまま保存する。
前記ステップS30では、変速比指令値の前回値I (k−1)が上限値で且つ前記変速機入力軸回転速度差Δωが“0”以上であるか、又は変速比指令値の前回値I (k−1)が下限値で且つ変速機入力軸回転速度差Δωが“0”以下であるか否かを判定し、何れかの条件が満足される場合にはステップS31に移行し、そうでない場合にはステップS32に移行する。
【0081】
前記ステップS32では、前記変速比指令値のフィードバック制御分I p−fbの要素x22に対し、前記積分的特性を有するフィードバック補償器G22−A(s)による変速比指令値のフィードバック制御分I p−fbの要素y22を算出してから前記図6の演算処理のステップS15に移行する。具体的には、前述と同様に離散化して求めた差分方程式に基づいて要素の今回値y22(k)を更新する。
【0082】
前記ステップS31では、前記変速比指令値のフィードバック制御分I p−fbの要素の前回値y22(k−1)を今回値y22(k)として出力してから前記図6の演算処理のステップS15に移行する。実質的には、前記ステップS32で説明した差分方程式の要素の今回値y22(k)を更新せず、前回値y22(k−1)のまま保存する。
【0083】
これらの演算処理によれば、目標加減速度α に応じた目標変速機入力トルク指令値のフィードフォワード制御分T p−ff及び目標変速比指令値のフィードフォワード制御分I p−ffが算出設定され、同じく加減速度差Δα及び変速機入力軸回転速度差(−Δω)に応じた変速機入力トルク指令値のフィードバック制御分T p−fb及び変速比指令値のフィードバック制御分I p−fbが算出設定され、両者の加算値から変速機入力トルク指令値T 及び変速比指令値I が算出設定される。しかしながら、操作量である変速機入力トルク指令値T や変速比指令値I が飽和しているときには、変速機入力トルク指令値のフィードバック制御分T p−fb及び変速比指令値のフィードバック制御分I p−fbを算出設定するときの積分的特性を有するフィードバック補償器だけが停止される。前述のように積分的特性を有するフィードバック補償器は、目標値と実際値との差を蓄積する特性があるので、操作量が飽和しているときに、この積分的特性を有するフィードバック補償器を停止すれば、目標値と実際値との差は蓄積されず、操作量が飽和しなくなったときに制御量のオーバシュートが抑制防止される。
【0084】
また、前記積分的特性を有するフィードバック補償器の停止条件については、変速機入力トルク指令値T が上限値であるのに、加減速度差Δαが正値である、即ち更なる加速が要求されるときや、或いは変速機入力トルク指令値T が下限値であるのに、加減速度差Δαが負値である、即ち更なる減速が要求されるときには、当該加減速度差Δαから変速機入力トルク指令値T を算出する要素y11のみの演算が停止される。また、変速機入力トルク指令値T が上限値であるのに、変速機入力軸回転速度差Δωが正値である、即ち更なる増速が要求されるときや、或いは変速機入力トルク指令値T が下限値であるのに、変速機入力軸回転速度差Δωが負値である、即ち更なる減速が要求されるときには、当該変速機入力軸回転速度差Δωから変速機入力トルク指令値T を算出する要素y12のみの演算が停止される。また、変速比指令値I が上限値であるのに、加減速度差Δαが所定値Δαw1以上である、即ち更なる加速が要求されているときや、或いは変速比指令値I が下限値であるのに、加減速度差Δαが所定値Δαw2以下である、即ち更なる減速が要求されているときには、当該加減速度差Δαから変速比指令値I を算出する要素y21のみの演算が停止される。また、変速比指令値I が上限値であるのに、変速機入力軸回転速度差Δωが正値である、即ち更なる増速が要求されるときや、或いは変速比指令値I が下限値であるのに、変速機入力軸回転速度差Δωが負値である、即ち更なる減速が要求されるときには、当該変速機入力軸回転速度差Δωから変速比指令値I を算出する要素y22のみの演算が停止される。従って、操作量が飽和していない要素の演算は継続されることとなり、その分だけ、より一層頑健なフィードバック制御が可能となる。
【0085】
また、前述したように操作量が飽和したとき、積分的特性を有するフィードバック補償器のみの演算が停止され、それ以外のフィードバック補償器の演算は継続される。前述のように、現代制御理論に基づくフィードバック補償器を分離して、積分的特性を除いたフィードバック補償器は、逆に言えば、微分的特性、即ち位相進みの特性を有してもおり、従ってフィードバック補償器全体を停止することは、フィードバック補償器演算再開時に、この微分的特性を有するフィードバック補償器が過敏に反応してしまう可能性がある。本実施形態では、このように積分的特性を除いたフィードバック補償器の演算を継続することにより、制御量の過敏な応答を抑制防止することができるのである。
【0086】
図12は、本実施形態の加減速度フィードバック制御装置において、発進加速後、所定の間隔でアクセルペダルをオンオフしたときの加減速度、変速機入力軸回転速度、変速機入力トルク、変速比、走行速度、スロットル開度の経時変化を示したものである。このシミュレーションは加減速度の目標値追従を優先している。このシミュレーションでは、時刻t01以後と、時刻t02以後の夫々で、変速機入力トルクが上限値に飽和しており、本実施形態では、それ以後、前記積分的特性を有するフィードバック補償器の演算を停止している。そのため、その後の加減速度のオーバシュートが抑制されている。これに対し、図13は、フィードバック補償器の演算を一切停止していない。そのため、時刻t01の後、及び時刻t02の後、夫々、加減速度がオーバシュートしている。
【0087】
また、本実施形態では、道路勾配推定値graを検出(算出)して目標加減速度α を補正する。これにより、運転者に与える違和感を小さくすることができる。更に、本実施形態では、駆動輪の車輪速度V、即ち自車両の走行速度が所定値VW1以下になると道路勾配推定値graの算出を停止し、その値を保持して、その保持された道路勾配推定値graを用いて目標加減速度α を補正する。これは、自車両の走行速度が小さくなることで道路勾配推定値graの精度が低下することを予測して行うものであり、このような状況であっても目標加減速度α の変動を小さくすることが可能となる。更に、本実施形態では、操舵角度θが所定値θ以上になると、例えば右左折やUターンによって走行路が変更されたものとみなし、道路勾配推定値gra(ノイズ除去前道路勾配推定値garsin及びそれらの過去値を含む)を“0”に初期化する。これによると、勿論、当該走行路の正しい道路勾配に応じた目標加減速度α の適切な補正はできないが、少なくとも誤った道路勾配推定値graに応じた目標加減速度α の不適切な補正や変動を抑制防止することが可能となる。
【0088】
図14は、道路勾配が一定の下り坂の途中で、時刻t10からアクセルオフの直進惰性走行状態、所謂コースト状態を継続し、時刻t11でブレーキペダルを踏込み、時刻t13でブレーキペダルの踏込みを解除するのと同時にアクセルペダルを少し踏込み、合わせてステアリングホイールを切ってUターンを開始し、時刻t16でUターンを終了するのと同時にアクセルペダルを更に踏増ししたときの走行速度と道路勾配推定値及び目標加減速度の経時変化を示したものである。自車両から見た走行路の道路勾配を図中に破線で示す。つまり、時刻t16でUターンを終了したときには、車両が逆に上り坂を上ることになる。なお、Uターン中は、常時、方向指示スイッチがオン状態になっていたものとする。
【0089】
このシミュレーションでは、ブレーキペダルが踏込まれる時刻t11から、前記図10の演算処理では新たな道路勾配推定値graの算出が停止され、その直前の道路勾配推定値graが保持されるので、これ以後、その保持された道路勾配推定値graに応じた目標加減速度α の補正がなされる。また、前記時刻t13よりも早い時刻t12で、走行速度とみなした駆動輪速度Vが前記所定値VW1以下となるが、この時点でもブレーキペダルが踏込まれたままの状態なので、前記時刻t11の直前の値に保持された道路勾配推定値graに応じた目標加減速度α の補正がなされる。そして、時刻t13でブレーキスイッチがオフとなった後も、駆動輪速度Vは所定値VW1以下であり、しかしながら操舵角度θは所定値θ以下であったため、道路勾配推定値graは保持され続け、当該時刻t13でアクセルペダルが踏込まれたときには、そのアクセルペダルの踏込み量に応じた目標加減速度α を、当該保持されている道路勾配推定値graで補正した値が目標加減速度α に設定されている。その後、時刻t14で操舵角度θが所定値θ以上となると、それまで保持されていた道路勾配推定値graが“0”に初期化されるので、当該道路勾配推定値graに応じた補正は実質的になされず、前記アクセルペダルの踏込み量に応じた目標加減速度α に、平坦路補正を加えた値が目標加減速度α に設定される。この間、目標加減速度α は短時間の間に収束し、誤った加減速が抑制されている。
【0090】
Uターンが終了し始めると、操舵角度θは時刻t15で所定値θ以下となるが、走行速度とみなした駆動輪速度Vが所定値VW1以下のままであるため、“0”に初期化された道路勾配推定値graが保持され続けることになり、それまでと同じ目標加減速度α が設定され続けた。そして、前記時刻t16でUターンを終了すると同時にアクセルペダルを踏増しした後も、“0”に初期化された道路勾配推定値graが保持され続けるので、そのアクセルペダルの踏込み量に応じた目標加減速度α に、平坦路補正を加えた値が目標加減速度α に設定される。この加速によって、走行速度とみなした駆動輪速度Vが時刻t17で所定値VW1以上となると、道路勾配推定値graの算出が開始され、前記ローパスフィルタの影響によって、次第に真値に近づく。これに伴って、目標加減速度α は、算出された新たな道路勾配推定値graに基づいて補正されるので、誤った道路勾配推定値による変動はない。
【0091】
これに対し、図15は、前記走行速度とみなした駆動輪速度Vが所定値VW1以下である間、その直前の道路勾配推定値graを保持したときの走行速度と道路勾配推定値及び目標加減速度の経時変化を示したものである。即ち、前記図10の演算処理のステップS74〜ステップS76がない場合のシミュレーションである。走行条件は、前記図14のシミュレーションと同等とした。このシミュレーションでは、前記時刻t12から時刻t17まで、その直前の道路勾配推定値gra、即ち下り坂に相当する道路勾配が保持され、その保持された道路勾配推定値graに応じて目標加減速度α が設定され続けるので、例えば時刻t13以後、アクセルペダルを少し踏込んだだけであるのに、目標加減速度α が大きく設定され、適切な徐行走行ができない(実際の走行速度は更に増速している)。また、時刻t16で更にアクセルペダルを踏増しした後も、目標加減速度α が大きく設定され、適切な加速走行ができない(実際の走行速度は更に増速している)。
【0092】
このように本実施形態の駆動力制御装置によれば、駆動輪の車輪速度V、即ち自車両の走行速度が所定値VW1以下になると、その直前の道路勾配推定値graの値を保持して、その保持された道路勾配推定値graを用いて目標加減速度α を補正することにより、自車両の走行速度が小さくなることで道路勾配推定値graの精度が低下したときの目標加減速度α の変動を小さくすることが可能となる。更に、本実施形態では、操舵角度θが所定値θ以上になると、例えば右左折やUターンによって走行路が変更されたものとみなし、道路勾配推定値graを初期化することにより、誤った道路勾配推定値graに応じた目標加減速度α の不適切な補正や変動を抑制防止することが可能となる。また、操舵角度が所定値以上であるときに走行路変更が行われたと検出することにより、より確実に走行路の変更を検出することができる。また、方向指示スイッチのオン時、即ち方向指示装置が操作されているときに走行路変更の判定を行うことにより、より確実に走行路の変更を検出することができる。
【0093】
以上より、前記図6の演算処理のステップS7及び前記図10の演算処理全体が本発明の道路勾配検出手段を構成し、以下同様に、前記図6の演算処理のステップS8及びステップS9が目標加減速度補正手段を構成し、前記車輪速度センサ25及び前記図6の演算処理のステップS2が走行速度検出手段を構成し、前記図10の演算処理のステップS75が走行路変更検出手段を構成し、前記操舵角度センサ26が操舵角度検出手段を構成している。
【0094】
次に、本発明の駆動力制御装置の第2実施形態について説明する。本実施形態の駆動力制御装置は、前記第1実施形態の図10の演算処理に代えて、図16の演算処理が行われるほかは、全て前記第1実施形態と同様である。この図16の演算処理には、前記第1実施形態の図10の演算処理と同じステップもあり、同等のステップには同等の符号を附して、その詳細な説明を省略する。この図16の演算処理では、前記第1実施形態の図10の演算処理のステップS74及びステップS75が、夫々ステップS74’及びステップS75’に変更され、新たにステップS77〜ステップS79が追加されている。
【0095】
この演算処理では、前記ステップS73に次いでステップS77に移行し、後述する車両旋回角度δを“0”にクリアしてからステップS78に移行する。
前記ステップS78では、前記ステップS73で算出された道路勾配推定値graをUターン用道路勾配記憶値graとして記憶してから前記図6の演算処理のステップS8に移行する。
【0096】
また、前記ステップS74’で方向指示スイッチ27がオン状態である場合にはステップS75’に移行し、そうでない場合には前記図6の演算処理のステップS8に移行する。
前記ステップS75’では、下記35式で算出される車両の旋回角度δが凡そ180°(図ではπ)である場合にはステップS79に移行し、そうでない場合にはステップS76に移行する。
【0097】
【数26】
Figure 2004011498
【0098】
前記ステップS79では、前記Uターン用道路勾配記憶値graの符号逆転値(図ではーgra)を道路勾配推定値graに設定してから前記図6の演算処理のステップS8に移行する。
本実施形態では、前記第1実施形態の作用に加えて、駆動輪の車輪速度V、即ち自車両の走行速度が所定値VW1以下になり、且つ方向指示スイッチ27がオンになると、車両の旋回角度δが凡そ180°にならない限り、道路勾配推定値gra(ノイズ除去前道路勾配推定値garsin及びそれらの過去値を含む)を“0”に初期化する。これによると、勿論、当該走行路の正しい道路勾配に応じた目標加減速度α の適切な補正はできないが、少なくとも誤った道路勾配推定値graに応じた目標加減速度α の不適切な補正や変動を抑制防止することが可能となる。一方、上述の状態から車両の旋回角度δが増加して凡そ180°になると、前記自車両の走行速度が所定値VW1以下になる直前の道路勾配推定値gra(=Uターン用道路勾配記憶値gra)の符号逆転値、つまり傾斜を逆向きにした値を道路勾配推定値graに設定する。これによると、車両旋回角度δが180°となってUターンが終了した時点で、直ちにそれまでと逆向きの道路勾配が得られるので、その後、当該走行路の正しい道路勾配に応じた目標加減速度α の適切な補正が可能となる。
【0099】
図17は、道路勾配が一定の下り坂の途中で、時刻t20からアクセルオフの直進惰性走行状態、所謂コースト状態を継続し、時刻t21でブレーキペダルを踏込み、時刻t23でブレーキペダルの踏込みを解除するのと同時にアクセルペダルを少し踏込み、合わせてステアリングホイールを切ってUターンを開始し、時刻t26でUターンを終了するのと同時にアクセルペダルを更に踏増ししたときの走行速度と道路勾配推定値及び目標加減速度の経時変化を示したものである。自車両から見た走行路の道路勾配を図中に破線で示す。つまり、時刻t26でUターンを終了したときには、車両が逆に上り坂を上ることになる。なお、Uターン中は、常時、方向指示スイッチがオン状態になっていたものとする。
【0100】
このシミュレーションでは、ブレーキペダルが踏込まれる時刻t21から、前記図16の演算処理では新たな道路勾配推定値graの算出が停止され、その直前の道路勾配推定値graが保持されるので、これ以後、その保持された道路勾配推定値graに応じた目標加減速度α の補正がなされる。なお、この時刻t21直前の道路勾配推定値graがUターン用道路勾配記憶値graとして記憶されている。また、前記時刻t23よりも早い時刻t22で、走行速度とみなした駆動輪速度Vが前記所定値VW1以下となるが、この時点でもブレーキペダルが踏込まれたままの状態なので、前記時刻t21の直前の値に保持された道路勾配推定値graに応じた目標加減速度α の補正がなされる。一方、時刻t23でブレーキスイッチがオフとなった後も、駆動輪速度Vは所定値VW1以下であり、しかしながら車両の旋回角度δは凡そ180°でないため、それまで保持されていた道路勾配推定値graが“0”に初期化されるので、当該道路勾配推定値graに応じた補正は実質的になされず、前記アクセルペダルの踏込み量に応じた目標加減速度α に、平坦路補正を加えた値が目標加減速度α に設定される。従って、これ以後、誤った加減速がない。
【0101】
Uターンが終了し始めると、車両の旋回角度δが時刻t25で凡そ180°(図ではπ)となるため、前記Uターン用道路勾配記憶値graとして記憶されている時刻t21直前の道路勾配推定値graの符号逆転値が新たな道路勾配推定値graに設定される。この新たな道路勾配推定値graは、それまで車両が下っていた下り坂の道路勾配を、Uターンの結果、上り坂として捉えた値であり、当該走行路の適切な道路勾配である。そのため、これ以後、当該道路勾配推定値graに応じた適切な目標加減速度α の補正がなされる。そして、前記時刻t26でUターンを終了すると同時にアクセルペダルを踏増しした後、走行速度とみなした駆動輪速度Vが時刻t17で所定値VW1以上となると、道路勾配推定値graの算出が開始されるが、既に用いられている道路勾配推定値graそのものが真値であるから、その後も正しい道路勾配推定値graが算出され、その道路勾配推定値graに基づいて補正されるので、誤った道路勾配推定値による変動はない。
【0102】
このように本実施形態の駆動力制御装置によれば、駆動輪の車輪速度V、即ち自車両の走行速度が所定値VW1以下になると、その直前の道路勾配推定値graを用いて目標加減速度α を補正することにより、自車両の走行速度が小さくなることで道路勾配推定値graの精度が低下したときの目標加減速度α の変動を小さくすることが可能となる。更に、本実施形態では、車両の旋回角度δが凡そ180°になると、Uターンによって走行路が変更された、即ち方向転換がなされたものとみなし、Uターン以前に記憶された道路勾配推定値graの符号逆転値、即ち傾斜を逆にした値を新たな道路勾配推定値graに設定することにより、正しい道路勾配推定値graを速やかに検出し、目標加減速度α の適正な補正を可能とする。また、車両の旋回角度が180°であるときに走行路変更が行われたと検出することにより、より確実に走行路の変更を検出することができる。また、方向指示スイッチのオン時、即ち方向指示装置が操作されているときに走行路変更の判定を行うことにより、より確実に走行路の変更を検出することができる。
【0103】
以上より、前記図6の演算処理のステップS7及び前記図16の演算処理全体が本発明の道路勾配検出手段を構成し、以下同様に、前記図6の演算処理のステップS8及びステップS9が目標加減速度補正手段を構成し、前記車輪速度センサ25及び前記図6の演算処理のステップS2が走行速度検出手段を構成し、前記図16の演算処理のステップS75’が走行路変更検出手段を構成し、前記操舵角度センサ26が操舵角度検出手段を構成している。
【0104】
なお、前記実施形態では各コントローラとしてマイクロコンピュータを適用した場合について説明したが、これに代えてカウンタ、比較器等の電子回路を組み合わせて構成することもできる。
【図面の簡単な説明】
【図1】本発明の駆動力制御装置の一実施形態を示す加減速度フィードバック制御装置の概略構成図である。
【図2】図1の加減速度フィードバック制御装置のシステム構成図である。
【図3】図2のプラントモデルを示す構成図である。
【図4】図2のフィードフォワード補償器の構成図である。
【図5】エンジン運転拘束マップである。
【図6】図2のフィードバック補償器及びフィードフォワード補償器で行われる演算処理のフローチャートである。
【図7】図6の演算処理に用いられる制御マップである。
【図8】図6の演算処理に用いられる制御マップである。
【図9】図6の演算処理に用いられる制御マップである。
【図10】図6の演算処理で行われるマイナプログラムのフローチャートである。
【図11】図6の演算処理で行われるマイナプログラムのフローチャートである。
【図12】第1実施形態の作用の説明図である。
【図13】従来の駆動力制御装置の作用の説明図である。
【図14】第1実施形態の作用の説明図である。
【図15】従来の駆動力制御装置の作用の説明図である。
【図16】図6の演算処理で行われるマイナプログラムのフローチャートである。
【図17】第2実施形態の作用の説明図である。
【符号の説明】
1はエンジン
2は無段変速機
3はトルクコンバータ
4は車輪
5は変速機コントローラ
6は加減速度コントローラ
7はエンジントルクコントローラ
11はスロットルアクチュエータ
12はスロットルバルブ
13はプライマリプーリ
14はセカンダリプーリ
16はロックアップクラッチ
26は操舵角度センサ
27は方向指示スイッチ
28はブレーキスイッチ
31はフィードフォワード補償器
33はフィードバック補償器

Claims (7)

  1. 車両の加減速度が目標加減速度に一致するようにフィードバック制御を行うと共に、道路勾配に基づいて目標加減速度を補正する駆動力制御装置において、車両の走行速度が所定値以下になったら、それ以前の道路勾配を保持し、その保持された道路勾配に基づいて目標加減速度を補正することを特徴とする駆動力制御装置。
  2. 車両の加減速度が目標加減速度に一致するようにフィードバック制御を行う駆動力制御装置において、道路勾配を検出する道路勾配検出手段と、前記道路勾配検出手段で検出された道路勾配に基づいて前記目標加減速度を補正する目標加減速度補正手段と、車両の走行速度を検出する走行速度検出手段とを備え、前記道路勾配検出手段は、前記走行速度検出手段で検出された車両の走行速度が所定値以下になったときには、それ以前に検出された道路勾配を保持することを特徴とする駆動力制御装置。
  3. 車両の走行している走行路が変更されたことを検出する走行路変更検出手段を備え、前記道路勾配検出手段は、前記走行路変更検出手段で走行路の変更が検出されたときには、検出された道路勾配を初期化することを特徴とする請求項2に記載の駆動力制御装置。
  4. 操舵角度を検出する操舵角度検出手段を備え、前記走行路変更検出手段は、前記操舵角度検出手段で検出された操舵角度が所定値以上であるときに走行路が変更されたことを検出することを特徴とする請求項3に記載の駆動力制御装置。
  5. 車両の旋回角度を検出する旋回角度検出手段を備え、前記走行路変更検出手段は、前記旋回角度検出手段で検出された車両の旋回角度が所定値以上であるときにUターンによって走行路が変更されたことを検出し、前記目標加減速度補正手段は、前記走行路変更検出手段でUターンによる走行路の変更が検出されたときに前記保持されている道路勾配の傾斜を逆向きにして初期化することを特徴とする請求項3に記載の駆動力制御装置。
  6. 前記走行路変更検出手段は、前記走行速度検出手段で検出された走行速度が所定値以下であるときに走行路の変更を検出することを特徴とする請求項3乃至5の何れかに記載の駆動力制御装置。
  7. 方向指示装置の操作を検出する方向指示装置操作検出手段を備え、前記走行路変更検出手段は、前記方向指示装置操作検出手段で方向指示装置の操作が検出されたときに走行路の変更を検出することを特徴とする請求項3乃至6の何れかに記載の駆動力制御装置。
JP2002164456A 2002-06-05 2002-06-05 駆動力制御装置 Expired - Fee Related JP4059009B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002164456A JP4059009B2 (ja) 2002-06-05 2002-06-05 駆動力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002164456A JP4059009B2 (ja) 2002-06-05 2002-06-05 駆動力制御装置

Publications (2)

Publication Number Publication Date
JP2004011498A true JP2004011498A (ja) 2004-01-15
JP4059009B2 JP4059009B2 (ja) 2008-03-12

Family

ID=30432601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002164456A Expired - Fee Related JP4059009B2 (ja) 2002-06-05 2002-06-05 駆動力制御装置

Country Status (1)

Country Link
JP (1) JP4059009B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255508A (ja) * 2006-03-22 2007-10-04 Jatco Ltd 自動変速機の変速制御装置
JP2009040305A (ja) * 2007-08-10 2009-02-26 Denso Corp 車両用停止制御装置及び制御システム
JP2009173126A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp 車両およびその制御方法並びに駆動装置
JP2012101791A (ja) * 2011-12-29 2012-05-31 Denso Corp 路面勾配推定装置、車両用制御装置、及び車両用制御システム
JP2012254716A (ja) * 2011-06-09 2012-12-27 Honda Motor Co Ltd 車両用運転操作支援装置
JP2013035440A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013096316A (ja) * 2011-11-01 2013-05-20 Isuzu Motors Ltd 車両の制御装置
CN110736460A (zh) * 2018-07-19 2020-01-31 上海博泰悦臻电子设备制造有限公司 基于神经网络的位置融合方法及系统、车载终端
WO2020158145A1 (ja) 2019-01-29 2020-08-06 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム
US20220111830A1 (en) * 2020-10-12 2022-04-14 Hyundai Motor Company Vehicle driving force control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255508A (ja) * 2006-03-22 2007-10-04 Jatco Ltd 自動変速機の変速制御装置
JP2009040305A (ja) * 2007-08-10 2009-02-26 Denso Corp 車両用停止制御装置及び制御システム
JP2009173126A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp 車両およびその制御方法並びに駆動装置
JP2012254716A (ja) * 2011-06-09 2012-12-27 Honda Motor Co Ltd 車両用運転操作支援装置
JP2013035440A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013096316A (ja) * 2011-11-01 2013-05-20 Isuzu Motors Ltd 車両の制御装置
JP2012101791A (ja) * 2011-12-29 2012-05-31 Denso Corp 路面勾配推定装置、車両用制御装置、及び車両用制御システム
CN110736460A (zh) * 2018-07-19 2020-01-31 上海博泰悦臻电子设备制造有限公司 基于神经网络的位置融合方法及系统、车载终端
CN110736460B (zh) * 2018-07-19 2023-08-04 博泰车联网科技(上海)股份有限公司 基于神经网络的位置融合方法及系统、车载终端
WO2020158145A1 (ja) 2019-01-29 2020-08-06 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム
US20220111830A1 (en) * 2020-10-12 2022-04-14 Hyundai Motor Company Vehicle driving force control method
US11745723B2 (en) * 2020-10-12 2023-09-05 Hyundai Motor Company Vehicle driving force control method

Also Published As

Publication number Publication date
JP4059009B2 (ja) 2008-03-12

Similar Documents

Publication Publication Date Title
US7027904B2 (en) Vehicle driving force control
US20040093144A1 (en) Vehicle speed control system
JPH05312086A (ja) 車両の動力源出力制御装置
JP4059009B2 (ja) 駆動力制御装置
JP2002192979A (ja) 車両の走行制御装置
JP4864036B2 (ja) 自動変速機の制御装置
WO2017043381A1 (ja) 車両のロックアップクラッチ制御装置及びロックアップクラッチ制御方法
JP2006291863A (ja) 車両の駆動力制御装置
US5936158A (en) Acceleration estimation device
JP3979149B2 (ja) 駆動力制御装置
JP2004034886A (ja) 車両の駆動力制御装置
JP3678114B2 (ja) 車速制御装置
JP2005170194A (ja) 駆動力制御装置
JP2005343422A (ja) 駆動力制御装置
CN115771520A (zh) 一种基于模型参数的智能车辆横纵向协同运动控制方法
JP3846350B2 (ja) フィードバック制御装置
JP4000914B2 (ja) 駆動力制御装置
JP2005337053A (ja) 車両用駆動トルク制御装置
JP3804120B2 (ja) 自動変速機の制御装置
JP2004276681A (ja) 車両の駆動力制御装置
JP2005299707A (ja) トルク伝達系の発進制御装置
JP3613974B2 (ja) 車速制御装置
JP2808341B2 (ja) 駆動輪トルクの制御装置
JPH0325034A (ja) 車両駆動糸の制御装置
JP2000039060A (ja) トロイダル型無段変速機の変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070330

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070713

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees