JP2004006270A - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- JP2004006270A JP2004006270A JP2003079597A JP2003079597A JP2004006270A JP 2004006270 A JP2004006270 A JP 2004006270A JP 2003079597 A JP2003079597 A JP 2003079597A JP 2003079597 A JP2003079597 A JP 2003079597A JP 2004006270 A JP2004006270 A JP 2004006270A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- water
- path
- hot water
- reformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】凍結防止運転に係わるランニングコストまたはイニシャルコストを低減した燃料電池システムを提供する。
【解決手段】原料を水素を含んだ改質ガスに改質する改質器1と、改質器1に原料を供給する原料供給手段2と、改質のために改質器1を加熱する加熱手段3と、改質器1から供給される改質ガスと酸化剤ガスとを反応させて発電する燃料電池4と、所定箇所の温度を検出する温度検出手段18とを備え、第1の凍結防止運転モードとして、温度検出手段18が閾値以下の温度を検出したとき、改質器1において加熱手段3により加熱された原料が改質ガスの流通経路5,4,8,3に通流される。
【選択図】 図1
【解決手段】原料を水素を含んだ改質ガスに改質する改質器1と、改質器1に原料を供給する原料供給手段2と、改質のために改質器1を加熱する加熱手段3と、改質器1から供給される改質ガスと酸化剤ガスとを反応させて発電する燃料電池4と、所定箇所の温度を検出する温度検出手段18とを備え、第1の凍結防止運転モードとして、温度検出手段18が閾値以下の温度を検出したとき、改質器1において加熱手段3により加熱された原料が改質ガスの流通経路5,4,8,3に通流される。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、原料を改質した水素を含む改質ガスと酸化剤ガスとを反応させて発電する燃料電池システムに関する。
【0002】
【従来の技術】
従来の燃料電池システムは図6に示すように構成されている(例えば、特許文献1)。
【0003】
すなわち、水素供給手段31から供給される水素と空気供給手段32から供給される空気中の酸素とを反応させて発電する燃料電池33と、燃料電池33に水を循環させる水循環手段34と、燃料電池33の発電出力を制御する出力制御装置35と、外部の温度を検出する温度センサ36および制御装置37とを備えている。水循環手段34は、メインタンク38と、メインタンク38内の水をポンプ39によって燃料電池33の水素極33aに供給する給水路40と、燃料電池33の水素極33aおよび酸素極33bからの排水をメインタンク38に回収する排水路41とから構成されている。
【0004】
この従来の燃料電池システムは固体高分子形の燃料電池33を使っているため、燃料電池33が発電反応を行う場合に、燃料電池33の水素極33aを常に加湿する必要があり、そのためにメインタンク38より水素極33aに水を供給している。燃料電池33の発電反応で生成された酸素極33bの水と水素極33aで余った水は排水路41から回収され、燃料電池33とメインタンク38との間を循環することになる。また、燃料電池33で発生した電力は、出力制御装置35で制御された後、電力負荷へ供給される。
【0005】
つぎに、この従来の燃料電池システムの凍結防止運転の動作について説明する。温度センサ36が閾値以下の温度を検知した場合、制御装置37によって燃料電池33へ水素供給手段31と空気供給手段32からそれぞれ水素と空気が供給され、燃料電池33は発電を行う。同時に、メインタンク38内の水は水素極33aに供給され、水素極33aで余った水と燃料電池33の発電反応で生成された酸素極33bの水は排水路41から回収され、燃料電池33とメインタンク38との間を循環する。この時、燃料電池33の発電反応では熱も発生するため、この熱によって水循環手段34であるメインタンク38、給水路40、排水路41中の水は凍結を未然に防止することができる。
【0006】
【特許文献1】
特開平11−214025公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の燃料電池システムでは、凍結を防止するために電力負荷からの要求がなくても燃料電池の発電運転を行う必要があり、発生した電力は結局は無駄に捨ててしまう結果となり、ランニングコストを増大させるという課題があった。特に固体高分子形の燃料電池の場合、発電運転時の発熱エネルギーと発電エネルギーとの比率はほぼ1:1に近いため、凍結を防止するために最低限必要な発熱エネルギーの倍以上のエネルギーを投入する必要があった。また、仮に凍結防止運転で発生した電力を一時的に蓄電池に保存するとしても、膨大な容量の蓄電池が必要となり、システムのイニシャルコストを増大させるという課題があった。
【0008】
本発明は、上記従来の課題を考慮し、凍結防止運転に係わるランニングコストまたはイニシャルコストを低減した燃料電池システムを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の燃料電池システムは、原料を水素を含んだ改質ガスに改質する改質器と、前記改質器に前記原料を供給する原料供給手段と、前記改質器を加熱する加熱手段と、前記改質器から供給される前記改質ガスと酸化剤ガスとを反応させて発電する燃料電池と、所定箇所の温度を検出する温度検出手段とを備え、第1の凍結防止運転モードとして、前記温度検出手段が閾値以下の温度を検出したとき、前記改質器において前記加熱手段により加熱された原料が前記改質ガスの流通経路に通流される。 かかる構成とすると、改質器で加熱された原料を燃料電池システムの改質ガスの流通経路に通流させることで、燃料電池の発電を行わずに最小限のエネルギーで燃料電池システム内の水の凍結を防止することができ、燃料電池システムのランニングコストを抑えることができる。
【0010】
発電要求があった場合には、前記燃料電池が発電し、かつ前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記燃料電池システムが前記第1の凍結防止運転モードに移行してもよい。
【0011】
また、前記改質ガスの流通経路が、前記発電の反応で余った改質ガスを含んで前記燃料電池から排出されるオフガスを前記加熱手段に燃料として導入する排水素経路を有し、前記加熱された原料が前記改質器、前記燃料電池、前記排水素経路、及び前記加熱手段の順に通流されてもよい。かかる構成とすると、少なくとも、排水素経路内の水の凍結を防止することができる。
【0012】
また、前記排水素経路が前記オフガス中の水分を凝縮する水素経路凝縮器および前記凝縮された水を貯める水素経路凝縮水タンクを有し、前記加熱された原料が、前記水素経路凝縮器および前記水素経路凝縮水タンクにも通流されてもよい。かかる構成とすると、水素経路凝縮器および素経路凝縮水タンク内の水の凍結を防止することができる。
【0013】
また、前記発電の反応で余った酸化剤ガスを含んで前記燃料電池から排出される排酸化剤ガスの経路である排酸化剤ガス経路、前記排酸化剤ガス中の水分を凝縮する酸化剤ガス経路凝縮器、および前記凝縮された水を貯める酸化剤ガス経路凝縮水タンクをさらに備え、前記酸化剤ガス経路凝縮水タンクと前記水素経路凝縮水タンクとは各々の水面より低い位置で接続されてもよい。かかる構成とすると、水素経路凝縮水タンクとの接続部を通じて酸化剤ガス経路凝縮水タンク内の水の凍結を防止することができる。
【0014】
また、前記水素経路凝縮水タンクおよび前記酸化剤ガス経路凝縮水タンクの少なくとも一方に貯められた水を前記改質器に供給する改質水供給手段をさらに備え、前記第1の凍結防止運転モードにおいて、前記改質器へ前記改質水供給手段から前記貯められた水を供給してもよい。かかる構成とすると、燃料電池システム内で発生した水が有効利用されるとともに、その水の凍結を防止することができる。
【0015】
また、前記燃料電池を冷却するための水が循環する冷却水循環経路をさらに備え、前記第1の凍結防止運転モードにおいて、前記冷却水循環経路を前記水が循環されてもよい。かかる構成とすると、冷却水循環経路内の水の凍結を防止することができる。
【0016】
また、前記冷却水循環経路を循環する水が貯湯タンク内の水または該貯湯タンクから出て該貯湯タンクに戻る循環経路を循環する水と熱交換されるよう構成されてもよい。かかる構成とすると、発電時に燃料電池で発生する熱を冷却水を介して貯湯タンクに温水として貯えることができるとともに、非発電時における貯湯タンク内の水の凍結を防止することができる。
【0017】
また、前記第1の凍結防止運転モードにおいて、前記加熱手段によって前記改質器を改質反応が生じない温度に加熱することにより、前記加熱された原料を前記改質器から送出してもよい。かかる構成とすると、加熱された原料を改質器から送出する構成を簡単に実現できる。
【0018】
また、前記燃料電池システムは水が存在する1以上の経路を備え、前記温度検出手段は、前記1以上の経路のうちの前記水の温度が最も低くなる箇所に取付けられていてもよい。かかる構成とすると、燃料電池システム内に残留する水の凍結を好適に防止することができる。
【0019】
また、前記温度検出手段は、外気温を検出可能な箇所に取付けられてもよい。かかる構成とすると、外気温をモニターすることで1個の温度検出手段で確実に凍結を防止することができ、コストを安価にすることができる。
【0020】
また、本発明に係る燃料電池システムは、発熱を伴う発電をする燃料電池と、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと、前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータと、所定箇所の温度を検出する温度検出手段とを備え、発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が閾値以下の温度を検出したときに、前記燃料電池が発電する。
【0021】
かかる構成とすると、燃料電池を発電させて凍結を防止する際に、発生した電力を無駄に捨てることなく熱エネルギーとして貯湯タンクに貯えるので、電力を一時的に保存する蓄電池を必要とせず、燃料電池システムのイニシャルコストを抑えることができる。
【0022】
前記燃料電池は発熱を伴う発電をするものであり、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータとをさらに備え、発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記燃料電池が発電し、前記燃料電池システムが前記第1の凍結防止運転モードと前記第2の凍結防止運転モードとを選択してもよい。かかる構成とすると、発電をしない第1の凍結防止運転モードと発電をする第2の凍結運転モードとを適宜選択することによって凍結防止運転に係わるランニングコスト及びイニシャルコストを効果的に低減することが可能になる。
【0023】
また、一日の予想要求発電量にもとづき発電運転を行った場合に前記貯湯タンク内に貯えられる予想発生温水熱量と、一日の予想使用温水熱量とを比較し、前記予想使用温水熱量が前記予想発生温水熱量より多い場合、前記予想使用温水熱量と前記予想発生温水熱量との差分の熱量が貯まるまで前記第2の凍結防止運転モードで運転し、その後は前記第1の凍結防止運転モードで運転してもよい。かかる構成とすると、貯湯タンク内に貯えられる熱量が不足する時は、発電による凍結防止運転を行って発生エネルギーを全て熱に変換し、それ以外の時は発電せずに必要最小限のエネルギーで凍結防止運転を行うので、凍結防止運転に係わるランニングコスト及びイニシャルコストをさらに効果的に低減することができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を、図面にもとづいて説明する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1に係る燃料電池システムのシステム構成図である。
【0026】
図1において、符号1は、原料供給手段2から供給される原料を、本発明の加熱手段の一例としてのバーナ3の熱による改質反応で水素リッチガスを生成する改質器を示す。符号4は、改質器1から供給される水素リッチガスと酸化剤ガスの一例としての空気とを反応させて発電する燃料電池を示す。燃料電池4は、水素が通流する水素極4aと酸化剤ガスが通流する酸素極4bとを有している。符号5は、改質器1と燃料電池4の水素極4aとを接続する水素供給経路を示す。この水素供給経路5は、本実施の形態1では、切替弁6によって水素の供給先を燃料電池4と燃料電池4を通らないで水素経路凝縮器8aに至るバイパス経路7との間で適宜切替えるようになっている。
【0027】
符号8は、燃料電池4の水素極4aとバーナ3とを接続する排水素経路を示す。この排水素経路8は、水素経路凝縮器8aと水素経路凝縮水タンク8bを備えている。
【0028】
燃料電池4の酸素極4bには、酸化剤ガスを供給する酸化剤ガス供給手段9と、余った酸化剤ガスを排出する排酸化剤ガス経路10とが接続されている。排酸化剤ガス経路10は、酸化剤ガス経路凝縮器10aと酸化剤ガス経路凝縮水タンク10bを備えている。酸化剤ガス経路凝縮水タンク10aは、その水面より低い位置で接続部11を介して水素経路凝縮水タンク8aに連通している。これにより、酸化剤ガスと水素ガスとが混ざるのが防止される。
【0029】
符号12は、改質反応に必要な水を改質器1へ供給する改質水供給手段を示す。この改質水供給手段12は、水素経路凝縮水タンク8bもしくは酸化剤ガス経路凝縮水タンク10bの少なくとも一方から改質水ポンプ12aによって水を汲み上げる構成となっている。本実施の形態1では、酸化剤ガス経路凝縮水タンク10bから水を汲み上げている。
【0030】
符号13は、燃料電池4で発生する熱を冷却する冷却水循環経路を示す。この冷却水循環経路13は、燃料電池4と熱交換器14との間を冷却水ポンプ13aによって冷却水が循環させられる構成となっている。
【0031】
符号15は、燃料電池4で発生する熱を冷却水循環経路13の熱交換器14を介して貯湯タンク16に貯えるための貯湯循環経路を示す。この貯湯循環経路115は、熱交換器14と貯湯タンク16との間を貯湯ポンプ15aによって温水が循環させられる構成となっている。
【0032】
符号17は、燃料電池4で発生した電力を制御し家庭などの電力負荷へ供給する出力制御装置を示す。符号18は温度センサ等からなる温度検出手段、符号19は制御装置を示す。なお、この温度検出手段18は、燃料電池システムにおける各種経路(以下、各経路という)内の水の凍結防止のために温度を検知する場所として有効であれば、燃料電池システム内外のいずれの箇所であっても構わない。但し、凍結の始まりを確実に検知するためには、各経路内の残留水の温度が最も低くなる箇所に設けるのが好ましい。本実施の形態1では、温度検出手段18は、酸化剤ガス経路凝縮水タンク10b内の水温を検知できる箇所に取付けられている。
【0033】
そして、燃料電池システム全体の動作がコンピュータからなる制御装置19によって制御されている。制御装置19には、システムのオン・オフ等の指令を入力するための操作部(図示せず)が設けられており、制御装置19はこの操作部から入力される指令に応じて燃料電池システムを制御する。
【0034】
つぎに、以上のように構成された本実施の形態1の燃料電池システムにおける動作を説明する。
【0035】
図2は図1の燃料電池システムの動作の概要を示すフローチャートである。燃料電池システムの動作は、制御装置19の制御プログラムによって制御されているので、以下では制御装置19の制御内容を燃料電池システムの動作として記載する。
【0036】
図1及び図2において、燃料電池システムは、通常の発電を行う発電モードと凍結を防止する凍結防止運転モード(以下、第1の凍結防止運転モードという)とを有している。
【0037】
燃料電池システムは、図示されない操作部からシステムのオン指令が入力されると始動し、まず、発電要求の有無を判断する(ステップS1)。ここでは、電力負荷が所定値を超えるか否かによって発電要求があったか否かを判断する。なお、図示されない操作部から発電指令が入力されるよう構成し、その発電指令が入力されたか否かによって発電要求があったか否かを判断してもよい。
【0038】
まず、発電要求があった場合を説明する。
【0039】
この場合、燃料電池システムは発電運転モードに移行し、燃料電池システムの起動・ガス通流が行われる(ステップS2)。
【0040】
具体的には、まず、切替弁6がバイパス経路7側に切替られる。次いで、原料供給手段2より、例えば、メタン、都市ガス、プロパン等の炭化水素もしくは改質器1で加熱されて気化する液体燃料(エタノール、メタノール等の低沸点アルコール燃料)などの原料が改質器1に供給され、バーナ3で加熱され、水との改質反応によって水素リッチな改質ガスが生成される。しかし、起動時には、改質器1の温度が低く、そのため水素リッチなガスが十分生成されないので、改質器1から送出される改質ガスは、原料(ガス)が多く水素が少ない組成となっている。この改質ガスは、バイパス経路7を経て排水素経路8を通流し、バーナ3の燃料ガスとして消費される。改質器1の所定箇所(例えば反応部)の温度はモニタリングされており(ステップS3)、その温度が所定値(例えば改質反応が可能な温度)に到達し、所定時間経過すると切替弁6が燃料電池4側に切替えられ、発電運転が開始される(ステップS4)。なお、改質器1の立ち上がり状態を、改質ガス中の水素濃度をモニタリングすることによって判断してもよい。
【0041】
一方、燃料電池4の酸素極4bには酸化剤ガス供給手段9から酸化剤ガスとしての空気が供給される。燃料電池4内では、水素極4aに供給された水素と酸素極4bに供給された空気中の酸素とが反応して発電が行われる。燃料電池4の水素極4aで大半の水素は反応に消費されるが、反応に使われなかった排水素(オフガス)は排水素経路8に排出される。この排水素は、水素経路凝縮器8aでその水分が凝縮させられ、水素経路凝縮水タンク8bで凝縮水が分離され、その後にバーナ3に供給され、改質反応の加熱用燃料として利用される。
【0042】
燃料電池4の酸素極4bでは水素と空気中の酸素との反応で水が生成され、この水が水蒸気となって排酸化剤ガス経路10に空気とともに排出される。この水蒸気(水分)を含んだ空気は、酸化剤ガス経路凝縮器10aでその水分が凝縮sれ、酸化剤ガス経路凝縮水タンク10bで凝縮水が分離される。この酸化剤ガス経路凝縮水タンク10bと水素経路凝縮水タンク8bとに回収された水は、改質水ポンプ12aによって改質器1へ供給され改質反応に必要な水として使われる。
【0043】
燃料電池4で発生した電力は、出力制御装置17で制御され、家庭などの電力負荷へ供給される。一方、燃料電池4の発電反応で発生した熱は、冷却水ポンプ13aによる冷却水循環経路13内の水の循環で熱交換器14に伝えられ、そこで貯湯循環経路15内の水と熱交換される。この熱交換された熱は、貯湯ポンプ15aによる水の循環によって貯湯タンク16に至り、そこで温水として貯えられる。この温水は、家庭などの給湯、暖房などの用途として供給される。これにより、燃料電池4で発生した熱が有効に利用される。なお、熱交換器14を貯湯タンク16内に設けてもよい。
【0044】
つぎに、発電要求が無かった場合を説明する。
【0045】
この場合、燃料電池システムは、第1の凍結防止運転モードに移行し、所定箇所の温度をモニタリングする(ステップS5)。そして、その温度が所定温度を超える場合には、燃料電池システムは停止状態を維持し(ステップS6)、その温度が所定温度以下である場合には、ガス通流を行う(ステップS7)。
【0046】
具体的には、燃料電池4の発電要求がない時に、温度検出手段18が閾値(閾値は、凍結防止運転により凍結回避可能な温度)、例えば0℃を超える温度を検出した場合には、燃料電池システムは停止状態を維持する(ステップS6)。一方、温度検出手段18が閾値以下の温度を検出した場合には、切替弁6が燃料電池4側に切替られ、原料供給手段2から原料が改質器1、水素供給経路5、燃料電池4、排水素経路8の水素経路凝縮器8a、水素経路凝縮水タンク8b、及びバーナ3の順に通流し、バーナ3で燃焼される(ステップS7)。この際、改質水供給手段12から改質器1に水が供給されるが、改質器1ではバーナ3の燃焼を調整することによって、反応部の温度が反応に必要な温度以下に維持される。例えば、反応には約400℃以上の温度が必要であるが、この場合には約300℃の温度に維持される。そのため、改質器1では原料が改質されず、当該温度に加熱された原料が改質器1から送出される。また、酸化剤ガス供給手段9も停止状態にあり、空気が酸素極4aに供給されない。従って、燃料電池4は発電をしない。
【0047】
その結果、改質器1においてバーナー3で加熱された原料が、燃料電池システム内を水素供給経路5、燃料電池4、排水素経路8の水素経路凝縮器8a、水素経路凝縮水タンク8b、及びバーナ3の順に通流し、それによって、各経路内の残留水及び水素経路凝縮水タンク8b内の凍結が防止される。
【0048】
また、水素経路凝縮水タンク8bは水面より低い位置で接続部11によって酸化剤ガス経路凝縮水タンク10bと連通しているため、第1の凍結防止運転モードによって水素経路凝縮水タンク8b内の水からの伝熱で酸化剤ガス経路凝縮水タンク10b内の水の凍結が防止される。
【0049】
また、改質水ポンプ12aで酸化剤ガス経路凝縮水タンク10b内の水が改質器1に供給され、それにより、改質水供給手段12内の水の凍結が防止される。
【0050】
また、第1の凍結防止運転モードによって燃料電池4が加熱されるため、冷却水ポンプ13aを運転し循環させることによって冷却水循環経路13内の水の凍結も防止するとともに、熱交換器14で貯湯循環経路15に熱を伝えることによって、貯湯タンク16内の水の凍結も防止することができる。
【0051】
このように、第1の凍結防止運転モードでは、燃料電池4の発電を行わずに最小限のエネルギー(本実施の形態では原料消費量)で各経路内の水の凍結を防止することができ、システムのランニングコストを抑えることができる。
【0052】
なお、上記の説明では、第1の凍結防止運転モードでは、酸化剤ガス供給手段9を停止して全く発電しないようにしたが、少量の発電をしても構わない。この場合、例えば、改質器1において、原料を部分的に改質(発電運転モードの場合の水素濃度より低い水素濃度となるように改質する)し、その他は発電運転モードの場合と同様に燃料電池システムを動作させればよい。
【0053】
(実施の形態2)
図3は、本発明の実施の形態2における燃料電池システムのシステム構成図である。図3において、図1と同一又は相当する部分については、同一符号を付与し、その説明を省略する。本実施の形態2では、温度検出手段20が、外気温を検出可能な箇所に取付けられている。その他の点は、実施の形態1と同様である。
【0054】
実施の形態1で述べたように、各経路内の水の凍結を防止するためには、最も水温が低くなる部分の温度を検知するのが良いが、条件によっては最も水温が低くなる部分が異なる場合があるため、そのような場合には複数の温度検出手段20を設ける必要がある。そこで、外気温を検出することによって、1個の温度検出手段20で確実に凍結を防止することができ、コストを安価にすることができる。
【0055】
(実施の形態3)
図4は、本発明の実施の形態3における燃料電池システムのシステム構成図である。図4において、図1と同一又は相当する部分については、同一符号を付与し、その説明を省略する。本実施の形態3では、燃料電池システムに出力制御装置17に電気的に接続されたヒータ21が貯湯循環経路15内に設けられ、この燃料電池システムが第2の凍結防止運転モードを有している。その他の点は、実施の形態1と同様である。
【0056】
つぎに、この第2の凍結防止運転モードにおける動作について説明する。燃料電池4の発電要求がない時に、温度検出手段18が閾値以下(閾値は、凍結防止運転により凍結回避可能な温度)、例えば0℃以下の温度を検出すると、第2の凍結防止運転モードとして、原料供給手段2から原料が改質器1に供給されるとともに酸化剤ガス供給手段から空気が燃料電池4に供給され、改質器1で発生した改質ガスと酸化剤ガスとしての空気とが反応して燃料電池4で発電が行われる。そして、この発電反応で発生した熱は、排水素経路8、排酸化剤ガス経路10等の各経路内を加熱するだけでなく、冷却水循環経路13の熱交換器14を介して貯湯循環経路15から貯湯タンク16内に伝えられ、そこで温水として貯えられる。また、燃料電池4で発生した余剰電力は、出力制御装置17でヒータ21に通電するよう制御される。
【0057】
この第2の凍結防止運転モードは、燃料電池4の発電を行うものの、発生した電力を無駄に捨てることなく熱エネルギーとして貯湯タンク16に貯えるもので、電力を一時的に保存する蓄電池を必要とせず、システムのイニシャルコストを抑えることができるものである。なお、ヒータ21を貯湯タンク16内に設けても同様の効果が得られる。
【0058】
次に、本実施の形態3における凍結防止運転モードの変形例を説明する。本変形例では、この第2の凍結防止運転モードと第1の凍結防止運転モード適宜選択するように制御装置19が燃料電池システムを制御する。このような構成とすると、凍結防止運転に係わるランニングコスト及びイニシャルコストをさらに効果的に低減することができる。
【0059】
図5は本変形例による凍結防止運転モードの内容を示すフローチャートである。
【0060】
図5を参照して、本変形例では燃料電池4が発電要求に応じて発電運転を行い、かつ制御装置19が以下の制御を行う。
【0061】
まず、一日の予想要求発電量を演算する(ステップS11)。
【0062】
次いで、この一日の予想要求発電量にもとづき発電運転を行った場合の貯湯タンク16内に貯えられる予想発生温水熱量Q1を演算する(ステップS12)。
【0063】
次いで、一日の予想使用温水熱量Q2を演算する(ステップS13)。
【0064】
次いで、この一日の予想使用温水熱量Q2を予想発生温水熱量Q1と比較する(ステップS14)。
【0065】
そして、予想使用温水熱量Q2が予想発生温水熱量Q1より多い場合において、温度検出手段18が閾値以下の温度を検出した時、その差分(Q2−Q1)の熱量が貯まるまで第2の凍結防止運転モードで運転し(ステップS15、14)、その後は、第1の凍結防止運転モードで運転する(ステップS16)。
【0066】
本変形例によれば、貯湯タンク16内に貯えられる熱量が不足する時は、発電による凍結防止運転を行って発生エネルギーを全て熱に変換し、それ以外の時は発電せずに必要最小限のエネルギーで凍結防止運転を行う。従って、凍結防止運転に係わるランニングコスト及びイニシャルコストがさらに効果的に低減される。
【0067】
【発明の効果】
本発明は以上に説明した形態で実施され、燃料電池システムにおいて、凍結防止運転に係わるランニングコストまたはイニシャルコストを低減することができるという効果を奏する。
【図面の簡単な説明】
【図1】
本発明の実施の形態1による燃料電池システムのシステム構成図である。
【図2】
図1の燃料電池システムの動作の概要を示すフローチャートである。
【図3】
本発明の実施の形態2による燃料電池システムのシステム構成図である。
【図4】
本発明の実施の形態3による燃料電池システムのシステム構成図である。
【図5】
本発明の実施の形態3の変形例による凍結防止運転モードの内容を示すフローチャートである。
【図6】
従来の燃料電池システムのシステム構成図である。
【符号の説明】
1 改質器
2 原料供給手段
3 バーナ
4 燃料電池
5 水素供給経路
6 切替弁
7 バイパス経路
8 排水素経路
8a 水素経路凝縮器
8b 水素経路凝縮水タンク
10 排酸化剤ガス経路
10a 酸化剤ガス経路凝縮器
10b 酸化剤ガス経路凝縮水タンク
12 改質水供給手段
13 冷却水循環経路
15 貯湯循環経路
16 貯湯タンク
18 温度検出手段
19 制御装置
20 温度検出手段
21 ヒータ
【発明の属する技術分野】
本発明は、原料を改質した水素を含む改質ガスと酸化剤ガスとを反応させて発電する燃料電池システムに関する。
【0002】
【従来の技術】
従来の燃料電池システムは図6に示すように構成されている(例えば、特許文献1)。
【0003】
すなわち、水素供給手段31から供給される水素と空気供給手段32から供給される空気中の酸素とを反応させて発電する燃料電池33と、燃料電池33に水を循環させる水循環手段34と、燃料電池33の発電出力を制御する出力制御装置35と、外部の温度を検出する温度センサ36および制御装置37とを備えている。水循環手段34は、メインタンク38と、メインタンク38内の水をポンプ39によって燃料電池33の水素極33aに供給する給水路40と、燃料電池33の水素極33aおよび酸素極33bからの排水をメインタンク38に回収する排水路41とから構成されている。
【0004】
この従来の燃料電池システムは固体高分子形の燃料電池33を使っているため、燃料電池33が発電反応を行う場合に、燃料電池33の水素極33aを常に加湿する必要があり、そのためにメインタンク38より水素極33aに水を供給している。燃料電池33の発電反応で生成された酸素極33bの水と水素極33aで余った水は排水路41から回収され、燃料電池33とメインタンク38との間を循環することになる。また、燃料電池33で発生した電力は、出力制御装置35で制御された後、電力負荷へ供給される。
【0005】
つぎに、この従来の燃料電池システムの凍結防止運転の動作について説明する。温度センサ36が閾値以下の温度を検知した場合、制御装置37によって燃料電池33へ水素供給手段31と空気供給手段32からそれぞれ水素と空気が供給され、燃料電池33は発電を行う。同時に、メインタンク38内の水は水素極33aに供給され、水素極33aで余った水と燃料電池33の発電反応で生成された酸素極33bの水は排水路41から回収され、燃料電池33とメインタンク38との間を循環する。この時、燃料電池33の発電反応では熱も発生するため、この熱によって水循環手段34であるメインタンク38、給水路40、排水路41中の水は凍結を未然に防止することができる。
【0006】
【特許文献1】
特開平11−214025公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の燃料電池システムでは、凍結を防止するために電力負荷からの要求がなくても燃料電池の発電運転を行う必要があり、発生した電力は結局は無駄に捨ててしまう結果となり、ランニングコストを増大させるという課題があった。特に固体高分子形の燃料電池の場合、発電運転時の発熱エネルギーと発電エネルギーとの比率はほぼ1:1に近いため、凍結を防止するために最低限必要な発熱エネルギーの倍以上のエネルギーを投入する必要があった。また、仮に凍結防止運転で発生した電力を一時的に蓄電池に保存するとしても、膨大な容量の蓄電池が必要となり、システムのイニシャルコストを増大させるという課題があった。
【0008】
本発明は、上記従来の課題を考慮し、凍結防止運転に係わるランニングコストまたはイニシャルコストを低減した燃料電池システムを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の燃料電池システムは、原料を水素を含んだ改質ガスに改質する改質器と、前記改質器に前記原料を供給する原料供給手段と、前記改質器を加熱する加熱手段と、前記改質器から供給される前記改質ガスと酸化剤ガスとを反応させて発電する燃料電池と、所定箇所の温度を検出する温度検出手段とを備え、第1の凍結防止運転モードとして、前記温度検出手段が閾値以下の温度を検出したとき、前記改質器において前記加熱手段により加熱された原料が前記改質ガスの流通経路に通流される。 かかる構成とすると、改質器で加熱された原料を燃料電池システムの改質ガスの流通経路に通流させることで、燃料電池の発電を行わずに最小限のエネルギーで燃料電池システム内の水の凍結を防止することができ、燃料電池システムのランニングコストを抑えることができる。
【0010】
発電要求があった場合には、前記燃料電池が発電し、かつ前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記燃料電池システムが前記第1の凍結防止運転モードに移行してもよい。
【0011】
また、前記改質ガスの流通経路が、前記発電の反応で余った改質ガスを含んで前記燃料電池から排出されるオフガスを前記加熱手段に燃料として導入する排水素経路を有し、前記加熱された原料が前記改質器、前記燃料電池、前記排水素経路、及び前記加熱手段の順に通流されてもよい。かかる構成とすると、少なくとも、排水素経路内の水の凍結を防止することができる。
【0012】
また、前記排水素経路が前記オフガス中の水分を凝縮する水素経路凝縮器および前記凝縮された水を貯める水素経路凝縮水タンクを有し、前記加熱された原料が、前記水素経路凝縮器および前記水素経路凝縮水タンクにも通流されてもよい。かかる構成とすると、水素経路凝縮器および素経路凝縮水タンク内の水の凍結を防止することができる。
【0013】
また、前記発電の反応で余った酸化剤ガスを含んで前記燃料電池から排出される排酸化剤ガスの経路である排酸化剤ガス経路、前記排酸化剤ガス中の水分を凝縮する酸化剤ガス経路凝縮器、および前記凝縮された水を貯める酸化剤ガス経路凝縮水タンクをさらに備え、前記酸化剤ガス経路凝縮水タンクと前記水素経路凝縮水タンクとは各々の水面より低い位置で接続されてもよい。かかる構成とすると、水素経路凝縮水タンクとの接続部を通じて酸化剤ガス経路凝縮水タンク内の水の凍結を防止することができる。
【0014】
また、前記水素経路凝縮水タンクおよび前記酸化剤ガス経路凝縮水タンクの少なくとも一方に貯められた水を前記改質器に供給する改質水供給手段をさらに備え、前記第1の凍結防止運転モードにおいて、前記改質器へ前記改質水供給手段から前記貯められた水を供給してもよい。かかる構成とすると、燃料電池システム内で発生した水が有効利用されるとともに、その水の凍結を防止することができる。
【0015】
また、前記燃料電池を冷却するための水が循環する冷却水循環経路をさらに備え、前記第1の凍結防止運転モードにおいて、前記冷却水循環経路を前記水が循環されてもよい。かかる構成とすると、冷却水循環経路内の水の凍結を防止することができる。
【0016】
また、前記冷却水循環経路を循環する水が貯湯タンク内の水または該貯湯タンクから出て該貯湯タンクに戻る循環経路を循環する水と熱交換されるよう構成されてもよい。かかる構成とすると、発電時に燃料電池で発生する熱を冷却水を介して貯湯タンクに温水として貯えることができるとともに、非発電時における貯湯タンク内の水の凍結を防止することができる。
【0017】
また、前記第1の凍結防止運転モードにおいて、前記加熱手段によって前記改質器を改質反応が生じない温度に加熱することにより、前記加熱された原料を前記改質器から送出してもよい。かかる構成とすると、加熱された原料を改質器から送出する構成を簡単に実現できる。
【0018】
また、前記燃料電池システムは水が存在する1以上の経路を備え、前記温度検出手段は、前記1以上の経路のうちの前記水の温度が最も低くなる箇所に取付けられていてもよい。かかる構成とすると、燃料電池システム内に残留する水の凍結を好適に防止することができる。
【0019】
また、前記温度検出手段は、外気温を検出可能な箇所に取付けられてもよい。かかる構成とすると、外気温をモニターすることで1個の温度検出手段で確実に凍結を防止することができ、コストを安価にすることができる。
【0020】
また、本発明に係る燃料電池システムは、発熱を伴う発電をする燃料電池と、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと、前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータと、所定箇所の温度を検出する温度検出手段とを備え、発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が閾値以下の温度を検出したときに、前記燃料電池が発電する。
【0021】
かかる構成とすると、燃料電池を発電させて凍結を防止する際に、発生した電力を無駄に捨てることなく熱エネルギーとして貯湯タンクに貯えるので、電力を一時的に保存する蓄電池を必要とせず、燃料電池システムのイニシャルコストを抑えることができる。
【0022】
前記燃料電池は発熱を伴う発電をするものであり、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータとをさらに備え、発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記燃料電池が発電し、前記燃料電池システムが前記第1の凍結防止運転モードと前記第2の凍結防止運転モードとを選択してもよい。かかる構成とすると、発電をしない第1の凍結防止運転モードと発電をする第2の凍結運転モードとを適宜選択することによって凍結防止運転に係わるランニングコスト及びイニシャルコストを効果的に低減することが可能になる。
【0023】
また、一日の予想要求発電量にもとづき発電運転を行った場合に前記貯湯タンク内に貯えられる予想発生温水熱量と、一日の予想使用温水熱量とを比較し、前記予想使用温水熱量が前記予想発生温水熱量より多い場合、前記予想使用温水熱量と前記予想発生温水熱量との差分の熱量が貯まるまで前記第2の凍結防止運転モードで運転し、その後は前記第1の凍結防止運転モードで運転してもよい。かかる構成とすると、貯湯タンク内に貯えられる熱量が不足する時は、発電による凍結防止運転を行って発生エネルギーを全て熱に変換し、それ以外の時は発電せずに必要最小限のエネルギーで凍結防止運転を行うので、凍結防止運転に係わるランニングコスト及びイニシャルコストをさらに効果的に低減することができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を、図面にもとづいて説明する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1に係る燃料電池システムのシステム構成図である。
【0026】
図1において、符号1は、原料供給手段2から供給される原料を、本発明の加熱手段の一例としてのバーナ3の熱による改質反応で水素リッチガスを生成する改質器を示す。符号4は、改質器1から供給される水素リッチガスと酸化剤ガスの一例としての空気とを反応させて発電する燃料電池を示す。燃料電池4は、水素が通流する水素極4aと酸化剤ガスが通流する酸素極4bとを有している。符号5は、改質器1と燃料電池4の水素極4aとを接続する水素供給経路を示す。この水素供給経路5は、本実施の形態1では、切替弁6によって水素の供給先を燃料電池4と燃料電池4を通らないで水素経路凝縮器8aに至るバイパス経路7との間で適宜切替えるようになっている。
【0027】
符号8は、燃料電池4の水素極4aとバーナ3とを接続する排水素経路を示す。この排水素経路8は、水素経路凝縮器8aと水素経路凝縮水タンク8bを備えている。
【0028】
燃料電池4の酸素極4bには、酸化剤ガスを供給する酸化剤ガス供給手段9と、余った酸化剤ガスを排出する排酸化剤ガス経路10とが接続されている。排酸化剤ガス経路10は、酸化剤ガス経路凝縮器10aと酸化剤ガス経路凝縮水タンク10bを備えている。酸化剤ガス経路凝縮水タンク10aは、その水面より低い位置で接続部11を介して水素経路凝縮水タンク8aに連通している。これにより、酸化剤ガスと水素ガスとが混ざるのが防止される。
【0029】
符号12は、改質反応に必要な水を改質器1へ供給する改質水供給手段を示す。この改質水供給手段12は、水素経路凝縮水タンク8bもしくは酸化剤ガス経路凝縮水タンク10bの少なくとも一方から改質水ポンプ12aによって水を汲み上げる構成となっている。本実施の形態1では、酸化剤ガス経路凝縮水タンク10bから水を汲み上げている。
【0030】
符号13は、燃料電池4で発生する熱を冷却する冷却水循環経路を示す。この冷却水循環経路13は、燃料電池4と熱交換器14との間を冷却水ポンプ13aによって冷却水が循環させられる構成となっている。
【0031】
符号15は、燃料電池4で発生する熱を冷却水循環経路13の熱交換器14を介して貯湯タンク16に貯えるための貯湯循環経路を示す。この貯湯循環経路115は、熱交換器14と貯湯タンク16との間を貯湯ポンプ15aによって温水が循環させられる構成となっている。
【0032】
符号17は、燃料電池4で発生した電力を制御し家庭などの電力負荷へ供給する出力制御装置を示す。符号18は温度センサ等からなる温度検出手段、符号19は制御装置を示す。なお、この温度検出手段18は、燃料電池システムにおける各種経路(以下、各経路という)内の水の凍結防止のために温度を検知する場所として有効であれば、燃料電池システム内外のいずれの箇所であっても構わない。但し、凍結の始まりを確実に検知するためには、各経路内の残留水の温度が最も低くなる箇所に設けるのが好ましい。本実施の形態1では、温度検出手段18は、酸化剤ガス経路凝縮水タンク10b内の水温を検知できる箇所に取付けられている。
【0033】
そして、燃料電池システム全体の動作がコンピュータからなる制御装置19によって制御されている。制御装置19には、システムのオン・オフ等の指令を入力するための操作部(図示せず)が設けられており、制御装置19はこの操作部から入力される指令に応じて燃料電池システムを制御する。
【0034】
つぎに、以上のように構成された本実施の形態1の燃料電池システムにおける動作を説明する。
【0035】
図2は図1の燃料電池システムの動作の概要を示すフローチャートである。燃料電池システムの動作は、制御装置19の制御プログラムによって制御されているので、以下では制御装置19の制御内容を燃料電池システムの動作として記載する。
【0036】
図1及び図2において、燃料電池システムは、通常の発電を行う発電モードと凍結を防止する凍結防止運転モード(以下、第1の凍結防止運転モードという)とを有している。
【0037】
燃料電池システムは、図示されない操作部からシステムのオン指令が入力されると始動し、まず、発電要求の有無を判断する(ステップS1)。ここでは、電力負荷が所定値を超えるか否かによって発電要求があったか否かを判断する。なお、図示されない操作部から発電指令が入力されるよう構成し、その発電指令が入力されたか否かによって発電要求があったか否かを判断してもよい。
【0038】
まず、発電要求があった場合を説明する。
【0039】
この場合、燃料電池システムは発電運転モードに移行し、燃料電池システムの起動・ガス通流が行われる(ステップS2)。
【0040】
具体的には、まず、切替弁6がバイパス経路7側に切替られる。次いで、原料供給手段2より、例えば、メタン、都市ガス、プロパン等の炭化水素もしくは改質器1で加熱されて気化する液体燃料(エタノール、メタノール等の低沸点アルコール燃料)などの原料が改質器1に供給され、バーナ3で加熱され、水との改質反応によって水素リッチな改質ガスが生成される。しかし、起動時には、改質器1の温度が低く、そのため水素リッチなガスが十分生成されないので、改質器1から送出される改質ガスは、原料(ガス)が多く水素が少ない組成となっている。この改質ガスは、バイパス経路7を経て排水素経路8を通流し、バーナ3の燃料ガスとして消費される。改質器1の所定箇所(例えば反応部)の温度はモニタリングされており(ステップS3)、その温度が所定値(例えば改質反応が可能な温度)に到達し、所定時間経過すると切替弁6が燃料電池4側に切替えられ、発電運転が開始される(ステップS4)。なお、改質器1の立ち上がり状態を、改質ガス中の水素濃度をモニタリングすることによって判断してもよい。
【0041】
一方、燃料電池4の酸素極4bには酸化剤ガス供給手段9から酸化剤ガスとしての空気が供給される。燃料電池4内では、水素極4aに供給された水素と酸素極4bに供給された空気中の酸素とが反応して発電が行われる。燃料電池4の水素極4aで大半の水素は反応に消費されるが、反応に使われなかった排水素(オフガス)は排水素経路8に排出される。この排水素は、水素経路凝縮器8aでその水分が凝縮させられ、水素経路凝縮水タンク8bで凝縮水が分離され、その後にバーナ3に供給され、改質反応の加熱用燃料として利用される。
【0042】
燃料電池4の酸素極4bでは水素と空気中の酸素との反応で水が生成され、この水が水蒸気となって排酸化剤ガス経路10に空気とともに排出される。この水蒸気(水分)を含んだ空気は、酸化剤ガス経路凝縮器10aでその水分が凝縮sれ、酸化剤ガス経路凝縮水タンク10bで凝縮水が分離される。この酸化剤ガス経路凝縮水タンク10bと水素経路凝縮水タンク8bとに回収された水は、改質水ポンプ12aによって改質器1へ供給され改質反応に必要な水として使われる。
【0043】
燃料電池4で発生した電力は、出力制御装置17で制御され、家庭などの電力負荷へ供給される。一方、燃料電池4の発電反応で発生した熱は、冷却水ポンプ13aによる冷却水循環経路13内の水の循環で熱交換器14に伝えられ、そこで貯湯循環経路15内の水と熱交換される。この熱交換された熱は、貯湯ポンプ15aによる水の循環によって貯湯タンク16に至り、そこで温水として貯えられる。この温水は、家庭などの給湯、暖房などの用途として供給される。これにより、燃料電池4で発生した熱が有効に利用される。なお、熱交換器14を貯湯タンク16内に設けてもよい。
【0044】
つぎに、発電要求が無かった場合を説明する。
【0045】
この場合、燃料電池システムは、第1の凍結防止運転モードに移行し、所定箇所の温度をモニタリングする(ステップS5)。そして、その温度が所定温度を超える場合には、燃料電池システムは停止状態を維持し(ステップS6)、その温度が所定温度以下である場合には、ガス通流を行う(ステップS7)。
【0046】
具体的には、燃料電池4の発電要求がない時に、温度検出手段18が閾値(閾値は、凍結防止運転により凍結回避可能な温度)、例えば0℃を超える温度を検出した場合には、燃料電池システムは停止状態を維持する(ステップS6)。一方、温度検出手段18が閾値以下の温度を検出した場合には、切替弁6が燃料電池4側に切替られ、原料供給手段2から原料が改質器1、水素供給経路5、燃料電池4、排水素経路8の水素経路凝縮器8a、水素経路凝縮水タンク8b、及びバーナ3の順に通流し、バーナ3で燃焼される(ステップS7)。この際、改質水供給手段12から改質器1に水が供給されるが、改質器1ではバーナ3の燃焼を調整することによって、反応部の温度が反応に必要な温度以下に維持される。例えば、反応には約400℃以上の温度が必要であるが、この場合には約300℃の温度に維持される。そのため、改質器1では原料が改質されず、当該温度に加熱された原料が改質器1から送出される。また、酸化剤ガス供給手段9も停止状態にあり、空気が酸素極4aに供給されない。従って、燃料電池4は発電をしない。
【0047】
その結果、改質器1においてバーナー3で加熱された原料が、燃料電池システム内を水素供給経路5、燃料電池4、排水素経路8の水素経路凝縮器8a、水素経路凝縮水タンク8b、及びバーナ3の順に通流し、それによって、各経路内の残留水及び水素経路凝縮水タンク8b内の凍結が防止される。
【0048】
また、水素経路凝縮水タンク8bは水面より低い位置で接続部11によって酸化剤ガス経路凝縮水タンク10bと連通しているため、第1の凍結防止運転モードによって水素経路凝縮水タンク8b内の水からの伝熱で酸化剤ガス経路凝縮水タンク10b内の水の凍結が防止される。
【0049】
また、改質水ポンプ12aで酸化剤ガス経路凝縮水タンク10b内の水が改質器1に供給され、それにより、改質水供給手段12内の水の凍結が防止される。
【0050】
また、第1の凍結防止運転モードによって燃料電池4が加熱されるため、冷却水ポンプ13aを運転し循環させることによって冷却水循環経路13内の水の凍結も防止するとともに、熱交換器14で貯湯循環経路15に熱を伝えることによって、貯湯タンク16内の水の凍結も防止することができる。
【0051】
このように、第1の凍結防止運転モードでは、燃料電池4の発電を行わずに最小限のエネルギー(本実施の形態では原料消費量)で各経路内の水の凍結を防止することができ、システムのランニングコストを抑えることができる。
【0052】
なお、上記の説明では、第1の凍結防止運転モードでは、酸化剤ガス供給手段9を停止して全く発電しないようにしたが、少量の発電をしても構わない。この場合、例えば、改質器1において、原料を部分的に改質(発電運転モードの場合の水素濃度より低い水素濃度となるように改質する)し、その他は発電運転モードの場合と同様に燃料電池システムを動作させればよい。
【0053】
(実施の形態2)
図3は、本発明の実施の形態2における燃料電池システムのシステム構成図である。図3において、図1と同一又は相当する部分については、同一符号を付与し、その説明を省略する。本実施の形態2では、温度検出手段20が、外気温を検出可能な箇所に取付けられている。その他の点は、実施の形態1と同様である。
【0054】
実施の形態1で述べたように、各経路内の水の凍結を防止するためには、最も水温が低くなる部分の温度を検知するのが良いが、条件によっては最も水温が低くなる部分が異なる場合があるため、そのような場合には複数の温度検出手段20を設ける必要がある。そこで、外気温を検出することによって、1個の温度検出手段20で確実に凍結を防止することができ、コストを安価にすることができる。
【0055】
(実施の形態3)
図4は、本発明の実施の形態3における燃料電池システムのシステム構成図である。図4において、図1と同一又は相当する部分については、同一符号を付与し、その説明を省略する。本実施の形態3では、燃料電池システムに出力制御装置17に電気的に接続されたヒータ21が貯湯循環経路15内に設けられ、この燃料電池システムが第2の凍結防止運転モードを有している。その他の点は、実施の形態1と同様である。
【0056】
つぎに、この第2の凍結防止運転モードにおける動作について説明する。燃料電池4の発電要求がない時に、温度検出手段18が閾値以下(閾値は、凍結防止運転により凍結回避可能な温度)、例えば0℃以下の温度を検出すると、第2の凍結防止運転モードとして、原料供給手段2から原料が改質器1に供給されるとともに酸化剤ガス供給手段から空気が燃料電池4に供給され、改質器1で発生した改質ガスと酸化剤ガスとしての空気とが反応して燃料電池4で発電が行われる。そして、この発電反応で発生した熱は、排水素経路8、排酸化剤ガス経路10等の各経路内を加熱するだけでなく、冷却水循環経路13の熱交換器14を介して貯湯循環経路15から貯湯タンク16内に伝えられ、そこで温水として貯えられる。また、燃料電池4で発生した余剰電力は、出力制御装置17でヒータ21に通電するよう制御される。
【0057】
この第2の凍結防止運転モードは、燃料電池4の発電を行うものの、発生した電力を無駄に捨てることなく熱エネルギーとして貯湯タンク16に貯えるもので、電力を一時的に保存する蓄電池を必要とせず、システムのイニシャルコストを抑えることができるものである。なお、ヒータ21を貯湯タンク16内に設けても同様の効果が得られる。
【0058】
次に、本実施の形態3における凍結防止運転モードの変形例を説明する。本変形例では、この第2の凍結防止運転モードと第1の凍結防止運転モード適宜選択するように制御装置19が燃料電池システムを制御する。このような構成とすると、凍結防止運転に係わるランニングコスト及びイニシャルコストをさらに効果的に低減することができる。
【0059】
図5は本変形例による凍結防止運転モードの内容を示すフローチャートである。
【0060】
図5を参照して、本変形例では燃料電池4が発電要求に応じて発電運転を行い、かつ制御装置19が以下の制御を行う。
【0061】
まず、一日の予想要求発電量を演算する(ステップS11)。
【0062】
次いで、この一日の予想要求発電量にもとづき発電運転を行った場合の貯湯タンク16内に貯えられる予想発生温水熱量Q1を演算する(ステップS12)。
【0063】
次いで、一日の予想使用温水熱量Q2を演算する(ステップS13)。
【0064】
次いで、この一日の予想使用温水熱量Q2を予想発生温水熱量Q1と比較する(ステップS14)。
【0065】
そして、予想使用温水熱量Q2が予想発生温水熱量Q1より多い場合において、温度検出手段18が閾値以下の温度を検出した時、その差分(Q2−Q1)の熱量が貯まるまで第2の凍結防止運転モードで運転し(ステップS15、14)、その後は、第1の凍結防止運転モードで運転する(ステップS16)。
【0066】
本変形例によれば、貯湯タンク16内に貯えられる熱量が不足する時は、発電による凍結防止運転を行って発生エネルギーを全て熱に変換し、それ以外の時は発電せずに必要最小限のエネルギーで凍結防止運転を行う。従って、凍結防止運転に係わるランニングコスト及びイニシャルコストがさらに効果的に低減される。
【0067】
【発明の効果】
本発明は以上に説明した形態で実施され、燃料電池システムにおいて、凍結防止運転に係わるランニングコストまたはイニシャルコストを低減することができるという効果を奏する。
【図面の簡単な説明】
【図1】
本発明の実施の形態1による燃料電池システムのシステム構成図である。
【図2】
図1の燃料電池システムの動作の概要を示すフローチャートである。
【図3】
本発明の実施の形態2による燃料電池システムのシステム構成図である。
【図4】
本発明の実施の形態3による燃料電池システムのシステム構成図である。
【図5】
本発明の実施の形態3の変形例による凍結防止運転モードの内容を示すフローチャートである。
【図6】
従来の燃料電池システムのシステム構成図である。
【符号の説明】
1 改質器
2 原料供給手段
3 バーナ
4 燃料電池
5 水素供給経路
6 切替弁
7 バイパス経路
8 排水素経路
8a 水素経路凝縮器
8b 水素経路凝縮水タンク
10 排酸化剤ガス経路
10a 酸化剤ガス経路凝縮器
10b 酸化剤ガス経路凝縮水タンク
12 改質水供給手段
13 冷却水循環経路
15 貯湯循環経路
16 貯湯タンク
18 温度検出手段
19 制御装置
20 温度検出手段
21 ヒータ
Claims (14)
- 原料を水素を含んだ改質ガスに改質する改質器と、前記改質器に前記原料を供給する原料供給手段と、前記改質器を加熱する加熱手段と、前記改質器から供給される前記改質ガスと酸化剤ガスとを反応させて発電する燃料電池と、所定箇所の温度を検出する温度検出手段とを備え、
第1の凍結防止運転モードとして、前記温度検出手段が閾値以下の温度を検出したとき、前記改質器において前記加熱手段により加熱された原料が前記改質ガスの流通経路に通流される燃料電池システム。 - 発電要求があった場合に前記燃料電池が発電し、かつ前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記第1の凍結防止運転モードに移行する請求項1記載の燃料電池システム。
- 前記改質ガスの流通経路が、前記発電の反応で余った改質ガスを含んで前記燃料電池から排出されるオフガスを前記加熱手段に燃料として導入する排水素経路を有し、前記加熱された原料が前記改質器、前記燃料電池、前記排水素経路、及び前記加熱手段の順に通流される請求項1記載の燃料電池システム。
- 前記排水素経路が前記オフガス中の水分を凝縮する水素経路凝縮器および前記凝縮された水を貯める水素経路凝縮水タンクを有し、前記加熱された原料が、前記水素経路凝縮器および前記水素経路凝縮水タンクにも通流される請求項3記載の燃料電池システム。
- 前記発電の反応で余った酸化剤ガスを含んで前記燃料電池から排出される排酸化剤ガスの経路である排酸化剤ガス経路、前記排酸化剤ガス中の水分を凝縮する酸化剤ガス経路凝縮器、および前記凝縮された水を貯める酸化剤ガス経路凝縮水タンクをさらに備え、前記酸化剤ガス経路凝縮水タンクと前記水素経路凝縮水タンクとは各々の水面より低い位置で接続された請求項4記載の燃料電池システム。
- 前記水素経路凝縮水タンクおよび前記酸化剤ガス経路凝縮水タンクの少なくとも一方に貯められた水を前記改質器に供給する改質水供給手段をさらに備え、前記第1の凍結防止運転モードにおいて、前記改質器へ前記改質水供給手段から前記貯められた水を供給する請求項5記載の燃料電池システム。
- 前記燃料電池を冷却するための水が循環する冷却水循環経路をさらに備え、前記第1の凍結防止運転モードにおいて、前記冷却水循環経路を前記水が循環される請求項1記載の燃料電池システム。
- 前記冷却水循環経路を循環する水が貯湯タンク内の水または該貯湯タンクから出て該貯湯タンクに戻る循環経路を循環する水と熱交換されるよう構成された請求項7記載の燃料電池システム。
- 前記第1の凍結防止運転モードにおいて、前記加熱手段によって前記改質器を改質反応が生じない温度に加熱することにより、前記加熱された原料を前記改質器から送出する請求項1記載の燃料電池システム。
- 前記燃料電池システムは水が存在する1以上の経路を備え、前記温度検出手段は、前記1以上の経路のうちの前記水の温度が最も低くなる箇所に取付けられている請求項1記載の燃料電池システム。
- 前記温度検出手段は、外気温を検出可能な箇所に取付けられている請求項1記載の燃料電池システム。
- 発熱を伴う発電をする燃料電池と、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと、前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータと、所定箇所の温度を検出する温度検出手段とを備え、
発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が閾値以下の温度を検出したときに、前記燃料電池が発電する燃料電池システム。 - 前記燃料電池が発熱を伴う発電をするものであり、前記燃料電池の発熱による熱を温水として貯える貯湯タンクと前記燃料電池の発電による電力で前記貯湯タンク内の水または前記貯湯タンクを含む循環経路内の水を加熱するヒータとをさらに備え、
発電要求があった場合に前記燃料電池が発電し、かつ、第2の凍結防止運転モードとして、前記発電要求が無い場合において、前記温度検出手段が前記閾値以下の温度を検出したときに、前記燃料電池が発電し、
前記第1の凍結防止運転モードと前記第2の凍結防止運転モードとを選択する請求項1記載の燃料電池システム。 - 一日の予想要求発電量にもとづき発電運転を行った場合に前記貯湯タンク内に貯えられる予想発生温水熱量と、一日の予想使用温水熱量とを比較し、前記予想使用温水熱量が前記予想発生温水熱量より多い場合、前記予想使用温水熱量と前記予想発生温水熱量との差分の熱量が貯まるまで前記第2の凍結防止運転モードで運転し、その後は前記第1の凍結防止運転モードで運転する請求項13記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079597A JP2004006270A (ja) | 2002-03-26 | 2003-03-24 | 燃料電池システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002085270 | 2002-03-26 | ||
JP2003079597A JP2004006270A (ja) | 2002-03-26 | 2003-03-24 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004006270A true JP2004006270A (ja) | 2004-01-08 |
Family
ID=30445977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003079597A Withdrawn JP2004006270A (ja) | 2002-03-26 | 2003-03-24 | 燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004006270A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068355A1 (ja) * | 2004-01-15 | 2005-07-28 | Matsushita Electric Industrial Co., Ltd. | 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法 |
US7189467B2 (en) | 2002-07-05 | 2007-03-13 | Nissan Motor Co., Ltd. | Fuel cell system |
JP2007200679A (ja) * | 2006-01-26 | 2007-08-09 | Matsushita Electric Ind Co Ltd | 燃料電池システム |
JP2007263388A (ja) * | 2006-03-27 | 2007-10-11 | Osaka Gas Co Ltd | 排熱回収装置 |
WO2007142278A1 (ja) * | 2006-06-06 | 2007-12-13 | Panasonic Corporation | 燃料電池システム |
JP2008522352A (ja) * | 2004-11-25 | 2008-06-26 | ニューセルシス ゲーエムベーハー | 液体分離器を有する燃料電池システム |
JP2011257130A (ja) * | 2011-08-22 | 2011-12-22 | Osaka Gas Co Ltd | 排熱回収装置 |
-
2003
- 2003-03-24 JP JP2003079597A patent/JP2004006270A/ja not_active Withdrawn
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7189467B2 (en) | 2002-07-05 | 2007-03-13 | Nissan Motor Co., Ltd. | Fuel cell system |
WO2005068355A1 (ja) * | 2004-01-15 | 2005-07-28 | Matsushita Electric Industrial Co., Ltd. | 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法 |
JPWO2005068355A1 (ja) * | 2004-01-15 | 2007-12-27 | 松下電器産業株式会社 | 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法 |
JP4675780B2 (ja) * | 2004-01-15 | 2011-04-27 | パナソニック株式会社 | 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法 |
JP2008522352A (ja) * | 2004-11-25 | 2008-06-26 | ニューセルシス ゲーエムベーハー | 液体分離器を有する燃料電池システム |
US9029037B2 (en) | 2004-11-25 | 2015-05-12 | Nucellsys Gmbh | Fuel cell system with a liquid separator |
JP2007200679A (ja) * | 2006-01-26 | 2007-08-09 | Matsushita Electric Ind Co Ltd | 燃料電池システム |
JP2007263388A (ja) * | 2006-03-27 | 2007-10-11 | Osaka Gas Co Ltd | 排熱回収装置 |
WO2007142278A1 (ja) * | 2006-06-06 | 2007-12-13 | Panasonic Corporation | 燃料電池システム |
US8329353B2 (en) | 2006-06-06 | 2012-12-11 | Panasonic Corporation | Fuel cell system |
JP5139282B2 (ja) * | 2006-06-06 | 2013-02-06 | パナソニック株式会社 | 燃料電池システム |
JP2011257130A (ja) * | 2011-08-22 | 2011-12-22 | Osaka Gas Co Ltd | 排熱回収装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100525668B1 (ko) | 연료 전지 시스템 | |
JP4284378B2 (ja) | 燃料電池システム | |
EP2215679B1 (en) | Fuel cell system | |
KR100525538B1 (ko) | 고체 고분자형 연료 전지 발전 장치 | |
JP5418529B2 (ja) | 燃料電池システム | |
EP1276163A1 (en) | Solid polymer fuel cell | |
JP2005259494A (ja) | 燃料電池コージェネレーションシステム | |
US20120021320A1 (en) | Fuel cell system and method for operating fuel cell system | |
JP2004006270A (ja) | 燃料電池システム | |
JP4106356B2 (ja) | 燃料電池システム | |
JP2006172948A (ja) | 燃料電池システム | |
JP2005116256A (ja) | 燃料電池コージェネレーションシステム | |
JP2003282106A (ja) | 燃料電池システム | |
JP2006164541A (ja) | 燃料電池システム | |
JP2008269930A (ja) | 燃料電池システム | |
JP2004213985A (ja) | 燃料電池システム | |
JP3939333B2 (ja) | 給湯システム | |
JP2005011621A (ja) | 燃料電池システム | |
JP2004214028A (ja) | 燃料電池システム | |
JP2005267944A (ja) | 燃料電池システム及びその停止制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050909 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070822 |