JP2004006183A - 燃料電池の排出水素処理 - Google Patents

燃料電池の排出水素処理 Download PDF

Info

Publication number
JP2004006183A
JP2004006183A JP2002168489A JP2002168489A JP2004006183A JP 2004006183 A JP2004006183 A JP 2004006183A JP 2002168489 A JP2002168489 A JP 2002168489A JP 2002168489 A JP2002168489 A JP 2002168489A JP 2004006183 A JP2004006183 A JP 2004006183A
Authority
JP
Japan
Prior art keywords
container
discharged
gas
hydrogen gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002168489A
Other languages
English (en)
Other versions
JP4109019B2 (ja
Inventor
Tomoji Yamada
山田 知司
Masashi Maeda
前田 正史
Yasuyuki Sato
佐藤 靖之
Jinsei Ishidoya
石戸谷 尽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2002168489A priority Critical patent/JP4109019B2/ja
Publication of JP2004006183A publication Critical patent/JP2004006183A/ja
Application granted granted Critical
Publication of JP4109019B2 publication Critical patent/JP4109019B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】希釈室を用いることなく簡易な構成にて可燃範囲以下の濃度で水素を大気中に放出する排出水素処理装置を提供すること。
【解決手段】制御弁50が連通状態に置かれると、燃料極13側の排出水素ガスが排出水素ガス導入口23を介して収容器21内に導入される。一時的に収容器21の第1の空間の圧力が増大するが、隔壁30の流動規制部31によって、収容器21に導入された排出水素ガスの排出空気供給管45への逆流が防止される。制御弁50が非連通状態に置かれると、排出空気取入口24から導入された排出空気が隔壁30の流動規制部31を通過して、排出水素ガスを導出部21bへと順次、移動させる。排出水素ガスは、導出部21bから排出水素ガス排出管46を介して、空気排出管41の大気開放端近傍に排出され、空気排出管41を流れる排出空気によって希釈され、大気中に放出される。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池から間欠排出される排出水素ガスを希釈処理して大気中へ排出する排出水素処理装置に関し、特に、移動式燃料電池に適切な排出水素処理装置に関する。
【0002】
【従来の技術】
一般的に用いられている高分子膜型燃料電池では、燃料極側に供給され消費されなかった水素を含むガス(排出水素ガス)を、新たに供給された水素と共に燃料極側に再供給するためのガス循環手段を備えている。この排出水素ガスには、本来、水素以外の成分は含まれないはずであるが、反応に伴い生成された水、空気極側からの窒素といった水素以外の成分(不純物)が含まれているのが現状である。したがって、排出水素ガスの循環を続ける内に、燃料極側に供給される水素濃度が不純物によって低下し、発電効率が低下してしまう。
【0003】
【発明が解決しようとする課題】
この問題を解決するために、従来より、排出水素ガスを定期的にガス循環系の外に排出して、燃料極側の水素濃度を元の濃度に回復させる処理が実行されている。ここで問題となるのが、ガス循環系外に排出された排出水素ガスの処理である。設置式燃料電池であれば、コージェネレーションシステムに組み込むことで排出水素ガスを熱源として利用したり、排出水素ガスを希釈室にて希釈した後に大気中に放出することで対処できる。これに対して、移動式燃料電池の場合には、一般的に、スペース上の制約から大量の排出水素ガスを貯蔵して、希釈する希釈室を設けることは困難であり、また、排出水素ガスを燃焼させる場合には窒素酸化物が発生すると共に燃焼用バーナ等を余分に備えなければならないという問題があった。
【0004】
また、燃料電池から排出水素ガスを排出するタイミング(時間間隔)は、燃料電池の運転条件によって変動する。特に、排出水素ガスが短い時間間隔にて排出される場合には、迅速に排出水素ガス濃度を可燃濃度未満の濃度まで低減させることが要求される。さらに、燃料電池から少量の排出水素ガスが排出される場合には、大量の排出水素ガスが排出される場合よりも少量の希釈ガスで十分排出水素ガス濃度を低減することが望まれる。
【0005】
本発明は、上記課題を解決するためになされたものであり、希釈室を用いることなく簡易な構成にて可燃濃度未満の濃度で水素を大気中に放出する排出水素処理装置を提供することを目的とする。また、排出水素処理装置に導入される排出水素ガス量が少なくなるにつれて排出水素処理装置から排出される排出水素ガス濃度を少量の希釈ガスで十分低減させることを目的とする。
【0006】
【課題を解決するための手段および作用・効果】
上記課題を解決するために本発明の第1の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第1の態様に係る排出水素処理装置では、燃料電池の燃料極側から間欠的に排出された排出水素ガスは、排出水素ガス供給路および収容器の導入部を介して収容器に供給される。この収容器は、間欠的に排出された排出水素ガスの全量を収容可能な容積を有している。収容器の導入部には、さらに、ガス導入路を介して希釈用ガス供給路から希釈用ガスの一部が供給される。この結果、収容器内の排出水素ガスは、希釈用ガスによって導出部へと順次送り出され、排出水素ガス排出路を介して、希釈用ガスが定常的に供給されている希釈用ガス供給路に排出される。希釈用ガス供給路に排出された排出水素ガスは、希釈用ガスによって希釈され大気中に放出される。収容器内の排出水素ガスのガス導入路への逆流は、抑制手段によって抑制されている。また、ガス導入路は、排出水素ガス排出路が接続されている希釈用ガス供給路の所定位置よりも上流側において、希釈用ガス供給路と接続されており、収容室に供給される希釈用ガスには排出水素ガスは含まれていない。
【0007】
本発明の第1の態様に係る排出水素処理装置によれば、希釈用ガスが定常的に供給されている希釈用ガス供給路にて排出水素ガスの希釈を実行し、また、ガス導入路への収容器内の排出水素ガスの逆流が抑制手段によって抑制されるので、希釈室を用いることなく簡易な構成にて可燃濃度未満の濃度で水素を大気中に放出することができる。
【0008】
本発明の第1の態様に係る排出水素処理装置において、希釈用ガス供給路は、燃料電池の空気極側から排出される排出空気を大気へ排出する排出路であっても良く、かかる場合、希釈用ガスは、燃料電池の空気極側から排出される排出空気となり、また、排出水素処理装置の構成をより簡易なものとすることができる。
【0009】
本発明の第1の態様に係る排出水素処理装置において、収容器の導入部は、ガス導入路が接続される希釈用ガス取入口、その希釈用ガス取入口よりも下流側に排出水素ガス供給路が接続される排出水素ガス導入口を備えても良い。かかる場合には、希釈用ガス取入口から供給される希釈用ガスによって、収容器内の排出水素ガスを効率よく収容器の導出部へと移動させることができる。
【0010】
本発明の第1の態様に係る排出水素処理装置において、抑制手段は、収容器を、排出水素ガス導入口を含む第1の空間と希釈用ガス取入口を含む第2の空間とに区分すると共に、希釈用ガス取入口から供給される希釈用ガスの通過を許容し、排出水素ガス導入口から導入される排出水素ガスの通過を規制する流動規制部を有する隔壁であっても良い。なお、流動規制部は、隔壁に形成された孔またはスリットであっても良い。かかる場合には、希釈用ガス取入口から供給される希釈用ガスによって収容器内の排出水素ガスを移動させることができる一方で、排出水素ガス導入口から導入された排出水素ガスが希釈用ガス取入口から収容器の外部へ逆流することを防止することができる。
【0011】
本発明の第1の態様に係る排出水素処理装置において、収容器は、流体を導入部から導出部へ導く流路を形成する仕切板を内部に備える箱状体であり、導入部は、流路の最上流域に備えられていても良い。かかる場合には、収容器内の流体を順次、導入部から導出部へと導くことが容易となる。あるいは、収容器は、管状体であり、希釈用ガス取入口は、管状体の一端に形成され、導出部は管状体の他端に形成されていても良い。かかる場合には、排出水素処理装置が車両に搭載される場合に、収容器を効率よく配置することがより容易となる。
【0012】
本発明の第1の態様に係る排出水素処理装置において、抑制手段は、希釈用ガス供給路に配置されると共に希釈用ガス供給路を連通および非連通状態を切り換える弁機構であっても良く、排出水素処理装置はさらに、排出水素ガスが間欠的に排出される前に、弁機構によって希釈用ガス供給路を非連通状態に切り換える弁機構制御器を備えても良い。かかる場合には、収容器から希釈用ガス供給路への排出水素ガスの逆流をより確実に防止することができる。
【0013】
本発明の第1の態様に係る排出水素処理装置において、前記抑制手段は、前記希釈用ガス供給路に配置されると共に前記希釈用ガス供給路を連通および非連通状態を切り換える弁機構であっても良く、前記排出水素処理装置はさらに、前記排出水素ガスが間欠的に排出される前に、前記弁機構によって前記希釈用ガス供給路の連通、非連通状態を任意のタイミングで切り換える弁機構制御器を備えても良い。あるいは、前記弁機構制御器は、前記排出水素ガスが間欠的に排出された後に、前記弁機構によって前記弁機構によって前記希釈用ガス供給路の連通、非連通状態を任意のタイミングにて切り換えても良い。
【0014】
本発明の第1の態様に係る排出水素処理装置によれば、収容器内部への希釈用ガスの流量を変動させることにより収容器内に乱流を発生させることができるので、排出水素ガスと希釈用ガスとの混合を促進させることができる。
【0015】
本発明の第2の態様は、燃料電池の燃料極側から排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第2の態様に係る排出水素処理装置は、排出水素ガスを希釈する希釈部と、燃料電池の燃料極側から所定の時間間隔にて排出水素ガスを排出させる排出手段と、排出水素ガスを希釈するための希釈用ガスを定常的に希釈部へ供給する希釈用ガス供給手段と、排出された排出水素ガスを収容すると共に、排出された排出水素ガスが希釈部へ移動する時間を所定の時間間隔よりも短い時間だけ遅延させるよう、希釈用ガス供給手段によって供給される希釈用ガスの一部を利用して、収容されている排出水素ガスを希釈部へ移動させる遅延手段と、遅延手段に収容されている排出水素ガスが希釈用ガス供給手段へ逆移動することを抑制する逆移動抑制手段とを備えることを特徴とする。
【0016】
本発明の第2の態様に係る排出水素処理装置によれば、希釈用ガス供給手段によって供給される希釈用ガスの一部を利用して、収容した排出水素ガスの希釈部への移動時間を所定の時間間隔よりも短い時間だけ遅延させる遅延手段を備え、また、遅延手段に収容されている排出水素ガスが希釈用ガス供給手段へ逆移動することを抑制する逆移動抑制手段を備えるので、希釈室を用いることなく簡易な構成にて可燃濃度未満の濃度で水素を大気中に放出することができる。
【0017】
本発明の第2の態様に係る排出水素処理装置において、移動手段によって利用される希釈用ガスの時間あたりの供給量は、所定の時間間隔に反比例しても良い。所定の時間間隔が短い場合には、希釈用ガスの供給量を増加させることによって対応することができる。
【0018】
本発明の第3の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第3の態様に係る排出水素処理装置は、導入部および導出部とを有すると共に、間欠的に排出された排出水素ガスの全量を収容可能な収容器と、燃料電池の燃料極側と収容器とを連通する排出水素ガス供給路と、希釈用ガスを定常的に供給する希釈用ガス供給路と、収容器の導出部と希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、所定位置よりも上流側において、希釈用ガス供給路と収容器の導入部とを連通するガス導入路と、ガス導入路に配置され、ガス導入路を連通および非連通状態のいずれかの状態に切り換える第1の切り替え機構と、第1の切り替え機構の切り替え状態を制御する制御手段であって、排出水素ガスが排出された後に、第1の切り替え機構を非連通状態に切り換える制御手段とを備えることを特徴とする。
【0019】
本発明の第3の態様に係る排出水素処理装置によれば、排出水素ガスが排出された後に、第1の切り替え機構を非連通状態に切り換えて希釈用ガス供給路と収容器の導入部とを連通するガス導入路を非連通状態にするので、排出水素ガスの排出当初は、収容器内の排出水素ガスはガス導入路を介して希釈用ガス供給路へと逆流する。一方、収容器からは、収容されている希釈用ガスが排出水素ガス排出路から希釈用ガス供給路へと排出される。したがって、希釈用ガスが希釈用ガス供給路へ排出される間も、排出水素ガスの希釈を実行することができ、排出された排出水素ガスの全量の希釈を完了するまでに要する時間を短縮することができる。さらに、収容器の容積を小さくすることができる。
【0020】
本発明の第3の態様に係る排出水素処理装置はさらに、排出水素ガス供給路に配置されていると共に、排出水素ガス供給路を間欠的に非連通状態から連通状態に切り換える第2の切り替え機構を備え、制御手段は、第2の切り替え機構が連通状態に切り換えられた後に、第1の切り替え機構を非連通状態に切り換えると共に、第2の切り替え機構が非連通状態に切り換えられた後に、第1の切り替え機構を連通状態に切り換えても良い。
【0021】
本発明の第4の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第4の態様に係る排出水素処理装置は、第1および第2の端部を有すると共に、間欠的に排出された排出水素ガスの全量を収容可能な収容器と、燃料電池の燃料極側と収容器の略中央部とを連通する排出水素ガス供給路と、希釈用ガスを定常的に供給する希釈用ガス供給路と、収容器の第1の端部と希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、所定位置よりも上流側において、希釈用ガス供給路と収容器の第2の端部とを連通するガス導入路とを備えることを特徴とする。
【0022】
本発明の第4の態様に係る排出水素処理装置によれば、排出水素ガス供給路が収容器の略中央部に接続されているので、排出水素ガスの排出当初は、収容器内の希釈用ガスが、ガス導入路および排出水素ガス排出路を介して希釈用ガス供給路へ排出される。したがって、ガス導入路にガス導入路の連通および非連通状態を切り換える切り替え手段を備えることなく、収容器内に存在する希釈用ガスを速やかに収容器外へ排出して、排出水素ガスが排出水素ガス排出路へ移動する時間を短縮することができる。したがって、排出された排出水素ガスの全量の希釈を完了するまでに要する時間を短縮することができる。
【0023】
本発明の第5の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを定常的に供給される希釈用ガスを用いて希釈する排出水素処理装置において、排出水素ガスを一時的に収容する収容器を提供する。本発明の第5の態様に係る収容器は、設置時に底面をなす底面部と、設置時に頂面をなす頂面部と、前記間欠的に排出された排出水素ガスの全量を収容可能であると共に、導入された流体を前記底面部から前記頂面部へと流動させる内部構造を有する収容部と、前記排出水素ガスおよび前記希釈用ガスの一部を前記収容部に導入する導入部と、前記一時的に収容された排出水素ガスを前記収容部外へ導出する導出部とを備えることを特徴とする。
【0024】
本発明の第5の態様に係る収容器によれば、導入された流体を底面部から頂面部へと流動させる内部構造を有するので、収容部の容積を効率よく利用して比重の軽い排出水素ガスを一時的に収容することができる。
【0025】
本発明の第5の態様に係る収容器において、前記導入部は前記底面部の近傍に配置され、前記導出部は前記頂面部の近傍に配置されていても良い。かかる場合には、底面部近傍に配置された導入部から収容部へと導入された排出水素ガスは、同じく底面部近傍に配置された導入部から収容部へと導入された希釈用ガスによって、順次、頂面部へと導かれ、頂面部近傍に配置された導出部から収容部外部へと導出される。
【0026】
本発明の第5の態様に係る収容器において、前記導入部は前記頂面部の近傍に配置され、前記導出部は前記導入部と対向する前記頂面部の近傍に配置され、前記収容部は、前記導入部を介して収容器内部に導入された流体を前記底面部へと導く誘導路を内部に備えても良い。かかる場合には、導入部の配置位置にかかわらず、導入された排出水素ガスおよび希釈用ガスを収容部の底面部へと導くことができる。
【0027】
本発明の第5の態様に係る収容器において、前記収容部は、流体を前記底面部から前記頂面部へと導く流路を形成すると共に前記底面部と平行な1つ以上の仕切板を内部に備えても良い。かかる場合には、仕切板によって収容部内部に流体の流路を形成することができるので、収容部の容積を効率よく利用して排出水素ガスを一時的に収容することができると共に、希釈用ガスによって、収容された排出水素ガスを順次、底面部から頂面部へと導くことができる。
【0028】
本発明の第5の態様に係る収容器において、前記各仕切板には、流体の流速が低い場合に排出水素ガスの通過を許容する流体通過部が備えられていても良く、前記流体通過部は、複数の細孔またはスリットであっても良い。かかる構成を備えることにより、収容部に導入される排出水素ガスを含む流体の流速が高い場合には、排出水素ガスは仕切板により形成された流路に従って底面部から頂面部へと順次、流動するので、収容部に収容されている排出水素ガスを可燃濃度未満の濃度で大気中へ放出することができる。一方、収容部に導入される排出水素ガス(流体)の流速が低い場合には、排出水素ガスは流体通過部を介して底面部から頂面部へ収容器内部の空気と混合しながら流動するので、導出部から排出される水素濃度を排出水素ガスの流速が高い場合よりも低減することができる。したがって、収容器に導入される排出水素ガス量が少なくなるにつれて収容器から排出される排出水素ガス濃度を少量の希釈ガスで十分低減させることができる。
【0029】
本発明の第6の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第6の態様に係る排出水素処理装置は、本発明の第5の態様に係るいずれかの収容器と、前記燃料電池の燃料極側と前記収容器の導入部とを連通する排出水素ガス供給路と、希釈用ガスを定常的に供給する希釈用ガス供給路と、前記収容器の導出部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の導入部とを連通するガス導入路と、前記ガス導入路に対する前記収容器内の排出水素ガスの流出を抑制する抑制手段とを備えることを特徴とする。
【0030】
本発明の第6の態様に係る排出水素処理装置は、本発明の第5の態様に係るいずれかの収容器を備えるので、排出水素ガスを処理するにあたり、本発明の第5の態様に係る収容器によりもたらされる作用効果を奏することができる。
【0031】
本発明の第7の態様は、燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置を提供する。本発明の第7の態様に係る排出水素処理装置は、第1および第2の端部、並びに前記第1および第2の端部からの距離が略等しい排出水素導入部を有すると共に、前記間欠的に排出された排出水素ガスの全量を収容可能な収容器と、前記排出水素導入部と前記燃料電池の燃料極側とを連通する排出水素ガス供給路と、希釈用ガスを定常的に供給する希釈用ガス供給路と、前記収容器の前記第1の端部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の前記第2の端部とを連通するガス導入路とを備えることを特徴とする。
【0032】
本発明の第7の態様に係る排出水素処理装置によれば、第1および第2の端部からの距離が略等しい排出水素導入部を有する収容器を備えるので、排出水素ガスが収容器外部へ排出されるために必要な移動距離が短縮され、排出された排出水素ガスの全量の希釈を完了するまでに要する時間を短縮することができる。また、排出水素ガスの導入当初は排出水素ガスの希釈が許容され、大気中に排出される排出水素ガス濃度のピークを低減することができるので、排出水素処理装置に導入される排出水素ガス量が少なくなるにつれて、排出水素ガスを希釈するための希釈ガス流量を低減し、希釈ガスを供給するために要求される動力を低減することができる。また、排出水素処理装置から排出される排出水素ガス濃度を少量の希釈ガスで十分低減させることができる。
【0033】
本発明の第7の態様に係る排出水素処理装置において、前記収容器は、導入された流体の流路を規定する複数の仕切板を有し、前記排出水素導入部近傍における仕切板の間隔は、前記第1および第2の端部近傍における仕切板の間隔よりも広くても良い。あるいは、前記収容器は、前記第1および第2の端部近傍に、導入された流体の流路を規定する複数の仕切板を有しても良い。かかる構成を備えることにより、排出水素導入部近傍では排出水素ガスの希釈(拡散)をさらに許容して排出水素処理装置から排出される水素濃度のピーク値をさらに低減し、第1および第2端部近傍では排出水素ガスの流動を規制して収容器外部へと排出することができる。
【0034】
上記本発明の第1ないし第4、第6および第7の態様に係る排出水素処理装置、および本発明の第5の態様に係る収容器は、上記態様の他に、方法の態様によっても実現され得る。
【0035】
【発明の実施の形態】
以下、図面を参照しつついくつかの実施例に基づいて本発明に係る排出水素処理装置について説明する。
・第1の実施例:
図1および図2を参照して第1の実施例に係る排出水素処理装置を含む燃料電池システムの構成について説明する。図1は第1の実施例に係る排出水素処理装置を含む燃料電池システムの概略構成を示すブロック図である。図2は第1の実施例に係る排出処理装置に適用され得る他の収容器を示す説明図である。
【0036】
燃料電池システムは、大別して、水素を燃料として電力を生成する燃料電池10、燃料電池から排出される排出水素を希釈化して大気中に放出する排出水素処理装置20とを備えている。第1の実施例に係る排出水素処理装置20は、燃料電池10から排出される排出水素ガスを処理するに際して、排出水素ガスが間欠的に排出されることに着目し、間欠時間の間に排出水素ガスの全量を徐々に大気中に放出することによって大気中に放出される水素濃度を水素の可燃濃度未満に抑制することを特徴とする。
【0037】
燃料電池10は、例えば、固体高分子膜型の燃料電池であり、固体高分子膜11を挟んで、空気が供給される空気極12と水素が供給される燃料極13とを備えている。燃料電池10の燃料極13に供給された水素は固体高分子膜11上の触媒により水素イオンと電荷とに分離される。水素イオンは固体高分子膜11を通過して空気極12に移動し、一方、分離された電荷は外部回路を介して空気極12に移動する。空気極12では、供給された空気(酸化剤として作用する酸素)、固体高分子膜11を介して空気極12に到達した水素イオン、電荷が反応して水が生成される。
【0038】
空気極12にはエアコンプレッサ14によって加圧された空気が空気供給管40を介して供給され、空気極12にて使用された空気(排出空気)は空気排出管41(希釈用ガス供給路)を介して大気中に放出される。なお、排出空気は、燃料電池10の運転中、常時、空気排出管41中を流動している。
【0039】
燃料極13には水素貯蔵器15において加圧状態下で貯蔵されている水素が水素供給管42を介して供給される。燃料極13にて消費されなかった水素は、排出水素ガスとして、水素排出管(排出水素ガス供給路)43を介して排出水素処理装置20に供給される。水素排出管43には、水素排出管43を連通および非連通状態のいずれかに切り換える制御弁50が配置されており、排出水素処理装置20への排出水素ガスの流動が制御される。
【0040】
水素排出管43には、制御弁50よりも燃料電池10寄りの位置に水素循環管44が接続されている。水素供給管42を介して水素貯蔵器15から供給された水素は、燃料極13において全量は消費されない。そこで、一般的には、消費されなかった水素を再度、燃料極13に投入し、消費された水素分に相当する新規水素を投入することが行われている。本実施例では、通常は、制御弁50が非連通状態に切り替えられており、燃料極13から排出された排出水素ガスは、循環用ポンプ16によって水素循環管44を介して燃料極13に再投入される。水素貯蔵器15からは、消費された水素の分圧に相当する新規水素が燃料極13に供給される。なお、水素循環管44には、水素貯蔵器15から供給される水素の水素循環管44への流入(逆流)を防止するための逆止弁51が備えられている。
【0041】
通常、排出水素ガスには、未使用水素の他に、空気極12から固体高分子膜11を介して燃料極13に透過した生成水、窒素等の不純物が含まれている。かかる不純物を含む排出水素ガスを繰り返し燃料極13に投入すると、燃料極13における水素濃度が低下し、燃料電池10の発電効率が低下してしまう。そこで、一定の時間間隔で、制御弁50を連通状態に切り換え、燃料極13のガスを水素で置換する処理が実行される。制御弁50は、例えば、30秒に一度、2秒間連通状態に切り換えられる。
【0042】
排出水素処理装置20は、水素排出管43を介して間欠的に排出された排出水素ガスの全量を大気中へ放出するために要する時間を遅延させるための装置であり、例えば、図1に示すように、間欠的に排出された排出水素ガスの全量を収容可能な箱状体の収容器21を備えている。あるいは、図2に示すように間欠的に排出された排出水素ガスの全量を収容可能な管状の収容器21’を備えても良い。図1では、収容器21を平面断面図にて表している。収容器21は、排出水素ガスを導入する導入部21aおよび排出水素ガスを排出する導出部21bを有しており、収容器21の内部には、排出水素ガスを導入部21aから導出部21bに向けて順次、流動させるように仕切板22が備えられている。すなわち、導入部21aが上流側となり、導出部21bが下流側となって、導入部21aから収容器21に導入された流体は、導入された順に導出部21bから排出される。
【0043】
収容器21の導入部21aには、排出水素ガス導入口23、排出水素ガス導入口23よりも上流側に排出空気取入口24がそれぞれ備えられている。排出水素ガス導入口23には水素排出管43が接続され、排出空気取入口24には空気排出管41から分岐した排出空気供給管45が接続される。一方、収容器21の導出部21bには、導出部21bから排出された排出水素ガスを空気排出管41に排出する排出水素ガス排出管46が接続されており、導出部21bから空気排出管41へと排出された排出水素ガスは、空気排出管41内を流動する排出空気によって4%未満の濃度に希釈される。なお、排出空気供給管45は、排出水素ガス排出管46が接続されている末端位置(所定位置)よりも上流側において空気排出管41と接続されているので、排出空気供給管45を介して収容器21に供給される排出空気中には排出水素ガスは含まれていない。
【0044】
排出水素ガス導入口23と排出空気取入口24との間には、収容器21を排出水素ガス導入口23を含む第1の空間と排出空気取入口24を含む第2の空間とに区分すると共に、収容器21内に供給された排出水素ガスが排出空気供給管45へと逆流することを抑制、防止する抑制手段として隔壁30が配置されている。隔壁30は、排出空気取入口24から供給される排出空気の流速以下の流速を有する流体のみを通過させる流動規制部31を有している。
【0045】
図1、図3〜図5を参照して、第1の実施例に係る排出水素処理装置20における排出水素ガスの希釈の原理について説明する。図3〜図5は、排出水素処理装置20(収容器21)における排出水素ガスの流動の様子を模式的に示す平面断面図である。
【0046】
第1の実施例に係る排出水素処理装置20では、収容器21は6リットルの容積を有し、1000リットル/分の流速で排出空気が空気排出管41内を流動し、6リットル/2秒の流速で排出水素ガスが収容器21内に供給され、30秒間隔で2秒間にわたり制御弁50が連通状態に切り換えられる。収容器21に供給すべき排出空気の流速は、置換すべき排出水素ガス量と制御弁50が非連通状態にある間欠時間によって決定されが、収容器21を小型化するためには、収容器21の容量と置換されるべき排出水素ガス量とがほぼ一致していることが好ましく、本実施例では一致している。
【0047】
30秒に一度、制御弁50が2秒間にわたり連通状態に置かれると、燃料極13側の排出水素ガスは、排出水素ガス導入口23を介して収容器21内に導入され、図3に示すように収容器21内は導入された排出水素ガスによって満たされる。このとき、一時的に収容器21の第1の空間(排出水素ガス導入口23を含む空間)の圧力が増大するため、隔壁30の流動規制部31を介した収容器21の第2の空間(排出空気取入口24を含む空間)および排出空気供給管45への排出水素ガスの流動(逆流)が懸念される。これに対して、本実施例では、排出水素ガスの流動は規制し、排出空気の流動は許容するように流動規制部31の圧力損失を設定しているので、収容器21に導入された排出水素ガスが排出空気供給管45へと逆流することはない。
【0048】
本実施例では、制御弁50が非連通状態に置かれている30秒間に収容器21内に6リットルの排出空気を供給する必要があるため、少なくとも12リットル/分の流速で排出空気が排出空気供給管45から収容器21内に供給されなければならない。一方、排出水素ガスは、6リットル/2秒、すなわち、180リットル/分の流速で収容器21内に導入される。したがって、流動規制部31における圧力損失は、約12リットル/分程度の流速を有する流体の通過を許容するように設定されていれば良い。
【0049】
連通状態にある制御弁50が非連通状態に置かれると、図4および図5に示すように、排出空気取入口24から導入された排出空気が隔壁30の流動規制部31を通過して、排出水素ガスを導出部21bに向けて順次、移動させる(押し出す)。やがて、収容器21内の全ての排出水素ガスが排出空気によって置換される。
【0050】
導出部21bから排出された排出水素ガスは、排出水素ガス排出管46を介して、空気排出管41の大気開放端近傍(所定位置)に排出される。空気排出管41に排出された排出水素ガスは、空気排出管41を流れる排出空気によって希釈され、大気中に放出される。
【0051】
本実施例に係る排出水素処理装置20では、流動規制部31を有する隔壁30を備えることにより、収容器21内の排出水素ガスの排出空気供給管45および空気排出管41への逆流を抑制、防止している。したがって、空気排出管41を流動する排出空気中における水素濃度は0%であり、1000リットル/分の流速で空気排出管41から大気中に排出される排出空気における水素濃度は、最大でも1.2%程度となる。この結果、排出空気における水素濃度を、水素の可燃範囲の下限である4%未満の濃度に抑えることができる。
【0052】
隔壁30が有する流動規制部31の形状について図6〜図9を参照して説明する。図6は排出水素処理装置が備える流動規制部の第1の形態を示す説明図である。図7は排出水素処理装置が備える流動規制部の第2の形態を示す説明図である。図8は排出水素処理装置が備える流動規制部の第3の形態を示す説明図である。図9は排出水素処理装置が備える流動規制部の第4の形態を示す説明図である。
【0053】
流動規制部31の形状としては、図6に示す孔32(オリフィス)、図7に示す単一スリット33、図8に示す複数スリット34、図9に示すメッシュ孔35が例示としてあげられる。排出空気取入口24から供給される排出空気によって、収容器21内の排出水素ガスを順次、導出部21bから押し出す(排出させる)観点からは、排出水素ガスの流路断面に均一に排出空気が行き渡ることが好ましく、例えば、図9に示すメッシュ孔35を備える隔壁30が好適である。なお、図6から図9の例では、隔壁30は矩形形状であるが、収容器21の流動断面に応じて円形、三角形等の形状が適宜取られ得ることは言うまでもない。
【0054】
以上説明したように、第1の実施例に係る排出水素処理装置20によれば、燃料電池10から排出される排出水素ガスの全量を収容可能な収容器21を備え、燃料電池10の空気極12から排出される排出空気を利用して収容器21内の排出水素ガスを順次、収容器21から排出させると共に、排出水素ガスを希釈することができる。したがって、排出水素を希釈するための大容量の希釈室や、排出水素を燃焼させるためのバーナを備えることなく、排出水素ガスを希釈した後に、大気中に放出することができる。第1の実施例に係る排出水素処理装置20は、希釈室を備える必要がないので、特に、搭載スペースの制約が大きい車両等を含む移動体に好適である。
【0055】
第1の実施例に係る排出水素処理装置20は、収容器21内に排出水素ガスを導入する排出水素ガス導入口23と排出空気を取り入れる排出空気取入口24との間には、排出空気の流動は許容するが排出水素ガスの流動は規制する流動規制部31を有する隔壁30を備えている。したがって、空気極12から排出される排出空気を利用して収容器21内の排出水素ガスを順次、収容器21から排出させる際にも、収容器21内の排出水素ガスが排出空気取入口24を介して空気排出管41へと逆流することはなく、大気中に排出される水素濃度をより低減することが可能になると共に、大気中に排出される水素濃度の変動を抑制することができる。
【0056】
第1の実施例に係る排出水素処理装置20によれば、制御弁等の動的な流動規制手段を用いることなく、収容器21内の排出水素ガスが排出空気取入口24を介して空気排出管41へと逆流することを防止することができる。また、空気極12から排出される排出空気を用いて排出水素ガスを希釈するので、排出水素処理装置20のために、新たに希釈用のガスを供給するためのブロア等を備える必要がないという利点もある。
【0057】
・第2の実施例:
図10および図11を参照して第2の実施例に係る排出水素処理装置60について説明する。図10は第2の実施例に係る排出水素処理装置60の概略構成図である。図11は第1電磁弁および第2電磁弁の動作タイミングを示すタイムチャートである。なお、燃料電池システムの概略構成は第1の実施例において説明した燃料電池システムと同様であるから、同一の構成要素には同一の符号を付してその説明を省略する。また、図10中、収容器61は平面断面図にて表されており、実線は排出空気の流れを、破線は排出水素ガスの流れを表す。
【0058】
第2の実施例に係る排出水素処理装置60は、箱状の収容器61、収容器61内部における流体の流れを規制する仕切板62を備えている。収容器61には水素排出管43を介して排出水素が供給され、水素排出管43には排出水素ガスを間欠的に収容器61へ導入させる第1の電磁弁52が備えられている。収容器61内の排出水素ガスは、排出水素ガス排出管46を介して、空気排出管41の大気開放端近傍(所定位置)に排出される。収容器61には排出空気供給管45を介して、排出空気が供給され、排出空気供給管45には、収容器61内の排出水素ガスの逆流を防止する第2の電磁弁53が備えられている。第1および第2の電磁弁52、53は、図示しない制御装置によって弁の開閉動作が制御されている。
【0059】
第2の実施例に係る排出水素処理装置60は、収容器61内に排出水素ガスの全量を収容し、空気排出管41を流れる排出空気によって、排出水素ガスを希釈する点で第1の実施例に係る排出水素処理装置20と一致する。一方、第2の実施例に係る排出水素処理装置60は、隔壁30に代えて、第2の電磁弁53によって収容器61内の排出水素ガスが排出空気供給管45、空気排出管41へと逆流することを防止する点で、第1の実施例に係る排出水素処理装置20と相違する。
【0060】
第1および第2の電磁弁52、53の開弁、閉弁タイミングは図11に示すとおりである。すなわち、排出水素ガスの排出空気供給管45、空気排出管41への逆流を防止する第2の電磁弁53は、排出水素ガスを収容器61内に間欠的に導入する第1の電磁弁52の開弁タイミングよりも前に閉弁され、第1の電磁弁52の閉弁タイミングよりも後に開弁される。この結果、収容器61内へ排出水素ガスが導入される際には、既に第2の電磁弁53は閉弁されており、また、収容器61内への排出水素ガスの導入が完了した後に第2の電磁弁53が開弁される。したがって、排出水素ガスの導入により収容器61内の圧力が一時的に上昇した場合であっても、図10に示すとおり排出水素ガスは排出空気供給管45、空気排出管41へと逆流しない。
【0061】
以上説明したように、第2の実施例に係る排出水素処理装置60によれば、収容器61内への排出水素ガスの導入タイミングに合わせて、第2の電磁弁53の閉弁および開弁タイミングが決定されているので、排出水素ガスの排出空気供給管45、空気排出管41への逆流を防止することができる。したがって、排出水素ガス排出管46よりも上流側における空気排出管41内の水素濃度を0%とすることができ、排出水素ガスの希釈率を安定させることができると共に、空気排出管41の開放端から排出される水素濃度を低減させることができる。
【0062】
また、排出空気供給管45の連通および非連通を切り換える手段として、動作が受動的である逆止弁(負圧式逆止弁)ではなく、能動的に連通および非連通状態を切り換えることができる第2の電磁弁53を用いた。負圧式逆止弁を用いた場合には、収容器61内への排出水素ガスの導入に伴い発生する負圧によって作動したり、排出水素ガスに含まれる生成水によって弁の封止状態が変動するおそれがある。したがって、排出水素ガスの排出空気供給管45、空気排出管41への逆流をより確実に防止することができる。
【0063】
・第2の実施例の変形例:
上記第2の実施例では、第2の電磁弁53は、閉弁(非連通)された後は、再び開弁(連通)されるまで閉弁状態に維持されるが、図12に示すように任意のタイミングにて連通、非連通状態(開弁、閉弁)を間欠的に繰り返してもよい。図12は第2の実施例の変形例における第1電磁弁および第2電磁弁の動作タイミング、収容器61に導入される排出水素ガス流量、希釈用ガス流量、収容器61から排出される排出水素ガス量を示すタイムチャートである。
【0064】
本変形例では、図12に示すように、第2の電磁弁53は、排出水素ガスを収容器61内に間欠的に導入する第1の電磁弁52の開弁タイミングよりも前に閉弁された後、第1の電磁弁52が開弁されている状態にて再び開弁され、その後、短い周期にて閉弁、開弁される。第2の電磁弁53が間欠的に開閉された結果、排出空気供給管45を流れる希釈用ガスの流量、排出水素ガス排出管46を流れる排出水素ガスの流量は図12に示すように短時間に変動する。この結果、収容器61内には乱流が発生し、収容器61内に導入された排出水素ガスと希釈用ガスとの混合が促進される。
【0065】
排出水素ガス排出管46からは、希釈用ガスと混合された排出水素ガスが排出されるので、空気排出管41における排出水素ガスの希釈を促進させることができる。また、本変形例では、第1の電磁弁52が開弁されている期間に第2の電磁弁53が開弁されるので、排出水素ガスは排出水素供給管45から逆流する。しかしながら、第2の電磁弁53の開閉状態を適切に制御して、排出空気供給管45を逆流する排出水素ガス量を調整することにより、空気排出管41の開放端から排出される水素濃度を可燃濃度未満に抑制することができると共に、収容器61内部の排出水素ガスを早期に排出させることができる。
【0066】
・第3の実施例:
図13〜図15を参照して第3の実施例に係る排出水素処理装置70について説明する。図13は第3の実施例に係る排出水素処理装置70の概略構成図である。図14は第1電磁弁および第2電磁弁の動作タイミングを示すタイムチャートである。図15は空気排出管の開放端から排出される水素濃度の時間変化を示す説明図である。なお、第3の実施例に係る排出水素処理装置70は、第2の実施例に係る排出水素処理装置60と同一の構成を備えるので、各構成要素には同一の符号を付してその説明を省略する。また、図13中、収容器61は平面断面図にて表されており、実線は排出空気の流れを、破線は排出水素ガスの流れをそれぞれ表す。
【0067】
第3の実施例に係る排出水素処理装置70は、収容器61内に排出水素ガスの全量を収容し、空気排出管41を流れる排出空気によって、排出水素ガスを希釈する点で第2の実施例に係る排出水素処理装置60と一致する。一方、第3の実施例に係る排出水素処理装置70は、収容器61内の排出水素ガスが排出空気供給管45、空気排出管41へと一部逆流することを許容する点で、第2の実施例に係る排出水素処理装置60と相違する。なお、第1および第2の電磁弁52、53は、図示しない制御装置によって弁の開閉動作が制御されている。
【0068】
第1および第2の電磁弁52、53の開弁、閉弁タイミングは図14に示すとおりである。すなわち、排出水素ガスの排出空気供給管45、空気排出管41への逆流を抑制する第2の電磁弁53は、排出水素ガスを収容器61内に間欠的に導入する第1の電磁弁52の開弁タイミングよりも後に閉弁され、第1の電磁弁52の閉弁タイミングよりも後に開弁される。この結果、収容器61内へ排出水素ガスが導入される際には、未だ第2の電磁弁53は開弁状態にあり、図13に示すように、収容器61内に導入された排出水素ガスの一部は排出空気供給管45を介して空気排出管41へと逆流する。一方、第2の電磁弁53の開弁時期は、収容器61内への排出水素ガスの導入が完了した後である。
【0069】
水素排出管43から収容器61へ排出水素ガスの導入が開始されるタイミングでは、先の置換サイクルで排出水素ガスと置換された排出空気が収容器61内に収容されている。したがって、排出水素ガス排出管46から排出されるガスには水素は含まれておらず、空気排出管41を流れる排出空気に水素が含まれていても、排出水素ガス排出管46から排出されるガス(排出空気)によって希釈される。この結果、当初、空気排出管41の開放端には、空気排出管41へ逆流した排出水素ガスに起因する水素が現れる(図15中L1)。時間の経過と共に排出水素ガス排出管46からは排出水素ガスが排出されるようになり、空気排出管41の開放端には、排出水素ガス排出管46からの排出水素ガスの排出に起因する水素が現れ始める(図15中L2)。
【0070】
ただし、第2の電磁弁53が閉弁された後は空気排出管41を流れる排出空気中の水素濃度は徐々に0%となるので、排出水素ガス排出管46から排出された排出水素ガスは、空気排出管41を流れる排出空気によって希釈される。この結果、図15中L3で表されるように、空気排出管41へ逆流した排出水素ガスと排出水素ガス排出管46からの排出水素ガスの双方を合わせても、水素濃度は規定値(4%)を超えることはない。すなわち、空気排出管41に排出水素ガスが逆流している状態であっても、あるいは、空気排出管41に排出水素ガスが逆流していない状態であっても、空気排出管41の開放端から排出される排出空気中における水素濃度は常に、4%未満に抑制される。
【0071】
さらに、空気排出管41に排出水素ガスを逆流させない場合(図15中L4)と比較して、空気排出管41に排出水素ガスを逆流させた場合(図15中L3)には、収容器61内の排出水素ガスの全量の希釈を完了するまでの時間が短縮されることが図15のグラフから明らかになる。
【0072】
以上説明したように、第3の実施例に係る排出水素処理装置70によれば、水素排出管43から収容器61への排出水素ガスの導入が開始されるタイミングでは、空気排出管41へ排出水素ガスを逆流させるので、収容器61内に導入された排出水素ガスを希釈後、迅速に大気中に放出することができる。
【0073】
すなわち、収容器61への排出水素ガスの導入開始時には、収容器61から排出水素ガス排出管46を介して空気排出管41へ排出されるガスは排出空気であり、空気排出管41へ排出水素ガスを逆流させない場合には、空気排出管41からは排出空気だけが排出され、排出水素ガスの希釈は未だ実行されていない。したがって、排出水素ガスが収容器61から排出されるまでの時間は無駄な時間である。これに対して、第3の実施例に係る排出水素処理装置70では、収容器61への排出水素ガスの導入開始時には、空気排出管41へ排出水素ガスを逆流させて、収容器61から排出される排出空気によって排出水素ガスを希釈することができる。この結果、排出水素ガスが排出水素ガス排出管46を介して空気排出管41へ移動するまでの時間をも有効に利用することが可能となり、排出水素ガスの希釈化を完了するまでに要する時間を短縮することができる。
【0074】
また、予め空気排出管41への逆流を見込んでいるので、より小さい収容器61を用いることができる。例えば、空気排出管41を流れる空気流量が1000リットル/分、元の収容器の容量が6リットルならば、収容器61の容量を5リットル程度とすることができる。
【0075】
この他、第3の実施例に係る排出水素処理装置70によれば、第2の実施例に係る排出水素処理装置60と同様の効果を得ることができる。
【0076】
・第4の実施例:
上記各実施例において用いられ得る収容器21、61の種々の他の内部構成例について図16〜図21を参照して説明する。図16は収容器の第1の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。図17は収容器の第7の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。図18は収容器の第3の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。図19は収容器の第4の内部構成例および収容器内における流速が高い場合の排出水素ガスの流動状態を模式的に示す説明図である。図20は収容器の第4の内部構成例および収容器内における流速が低い場合の排出水素ガスの流動状態を模式的に示す説明図である。図21は第4の内部構成を備える収容器から排出される排出水素濃度の時間変化を示す説明図である。図16〜図20では、収容器は側面断面図によって表されており、図示されている収容器の長手方向が垂直方向を示している。なお、下記の各内部構成例では、収容器内部への排出水素ガスの導入が完了した後に、希釈用ガスが導入される。
【0077】
.第1の内部構成を有する収容器211:
図16に示すように、収容器211は、搭載時に底面をなす底面部211a、頂面をなす頂面部211bを備えている。燃料電池(図示しない)から排出された排出水素ガスを収容器内部に導入する排出水素ガス導入口211cおよび収容器内部にて排出水素ガスを押し出す希釈用ガスを導入する排出空気取入口211dは底面部211a近傍に配置されている。収容器211に一時的に収容されていた排出水素ガスおよび希釈用ガスを収容器211の外部へ排出する排出水素ガス排出口211eは頂面部211b近傍に配置されている。すなわち、収容器211は、導入された排出水素ガスおよび希釈用ガスを底面部211aから頂面部211bへと流動させる内部構造を有する。
【0078】
収容器211内部の底面部211a近傍であって、排出水素ガス導入口211cおよび排出空気取入口211dの配置位置よりも上側には、導入された排出水素ガスおよび希釈用ガスの通過を許容する多孔状の仕切板211fが配置されている。第1の内部構成を有する収容器211によれば、収容器内部に導入された排出水素ガスおよび希釈用ガスは、流速が高い当初、仕切板211fによって収容器211の水平方向(幅方向)へと導かれる。したがって、両ガスが直ちに垂直方向(排出水素排出口211e)へと流動し、収容器内部にて拡散混合する事態を抑制することができる。両ガスが底面部211aの水平方向へと行き渡った後は、水素ガスよりも比重の大きい希釈用ガスは水素ガスの下側に広がる二層構造が形成される。また、多孔状の仕切板211fを通過することにより、希釈用ガスの流速は均一化される。したがって、水素ガスは希釈用ガスと混合することなく、希釈用ガスによって順次、底面部211aから頂面部211bの排出水素排出口211eまで移動させられる。この結果、希釈用ガスの流量を調整することによって一定の濃度にて水素を大気中に放出することができる。
【0079】
.第2の内部構成を有する収容器212:
図17に示すように、収容器212は、搭載時に底面をなす底面部212a、頂面をなす頂面部212bを備えている。燃料電池(図示しない)から排出された排出水素ガスを収容器内部に導入する排出水素ガス導入口212cおよび収容器内部にて排出水素ガスを押し出す希釈用ガスを導入する排出空気取入口212dは頂面部212b近傍に配置されている。収容器212に一時的に収容されていた排出水素ガスおよび希釈用ガスを収容器212の外部へ排出する排出水素ガス排出口212eは、排出水素ガス排出口212cおよび希釈用ガス排出口212dと対向する頂面部212b近傍に配置されている。
【0080】
排出水素ガス排出口212cおよび希釈用ガス排出口212dが配置側における収容器212内部には、排出水素ガス導入口212cおよび排出空気取入口212dから導入された排出水素ガスを、希釈用ガスによって底面部212bにまで導く誘導路を区画形成する仕切板212fが配置されている。すなわち、収容器212は、導入された排出水素ガスおよび希釈用ガスを底面部212aから頂面部212bへと流動させる内部構造を有する。第2の内部構成を有する収容器212によれば、収容器内部に導入された排出水素ガスは希釈用ガスによって底面部212bまで導かれる。排出水素ガスの流速は底面部212bに到達するまでに低下し、収容器212の水平方向(幅方向)へと十分に行き渡らされる。したがって、排出水素ガスが直ちに排出水素排出口212eへと流動し、収容器内部にて希釈用ガスと拡散混合する事態を抑制することができる。両ガスが底面部212aの水平方向へと行き渡った後は、水素ガスよりも比重の大きい希釈用ガスは水素ガスの下側に広がる二層構造が形成される。したがって、水素ガスは希釈用ガスと混合することなく、希釈用ガスによって順次、底面部212aから頂面部212bの排出水素排出口212eまで移動させられる。この結果、希釈用ガスの流量を調整することによって一定の濃度にて水素を大気中に放出することができる。
【0081】
誘導路における排出水素ガスの拡散(希釈)を防止して、排出水素ガスを底面部212bの水平方向に行き渡らせるためには、誘導路の路幅は狭いことが好ましい。また、第1の内部構成を有する収容器211の同様にして多孔状の仕切板を備えても良い。かかる場合には、より一層、排出水素ガスを収容器212の水平方向(幅方向)へと十分に行き渡らせることができると共に、多孔状の仕切板を通過することにより、希釈用ガスの流速が均一化されるので、両ガスの混合をさらに抑制することができる。
【0082】
.第3の内部構成を有する収容器213:
図18に示すように、収容器213は、搭載時に底面をなす底面部213a、頂面をなす頂面部213bを備えている。燃料電池(図示しない)から排出された排出水素ガスを収容器内部に導入する排出水素ガス導入口213cおよび収容器内部にて排出水素ガスを押し出す希釈用ガスを導入する排出空気取入口213dは底面部213b近傍に配置されている。収容器213に一時的に収容されていた排出水素ガスおよび希釈用ガスを収容器213の外部へ排出する排出水素ガス排出口213eは、排出水素ガス排出口213cおよび希釈用ガス排出口213dと対向する頂面部213b近傍に配置されている。
【0083】
収容器213内部には、排出水素ガス導入口213cおよび排出空気取入口213dから導入された排出水素ガスおよび希釈用ガスを排出水素ガス排出口213eへと導く流路を形成する複数の仕切板213fが水平方向に配置されている。ここで、流路における排出水素ガスの拡散(希釈)を防止するためには、流路の路幅は狭いことが好ましい。すなわち、収容器213は、導入された排出水素ガスおよび希釈用ガスを底面部213aから頂面部213bへと流動させる内部構造を有する。第3の内部構成を有する収容器213によれば、収容器内部に導入された排出水素ガスは、続いて導入された希釈用ガスによって、仕切板213fにより区画形成された流路に従って、順次、排出水素排出口213eへと押し出される。したがって、収容器213の収容能力(容積)を有効に活用することができると共に、収容器内部における両ガスの拡散混合を抑制することができる。この結果、希釈用ガスの流量を調整することによって一定の濃度にて水素を大気中に放出することができる。
【0084】
.第4の内部構成を有する収容器214:
収容器214は、基本的には第3の内部構成を有する収容器213と同様の構成を備えているが、仕切板214fとして多孔状のものを備えている点で相違する。以下の説明では、第3の内部構成を有する収容器213と同様の構成要素については、符号の数字部分についてのみ213の符号に代えて214の符号を用い、その説明を省略する。
【0085】
図19〜図21を参照して、多孔状の仕切板214fを備えることにより得られる作用効果について説明する。多孔状の仕切板214fは、仕切板214fに対して平行に流れる流体の速度が高い場合には、流体が仕切板214fに対して垂直に通過することを許容せず、流体の速度が低い場合には、流体が仕切板214fに対して垂直に通過することを許容する。したがって、排出水素ガス流速が高い(流量が多い)場合、すなわち、始動時およびアイドル時を除く燃料電池の負荷運転時には、仕切板214fの多孔部分は機能せず、排出水素ガスは多孔部分を通過して移動しない(図19参照)。したがって、第3の内部構成を有する収容器213と同様の作用効果を得ることができる。
【0086】
一方、始動時およびアイドル時といった排出水素ガスの流速が低い場合(流量が少ない)場合には、仕切板214fの多孔部分は機能し、排出水素ガスは多孔部分を通過して底面部214aから頂面部214bへと移動する。すなわち、浮力に起因する水素の垂直方向(上方)への移動速度を無視することができないほど排出水素ガスの流速が低い場合には、排出水素ガスの水素は水平方向のみならず上方へも移動する。したがって、少なくとも排出水素ガスの一部は仕切板214fを通過して、収容器214にて希釈される(収容器214内に拡散する)(図20参照)。
【0087】
第4の内部構成を備える収容器214によれば、図21に示すように、排出水素ガス量が収容器214における希釈化を許容するほど少ない場合には、排出水素ガスの仕切板214fの通過を許容する。したがって、排出水素ガスは、収容器214内部にて予めを希釈された後に、再度、空気排出管を流れる希釈用ガスによって希釈されるので空気排出管の開放端から排出される水素濃度のピーク値を低減することができる。これに対して、多孔部を有しない仕切板を用いた場合には、排出水素ガスは収容器内部にて希釈されないため、排出水素ガスの流速にかかわらず、排出水素排出口から排出される水素濃度のピーク値はほぼ一定である。すなわち、収容器214は、時間をかけて低い濃度の水素を大気中に放出することができる。この結果、アイドル時等の排出水素ガス濃度が低い条件下で、希釈ガス流量を少なくすることが可能となり、希釈ガスを供給するために必要な動力を低減することができる。
【0088】
・第5の実施例:
第2および第3の実施例では、第2の電磁弁53を用いて空気排出管41への排出水素ガスの逆流を防止、調整していたが、図22に示すように第2の電磁弁53を備えることなく、空気排出管41への排出水素ガスの逆流を抑制するようにしても良い。図22は第5の実施例に係る排出水素処理装置80の概略構成図であり、収容器は平面断面図にて表されている。この排出水素処理装置80は、ほぼ左右対称な収容器81を備えており、水素排出管43は収容器81の略中央に接続されている。かかる構成を備えることにより、排出水素ガスが収容器81に導入される2秒間の間に、収容器81内の排出空気が排出空気供給管45および排出水素ガス排出管46を介して収容器81外(空気排出管41)に排出される。したがって、排出水素ガスが収容器81に導入されたのちは、速やかに排出水素ガスを空気排出管41に導出することが可能となり、希釈が完了するまでに要する時間を短縮することができる。
【0089】
・第6の実施例:
上記各実施例では、収容器に排出水素ガスを一時的に収容し、希釈用ガスの一部を収容器に導入することで収容された排出水素ガスを順次、収容器の一側から他側へと押し出して収容器外に排出する。また、排出水素ガスは、原則として排出水素ガス排出管から空気排出管41に対して排出され、希釈された後、大気中に排出される。これに対して、第6の実施例では、排出水素ガス導入当初は排出水素ガスの希釈、および排出空気供給管への排出水素ガスの逆流を許容する。
【0090】
第6の実施例に係る排出水素処理装置90について図23〜図28を参照して説明する。図23は第6の実施例に係る排出水素処理装置の概略構成図であり、収容器は平面断面図にて表されている。図24は希釈用ガスの一部を利用して収容された排出水素ガスを押し出す場合における収容器内の排出水素ガスの移動の様子を示す模式図である。図25は第6の実施例に係る排出水素処理装置における収容器内の排出水素ガスの移動の様子を示す模式図である。図26は第6の実施例に係る排出水素処理装置90から排出される排出水素濃度の時間変化を示す説明図である。図27は第6の実施例に係る排出水素処理装置90における、排出水素ガス導入時の水素濃度の変化を示す模式図である。図28は第6の実施例に係る排出水素処理装置90における、希釈用ガス導入時の水素濃度の変化を示す模式図である。
【0091】
排出水素処理装置90は、箱状の収容器91、収容器91内部における流体の流れを規制して流路を形成する複数の仕切板92を備えている。収容器91の第1の端部911および第2の端部912からの距離が略等しい中央部には、排出水素を供給するための水素排出管93が接続されており、水素排出管93には排出水素ガスを間欠的に収容器91へ導入させる第1の電磁弁52が備えられている。収容器91の第1の端部911側には収容器内の排出水素ガスを排出するための排出水素ガス排出管94の一端が接続され、収容器91の第2の端部912側には希釈用ガスとしての排出空気の一部を収容器内に導入するための排出空気供給管95の一端が接続されている。排出水素ガス排出管94の他端は、常時、希釈用の排出空気が流動する空気排出管96の大気開放端近傍(下流側)に接続されている。排出空気供給管95の他端は、排出水素ガス排出管94の他端の接続位置よりも上流側において、空気排出管96と接続されている。
【0092】
仕切板92は収容器92の第1の端部911近傍および第2の端部912近傍に配置されており、水素排出管93が接続されている収容器92の中央部には配置されていない。この結果、収容器91の中央部付近では収容器内部に既存の空気と導入された排出水素ガスとの混合が許容され、排出水素ガスが希釈される。一方、第1および第2の端部911、912近傍では、仕切板92によって、排出水素ガスの拡散(希釈)を規制し、排出水素ガスを排出水素ガス排出管94を介して空気排出管96へと順次導くことができる。また、排出空気供給管95から供給された排出空気(希釈用ガス)を収容器91の中央部へと導くことができる。
【0093】
本実施例に係る排出水素処理装置90における、収容器91内に導入された排出水素ガスの流れについて図25を参照して説明する。水素排出管93から導入された排出水素ガスは、仕切板92が配置されておらず広い空間が区画形成されている収容器91の中央部にて既存の空気と混合し、希釈される。水素排出管93は、収容器91の第1の端部911および第2の端部912からの距離が略等しい中央部に接続されているので、収容器内部に導入され希釈された排出水素ガスの1/2は、仕切板92により形成された流路に従い排出水素ガス排出管94へと流動し、残りの1/2は、仕切板92により形成された流路に従い排出空気供給管95へと流動する。本実施例では排出空気供給管95に逆流を防止するためのバルブ(電磁弁53)が配置されていないので、収容器91の圧力が排出空気供給管95の圧力よりも高くなる排出水素ガスの導入当初は、排出空気供給管95に到達した排出水素ガスは、排出空気供給管95を逆流して空気排出管96へと流動する。
【0094】
本実施例に係る排出水素処理装置90では、常に収容器の一側から他側へと希釈用ガスを用いて排出水素ガスを押し出す場合と比較して、排出水素ガス導入当初における排出水素ガスの移動距離は半分となる(図24参照)。特に収容器91の容量に対して1回当たりの排出水素ガス流量が少ない場合には、収容器91内の既存空気を希釈ガスとして有効に用いることができる。したがって、収容器91に一時的に収容された排出水素ガスは、速やかに収容器91の外部へと排出され、収容器91に既存の空気を収容器91外へと排出するために要する時間を半減することができる(図26参照)。また、収容器91に初期に導入された排出水素ガスは、収容器91内の既存の空気によって希釈されているので、排出水素処理装置90から大気中に排出される水素濃度のピーク値を低減することができる(図26参照)。
【0095】
本実施例に係る排出水素処理装置90における収容器91内の濃度変化は図27および図28に示すとおりである。収容器91内に排出水素ガスが導入される場合には、収容器91内に導入された排出水素ガスは、その一部が収容器91内の既存空気と混合すると共に、収容器91内の既存空気および排出水素ガスと空気の混合気を収容器91外へと押し出す。例えば、排出空気流量をM、排出水素ガス流量をH、収容器91から排出される水素量をhとすれば、h/(M+H)×100により表される水素濃度(vol%)が大気中に排出される。
【0096】
一方、収容器91内に排出水素ガスが導入された後(排出水素ガスの導入タイミング以外の場合)には、収容器91内の排出水素ガスは、排出空気供給管95にから収容器91内に導入される希釈用ガスによって、排出水素ガス排出管94から収容器91外へと排出される。この結果、収容器91内の排出水素ガスは、希釈用ガスによって置換される。例えば、希釈用ガス流量をm、排出空気流量をMとすれば、m/M×100により表される水素濃度(vol%)が大気中に排出される。本実施例に係る排出水素処理装置90は、燃料電池のいずれの運転条件においても、(h/(M+H)×100)、(m/M×100)にて表される水素濃度(vol%)が可燃範囲未満となるように設計される。
【0097】
また、本実施例に係る排出水素処理装置90によれば、これまで、排出水素ガス導入当初、収容器91内に既存の空気を収容器91外へと排出するために要した時間を半減することができる。
【0098】
また、収容器91内に既存の空気を収容器91外へと排出するために要した時間を排出水素ガスを収容器91外へと排出するために利用すると共に、排出水素ガス導入当初は、これまで単に収容器91外へと排出していた既存の空気を希釈用ガスとして利用することができる。したがって、収容器91内に収容された排出水素ガスを速やかに排出水素処理装置90外へと排出することができると共に、排出水素処理装置90から排出される水素濃度のピーク値を低減することができる(図26参照)。
【0099】
この結果、例えば、燃料電池の始動時、アイドル時、負荷運転時といった各運転状態に適切な様々な排出水素ガスの排出タイミングに適応して、排出水素ガスを収容し、可燃濃度未満の水素濃度にて排出水素ガスを大気中に排出することができる。
【0100】
以上、いくつかの実施例に基づき本発明に係る排出水素処理装置を説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはもちろんである。
【0101】
上記実施例では、燃料電池10の空気極12から排出される排出空気を用いて燃料極13から間欠的に排出される排出水素ガスを希釈しているが、別途ブロア等を備えて、排出水素ガスを希釈するための難燃性ガスを空気排出管41または別の希釈用ガス供給管に供給してもよい。かかる場合には、ブロア等を別途備えなければならないものの、難燃性ガス流量を大きくすることができるので、収容器21、61における排出水素ガスの移動速度(排出空気供給管45から供給される難燃性ガスの流速)を大きくしても、排出空気排出管41(希釈用ガス供給管)から排出されるガス中の水素濃度を4%未満に抑えることができる。したがって、収容器21、61の容量を小さくすることが可能となり、排出水素処理装置を小型化することができると共に、排出水素ガスの希釈化を完了するまでに要する時間を短縮することができる。
【0102】
上記実施例では、排出水素ガスを希釈するガスを排出空気と呼んでいるが、この他に、希釈用ガスと呼ぶこともある。ただし、希釈用ガスの名称が用いられる場合であっても、収容器21、61では希釈化は実行されず、排出空気排出管41(希釈用ガス供給管)において希釈化は実行される。
【0103】
上記実施例では、収容器21、61として箱状、管状の形態を例に挙げて説明したが、収容器の形態はこれら形態に限定されない。すなわち、燃料極13から排出された排出水素ガスが大気中に放出されるまでの時間を遅延させることができれば良い。
【図面の簡単な説明】
【図1】第1の実施例に係る排出水素処理装置を含む燃料電池システムの概略構成を示すブロック図である。
【図2】第1の実施例に係る排出処理装置に適用され得る他の収容器を示す説明図である。
【図3】排出水素処理装置20(収容器21)における排出水素ガスの流動の様子を模式的に示す平面断面図である。
【図4】排出水素処理装置20(収容器21)における排出水素ガスの流動の様子を模式的に示す平面断面図である。
【図5】排出水素処理装置20(収容器21)における排出水素ガスの流動の様子を模式的に示す平面断面図である。
【図6】排出水素処理装置が備える流動規制部の第1の形態を示す説明図である。
【図7】排出水素処理装置が備える流動規制部の第2の形態を示す説明図である。
【図8】排出水素処理装置が備える流動規制部の第3の形態を示す説明図である。
【図9】排出水素処理装置が備える流動規制部の第4の形態を示す説明図である。
【図10】第2の実施例に係る排出水素処理装置60の概略構成図である。
【図11】第1電磁弁および第2電磁弁の動作タイミングを示すタイムチャートである。
【図12】第2の実施例の変形例における第1電磁弁および第2電磁弁の動作タイミング、収容器61に導入される排出水素ガス流量、希釈用ガス流量、収容器61から排出される排出水素ガス量を示すタイムチャートである。
【図13】第3の実施例に係る排出水素処理装置70の概略構成図である。
【図14】第1電磁弁および第2電磁弁の動作タイミングを示すタイムチャートである。
【図15】空気排出管の開放端から排出される水素濃度の時間変化を示す説明図である。
【図16】収容器の第1の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。
【図17】収容器の第7の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。
【図18】収容器の第3の内部構成例および収容器内における排出水素ガスの流動状態を模式的に示す説明図である。
【図19】収容器の第4の内部構成例および収容器内における流速が高い場合の排出水素ガスの流動状態を模式的に示す説明図である。
【図20】収容器の第4の内部構成例および収容器内における流速が低い場合の排出水素ガスの流動状態を模式的に示す説明図である。
【図21】第4の内部構成を備える収容器から排出される排出水素濃度の時間変化を示す説明図である。
【図22】第5の実施例に係る排出水素処理装置80の概略構成図である。
【図23】第6の実施例に係る排出水素処理装置の概略構成図であり、収容器は平面断面図にて表されている。
【図24】希釈用ガスの一部を利用して収容された排出水素ガスを押し出す場合における収容器内の排出水素ガスの移動の様子を示す模式図である。
【図25】第6の実施例に係る排出水素処理装置における収容器内の排出水素ガスの移動の様子を示す模式図である。
【図26】第6の実施例に係る排出水素処理装置90から排出される排出水素濃度の時間変化を示す説明図である。
【図27】第6の実施例に係る排出水素処理装置90における、排出水素ガス導入時の水素濃度の変化を示す模式図である。
【図28】第6の実施例に係る排出水素処理装置90における、希釈用ガス導入時の水素濃度の変化を示す模式図である。
【符号の説明】
10…燃料電池
11…高分子膜
12…空気極
13…燃料極
14…エアコンプレッサ
15…水素貯蔵器
16…循環用ポンプ
20…排出水素処理装置
21…収容器
21a…導入部
21b…導出部
22…仕切板
23…排出水素ガス導入口
24…排出空気取入口
30…隔壁
31…流動規制部
40…空気供給管
41…空気排出管(希釈用ガス供給路)
42…水素供給管
43…水素排出管(排出水素ガス供給路)
44…水素循環管
45…排出空気供給管
46…排出水素ガス排出管
50…制御弁
51…逆止弁
60…排出水素処理装置
61…収容器
70…排出水素処理装置
80…排出水素処理装置
90…排出水素処理装置
91…収容器
911…第1の端部
912…第2の端部
92…仕切板
93…水素排出管
94…排出水素ガス排出管
95…排出空気供給管
96…空気排出管

Claims (25)

  1. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置であって、
    導入部および導出部を有すると共に前記間欠的に排出された排出水素ガスの全量を収容可能な収容器と、
    前記燃料電池の燃料極側と前記収容器の導入部とを連通する排出水素ガス供給路と、
    希釈用ガスを定常的に供給する希釈用ガス供給路と、
    前記収容器の導出部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、
    前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の導入部とを連通するガス導入路と、
    前記ガス導入路に対する前記収容器内の排出水素ガスの流出を抑制する抑制手段とを備える排出水素処理装置。
  2. 請求項1に記載の排出水素処理装置において、
    前記希釈用ガスは、前記燃料電池の空気極側から排出される排出空気であり、
    前記希釈用ガス供給路は、前記燃料電池の空気極側から排出される排出空気を大気へ排出する排出路である排出水素処理装置。
  3. 請求項1または請求項2に記載の排出水素処理装置において、
    前記導入部は、前記ガス導入路が接続される希釈用ガス取入口、その希釈用ガス取入口よりも下流側に前記排出水素ガス供給路が接続される排出水素ガス導入口を備える排出水素処理装置。
  4. 請求項3に記載の排出水素処理装置において、
    前記抑制手段は、前記収容器を、前記排出水素ガス導入口を含む第1の空間と前記希釈用ガス取入口を含む第2の空間とに区分すると共に、前記希釈用ガス取入口から供給される希釈用ガスの通過を許容し、前記排出水素ガス導入口から導入される排出水素ガスの通過を規制する流動規制部を有する隔壁である排出水素処理装置。
  5. 請求項4に記載の排出水素処理装置において、
    前記流動規制部は、前記隔壁に形成された孔またはスリットである排出水素処理装置。
  6. 請求項4または請求項5に記載の排出水素処理装置において、
    前記収容器は、流体を前記導入部から前記導出部へ導く流路を形成する仕切板を内部に備える箱状体であり、
    前記導入部は、前記流路の最上流域に備えられている排出水素処理装置。
  7. 請求項4または請求項5に記載の排出水素処理装置において、
    前記収容器は、管状体であり、
    前記希釈用ガス取入口は、前記管状体の一端に形成され、前記導出部は前記管状体の他端に形成される排出水素処理装置。
  8. 請求項1または請求項2に記載の排出水素処理装置において、
    前記抑制手段は、前記希釈用ガス供給路に配置されると共に前記希釈用ガス供給路を連通および非連通状態を切り換える弁機構であり、
    前記排出水素処理装置はさらに、
    前記排出水素ガスが間欠的に排出される前に、前記弁機構によって前記希釈用ガス供給路を非連通状態に切り換える弁機構制御器を備える排出水素処理装置。
  9. 請求項1または請求項2に記載の排出水素処理装置において、
    前記抑制手段は、前記希釈用ガス供給路に配置されると共に前記希釈用ガス供給路を連通および非連通状態を切り換える弁機構であり、
    前記排出水素処理装置はさらに、
    前記排出水素ガスが間欠的に排出される前に、前記弁機構によって前記希釈用ガス供給路の連通、非連通状態を任意のタイミングにて切り換える弁機構制御器を備える排出水素処理装置。
  10. 請求項9に記載の排出水素処理装置において、
    前記弁機構制御器は、前記排出水素ガスが間欠的に排出された後に、前記弁機構によって前記弁機構によって前記希釈用ガス供給路の連通、非連通状態を任意のタイミングにて切り換える排出水素処理装置。
  11. 燃料電池の燃料極側から排出される排出水素ガスを希釈する排出水素処理装置であって、
    前記排出水素ガスを希釈する希釈部と、
    前記燃料電池の燃料極側から所定の時間間隔にて排出水素ガスを排出させる排出手段と、
    前記排出水素ガスを希釈するための希釈用ガスを定常的に前記希釈部へ供給する希釈用ガス供給手段と、
    前記排出された排出水素ガスを収容すると共に、前記排出された排出水素ガスが前記希釈部へ移動する時間を前記所定の時間間隔よりも短い時間だけ遅延させるよう、前記希釈用ガス供給手段によって供給される希釈用ガスの一部を利用して、前記収容されている前記排出水素ガスを前記希釈部へ移動させる遅延手段と、
    前記遅延手段に収容されている前記排出水素ガスが前記希釈用ガス供給手段へ逆移動することを抑制する逆移動抑制手段とを備える排出水素処理装置。
  12. 請求項11に記載の排出水素処理装置において、
    前記移動手段によって利用される希釈用ガスの時間あたりの供給量は、前記所定の時間間隔に反比例する排出水素処理装置。
  13. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置であって、
    導入部および導出部とを有すると共に、前記間欠的に排出された排出水素ガスの全量を収容可能な収容器と、
    前記燃料電池の燃料極側と前記収容器とを連通する排出水素ガス供給路と、
    希釈用ガスを定常的に供給する希釈用ガス供給路と、
    前記収容器の導出部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、
    前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の導入部とを連通するガス導入路と、
    前記ガス導入路に配置され、前記ガス導入路を連通および非連通状態のいずれかの状態に切り換える第1の切り替え機構と、
    前記第1の切り替え機構の切り替え状態を制御する制御手段であって、前記排出水素ガスが排出された後に、前記第1の切り替え機構を非連通状態に切り換える制御手段とを備える排出水素処理装置。
  14. 請求項13に記載の排出水素処理装置はさらに、
    前記排出水素ガス供給路に配置されていると共に、前記排出水素ガス供給路を間欠的に非連通状態から連通状態に切り換える第2の切り替え機構を備え、
    前記制御手段は、前記第2の切り替え機構が連通状態に切り換えられた後に、前記第1の切り替え機構を非連通状態に切り換えると共に、前記第2の切り替え機構が非連通状態に切り換えられた後に、前記第1の切り替え機構を連通状態に切り換える排出水素処理装置。
  15. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置であって、
    第1および第2の端部を有すると共に、前記間欠的に排出された排出水素ガスの全量を収容可能な収容器と、
    前記燃料電池の燃料極側と前記収容器の略中央部とを連通する排出水素ガス供給路と、
    希釈用ガスを定常的に供給する希釈用ガス供給路と、
    前記収容器の前記第1の端部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、
    前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の前記第2の端部とを連通するガス導入路とを備える排出水素処理装置。
  16. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを定常的に供給される希釈用ガスを用いて希釈する排出水素処理装置において、排出水素ガスを一時的に収容する収容器であって、
    設置時に底面をなす底面部と、
    設置時に頂面をなす頂面部と、
    前記間欠的に排出された排出水素ガスの全量を収容可能であると共に、導入された流体を前記底面部から前記頂面部へと流動させる内部構造を有する収容部と、
    前記排出水素ガスおよび前記希釈用ガスの一部を前記収容部に導入する導入部と、
    前記一時的に収容された排出水素ガスを前記収容部外へ導出する導出部とを備える収容器。
  17. 請求項16に記載の収容器において、
    前記導入部は前記底面部の近傍に配置され、前記導出部は前記頂面部の近傍に配置されている収容器。
  18. 請求項16に記載の収容器において、
    前記導入部は前記頂面部の近傍に配置され、前記導出部は前記導入部と対向する前記頂面部の近傍に配置され、
    前記収容部は、前記導入部を介して収容器内部に導入された流体を前記底面部へと導く誘導路を内部に備える収容器。
  19. 請求項17または請求項18に記載の収容器において、
    前記収容部は、流体を前記底面部から前記頂面部へと導く流路を形成すると共に前記底面部と平行な1つ以上の仕切板を内部に備える収容器。
  20. 請求項19に記載の収容器において、
    前記各仕切板には、流体の流速が低い場合に排出水素ガスの通過を許容する流体通過部が備えられている収容器。
  21. 請求項20に記載の収容器において、
    前記流体通過部は、複数の細孔またはスリットである収容器。
  22. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置であって、
    請求項16ないし請求項21のいずれかに記載の収容器と、
    前記燃料電池の燃料極側と前記収容器の導入部とを連通する排出水素ガス供給路と、
    希釈用ガスを定常的に供給する希釈用ガス供給路と、
    前記収容器の導出部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、
    前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の導入部とを連通するガス導入路と、
    前記ガス導入路に対する前記収容器内の排出水素ガスの流出を抑制する抑制手段とを備える排出水素処理装置。
  23. 燃料電池の燃料極側から間欠的に排出される排出水素ガスを希釈する排出水素処理装置であって、
    第1および第2の端部、並びに前記第1および第2の端部からの距離が略等しい排出水素導入部を有すると共に、前記間欠的に排出された排出水素ガスの全量を収容可能な収容器と、
    前記排出水素導入部と前記燃料電池の燃料極側とを連通する排出水素ガス供給路と、
    希釈用ガスを定常的に供給する希釈用ガス供給路と、
    前記収容器の前記第1の端部と前記希釈用ガス供給路の所定位置とを連通する排出水素ガス排出路と、
    前記所定位置よりも上流側において、前記希釈用ガス供給路と前記収容器の前記第2の端部とを連通するガス導入路とを備える排出水素処理装置。
  24. 請求項23に記載の排出水素処理装置において、
    前記収容器は、導入された流体の流路を規定する複数の仕切板を有し、
    前記排出水素導入部近傍における仕切板の間隔は、前記第1および第2の端部近傍における仕切板の間隔よりも広い排出水素処理装置。
  25. 請求項23に記載の排出水素処理装置において、
    前記収容器は、前記第1および第2の端部近傍に、導入された流体の流路を規定する複数の仕切板を有する排出水素処理装置。
JP2002168489A 2002-03-27 2002-06-10 燃料電池の排出水素処理 Expired - Fee Related JP4109019B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168489A JP4109019B2 (ja) 2002-03-27 2002-06-10 燃料電池の排出水素処理

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002087311 2002-03-27
JP2002168489A JP4109019B2 (ja) 2002-03-27 2002-06-10 燃料電池の排出水素処理

Publications (2)

Publication Number Publication Date
JP2004006183A true JP2004006183A (ja) 2004-01-08
JP4109019B2 JP4109019B2 (ja) 2008-06-25

Family

ID=30446065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168489A Expired - Fee Related JP4109019B2 (ja) 2002-03-27 2002-06-10 燃料電池の排出水素処理

Country Status (1)

Country Link
JP (1) JP4109019B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347151A (ja) * 2004-06-04 2005-12-15 Toyota Motor Corp 燃料電池システム
JP2006302708A (ja) * 2005-04-21 2006-11-02 Toyota Motor Corp 希釈装置
JP2007018816A (ja) * 2005-07-06 2007-01-25 Honda Motor Co Ltd 燃料電池の排出ガス処理装置
WO2007013656A1 (ja) * 2005-07-26 2007-02-01 Toyota Jidosha Kabushiki Kaisha ガスの希釈器
JP2007193993A (ja) * 2006-01-17 2007-08-02 Honda Motor Co Ltd 燃料電池システムおよびその制御方法
WO2007102612A1 (en) * 2006-03-06 2007-09-13 Canon Kabushiki Kaisha Fuel cell and method of operating fuel cell
US7358002B2 (en) 2002-10-17 2008-04-15 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
WO2008047887A1 (en) * 2006-10-17 2008-04-24 Canon Kabushiki Kaisha Exhaust fuel diluting mechanism and fuel cell system with the exhaust fuel diluting mechanism
US7604890B2 (en) 2005-05-13 2009-10-20 Honda Motor Co., Ltd. Fuel cell discharge-gas processing device
JP2010182458A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 気液分離器と希釈器との一体型装置
US7824811B2 (en) * 2004-07-13 2010-11-02 Honda Motor Co., Ltd. Fuel cell discharge-gas processing device
US7862954B2 (en) 2003-11-19 2011-01-04 Aquafairy Corporation Fuel cell
WO2019111886A1 (ja) * 2017-12-07 2019-06-13 東芝燃料電池システム株式会社 燃料電池システム、及び燃料電池システムの制御方法
JP2019133871A (ja) * 2018-02-01 2019-08-08 トヨタ自動車株式会社 燃料電池用の排気流路形成体
JP7334646B2 (ja) 2020-02-14 2023-08-29 スズキ株式会社 燃料電池システムの希釈装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358002B2 (en) 2002-10-17 2008-04-15 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
US7862954B2 (en) 2003-11-19 2011-01-04 Aquafairy Corporation Fuel cell
JP2005347151A (ja) * 2004-06-04 2005-12-15 Toyota Motor Corp 燃料電池システム
JP4622319B2 (ja) * 2004-06-04 2011-02-02 トヨタ自動車株式会社 燃料電池システム
US7824811B2 (en) * 2004-07-13 2010-11-02 Honda Motor Co., Ltd. Fuel cell discharge-gas processing device
JP2006302708A (ja) * 2005-04-21 2006-11-02 Toyota Motor Corp 希釈装置
US7604890B2 (en) 2005-05-13 2009-10-20 Honda Motor Co., Ltd. Fuel cell discharge-gas processing device
JP2007018816A (ja) * 2005-07-06 2007-01-25 Honda Motor Co Ltd 燃料電池の排出ガス処理装置
WO2007013656A1 (ja) * 2005-07-26 2007-02-01 Toyota Jidosha Kabushiki Kaisha ガスの希釈器
JP2007035406A (ja) * 2005-07-26 2007-02-08 Toyota Motor Corp ガスの希釈器
US8668377B2 (en) 2005-07-26 2014-03-11 Toyota Jidosha Kabushiki Kaisha Gas diluter
JP2007193993A (ja) * 2006-01-17 2007-08-02 Honda Motor Co Ltd 燃料電池システムおよびその制御方法
WO2007102612A1 (en) * 2006-03-06 2007-09-13 Canon Kabushiki Kaisha Fuel cell and method of operating fuel cell
US8691465B2 (en) 2006-03-06 2014-04-08 Canon Kabushiki Kaisha Fuel cell and method of operating fuel cell
WO2008047887A1 (en) * 2006-10-17 2008-04-24 Canon Kabushiki Kaisha Exhaust fuel diluting mechanism and fuel cell system with the exhaust fuel diluting mechanism
US8026009B2 (en) 2006-10-17 2011-09-27 Canon Kabushiki Kaisha Exhaust fuel diluting mechanism and fuel cell system with the exhaust fuel diluting mechanism
JP2010182458A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 気液分離器と希釈器との一体型装置
US8722260B2 (en) 2009-02-03 2014-05-13 Toyota Jidosha Kabushiki Kaisha Integrated apparatus of gas-liquid separator and diluter
WO2019111886A1 (ja) * 2017-12-07 2019-06-13 東芝燃料電池システム株式会社 燃料電池システム、及び燃料電池システムの制御方法
JPWO2019111886A1 (ja) * 2017-12-07 2020-11-26 株式会社東芝 燃料電池システム、及び燃料電池システムの制御方法
JP2019133871A (ja) * 2018-02-01 2019-08-08 トヨタ自動車株式会社 燃料電池用の排気流路形成体
JP7059660B2 (ja) 2018-02-01 2022-04-26 トヨタ自動車株式会社 燃料電池用の排気流路形成体
JP7334646B2 (ja) 2020-02-14 2023-08-29 スズキ株式会社 燃料電池システムの希釈装置

Also Published As

Publication number Publication date
JP4109019B2 (ja) 2008-06-25

Similar Documents

Publication Publication Date Title
JP2004006183A (ja) 燃料電池の排出水素処理
US6916563B2 (en) Discharged fuel diluter and discharged fuel dilution-type fuel cell system
US6849352B2 (en) Fuel cell system and method of operating a fuel cell system
US7223489B2 (en) Hydrogen purge control apparatus
CN101533920B (zh) 用于燃料电池系统的氢排放系统
US20060246330A1 (en) Fuel cell system
US7846596B2 (en) Fuel cell system and method of discharging a reaction gas from the fuel cell system
JP2007531969A (ja) 燃料電池システムのための燃料放出管理
JP2005228491A (ja) 燃料電池システム
WO2008015554A2 (en) Hydrogen supplying apparatus and method for controlling hydrogen supplying apparatus
JP2007042597A (ja) 触媒燃焼器
JP2004220809A (ja) 燃料電池搭載車
CN115117406A (zh) 尾排氢气稀释器
JP2005347008A (ja) 車載用燃料電池システムの排出水素ガス希釈装置
JP2005011641A (ja) 燃料電池の排出ガス処理装置
JP2006032151A (ja) 燃料電池の排出ガス処理装置
JP4410526B2 (ja) 燃料電池の排出ガス処理装置
JP2010282783A (ja) 燃料電池システム
JP2003338302A (ja) 水素供給システム
JP2006155927A (ja) 燃料電池システムおよびその制御方法
JP2008276959A (ja) 燃料電池の排ガス処理装置
US20130036749A1 (en) Fuel Cell System and Method for Operating a Fuel Cell System
KR100776316B1 (ko) 연료 전지 시스템 및 그 제어 방법
JP4564347B2 (ja) 燃料電池システム
JP2005011674A (ja) 燃料電池の排出ガス処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees