JP2003253665A - Wire type excavation accuracy control device for soil improving and treating machine - Google Patents

Wire type excavation accuracy control device for soil improving and treating machine

Info

Publication number
JP2003253665A
JP2003253665A JP2002052189A JP2002052189A JP2003253665A JP 2003253665 A JP2003253665 A JP 2003253665A JP 2002052189 A JP2002052189 A JP 2002052189A JP 2002052189 A JP2002052189 A JP 2002052189A JP 2003253665 A JP2003253665 A JP 2003253665A
Authority
JP
Japan
Prior art keywords
excavation
shaft
control device
wire
ground improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002052189A
Other languages
Japanese (ja)
Other versions
JP3747281B2 (en
Inventor
Yoshitomo Oota
惠智 太田
Hiroshi Nakashiba
中柴  弘
Tsuneyasu Onishi
常康 大西
Hideto Morita
英仁 森田
Tomoaki Hirowatari
智晶 広渡
Mitsuki Yamamoto
光起 山本
Hayao Aoyanagi
隼夫 青柳
Takumi Fujii
卓美 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2002052189A priority Critical patent/JP3747281B2/en
Priority to EP03703220A priority patent/EP1486616A4/en
Priority to PCT/JP2003/001256 priority patent/WO2003072882A1/en
Priority to AU2003207051A priority patent/AU2003207051A1/en
Publication of JP2003253665A publication Critical patent/JP2003253665A/en
Application granted granted Critical
Publication of JP3747281B2 publication Critical patent/JP3747281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/06Dredgers; Soil-shifting machines mechanically-driven with digging screws
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/126Consolidating by placing solidifying or pore-filling substances in the soil and mixing by rotating blades
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/08Dredgers; Soil-shifting machines mechanically-driven with digging elements on an endless chain
    • E02F3/12Component parts, e.g. bucket troughs
    • E02F3/16Safety or control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/22Component parts
    • E02F3/26Safety or control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire type excavation accuracy control device capable of surely assuring a lapped amount between soil column row piles at a constant by correcting or controlling the tip position of the excavating and agitating blade shaft of a soil improving and treating machine. <P>SOLUTION: This wire type excavation accuracy control device comprises a three-dimensional gyro sensor device installed near a bearing member 11 to detect the tip position of the excavating and agitating shaft 6, an installation control device allowing detection signals at the tip of the excavating and agitating shaft 6 measured by the three-dimensional gyro sensor device to be inputted therein, and a hydraulic pressure control circuit for hydraulic cylinders controlled by control signals processed by the installation control device based on the detection signals. The hydraulic cylinders are individually controlled to pull the wires thereof to forcibly correct and control the tip position of the excavating and agitating blade shaft 6. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、土留め壁の構
築、土木建築の基礎工事、地盤の液状化防止工事、止水
壁の構築などを目的としてラップ型のソイル柱列杭を施
工する際に使用される地盤改良処理機の掘削攪拌翼軸の
先端位置を、施工時にリアルタイムに強制的に位置修正
又は制御して、ソイル柱列杭間のラップ量を確実に一定
量に確保するワイヤー式掘削精度制御装置の技術分野に
属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to the construction of lap type pile pillar piles for the purpose of constructing earth retaining walls, civil engineering foundation works, ground liquefaction prevention works, water blocking walls, etc. The wire type that forcibly corrects or controls the tip position of the excavation and stirring blade axis of the soil improvement processor used for the construction in real time during construction to ensure a certain amount of lap between the soil column piles. It belongs to the technical field of excavation accuracy control equipment.

【0002】[0002]

【従来の技術】従来、各種の地盤改良工事は、例えば図
1に示したような地盤改良処理機を使用して行ってい
る。これはリーダー1の頂部シーブ5に吊り下げてレー
ル3に沿って上下に移動される掘進駆動部2により、そ
の直下に吊り下げた駆動軸4を回転駆動しつつ垂直下向
きに推進させる。駆動軸4の下端には、先端カッター7
及び複数の攪拌翼8を上下に備えた掘削攪拌翼軸6を接
続してあり、これを回転しつつ掘進させる際に、又は引
き上げる際に地盤の掘削土と安定材とを攪拌混合して、
通例直径が1m程度のソイル柱列杭を形成する。ラップ
型のソイル柱列杭の場合は、隣接する杭同士を相互に2
0cm程度のラップ長(ラップ幅とも云う)でラップさせ
て一体的に連続した地盤改良が行われる。駆動軸4の垂
直な建入れ精度を確保するため、リーダー1の下部及び
中間部に駆動軸の振止め37と38が設けられている。
振止め37、38も各々レール3に沿って上下に移動す
る。
2. Description of the Related Art Conventionally, various types of ground improvement work have been performed by using a ground improvement processing machine as shown in FIG. 1, for example. This is driven by the excavation drive unit 2 which is hung on the top sheave 5 of the leader 1 and moved up and down along the rails 3, while driving the drive shaft 4 hung directly below the drive shaft 4 in a vertically downward direction. At the lower end of the drive shaft 4, a tip cutter 7
And an excavation stirring blade shaft 6 provided with a plurality of stirring blades 8 on the upper and lower sides are connected, and when excavating while rotating this, or when pulling up, the excavated soil of the ground and the stabilizer are mixed by stirring,
Usually, pile pillar piles with a diameter of about 1 m are formed. In the case of wrap type pile pillar piles, the adjacent piles are
Lapping is performed with a wrap length of about 0 cm (also called lap width), and continuous continuous ground improvement is performed. In order to ensure vertical installation accuracy of the drive shaft 4, drive shaft sway 37 and 38 are provided in the lower and middle portions of the reader 1.
The swing stops 37 and 38 also move up and down along the rail 3.

【0003】地盤改良処理機による各種の地盤改良工事
においては、隣接するソイル柱列杭(改良杭)相互間の
ラップ長が不足したり、又はラップしないときは、改良
杭相互間の一体性(連続性)が損なわれ、改良地盤の構
造上の強度、剛性が低下するほか、止水性を満足しない
等々の不良工事となる。
In various types of ground improvement work using a ground improvement processor, when the lap length between adjacent soil column piles (improved piles) is insufficient or does not wrap, the integrity of the improved piles ( (Continuity) is impaired, the structural strength and rigidity of the improved ground are reduced, and the construction does not satisfy the water stopping property, resulting in poor construction.

【0004】そこで、ソイル柱列杭間のラップ量を確実
に一定量に確保するための対処法として、掘削精度制御
方法及び装置が種々研究されてきた。掘削攪拌翼軸の先
端位置を施工時にリアルタイムに位置修正を行う技術で
ある。そうした従来技術としては、例えば、
Therefore, various methods and devices for controlling excavation accuracy have been studied as a coping method for ensuring a certain amount of lap between soil column piles. This is a technique for correcting the position of the tip of the excavating stirring blade shaft in real time during construction. As such a conventional technique, for example,

【0005】(1)特許第2736471号公報(平成
2年6月8日出願、特開平4−44592号)に開示さ
れた発明「多軸ソイル柱列掘削機の掘削精度制御方法及
びその装置」は、掘削軸の上部と下部を複数本のワイヤ
ーで連結し、各ワイヤーの移動量を油圧制御装置で制御
する構成である。
(1) The invention disclosed in Japanese Patent No. 2736471 (filed on June 8, 1990, Japanese Patent Application Laid-Open No. 4-44592) "Excavation accuracy control method and apparatus for multi-axial soil column excavator" Is a configuration in which the upper part and the lower part of the excavation shaft are connected by a plurality of wires, and the movement amount of each wire is controlled by a hydraulic control device.

【0006】(2)特許第3156049号公報(平成
10年11月27日出願、特開2000−160549
号)に開示された発明「ソイル柱列間のラップ長の施工
管理方法」は、掘削攪拌翼軸の先端位置を計測する3次
元ジャイロセンサを掘削攪拌翼軸の上部近傍位置に設置
し、所謂GPSの利用で自己位置を計測する全地球測位
システムを装備し、ラップ型のソイル柱列杭を施工する
際に前記の計測手段が掘削攪拌翼軸の曲がり傾向を計測
すると、先端掘削カッターを逆転運転して位置修正を行
う。先に施工したソイル柱列杭とラップする隣接のソイ
ル柱列杭を施工するに際しては、前後する施工記録(施
工軌跡)の水平間隔及び水平断面形状に基づいて実質の
ラップ長を把握、管理する。もしラップ長の誤差、曲が
り傾向などを観測したときは先端掘削カッターを逆転運
転して位置の修正を行う方法および地盤改良装置であ
る。
(2) Japanese Patent No. 3156049 (filed on November 27, 1998, Japanese Patent Laid-Open No. 2000-160549)
No. 4) discloses a method for managing the lap length between soil column rows, in which a so-called three-dimensional gyro sensor that measures the tip position of the excavation stirring blade shaft is installed near the upper portion of the excavation stirring blade shaft. Equipped with a global positioning system that measures its own position by using GPS, and when the measuring means measures the bending tendency of the excavation stirring blade axis when constructing a lap type soil column pile, the tip excavation cutter is reversed. Drive to correct the position. When constructing an adjacent soil column pile that wraps with a previously constructed soil column pile, grasp and manage the actual lap length based on the horizontal intervals and horizontal cross-sectional shape of the preceding and following construction records (construction locus). . If the lap length error and bending tendency are observed, the tip excavation cutter is operated in reverse to correct the position and the ground improvement device.

【0007】(3)特開2001−254388号公報
(平成12年3月14日出願)に開示された発明「地盤
改良工法及び装置」は、地盤改良処理機の駆動軸と掘削
攪拌翼軸との接続部位を回転トルクの伝達が可能な自在
継手とし、少なくとも3本の油圧シリンダで掘削攪拌翼
軸の位置修正を可能に構成したものであり、3次元ジャ
イロセンサを利用した計測手段で計測しつつ掘削方向を
修正可能に構成されている。
(3) The invention "ground improvement method and device" disclosed in Japanese Patent Application Laid-Open No. 2001-254388 (filed on March 14, 2000) includes a drive shaft of a ground improvement processor and an excavation stirring blade shaft. Is a universal joint capable of transmitting rotational torque, and at least three hydraulic cylinders can be used to correct the position of the excavation stirring blade shaft. The measurement means using a three-dimensional gyro sensor is used. Meanwhile, the excavation direction can be corrected.

【0008】(4)特願2000−348361号(平
成12年11月15日出願)の明細書及び図面に記載し
た発明「攪拌掘削軸の下部連結バンド」は、掘削攪拌翼
軸の横方向への方向制御を容易にするため、複数本の掘
削攪拌翼軸相互間の間隔を保持する下部連結バンド(図
1における符号9の部材を参照。)における各軸受を相
互間で変形可能に水平方向のピンで連結して自在構造に
構成されている。
(4) The invention "lower connecting band of a stirring and excavating shaft" described in the specification and drawings of Japanese Patent Application No. 2000-348361 (filed on November 15, 2000) is arranged in the lateral direction of the excavating and stirring blade shaft. In order to facilitate the direction control of each of the bearings, the bearings in the lower connecting band (refer to the member of reference numeral 9 in FIG. 1) that maintains the distance between the plurality of excavating and stirring impeller shafts can be deformed in a horizontal direction. It has a free structure by connecting with the pin.

【0009】(5)特願2000−368478号(平
成12年12月4日出願)の明細書及び図面に記載した
発明「掘削精度制御方法」は、ワイヤー式の制御方法で
あるが、上記(1)の特許第2736471号公報に開
示された発明「多軸ソイル柱列掘削機の掘削精度制御方
法」が掘削攪拌翼軸の前後方向(図1の左右方向)への
方向制御しかできなかったのを、更に横方向(図1の紙
面と垂直な方向)へも制御可能とし、精度を高めたもの
である。
(5) The invention "excavation accuracy control method" described in the specification and drawings of Japanese Patent Application No. 2000-368478 (filed on December 4, 2000) is a wire type control method, but the above ( The invention disclosed in Japanese Patent No. 2736471 of 1), "Excavation accuracy control method for multi-axis soil column excavator", can only control the direction of the excavation stirring blade shaft in the front-rear direction (left-right direction in FIG. 1). Can be controlled in the lateral direction (direction perpendicular to the plane of FIG. 1) to improve the accuracy.

【0010】[0010]

【本発明が解決しようとする課題】地盤改良処理機によ
るラップ型ソイル柱列杭の施工において、ソイル柱列杭
の相互間でラップ長が不足したり又はラップしない不良
工事を未然に防止するための対策として、従前は予め設
計上必要なラップ長より大きな、余分なラップ長を含め
て施工することが多い。その結果、地盤改良杭のピッチ
が縮小した分だけ地盤改良のボリュームが多くなるの
で、非効率であり、不経済であった。
[Problems to be Solved by the Invention] In the construction of a lap-type soil column pile by a ground improvement processor, in order to prevent inadequate construction in which the lap length is insufficient or the lap length does not wrap between the soil column piles. As a measure against the above, in the past, work was often performed including an extra lap length, which is larger than the lap length required in advance for design. As a result, the volume of ground improvement increases as much as the pitch of the ground improvement pile decreases, which is inefficient and uneconomical.

【0011】そこで上記(1)〜(5)に例示したよう
な改良技術が研究されているのであるが、依然として十
分満足できる内容に完熟した技術とまでは云えない。
Therefore, although the improved techniques as exemplified in the above (1) to (5) are being researched, it cannot be said that the technique is fully matured to a sufficiently satisfactory content.

【0012】即ち、上記した(1)の制御方法は、ワイ
ヤーの移動量を油圧制御装置で制御する構成であるが、
肝心な制御目標値は、ワイヤーの移動量に基づく間接的
な測定法に基づくもので、掘削軸の先端位置の誤差と一
致する制御結果を得られるかの点に疑問がある。
That is, the above control method (1) has a configuration in which the movement amount of the wire is controlled by the hydraulic control device.
The important control target value is based on an indirect measurement method based on the amount of movement of the wire, and it is doubtful that a control result that matches the error in the tip position of the excavation axis can be obtained.

【0013】上記(2)の施工管理方法は、3次元ジャ
イロセンサを採用し、GPSを利用して自己位置を計測
する全地球測位システムによりリアルタイムに実質のラ
ップ長を把握、管理する点は画期的である。しかし、位
置修正の手段としては、先端掘削カッターを逆転運転し
て位置修正を行うにすぎず、俊敏で確実な応答性を期待
し難いことが問題である。
In the construction management method (2) above, the point that the real lap length is grasped and managed in real time by the global positioning system that employs a three-dimensional gyro sensor and uses GPS to measure its own position is important. It is a term. However, there is a problem in that it is difficult to expect agile and reliable responsiveness because the position excavation cutter is only rotated backward to correct the position as a means for correcting the position.

【0014】上記(3)の地盤改良工法は、3次元ジャ
イロセンサを利用した計測手段で計測する点、及び地盤
改良処理機の駆動軸と掘削攪拌翼軸との接続部位を回転
トルクの伝達が可能な自在継手として、少なくとも3本
の油圧シリンダで掘削攪拌翼軸の位置修正を可能に構成
した点は、前二者に比較して俊敏で確実な応答性を期待
出来る。しかしながら、精密な機械部分(自在継手と油
圧シリンダなど)を掘削土中に深く進入させる構成なの
で、耐久性の確保と保守、点検の面で問題がある。
In the ground improvement method of the above (3), the point of measurement by the measuring means using the three-dimensional gyro sensor and the transmission of the rotational torque at the connecting portion between the drive shaft of the ground improvement processor and the excavation stirring blade shaft can be transmitted. As a possible universal joint, at least three hydraulic cylinders can be used to correct the position of the excavation and stirring blade axis, and agile and reliable responsiveness can be expected compared to the former two. However, since the precision machine parts (such as universal joints and hydraulic cylinders) are deeply penetrated into the excavated soil, there are problems in terms of ensuring durability, maintenance and inspection.

【0015】上記(4)の下部連結バンドの有用性は十
分に認められるが、これを十分に応用した掘削精度制御
方法は未だ完成されていない。
Although the usefulness of the lower connecting band of the above (4) is sufficiently recognized, the excavation accuracy control method sufficiently applying this has not been completed yet.

【0016】上記(5)の掘削精度制御方法は、ワイヤ
ー式制御方法である点を注目できるが、掘削攪拌翼軸の
位置測定技術との関連性が曖昧である。
It can be noted that the excavation accuracy control method (5) is a wire type control method, but its relevance to the technique for measuring the position of the excavation stirring blade axis is ambiguous.

【0017】以上に個別の吟味、検討を行った通り、従
来技術は、個々にはそれぞれ固有の特長を有するもの
の、システム全体を統括して直ちに現場で実施可能にま
で完熟した技術内容にはなっていない。
As a result of the individual examination and examination as described above, although the conventional technology has its own unique characteristics, the technical contents are fully matured so that the entire system can be integrated and immediately implemented. Not not.

【0018】本発明の目的は、ワイヤー式掘削精度制御
方法の特長を生かし、上記(2)に説明した3次元ジャ
イロセンサによる掘削攪拌翼軸先端の位置検出技術を組
み合わせて、先に施工した改良杭の位置(軌跡)と、次
いでこれにラップさせる改良杭の掘削軸先端位置とをリ
アルタイムに検出し、施工中に計画位置より外れる傾向
が観測された場合には、速やかに先端位置の方向修正を
的確に応答性の良い制御で実行し、施工時にリアルタイ
ムの位置修正を行い、必要な又は適正なラップ量を確保
すると共に建て入れ精度の制御も行うことができる、地
盤改良処理機のワイヤー式掘削精度制御装置を提供する
ことにある。
It is an object of the present invention to make the best use of the feature of the wire type excavation accuracy control method, to combine the technique for detecting the position of the tip of the excavating stirring blade shaft by the three-dimensional gyro sensor explained in (2) above, and to improve the construction previously carried out The position (trajectory) of the pile and the tip position of the excavation axis of the improved pile to be wrapped around this are detected in real time, and if a tendency to deviate from the planned position is observed during construction, the direction of the tip position is promptly corrected. The wire type of the ground improvement processor, which can perform the precise responsive control, correct the position in real time during construction, secure the necessary or appropriate lap amount, and control the building accuracy. An object is to provide an excavation accuracy control device.

【0019】本発明の次の目的は、ソイル柱列杭間のラ
ップ量を確実に一定量に確保することを容易に可能なら
しめ、設計上必要なラップ長で無駄なく施工することが
できるようにし、地盤改良杭のピッチを適正に施工し、
ひいては効率が良く経済的な地盤改良工事を可能にす
る、地盤改良処理機のワイヤー式掘削精度制御装置を提
供することにある。
A second object of the present invention is to easily and surely secure a certain amount of lap between the soil column piles so that the lap length required for the design can be constructed without waste. And properly construct the pitch of the ground improvement pile,
Consequently, it is an object of the present invention to provide a wire type excavation accuracy control device for a ground improvement processor, which enables efficient and economical ground improvement work.

【0020】[0020]

【課題を解決するための手段】上述の課題を解決するた
めの手段として、請求項1に記載した発明に係る地盤改
良処理機のワイヤー式掘削精度制御装置は、地盤改良処
理機の駆動軸を回転駆動しリーダーに沿って垂直下向き
に推進させる掘進駆動部の下へ吊り下げた油圧シリンダ
と、駆動軸の下端へ接続した掘削攪拌翼軸の直上部位に
設けられた軸受け部材との間に駆動軸を中心として複数
本のワイヤー等を連結して成り、前記油圧シリンダによ
って各ワイヤー等を個別に引張り、掘削攪拌翼軸の先端
位置を修正、制御するワイヤー式掘削精度制御装置にお
いて、前記軸受け部材の近傍位置に設置され掘削攪拌翼
軸の先端位置を検出する3次元ジャイロセンサ装置と、
前記3次元ジャイロセンサ装置により測定した掘削攪拌
翼軸の先端位置の検出信号が入力される施工管理装置
と、前記の施工管理装置が前記検出信号に基づいて演算
処理した制御信号で制御される前記油圧シリンダの油圧
制御回路とを具備し、該当する油圧シリンダを個別に制
御してそのワイヤー等を引張り、掘削攪拌翼軸の先端位
置を強制的に修正、制御することを特徴とする。
As a means for solving the above problems, a wire type excavation accuracy control device for a ground improvement processor according to the invention as set forth in claim 1 uses a drive shaft of the ground improvement processor. Driven between a hydraulic cylinder that is rotatably driven and propelled vertically downward along the leader, below the excavation drive unit, and a bearing member that is connected to the lower end of the drive shaft and is located directly above the excavation stirring blade shaft. A wire-type excavation accuracy control device configured by connecting a plurality of wires or the like around an axis and individually pulling each wire or the like by the hydraulic cylinder to correct and control the tip position of the excavation stirring blade shaft, wherein the bearing member A three-dimensional gyro sensor device that is installed in the vicinity of the
A construction management device to which a detection signal of the tip position of the excavation stirring blade shaft measured by the three-dimensional gyro sensor device is input, and the construction management device is controlled by a control signal calculated based on the detection signal. A hydraulic control circuit for a hydraulic cylinder is provided, and the corresponding hydraulic cylinder is individually controlled to pull the wire or the like to forcibly correct and control the tip position of the excavation stirring blade shaft.

【0021】請求項2に記載した発明は、請求項1に記
載した地盤改良処理機のワイヤー式掘削精度制御装置に
おいて、駆動軸は複数本の単位軸を一連に接合した複数
連結軸として構成され、各接合部の軸継手の遊びを利用
して駆動軸に曲がりを生じさせ、掘削攪拌翼軸の先端位
置を強制的に修正、制御することを可能ならしめたこと
を特徴とする。
According to the invention described in claim 2, in the wire type excavation accuracy control device of the ground improvement processor according to claim 1, the drive shaft is configured as a plurality of connecting shafts in which a plurality of unit shafts are joined in series. It is characterized in that the drive shaft is bent by utilizing the play of the shaft joint at each joint, and the tip position of the excavating stirring blade shaft can be forcibly corrected and controlled.

【0022】請求項3に記載した発明は、請求項1又は
2に記載した地盤改良処理機のワイヤー式掘削精度制御
装置において、駆動軸を複数本使用した多軸地盤改良処
理機における各駆動軸の軸間距離を一定に保つ軸受け部
材は、各駆動軸毎の軸受をローラベアリング軸受として
構成され、且つ隣接する駆動軸の間で軸受相互間の変形
を許容するように水平方向のピンで可動に連結したピン
ジョイント構造とされ、各軸受に等配して複数本のワイ
ヤー等の下端が軸受け部材と連結されていることを特徴
とする。
The invention described in claim 3 is the wire type excavation accuracy control device for a ground improvement processor according to claim 1 or 2, wherein each drive shaft in a multi-axis ground improvement processor uses a plurality of drive shafts. The bearing member that keeps the inter-axis distance constant is configured as a roller bearing for each drive shaft, and is movable by a horizontal pin to allow deformation between the bearings between adjacent drive shafts. And a lower end of a plurality of wires or the like is evenly arranged on each bearing and connected to a bearing member.

【0023】請求項4に記載した発明は、請求項1に記
載した地盤改良処理機のワイヤー式掘削精度制御装置に
おいて、油圧シリンダの油圧制御回路は、高圧制御回路
と低圧制御回路を並列に設けて成り、高圧制御回路の高
圧油を油圧シリンダへ供給してワイヤー等を引張らせ、
低圧制御回路の低圧油を供給してワイヤー等の弛みをと
ることを特徴とする。
According to a fourth aspect of the present invention, in the wire-type excavation accuracy control device for the ground improvement processor according to the first aspect, the hydraulic control circuit of the hydraulic cylinder is provided with a high pressure control circuit and a low pressure control circuit in parallel. The high pressure oil of the high pressure control circuit is supplied to the hydraulic cylinder to pull the wire,
It is characterized by supplying low-pressure oil from the low-voltage control circuit to loosen wires and the like.

【0024】[0024]

【発明の実施形態及び実施例】次に、図1〜図6に基い
て、請求項1〜4に記載した発明に係る地盤改良処理機
のワイヤー式掘削精度制御装置の実施形態を説明する。
Embodiments and Examples of the Invention Next, with reference to FIGS. 1 to 6, an embodiment of a wire type excavation accuracy control device for a ground improvement processor according to the present invention will be described.

【0025】既に説明したように、図1の地盤改良処理
機は、駆動軸4を回転駆動しつつリーダー1のレール3
に沿って垂直下向きに推進させる掘進駆動部2の下へ吊
り下げた油圧シリンダ10と、駆動軸4の下端へ接続し
た掘削攪拌翼軸6の直上部位に設けられた軸受け部材1
1との間に、駆動軸4を中心として複数本のワイヤー1
2(又はPC鋼棒、PC鋼線などであっても良い。以
下、これらをワイヤー等と総称する。)を連結して成
り、前記油圧シリンダ10によって各ワイヤー12を個
別に引張り、掘削攪拌翼軸6の先端位置を強制的に修
正、制御するワイヤー式掘削精度制御装置を構成してい
る。
As described above, the ground improvement processor of FIG. 1 rotates the drive shaft 4 while rotating the rail 3 of the leader 1.
A hydraulic cylinder 10 suspended below the excavation drive unit 2 for propelling vertically downward along the shaft, and a bearing member 1 provided directly above the excavation stirring impeller shaft 6 connected to the lower end of the drive shaft 4.
1 and a plurality of wires 1 around the drive shaft 4
2 (or a PC steel rod, a PC steel wire, etc., which will be collectively referred to as wires hereinafter) are connected, and each wire 12 is individually pulled by the hydraulic cylinder 10 to excavate and stir blades. A wire-type excavation accuracy control device for forcibly correcting and controlling the tip position of the shaft 6 is configured.

【0026】図2A、Bに掘進駆動部2の部分を拡大し
て示したように、これは2軸地盤改良処理機の実施例で
ある。2本の駆動軸4、4、従ってそれぞれの下端に接
続した2本の掘削攪拌翼軸6、6と複数本のワイヤー1
2…との配置関係は、図4に例示した通りであり、合計
6本のワイヤー12…が2本の駆動軸4、4の周囲を取
り囲む配置とされている。
As shown in FIGS. 2A and 2B in an enlarged view of the excavation drive section 2, this is an embodiment of a biaxial ground improvement processor. Two drive shafts 4, 4 and thus two excavator blade shafts 6, 6 connected to the lower ends of each and a plurality of wires 1
The arrangement relationship with 2 ... is as illustrated in FIG. 4, and a total of 6 wires 12 ... Enclose the two drive shafts 4, 4.

【0027】図2は、前記6本のワイヤー12…それぞ
れの上端が、1本につき1基の割合で油圧シリンダ10
の出力軸とピンジョイント形式の連結具13により接続
された構成を示している。各油圧シリンダ10の本体の
上端部は、やはりピンジョイント14により掘進駆動部
2の下底部に用意したブラケットと自在に連結されてい
る。
FIG. 2 shows that the upper ends of the six wires 12 ...
The configuration is shown in which the output shaft of FIG. The upper end of the main body of each hydraulic cylinder 10 is also freely connected by a pin joint 14 to a bracket prepared on the lower bottom of the excavation drive unit 2.

【0028】一方、前記6本のワイヤー12…それぞれ
の下端は、図3に拡大して示したように、軸受け部材1
1の各ブラケット15とネジ式の連結具16で長さの調
節が可能な構成で連結されている。前記連結具16の部
分は、土砂で汚損されないように保護カバー17により
被覆されている。各ワイヤー12の長さは、予め油圧シ
リンダ10が最大ストローク伸長した状態で軸受け部材
11が水平姿勢を保つ長さに調整されている。
On the other hand, the lower end of each of the six wires 12 ... As shown in the enlarged view of FIG.
Each bracket 15 of No. 1 is connected to each other by a screw-type connecting tool 16 so that the length can be adjusted. A part of the connecting tool 16 is covered with a protective cover 17 so as not to be soiled with soil. The length of each wire 12 is adjusted in advance to a length in which the bearing member 11 maintains a horizontal posture in a state where the hydraulic cylinder 10 is extended by the maximum stroke.

【0029】2本の駆動軸4、4を一定の軸間距離に保
つ軸受け部材11は、その軸受に駆動軸4を低摩擦で回
転可能に支持するローラベアリング軸受11aを使用し
ている。ローラベアリング軸受11aは、ワイヤー制御
により軸受け部材11を引張り掘削攪拌翼軸6の先端位
置を強制的に修正することに十分耐えるだけの高い剛性
を有する特長も有する。ローラベアリング軸受11aの
具体的構成は、特開2001−234527号公報の図
5に示したように、アンギュラー型式のローラベアリン
グで駆動軸4を回転自在に支持する構成等が好適に採用
される。
The bearing member 11 for keeping the two drive shafts 4 and 4 at a constant distance between the shafts uses a roller bearing bearing 11a for rotatably supporting the drive shaft 4 with low friction. The roller bearing bearing 11a also has a feature that it has a high rigidity enough to withstand the forced correction of the tip position of the excavation and stirring blade shaft 6 by pulling the bearing member 11 by wire control. As a specific configuration of the roller bearing bearing 11a, as shown in FIG. 5 of Japanese Patent Laid-Open No. 2001-234527, a configuration in which the drive shaft 4 is rotatably supported by an angular type roller bearing is preferably adopted.

【0030】2本の駆動軸4、4、ひいては2本の掘削
攪拌翼軸6、6の軸間距離を一定に保ちながら、隣接す
る駆動軸4、4の間で横方向への変形を容易に許容する
構成とするため、前記2個のローラベアリング軸受11
aは、その外面から横方向へ平行に延ばしたブラケット
11bを中間位置のヒンジ部材11cの両端と重ね合わ
せ、2本のピン11dを水平方向に差して連結したピン
ジョイント構造として可動に構成されている。
While the distance between the two drive shafts 4 and 4, and hence the two excavating and stirring impeller blades 6 and 6 is kept constant, lateral deformation between the adjacent drive shafts 4 and 4 is facilitated. The two roller bearings 11
A is movable as a pin joint structure in which a bracket 11b extending in parallel to the lateral direction from its outer surface is superposed on both ends of a hinge member 11c at an intermediate position, and two pins 11d are horizontally inserted and connected. There is.

【0031】既述した6本のワイヤー12…の下端は、
図4に示したように、2個のローラベアリング軸受11
a、11aそれぞれの外側約半分の半円に含まれる直角
3方向の位置に水平腕を突き出してモーメントが働くよ
うに等配して設けた各ブラケット15と連結されている
(以上請求項3に記載した発明)。
The lower ends of the six wires 12 ...
As shown in FIG. 4, two roller bearing bearings 11
Each of a and 11a is connected to each bracket 15 which is provided equidistantly so as to project a horizontal arm and to exert moments at positions in three right-angled directions included in semicircles on the outer side of each of the a and 11a. The invention described).

【0032】従って、6本のワイヤー12…のうちのい
ずれを強く、いずれを弱く上記の油圧シリンダ10で引
っ張るかによって、2本の駆動軸4、4、ひいては2本
の掘削攪拌翼軸6、6の先端位置を、前後方向(図4の
Y方向)及び横方向(図4のX方向)のいずれへも容易
に強制的に確実に修正、制御可能である。
Therefore, depending on which one of the six wires 12 is strong and which is weakly pulled by the hydraulic cylinder 10, the two drive shafts 4 and 4, and thus the two excavating and stirring impeller shafts 6, The tip position of 6 can be easily and forcibly corrected and controlled easily in both the front-back direction (Y direction in FIG. 4) and the lateral direction (X direction in FIG. 4).

【0033】なお、2本の駆動軸4、4、ひいては2本
の掘削攪拌翼軸6、6の先端位置のリアルタイムな計測
手段として、前記軸受け部材11の近傍位置、より具体
的には図3に示したように、図中右方のベアリング軸受
11aの外面に固定して2本の駆動軸4、4の中央に位
置させたセンサケース20の中に、具体的に図示するこ
とを省略したが、例えば上記特許第3156049号公
報に開示したように、X、Y2次元方向の傾斜計とジャ
イロセンサとを組み合わせて成る3次元ジャイロセンサ
装置が設置されている。
As a real-time measuring means for measuring the tip positions of the two drive shafts 4, 4 and by extension, the two excavating and stirring impeller shafts 6, 6, the position near the bearing member 11, more specifically, FIG. As shown in FIG. 3, the sensor case 20 fixed to the outer surface of the bearing bearing 11a on the right side in the drawing and positioned in the center of the two drive shafts 4 and 4 is omitted to be specifically illustrated. However, as disclosed in, for example, Japanese Patent No. 3156049, a three-dimensional gyro sensor device including a combination of an inclinometer in the X and Y two-dimensional directions and a gyro sensor is installed.

【0034】この3次元ジャイロセンサ装置によって、
当該地盤改良処理機による地盤改良工事の施工過程にお
いて、掘削攪拌翼軸6の先端位置の検出がリアルタイム
に正確に行われる。また、施工したソイル柱列杭の軌跡
と水平断面形状もデータ化して記録される。3次元ジャ
イロセンサ装置による計測信号は、センサケース20へ
接続した信号線保護管21内の信号線を通じて地上の施
工管理装置22(図5)へ送られる。
With this three-dimensional gyro sensor device,
In the construction process of the ground improvement work by the ground improvement processor, the tip position of the excavation and stirring blade shaft 6 is accurately detected in real time. In addition, the trajectories and horizontal cross-sectional shapes of the constructed soil column piles are also recorded as data. The measurement signal from the three-dimensional gyro sensor device is sent to the ground construction management device 22 (FIG. 5) through the signal line in the signal line protection tube 21 connected to the sensor case 20.

【0035】図5は、油圧シリンダ10を、3次元ジャ
イロセンサ装置の計測値に基づいてリアルタイムに自動
制御する油圧制御回路を示している。これは1基の油圧
シリンダ10につき、高圧制御回路30と低圧制御回路
31とを並列に設けた構成であり、高圧制御回路30に
よりワイヤー12を引張らせる。
FIG. 5 shows a hydraulic control circuit for automatically controlling the hydraulic cylinder 10 in real time based on the measured values of the three-dimensional gyro sensor device. This is a configuration in which a high pressure control circuit 30 and a low pressure control circuit 31 are provided in parallel for one hydraulic cylinder 10, and the wire 12 is pulled by the high pressure control circuit 30.

【0036】地中のセンサケース20内の3次元ジャイ
ロセンサ装置が計測した計測信号23が施工管理装置2
2(これは通例のパーソナルコンピュータである。)へ
入力されると、各油圧シリンダ10へ付設した圧力変換
器24から入力される圧力信号25と比較演算の処理が
行われ、その比較演算の結果はシリンダ用操作盤27へ
送られる。と同時に、オペレータのモニタ26へリアル
タイムに画面表示される。
The measurement signal 23 measured by the three-dimensional gyro sensor device in the underground sensor case 20 is the construction management device 2
2 (this is an ordinary personal computer), the pressure signal 25 input from the pressure converter 24 attached to each hydraulic cylinder 10 and the comparison calculation process are performed, and the comparison calculation result is obtained. Is sent to the cylinder operation panel 27. At the same time, it is displayed on the monitor 26 of the operator in real time.

【0037】シリンダ用操作盤27においては、前記の
比較演算の結果に基づいて、6基ある各油圧シリンダ1
0…の高圧制御回路30及び低圧制御回路31に対する
制御信号を生成して送信する。すなわち、高圧制御回路
30の電磁リリーフ弁32とシャットオフ弁33及び電
磁切り換え弁34並びに低圧制御回路31の電磁切り換
え弁35がそれぞれ制御される。
In the cylinder operation panel 27, there are six hydraulic cylinders 1 based on the result of the above-mentioned comparison calculation.
A control signal for the high voltage control circuit 30 and the low voltage control circuit 31 of 0 ... Is generated and transmitted. That is, the electromagnetic relief valve 32, the shutoff valve 33, the electromagnetic switching valve 34 of the high pressure control circuit 30, and the electromagnetic switching valve 35 of the low pressure control circuit 31 are controlled.

【0038】例えば、油圧シリンダ10でワイヤー12
を引っ張るときは、シャットオフ弁33をフリーにした
状態で、高圧制御回路30を開通させて油圧シリンダ1
0のピストン下室へ高圧油を送り、収縮動作をさせる。
保持状態にするときは、シャットオフ弁33を閉じ、外
力が作用しても油圧シリンダ10のストロークを不変に
維持させる。ワイヤー12の弛みをとる中立状態とする
ときは、シャットオフ弁33をフリーにした状態で、低
圧制御回路31を開通状態となし、油圧シリンダ10の
ピストン下室へ低圧油を送り、ワイヤー12が弛まない
だけの弱い引張りによって緊張状態を保つ(請求項4に
記載した発明)。
For example, the hydraulic cylinder 10 and the wire 12
When pulling, the high-pressure control circuit 30 is opened and the hydraulic cylinder 1 is opened with the shut-off valve 33 free.
High-pressure oil is sent to the piston lower chamber of 0 to cause contraction operation.
In the holding state, the shut-off valve 33 is closed to keep the stroke of the hydraulic cylinder 10 unchanged even when an external force is applied. When the wire 12 is in a neutral state where the wire 12 is slackened, the low-pressure control circuit 31 is opened with the shut-off valve 33 free, and low-pressure oil is sent to the piston lower chamber of the hydraulic cylinder 10 so that the wire 12 is The tension state is maintained by a weak tension that does not loosen (the invention according to claim 4).

【0039】要するに、図4において、符号a、b又は
e、dのワイヤー12を油圧シリンダ10で引っ張る
と、前後方向への位置修正ができる。符号b、c、d又
はa、f、eのワイヤー12を引っ張ると、横(左右)
方向への位置修正ができるのである。このとき他のワイ
ヤー12の油圧シリンダ10はそれぞれ保持状態とし
て、位置修正の反力を与える。その他、多様な組み合わ
せで、2本の駆動軸4、4、ひいては2本の掘削攪拌翼
軸6、6の先端位置の位置修正に必要な制御を的確に強
制的に速やかに実行することができる。
In short, in FIG. 4, pulling the wire 12 indicated by a, b or e, d by the hydraulic cylinder 10 allows the position to be corrected in the front-rear direction. Pulling the wire 12 with the reference signs b, c, d or a, f, e causes it to move sideways (left and right).
The position can be corrected in the direction. At this time, the hydraulic cylinders 10 of the other wires 12 are kept in the respective holding states to apply a reaction force for position correction. In addition, in various combinations, the control necessary for position correction of the tip positions of the two drive shafts 4, 4 and by extension, the two excavating and stirring impeller shafts 6, 6 can be accurately and forcibly and promptly executed. .

【0040】掘削攪拌翼軸6の先端位置が計画位置(設
定したラップ長の位置)から外れた場合、又は外れそう
な場合には、直ちに油圧シリンダ10とワイヤー12を
通じて計画位置への修正、制御が行われる。よって、予
め余分なラップ長を見込んで施工する必要がない。
When the tip position of the excavating and stirring impeller shaft 6 deviates from the planned position (position of the set lap length) or is likely to deviate, the hydraulic cylinder 10 and the wire 12 are immediately used for correction and control to the planned position. Is done. Therefore, it is not necessary to construct an extra lap length in advance.

【0041】2本の駆動軸4、4、ひいては2本の掘削
攪拌翼軸6、6の先端位置の位置修正は、上記したよう
に油圧シリンダ10で各個のワイヤー12を引っ張って
制御するが、引張り力の大きさの調整(油圧シリンダ1
0へ供給する油圧の大きさ)は、掘削土質とその性状、
ソイル柱列杭のラップ長の大きさ等々の条件によって変
化する。そのため、先ずは試験施工を行って実地に必要
な情報を収集し、その結果に基づいて制御が可能な引張
り力の大きさ、油圧の大きさを求めて実施するのが好ま
しい。
The position correction of the tip positions of the two drive shafts 4, 4 and by extension, the two excavating and stirring impeller shafts 6, 6 is controlled by pulling each wire 12 by the hydraulic cylinder 10 as described above. Adjusting the amount of pulling force (hydraulic cylinder 1
The magnitude of the hydraulic pressure supplied to 0) is the excavated soil quality and its properties,
It changes depending on the conditions such as the size of the lap length of the soil column pile. Therefore, it is preferable to first carry out a test construction to collect information necessary for practical use, and based on the result, determine the magnitude of the pulling force and the hydraulic pressure that can be controlled to carry out.

【0042】また、地盤改良工事の進捗に伴い、特許第
3156049号の特許発明で開示したように、ソイル
柱列杭の施工管理に必要な各種のデータを採取し、分析
した数値を施工管理装置22へ入力・記録し、位置の修
正、制御に必要な引張り力を演算させる。そして、位置
検出データ及び計画と比較照合して、自動的な油圧制御
に反映させ、その結果を先端位置制御にフィードバック
する工程を繰り返すのが好ましい。
As the ground improvement work progresses, as disclosed in the patented invention of Japanese Patent No. 3156049, various data necessary for the construction management of the soil column piles are collected and the analyzed numerical values are used as the construction management device. It is input to 22 and recorded, and the tensile force required for position correction and control is calculated. Then, it is preferable to repeat the step of comparing and collating with the position detection data and the plan, reflecting the result in the automatic hydraulic pressure control, and feeding back the result to the tip position control.

【0043】ちなみに、上記した符号b、c、d又は
a、f、eのワイヤー12を引っ張る横方向への位置修
正に際しては、図3に示したように、軸受け部材11の
軸受け部品である2個のローラベアリング軸受11a、
11aをピン11dで連結したピンジョイント構造が、
無用の抵抗を発生せず、応答性の良い位置修正を可能な
らしめる。
Incidentally, when correcting the position in the lateral direction of pulling the wire 12 of the above-mentioned symbols b, c, d or a, f, e, it is a bearing component of the bearing member 11 as shown in FIG. Individual roller bearings 11a,
The pin joint structure that connects 11a with the pin 11d is
It does not generate unnecessary resistance and enables position correction with good responsiveness.

【0044】更に応答性の良い位置修正を可能にする工
夫として、本発明の地盤改良処理機に係る駆動軸4は、
図6A、Bに例示したように、複数本の単位軸を軸継手
40で一連に接合した複数連結軸として構成される。各
接合部の軸継手40に発生する遊びを利用して駆動軸4
の曲がりを軸受け部材11の位置までの間で滑らかに生
じさせ、掘削攪拌翼軸6の先端位置を強制的に修正する
ことを可能ならしめる(請求項2に記載した発明)。
As a device that enables position correction with better response, the drive shaft 4 according to the ground improvement processor of the present invention is
As illustrated in FIGS. 6A and 6B, a plurality of unit shafts are configured as a plurality of connecting shafts joined in series by a shaft coupling 40. Using the play generated in the shaft coupling 40 at each joint, the drive shaft 4
Is smoothly generated up to the position of the bearing member 11, and it is possible to forcibly correct the tip position of the excavation stirring impeller shaft 6 (the invention described in claim 2).

【0045】掘削軸4の単位軸は一般的に5m〜10m
の範囲、調整用としては1m〜4mの範囲で多種多様に
ある。軸継手40の遊びは、新品時には通例2.6×1
rad程度有り、使用頻度に応じて次第に大きくな
る。従って、軸継手40の個数を適切に設計することに
より、曲がりやすい駆動軸4が容易に得られ、位置制御
が容易になるので、1本物の駆動軸に比較して制御上は
るかに有利である。しかし、ワイヤー12により駆動軸
4に適度な引張り力をバランス良く加えると、駆動軸4
の剛性を補助的に向上させる効果もあるので、前記遊び
の弊害は心配ない。
The unit axis of the excavation axis 4 is generally 5 m to 10 m.
There is a wide variety in the range of 1 m to 4 m for adjustment. The play of the shaft coupling 40 is usually 2.6 × 1 when new.
0 - about 2 rad there, gradually increases in accordance with frequency of use. Therefore, by appropriately designing the number of the shaft couplings 40, the flexible drive shaft 4 can be easily obtained, and the position control becomes easy, which is far more advantageous in control than a single drive shaft. . However, if an appropriate tensile force is applied to the drive shaft 4 by the wire 12 in a well-balanced manner, the drive shaft 4
Since it also has the effect of supplementarily improving the rigidity of the above, there is no fear of the adverse effect of the play.

【0046】なお、図6A、Bに示したように、ワイヤ
ー12を引張って駆動軸4に曲がりを生じさせ、掘削攪
拌翼軸6の先端位置を修正、制御する際、駆動軸4の固
定点は、下部振止め37となる。従って、この下部振止
め37も、例えば特開2001−234527号公報の
例えば図2Aに示したように、駆動軸4を回転自在に支
持するローラを用いたローラ式ガイド機構を採用した構
成で実施するのが好ましい。中間振止め38も同様に構
成される。
As shown in FIGS. 6A and 6B, when the wire 12 is pulled to cause the drive shaft 4 to bend and the tip position of the excavation stirring impeller shaft 6 is corrected and controlled, the fixed point of the drive shaft 4 is fixed. Serves as a lower swing 37. Therefore, this lower swing 37 is also implemented with a structure that employs a roller guide mechanism using a roller that rotatably supports the drive shaft 4, as shown in FIG. 2A of JP 2001-234527 A, for example. Preferably. The intermediate swing rest 38 is similarly configured.

【0047】[0047]

【発明の奏する効果】請求項1〜4に記載した発明に係
る地盤改良処理機のワイヤー式掘削精度制御装置は、掘
削攪拌翼軸の先端位置を3次元ジャイロセンサ装置によ
り測定し、先に施工した改良杭の軌跡と、次いでこれに
ラップさせる改良杭の掘削軸先端位置とをリアルタイム
に検出して比較演算し、計画位置より外れる傾向が観測
された場合には、速やかに先端位置の方向修正を的確に
応答性の良い制御で実行できるので、施工時に必要なラ
ップ量を正確に確保する建て入れ精度の制御を行うこと
ができる。
The wire type excavation accuracy control device of the ground improvement processor according to the invention described in claims 1 to 4 measures the tip position of the excavation stirring impeller shaft by the three-dimensional gyro sensor device, and firstly executes the construction. In real time, the trajectory of the improved pile and the tip position of the excavation axis of the improved pile to be wrapped around it are detected and compared, and if a tendency to deviate from the planned position is observed, the direction of the tip position is promptly corrected. Therefore, it is possible to perform the control of the build-in accuracy that accurately secures the amount of lap required at the time of construction, because the control can be performed accurately and with high responsiveness.

【0048】したがって、本発明によれば、ソイル柱列
杭間のラップ量を正確に一定量に確保した施工を実施す
ることを容易に可能である。よって、設計上必要なラッ
プ長で無駄なく施工することができる。その結果、地盤
改良杭のピッチを適正にして、効率良く、経済的な地盤
改良工事を行うことができるのである。
Therefore, according to the present invention, it is possible to easily carry out the construction in which the amount of wrap between the soil column piles is accurately kept at a fixed amount. Therefore, the lap length required for design can be used without waste. As a result, the pitch of the ground improvement piles can be made appropriate, and efficient and economical ground improvement work can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る地盤改良処理機の立面図である。FIG. 1 is an elevational view of a ground improvement processor according to the present invention.

【図2】A、Bは掘進駆動部近辺を拡大して示した正面
図と側面図である。
2A and 2B are a front view and a side view in which the vicinity of the excavation drive unit is shown in an enlarged manner.

【図3】駆動軸下部の軸受け部材近辺を拡大して示した
正面図である。
FIG. 3 is an enlarged front view showing the vicinity of a bearing member under the drive shaft.

【図4】軸受け部材を平面方向に見た断面図である。FIG. 4 is a sectional view of the bearing member as seen in a plane direction.

【図5】油圧シリンダの制御回路図である。FIG. 5 is a control circuit diagram of a hydraulic cylinder.

【図6】A、Bは駆動軸の構成と曲がり状態を模式的に
示した説明図である。
6A and 6B are explanatory views schematically showing the configuration of a drive shaft and a bent state.

【符号の説明】[Explanation of symbols]

4 駆動軸 1 リーダー 2 掘進駆動部 10 油圧シリンダ 6 掘削攪拌翼軸 11 軸受け部材 12 ワイヤー等 20 センサケース(3次元ジャイロセンサ装置を
内蔵) 22 施工管理装置 30 高圧制御回路 31 低圧制御回路 27 油圧シリンダ用操作盤 40 軸継手 11a ローラベアリング軸受(軸受け部品) 11d ピン
4 Drive Shaft 1 Leader 2 Excavation Drive Unit 10 Hydraulic Cylinder 6 Excavation Stirring Blade Shaft 11 Bearing Member 12 Wires, etc. 20 Sensor Case (Built-in 3D Gyro Sensor Device) 22 Construction Management Device 30 High Pressure Control Circuit 31 Low Pressure Control Circuit 27 Hydraulic Cylinder Operation panel 40 Shaft joint 11a Roller bearing bearing (bearing parts) 11d Pin

【手続補正書】[Procedure amendment]

【提出日】平成15年2月6日(2003.2.6)[Submission date] February 6, 2003 (2003.2.6)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】(4)特開2002−146771号公報
(平成12年11月15日出願)に開示された発明「攪
拌掘削軸の下部連結バンド」は、掘削攪拌翼軸の横方向
への方向制御を容易にするため、複数本の掘削攪拌翼軸
相互間の間隔を保持する下部連結バンド(図1における
符号9の部材を参照。)における各軸受を相互間で変形
可能に水平方向のピンで連結して自在構造に構成されて
いる。
(4) The invention disclosed in Japanese Patent Application Laid-Open No. 2002-146771 (filed on Nov. 15, 2000) , "The lower connecting band of the stirring and excavating shaft", controls the lateral direction of the excavating and stirring blade shaft. In order to facilitate the above, each bearing in the lower connecting band (refer to the member indicated by reference numeral 9 in FIG. 1) that maintains the distance between the plurality of excavating and stirring impeller shafts is deformed by a horizontal pin. It is connected to form a flexible structure.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】(5)特開2002−167749号公報
(平成12年12月4日出願)に開示された発明「掘削
精度制御方法」は、ワイヤー式の制御方法であるが、上
記(1)の特許第2736471号公報に開示された発
明「多軸ソイル柱列掘削機の掘削精度制御方法」が掘削
攪拌翼軸の前後方向(図1の左右方向)への方向制御し
かできなかったのを、更に横方向(図1の紙面と垂直な
方向)へも制御可能とし、精度を高めたものである。
(5) The invention "excavation accuracy control method" disclosed in Japanese Unexamined Patent Application Publication No. 2002-167749 (filed on December 4, 2000) is a wire type control method. The invention disclosed in Japanese Patent No. 2736471 "Excavation accuracy control method for multi-axis soil column excavator" can only control the direction of the excavation stirring blade axis in the front-back direction (left-right direction in FIG. 1). Further, the control can be performed in the lateral direction (direction perpendicular to the paper surface of FIG. 1) to improve the accuracy.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【課題を解決するための手段】上述の課題を解決するた
めの手段として、請求項1に記載した発明に係る地盤改
良処理機のワイヤー式掘削精度制御装置は、地盤改良処
理機の駆動軸を回転駆動しリーダーに沿って垂直下向き
に推進させる掘進駆動部の下へ吊り下げた油圧シリンダ
と、駆動軸の下端へ接続した掘削攪拌翼軸の直上部位に
設けられた軸受け部材との間に駆動軸を中心として複数
本のワイヤー等を連結して成り、前記油圧シリンダによ
って各ワイヤー等を個別に引張り、掘削攪拌翼軸の先端
位置を修正、制御するワイヤー式掘削精度制御装置にお
いて、前記軸受け部材の近傍位置に設置され掘削攪拌翼
軸の先端位置を検出する3次元ジャイロセンサ装置と、
前記3次元ジャイロセンサ装置により測定した掘削攪拌
翼軸の先端位置の計測信号が入力される施工管理装置
と、前記の施工管理装置が前記計測信号に基づいて演算
処理した制御信号で制御される前記油圧シリンダの油圧
制御回路とを具備し、該当する油圧シリンダを個別に制
御してそのワイヤー等を引張り、掘削攪拌翼軸の先端位
置を強制的に修正、制御することを特徴とする。
As a means for solving the above problems, a wire type excavation accuracy control device for a ground improvement processor according to the invention as set forth in claim 1 uses a drive shaft of the ground improvement processor. Driven between a hydraulic cylinder that is rotatably driven and propelled vertically downward along the leader, below the excavation drive unit, and a bearing member that is connected to the lower end of the drive shaft and is located directly above the excavation stirring blade shaft. A wire-type excavation accuracy control device configured by connecting a plurality of wires or the like around an axis and individually pulling each wire or the like by the hydraulic cylinder to correct and control the tip position of the excavation stirring blade shaft, wherein the bearing member A three-dimensional gyro sensor device that is installed in the vicinity of the
The construction management device to which a measurement signal of the tip position of the excavation stirring blade shaft measured by the three-dimensional gyro sensor device is input, and the construction management device is controlled by a control signal calculated based on the measurement signal. A hydraulic control circuit for a hydraulic cylinder is provided, and the corresponding hydraulic cylinder is individually controlled to pull the wire or the like to forcibly correct and control the tip position of the excavation stirring blade shaft.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】請求項3に記載した発明は、請求項1又は
2に記載した地盤改良処理機のワイヤー式掘削精度制御
装置において、駆動軸を複数本使用した多軸地盤改良処
理機における各駆動軸の軸間距離を一定に保つ軸受け部
材は、各駆動軸毎の軸受をローラベアリング軸受として
構成され、且つ隣接する駆動軸の間で軸受相互間の変形
を許容するように水平方向のピンで可動に連結したピン
ジョイント構造とされ、各軸受に対称的に設けた複数本
のワイヤー等の下端が軸受け部材から水平方向に突き出
したブラケットと連結されていることを特徴とする。
The invention described in claim 3 is the wire type excavation accuracy control device for a ground improvement processor according to claim 1 or 2, wherein each drive shaft in a multi-axis ground improvement processor uses a plurality of drive shafts. The bearing member that keeps the inter-axis distance constant is configured as a roller bearing for each drive shaft, and is movable by a horizontal pin to allow deformation between the bearings between adjacent drive shafts. It has a pin joint structure that is connected to each other, and the lower ends of multiple wires that are symmetrically provided on each bearing project horizontally from the bearing member.
It is characterized by being connected to the bracket .

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】図2A、Bに掘進駆動部2の部分を拡大し
て示したように、これは2軸地盤改良処理機の実施例で
ある。2本の駆動軸4、4それぞれの下端に接続した2
本の掘削攪拌翼軸6、6と複数本のワイヤー12…との
配置関係は、図3、図4に例示した通りであり、合計6
本のワイヤー12…が2本の駆動軸4、4の周囲を取り
囲む配置とされている。
As shown in FIGS. 2A and 2B in an enlarged view of the excavation drive section 2, this is an embodiment of a biaxial ground improvement processor. Two driving shafts 4, 4 2 connected to the lower end of their respective
The positional relationship between the excavating and stirring impeller shafts 6 and 6 and the plurality of wires 12 is as illustrated in FIGS . 3 and 4, and a total of 6
The wires 12 ... Are arranged so as to surround the two drive shafts 4 and 4.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】一方、前記6本のワイヤー12…それぞれ
の下端は、図3に拡大して示したように、軸受け部材1
から水平方向に突き出した各ブラケット15とネジ式
の連結具16で長さの調節が可能な構成で連結されてい
る。前記連結具16の部分は、土砂で汚損されないよう
に保護カバー17により被覆されている。
On the other hand, the lower end of each of the six wires 12 ... As shown in the enlarged view of FIG.
Each bracket 15 protruding in the horizontal direction from 1 is connected by a screw type connecting tool 16 in a configuration in which the length can be adjusted. A part of the connecting tool 16 is covered with a protective cover 17 so as not to be soiled with soil.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】地中のセンサケース20内の3次元ジャイ
ロセンサ装置が計測した計測信号23が施工管理装置2
2(これは通例のパーソナルコンピュータである。)へ
入力されると、各油圧シリンダ10へ付設した圧力変換
器24から入力される圧力信号25と比較演算の処理が
行われ、その比較演算の結果は油圧シリンダ用操作盤2
7へ送られる。と同時に、オペレータのモニタ26へリ
アルタイムに画面表示される。
The measurement signal 23 measured by the three-dimensional gyro sensor device in the underground sensor case 20 is the construction management device 2
2 (this is an ordinary personal computer), the pressure signal 25 input from the pressure converter 24 attached to each hydraulic cylinder 10 and the comparison calculation process are performed, and the comparison calculation result is obtained. Is the control panel for hydraulic cylinder 2
Sent to 7. At the same time, it is displayed on the monitor 26 of the operator in real time.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】油圧シリンダ用操作盤27においては、前
記の比較演算の結果に基づいて、6基ある各油圧シリン
ダ10…の高圧制御回路30及び低圧制御回路31に対
する制御信号を生成して送信する。すなわち、高圧制御
回路30の電磁リリーフ弁32とシャットオフ弁33及
び電磁切り換え弁34並びに低圧制御回路31の電磁切
り換え弁35がそれぞれ制御される。
In the hydraulic cylinder operation panel 27, control signals for the high pressure control circuit 30 and the low pressure control circuit 31 of each of the six hydraulic cylinders 10 are generated and transmitted based on the result of the above-mentioned comparison operation. That is, the electromagnetic relief valve 32, the shutoff valve 33, the electromagnetic switching valve 34 of the high pressure control circuit 30, and the electromagnetic switching valve 35 of the low pressure control circuit 31 are controlled.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正12】[Procedure Amendment 12]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中柴 弘 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 大西 常康 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 森田 英仁 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 広渡 智晶 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 山本 光起 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 青柳 隼夫 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 藤井 卓美 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 Fターム(参考) 2D040 AB05 BA08 BD03 EA12 EA14 FA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Nakashiba             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka engineering works (72) Inventor Tsuneyasu Onishi             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka engineering works (72) Inventor Hidehito Morita             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka engineering works (72) Inventor Tomoaki Hirowatari             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka engineering works (72) Inventor Kouki Yamamoto             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Hayao Aoyagi             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Takumi Fujii             Chiba Prefecture Inzai City 1-5 Otsuka 1 Stock Association             Takenaka Corporation Technical Research Institute F term (reference) 2D040 AB05 BA08 BD03 EA12 EA14                       FA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】地盤改良処理機の駆動軸を回転駆動しリー
ダーに沿って垂直下向きに推進させる掘進駆動部の下へ
吊り下げた油圧シリンダと、駆動軸の下端へ接続した掘
削攪拌翼軸の直上部位に設けられた軸受け部材との間に
駆動軸を中心として複数本のワイヤー等を連結して成
り、前記油圧シリンダによって各ワイヤー等を個別に引
張り、掘削攪拌翼軸の先端位置を修正、制御するワイヤ
ー式掘削精度制御装置において、 前記軸受け部材の近傍位置に設置され掘削攪拌翼軸の先
端位置を検出する3次元ジャイロセンサ装置と、 前記3次元ジャイロセンサ装置により測定した掘削攪拌
翼軸の先端位置の検出信号が入力される施工管理装置
と、 前記の施工管理装置が前記検出信号に基づいて演算処理
した制御信号で制御される前記油圧シリンダの油圧制御
回路とを具備し、 該当する油圧シリンダを個別に制御してそのワイヤー等
を引張り、掘削攪拌翼軸の先端位置を強制的に修正、制
御することを特徴とする、地盤改良処理機のワイヤー式
掘削精度制御装置。
1. A hydraulic cylinder hung below an excavation drive unit for rotationally driving a drive shaft of a ground improvement processor to propel it vertically downward along a leader, and an excavation stirring blade shaft connected to a lower end of the drive shaft. Composed of a plurality of wires and the like centered on the drive shaft between the bearing member provided directly above, the wire is individually pulled by the hydraulic cylinder, the tip position of the excavation stirring blade shaft is corrected, A wire type excavation accuracy control device for controlling, comprising: a three-dimensional gyro sensor device installed near the bearing member to detect the tip position of the excavation stirring blade shaft; and a three-dimensional gyro sensor device for measuring the excavation stirring blade shaft. A construction management device to which a detection signal of the tip end position is input, and the hydraulic cylinder controlled by a control signal that the construction management device performs arithmetic processing based on the detection signal. A ground improvement processor equipped with a hydraulic control circuit, characterized by individually controlling the corresponding hydraulic cylinders, pulling the wires, etc., and forcibly correcting and controlling the tip position of the excavation stirring blade axis. Wire type excavation accuracy control device.
【請求項2】駆動軸は複数本の単位軸を一連に接合した
複数連結軸として構成され、各接合部の軸継手の遊びを
利用して駆動軸に曲がりを生じさせ、掘削攪拌翼軸の先
端位置を強制的に修正、制御することを可能ならしめた
ことを特徴とする、請求項1に記載した地盤改良処理機
のワイヤー式掘削精度制御装置。
2. The drive shaft is configured as a plurality of connecting shafts in which a plurality of unit shafts are joined in series, and the drive shaft is bent by utilizing the play of the shaft joint of each joining portion, so that the excavating stirring blade shaft The wire-type excavation accuracy control device for a ground improvement processor according to claim 1, wherein the tip position can be forcibly corrected and controlled.
【請求項3】駆動軸を複数本使用した多軸地盤改良処理
機における各駆動軸の軸間距離を一定に保つ軸受け部材
は、各駆動軸毎の軸受をローラベアリング軸受として構
成され、且つ隣接する駆動軸の間で軸受相互間の変形を
許容するように水平方向のピンで可動に連結したピンジ
ョイント構造とされ、各軸受に等配して複数本のワイヤ
ー等の下端が軸受け部材と連結されていることを特徴と
する、請求項1又は2に記載した地盤改良処理機のワイ
ヤー式掘削精度制御装置。
3. A bearing member for maintaining a constant axial distance between drive shafts in a multi-axis ground improvement processor using a plurality of drive shafts, wherein each drive shaft bearing is a roller bearing bearing. It has a pin joint structure that is movably connected by horizontal pins so as to allow deformation between bearings between drive shafts, and the lower ends of multiple wires etc. are evenly distributed to each bearing and connected to the bearing member. The wire-type excavation accuracy control device for a ground improvement processor according to claim 1 or 2, characterized in that
【請求項4】油圧シリンダの油圧制御回路は、高圧制御
回路と低圧制御回路を並列に設けて成り、高圧制御回路
の高圧油を油圧シリンダへ供給してワイヤー等を引張ら
せ、低圧制御回路の低圧油を供給してワイヤー等の弛み
をとることを特徴とする、請求項1に記載した地盤改良
処理機のワイヤー式掘削精度制御装置。
4. A hydraulic control circuit for a hydraulic cylinder comprises a high-pressure control circuit and a low-pressure control circuit provided in parallel, and supplies high-pressure oil from the high-pressure control circuit to the hydraulic cylinder to pull a wire or the like. 2. The wire type excavation accuracy control device for a ground improvement processor according to claim 1, wherein the low-pressure oil is supplied to loosen wires and the like.
JP2002052189A 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine Expired - Fee Related JP3747281B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002052189A JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine
EP03703220A EP1486616A4 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine
PCT/JP2003/001256 WO2003072882A1 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine
AU2003207051A AU2003207051A1 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052189A JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine

Publications (2)

Publication Number Publication Date
JP2003253665A true JP2003253665A (en) 2003-09-10
JP3747281B2 JP3747281B2 (en) 2006-02-22

Family

ID=27764331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052189A Expired - Fee Related JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine

Country Status (4)

Country Link
EP (1) EP1486616A4 (en)
JP (1) JP3747281B2 (en)
AU (1) AU2003207051A1 (en)
WO (1) WO2003072882A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457747A (en) * 2018-12-12 2019-03-12 江苏徐工工程机械研究院有限公司 A kind of two-wheel flute milling machine multilayer wirerope elevator automatic calibration device
WO2019117098A1 (en) * 2017-12-12 2019-06-20 愛知製鋼株式会社 Construction apparatus
JP2021046744A (en) * 2019-09-20 2021-03-25 株式会社丸徳基業 Multiple-spindle excavation machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395153B1 (en) * 2010-06-11 2013-03-27 Bauer Spezialtiefbau GmbH Device and method for manufacturing wall panels in the floor
JP6214282B2 (en) * 2013-09-02 2017-10-18 ジェコス株式会社 Steel placing method and installation apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748016A (en) * 1980-09-06 1982-03-19 Takenaka Komuten Co Ltd Processing machine for improvement of soft ground in depth
JP2001254388A (en) * 2000-03-14 2001-09-21 Takenaka Doboku Co Ltd Method and equipment for soil improvement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758718A (en) * 1980-09-25 1982-04-08 Mitsubishi Heavy Ind Ltd Drilling locus displayer for soft ground improving ship
US4436453A (en) * 1982-03-08 1984-03-13 Takenaka Komuten Co., Ltd. Machine for and method of hardening soft ground in depths
JPH0626047A (en) * 1992-05-12 1994-02-01 Kobe Steel Ltd Shaft penetrating device
JPH06173264A (en) * 1992-12-11 1994-06-21 Kobe Steel Ltd Shaft penetration device and shaft penetration method by shaft penetration device
JP2567801B2 (en) * 1993-06-30 1996-12-25 株式会社間組 Position measuring method and device for underground excavator
JP3043551B2 (en) * 1993-10-04 2000-05-22 株式会社熊谷組 Surveying equipment in places with vertical differences
JP3032133B2 (en) * 1995-03-13 2000-04-10 ライト工業株式会社 Multi-axis drilling machine with hole bending correction function
JP3742936B2 (en) * 1997-04-28 2006-02-08 株式会社竹中工務店 Method and apparatus for measuring excavation accuracy of underground excavator
JP2000038738A (en) * 1998-05-19 2000-02-08 Keisuke Hioki Underground wall excavator and excavating method using the same
JP4146579B2 (en) * 1999-06-18 2008-09-10 西松建設株式会社 Control method of groove excavator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748016A (en) * 1980-09-06 1982-03-19 Takenaka Komuten Co Ltd Processing machine for improvement of soft ground in depth
JP2001254388A (en) * 2000-03-14 2001-09-21 Takenaka Doboku Co Ltd Method and equipment for soil improvement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117098A1 (en) * 2017-12-12 2019-06-20 愛知製鋼株式会社 Construction apparatus
JP2019105067A (en) * 2017-12-12 2019-06-27 愛知製鋼株式会社 Construction apparatus
US11242659B2 (en) 2017-12-12 2022-02-08 Aichi Steel Corporation Installation device
CN109457747A (en) * 2018-12-12 2019-03-12 江苏徐工工程机械研究院有限公司 A kind of two-wheel flute milling machine multilayer wirerope elevator automatic calibration device
CN109457747B (en) * 2018-12-12 2023-09-01 江苏徐工工程机械研究院有限公司 Multi-layer steel wire rope winch automatic calibration device of double-wheel slot milling machine
JP2021046744A (en) * 2019-09-20 2021-03-25 株式会社丸徳基業 Multiple-spindle excavation machine

Also Published As

Publication number Publication date
AU2003207051A1 (en) 2003-09-09
EP1486616A1 (en) 2004-12-15
WO2003072882A1 (en) 2003-09-04
EP1486616A4 (en) 2008-01-09
JP3747281B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US7575398B2 (en) Automatic spotter with electronic control system for pile driving and continuous flight auger drilling leads
US6934616B2 (en) System for determining an implement arm position
TR201807098T4 (en) A drilling apparatus for producing a tubular bore and a method for operating a drilling apparatus.
US10072397B2 (en) Payload management system
US20150300906A1 (en) Boom calibration system
JP2003253665A (en) Wire type excavation accuracy control device for soil improving and treating machine
US6865464B2 (en) System for determining an implement arm position
JP2014101713A (en) Position measuring apparatus for pile driving machine
JP2002021076A (en) System and method for controlling construction of rotatively press-fitted pile
JP2010133140A (en) Rotary penetrating pile construction system
JP2005054375A (en) Mixing processing device and method
JP3755086B2 (en) Automatic control method of ground improvement processing machine equipped with wire type excavation accuracy control device
JP4017781B2 (en) Property display method of tunnel excavated ground
JP3450790B2 (en) Ground improvement equipment
JP2006118168A (en) Excavator for constructing underground continuous wall and attitude control method
JP2007146642A (en) Trench wall device and method for forming groove in soil
JPH0932457A (en) Detecting system for underground end position of excavating/stirring machine
JP4360933B2 (en) Ground drilling device, hole bending measurement method in ground drilling
JP2000073396A (en) Ground drilling machine, and method for controlling posture of drilling hole by the machine
JP3835341B2 (en) Ditch excavator and ditch excavation support method
JP3695433B2 (en) Ground improvement processing machine equipped with wire-type excavation accuracy control device
JP4961484B2 (en) Ground improvement body measuring device
JPH0634415Y2 (en) Multi-axis excavator
JP2009221662A (en) Excavation data management system for all-casing construction method
JPS5944419A (en) Administration system for deep layer mixing treatment work

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3747281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees