JP3747281B2 - Wire excavation accuracy controller for ground improvement processing machine - Google Patents

Wire excavation accuracy controller for ground improvement processing machine Download PDF

Info

Publication number
JP3747281B2
JP3747281B2 JP2002052189A JP2002052189A JP3747281B2 JP 3747281 B2 JP3747281 B2 JP 3747281B2 JP 2002052189 A JP2002052189 A JP 2002052189A JP 2002052189 A JP2002052189 A JP 2002052189A JP 3747281 B2 JP3747281 B2 JP 3747281B2
Authority
JP
Japan
Prior art keywords
wire
shaft
excavation
ground improvement
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002052189A
Other languages
Japanese (ja)
Other versions
JP2003253665A (en
Inventor
惠智 太田
弘 中柴
常康 大西
英仁 森田
智晶 広渡
光起 山本
隼夫 青柳
卓美 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Corp
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Corp
Priority to JP2002052189A priority Critical patent/JP3747281B2/en
Priority to AU2003207051A priority patent/AU2003207051A1/en
Priority to EP03703220A priority patent/EP1486616A4/en
Priority to PCT/JP2003/001256 priority patent/WO2003072882A1/en
Publication of JP2003253665A publication Critical patent/JP2003253665A/en
Application granted granted Critical
Publication of JP3747281B2 publication Critical patent/JP3747281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/06Dredgers; Soil-shifting machines mechanically-driven with digging screws
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/126Consolidating by placing solidifying or pore-filling substances in the soil and mixing by rotating blades
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/08Dredgers; Soil-shifting machines mechanically-driven with digging elements on an endless chain
    • E02F3/12Component parts, e.g. bucket troughs
    • E02F3/16Safety or control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/22Component parts
    • E02F3/26Safety or control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、土留め壁の構築、土木建築の基礎工事、地盤の液状化防止工事、止水壁の構築などを目的としてラップ型のソイル柱列杭を施工する際に使用される地盤改良処理機の掘削攪拌翼軸の先端位置を、施工時にリアルタイムに強制的に位置修正又は制御して、ソイル柱列杭間のラップ量を確実に一定量に確保するワイヤー式掘削精度制御装置の技術分野に属する。
【0002】
【従来の技術】
従来、各種の地盤改良工事は、例えば図1に示したような地盤改良処理機を使用して行っている。これはリーダー1の頂部シーブ5に吊り下げてレール3に沿って上下に移動される掘進駆動部2により、その直下に吊り下げた駆動軸4を回転駆動しつつ垂直下向きに推進させる。駆動軸4の下端には、先端カッター7及び複数の攪拌翼8を上下に備えた掘削攪拌翼軸6を接続してあり、これを回転しつつ掘進させる際に、又は引き上げる際に地盤の掘削土と安定材とを攪拌混合して、通例直径が1m程度のソイル柱列杭を形成する。ラップ型のソイル柱列杭の場合は、隣接する杭同士を相互に20cm程度のラップ長(ラップ幅とも云う)でラップさせて一体的に連続した地盤改良が行われる。駆動軸4の垂直な建入れ精度を確保するため、リーダー1の下部及び中間部に駆動軸の振止め37と38が設けられている。振止め37、38も各々レール3に沿って上下に移動する。
【0003】
地盤改良処理機による各種の地盤改良工事においては、隣接するソイル柱列杭(改良杭)相互間のラップ長が不足したり、又はラップしないときは、改良杭相互間の一体性(連続性)が損なわれ、改良地盤の構造上の強度、剛性が低下するほか、止水性を満足しない等々の不良工事となる。
【0004】
そこで、ソイル柱列杭間のラップ量を確実に一定量に確保するための対処法として、掘削精度制御方法及び装置が種々研究されてきた。掘削攪拌翼軸の先端位置を施工時にリアルタイムに位置修正を行う技術である。そうした従来技術としては、例えば、
【0005】
(1)特許第2736471号公報(平成2年6月8日出願、特開平4−44592号)に開示された発明「多軸ソイル柱列掘削機の掘削精度制御方法及びその装置」は、掘削軸の上部と下部を複数本のワイヤーで連結し、各ワイヤーの移動量を油圧制御装置で制御する構成である。
【0006】
(2)特許第3156049号公報(平成10年11月27日出願、特開2000−160549号)に開示された発明「ソイル柱列間のラップ長の施工管理方法」は、掘削攪拌翼軸の先端位置を計測する3次元ジャイロセンサを掘削攪拌翼軸の上部近傍位置に設置し、所謂GPSの利用で自己位置を計測する全地球測位システムを装備し、ラップ型のソイル柱列杭を施工する際に前記の計測手段が掘削攪拌翼軸の曲がり傾向を計測すると、先端掘削カッターを逆転運転して位置修正を行う。先に施工したソイル柱列杭とラップする隣接のソイル柱列杭を施工するに際しては、前後する施工記録(施工軌跡)の水平間隔及び水平断面形状に基づいて実質のラップ長を把握、管理する。もしラップ長の誤差、曲がり傾向などを観測したときは先端掘削カッターを逆転運転して位置の修正を行う方法および地盤改良装置である。
【0007】
(3)特開2001−254388号公報(平成12年3月14日出願)に開示された発明「地盤改良工法及び装置」は、地盤改良処理機の駆動軸と掘削攪拌翼軸との接続部位を回転トルクの伝達が可能な自在継手とし、少なくとも3本の油圧シリンダで掘削攪拌翼軸の位置修正を可能に構成したものであり、3次元ジャイロセンサを利用した計測手段で計測しつつ掘削方向を修正可能に構成されている。
【0008】
(4)特開2002−146771号公報(平成12年11月15日出願)に開示された発明「攪拌掘削軸の下部連結バンド」は、掘削攪拌翼軸の横方向への方向制御を容易にするため、複数本の掘削攪拌翼軸相互間の間隔を保持する下部連結バンド(図1における符号9の部材を参照。)における各軸受を相互間で変形可能に水平方向のピンで連結して自在構造に構成されている。
【0009】
(5)特開2002−167749号公報(平成12年12月4日出願)に開示された発明「掘削精度制御方法」は、ワイヤー式の制御方法であるが、上記(1)の特許第2736471号公報に開示された発明「多軸ソイル柱列掘削機の掘削精度制御方法」が掘削攪拌翼軸の前後方向(図1の左右方向)への方向制御しかできなかったのを、更に横方向(図1の紙面と垂直な方向)へも制御可能とし、精度を高めたものである。
【0010】
【本発明が解決しようとする課題】
地盤改良処理機によるラップ型ソイル柱列杭の施工において、ソイル柱列杭の相互間でラップ長が不足したり又はラップしない不良工事を未然に防止するための対策として、従前は予め設計上必要なラップ長より大きな、余分なラップ長を含めて施工することが多い。その結果、地盤改良杭のピッチが縮小した分だけ地盤改良のボリュームが多くなるので、非効率であり、不経済であった。
【0011】
そこで上記(1)〜(5)に例示したような改良技術が研究されているのであるが、依然として十分満足できる内容に完熟した技術とまでは云えない。
【0012】
即ち、上記した(1)の制御方法は、ワイヤーの移動量を油圧制御装置で制御する構成であるが、肝心な制御目標値は、ワイヤーの移動量に基づく間接的な測定法に基づくもので、掘削軸の先端位置の誤差と一致する制御結果を得られるかの点に疑問がある。
【0013】
上記(2)の施工管理方法は、3次元ジャイロセンサを採用し、GPSを利用して自己位置を計測する全地球測位システムによりリアルタイムに実質のラップ長を把握、管理する点は画期的である。しかし、位置修正の手段としては、先端掘削カッターを逆転運転して位置修正を行うにすぎず、俊敏で確実な応答性を期待し難いことが問題である。
【0014】
上記(3)の地盤改良工法は、3次元ジャイロセンサを利用した計測手段で計測する点、及び地盤改良処理機の駆動軸と掘削攪拌翼軸との接続部位を回転トルクの伝達が可能な自在継手として、少なくとも3本の油圧シリンダで掘削攪拌翼軸の位置修正を可能に構成した点は、前二者に比較して俊敏で確実な応答性を期待出来る。しかしながら、精密な機械部分(自在継手と油圧シリンダなど)を掘削土中に深く進入させる構成なので、耐久性の確保と保守、点検の面で問題がある。
【0015】
上記(4)の下部連結バンドの有用性は十分に認められるが、これを十分に応用した掘削精度制御方法は未だ完成されていない。
【0016】
上記(5)の掘削精度制御方法は、ワイヤー式制御方法である点を注目できるが、掘削攪拌翼軸の位置測定技術との関連性が曖昧である。
【0017】
以上に個別の吟味、検討を行った通り、従来技術は、個々にはそれぞれ固有の特長を有するものの、システム全体を統括して直ちに現場で実施可能にまで完熟した技術内容にはなっていない。
【0018】
本発明の目的は、ワイヤー式掘削精度制御方法の特長を生かし、上記(2)に説明した3次元ジャイロセンサによる掘削攪拌翼軸先端の位置検出技術を組み合わせて、先に施工した改良杭の位置(軌跡)と、次いでこれにラップさせる改良杭の掘削軸先端位置とをリアルタイムに検出し、施工中に計画位置より外れる傾向が観測された場合には、速やかに先端位置の方向修正を的確に応答性の良い制御で実行し、施工時にリアルタイムの位置修正を行い、必要な又は適正なラップ量を確保すると共に建て入れ精度の制御も行うことができる、地盤改良処理機のワイヤー式掘削精度制御装置を提供することにある。
【0019】
本発明の次の目的は、ソイル柱列杭間のラップ量を確実に一定量に確保することを容易に可能ならしめ、設計上必要なラップ長で無駄なく施工することができるようにし、地盤改良杭のピッチを適正に施工し、ひいては効率が良く経済的な地盤改良工事を可能にする、地盤改良処理機のワイヤー式掘削精度制御装置を提供することにある。
【0020】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る地盤改良処理機のワイヤー式掘削精度制御装置は、
地盤改良処理機の駆動軸を回転駆動しリーダーに沿って垂直下向きに推進させる掘進駆動部の下へ吊り下げた油圧シリンダ10と、駆動軸の下端へ接続した掘削攪拌翼軸の直上部位に設けられた軸受け部材11との間に駆動軸を中心として複数本のワイヤー等12を連結して成り、前記油圧シリンダ10によって各ワイヤー等12を個別に引張り、掘削攪拌翼軸の先端位置を修正、制御するワイヤー式掘削精度制御装置において、
各駆動軸4およびその下端部へ接続した掘削攪拌翼軸6の軸間距離を一定に保つ軸受け部材11は、各駆動軸4の軸受がローラベアリング軸受11aとして構成され、隣接する駆動軸4,4の軸受は相互間で横方向の変形を許容するように水平方向のピン11dによるピンジョイント構造で可動に連結され、各軸受から外方へ突き出された水平腕のブラケット15にワイヤー等12の下端が連結され、各ワイヤー等12の上端は1本に1基の割合で配置された油圧シリンダ10の出力軸と連結具13で接続されており、
前記軸受け部材11の近傍位置に設置され掘削攪拌翼軸の先端位置を測定する3次元ジャイロセンサ装置と、
前記3次元ジャイロセンサ装置により測定した掘削攪拌翼軸の先端位置の計測信号が入力される施工管理装置22と、
前記の施工管理装置22が前記計測信号に基づいて演算処理した制御信号で制御される前記油圧シリンダ10の油圧制御回路とを具備し、
前記油圧制御回路を通じて該当する油圧シリンダ10を個別に制御してそのワイヤー等12を引張り、他の油圧シリンダは保持状態にして掘削攪拌翼軸の先端位置を強制的に修正、制御することを特徴とする。
【0021】
請求項2に記載した発明は、請求項1に記載した地盤改良処理機のワイヤー式掘削精度制御装置において、
駆動軸は複数本の単位軸を一連に接合した複数連結軸として構成され、各接合部の軸継手40の遊びを利用して駆動軸に曲がりを生じさせ、掘削攪拌翼軸の先端位置を強制的に修正、制御することを可能ならしていることを特徴とする。
【0023】
請求項に記載した発明は、請求項1に記載した地盤改良処理機のワイヤー式掘削精度制御装置において、
油圧シリンダ10の油圧制御回路は、高圧制御回路30と低圧制御回路31を並列に設けると共に保持状態にするシャットオフ弁を備えて成り、高圧制御回路30の高圧油を油圧シリンダ10へ供給してワイヤー等12を引張らせ、低圧制御回路31の低圧油を供給してワイヤー等12の弛みをとることを特徴とする。
【0024】
【発明の実施形態及び実施例】
次に、図1〜図6に基いて、請求項1〜4に記載した発明に係る地盤改良処理機のワイヤー式掘削精度制御装置の実施形態を説明する。
【0025】
既に説明したように、図1の地盤改良処理機は、駆動軸4を回転駆動しつつリーダー1のレール3に沿って垂直下向きに推進させる掘進駆動部2の下へ吊り下げた油圧シリンダ10と、駆動軸4の下端へ接続した掘削攪拌翼軸6の直上部位に設けられた軸受け部材11との間に、駆動軸4を中心として複数本のワイヤー12(又はPC鋼棒、PC鋼線などであっても良い。以下、これらをワイヤー等と総称する。)を連結して成り、前記油圧シリンダ10によって各ワイヤー12を個別に引張り、掘削攪拌翼軸6の先端位置を強制的に修正、制御するワイヤー式掘削精度制御装置を構成している。
【0026】
図2A、Bに掘進駆動部2の部分を拡大して示したように、これは2軸地盤改良処理機の実施例である。2本の駆動軸4、4それぞれの下端に接続した2本の掘削攪拌翼軸6、6と複数本のワイヤー12…との配置関係は、図3、図4に例示した通りであり、合計6本のワイヤー12…が2本の駆動軸4、4の周囲を取り囲む配置とされている。
【0027】
図2は、前記6本のワイヤー12…それぞれの上端が、1本につき1基の割合で油圧シリンダ10の出力軸とピンジョイント形式の連結具13により接続された構成を示している。各油圧シリンダ10の本体の上端部は、やはりピンジョイント14により掘進駆動部2の下底部に用意したブラケットと自在に連結されている。
【0028】
一方、前記6本のワイヤー12…それぞれの下端は、図3に拡大して示したように、軸受け部材11から水平方向に突き出た各水平アームのブラケット15とネジ式の連結具16で長さの調節が可能な構成で連結されている。前記連結具16の部分は、土砂で汚損されないように保護カバー17により被覆されている。
【0029】
2本の駆動軸4、4を一定の軸間距離に保つ軸受け部材11は、その軸受に駆動軸4を低摩擦で回転可能に支持するローラベアリング軸受11aを使用している。ローラベアリング軸受11aは、ワイヤー制御により軸受け部材11を引張り掘削攪拌翼軸6の先端位置を強制的に修正することに十分耐えるだけの高い剛性を有する特長も有する。ローラベアリング軸受11aの具体的構成は、特開2001−234527号公報の図5に示したように、アンギュラー型式のローラベアリングで駆動軸4を回転自在に支持する構成等が好適に採用される。
【0030】
2本の駆動軸4、4、ひいては2本の掘削攪拌翼軸6、6の軸間距離を一定に保ちながら、隣接する駆動軸4、4の間で横方向への変形を容易に許容する構成とするため、前記2個のローラベアリング軸受11aは、その外面から横方向へ平行に延ばしたブラケット11bを中間位置のヒンジ部材11cの両端と重ね合わせ、2本のピン11dを水平方向に差して連結したピンジョイント構造により連結して可動に構成されている。
【0031】
既述した6本のワイヤー12…の下端は、図4に示したように、2個のローラベアリング軸受11a、11aそれぞれの外側約半分の半円に含まれる直角3方向の位置に水平腕を突き出してモーメントが働くように等配して設けた各ブラケット15と連結されている。
【0032】
従って、6本のワイヤー12…のうちのいずれを強く、いずれを弱く上記の油圧シリンダ10で引っ張ることによって、2本の駆動軸4、4、ひいては2本の掘削攪拌翼軸6、6の先端位置を、前後方向(図4のY方向)及び横方向(図4のX方向)のいずれへも容易に強制的に確実に修正、制御可能である。
【0033】
なお、2本の駆動軸4、4、ひいては2本の掘削攪拌翼軸6、6の先端位置のリアルタイムな計測手段として、前記軸受け部材11の近傍位置、より具体的には図3に示したように、図中右方のローラベアリング軸受11aの外面に固定して2本の駆動軸4、4の中央に位置させたセンサケース20の中に、具体的に図示することを省略したが、例えば上記特許第3156049号公報に開示したように、X、Y2次元方向の傾斜計とジャイロセンサとを組み合わせて成る3次元ジャイロセンサ装置が設置されている。
【0034】
この3次元ジャイロセンサ装置によって、当該地盤改良処理機による地盤改良工事の施工過程において、掘削攪拌翼軸6の先端位置の検出がリアルタイムに正確に行われる。また、施工したソイル柱列杭の軌跡と水平断面形状もデータ化して記録される。3次元ジャイロセンサ装置による計測信号は、センサケース20へ接続した信号線保護管21内の信号線を通じて地上の施工管理装置22(図5)へ送られる。
【0035】
図5は、油圧シリンダ10を、3次元ジャイロセンサ装置の計測値に基づいてリアルタイムに自動制御する油圧制御回路を示している。これは1基の油圧シリンダ10につき、高圧制御回路30と低圧制御回路31とを並列に設けた構成であり、高圧制御回路30によりワイヤー12を引張らせる。
【0036】
地中のセンサケース20内の3次元ジャイロセンサ装置が計測した計測信号23が施工管理装置22(これは通例のパーソナルコンピュータである。)へ入力されると、各油圧シリンダ10へ付設した圧力変換器24から入力される圧力信号25と比較演算の処理が行われ、その比較演算の結果は油圧シリンダ用操作盤27へ送られる。と同時に、オペレータのモニタ26へリアルタイムに画面表示される。
【0037】
油圧シリンダ用操作盤27においては、前記の比較演算の結果に基づいて、6基ある各油圧シリンダ10…の高圧制御回路30及び低圧制御回路31に対する制御信号を生成して送信する。すなわち、高圧制御回路30の電磁リリーフ弁32とシャットオフ弁33及び電磁切り換え弁34並びに低圧制御回路31の電磁切り換え弁35がそれぞれ制御される。
【0038】
例えば、油圧シリンダ10でワイヤー12を引っ張るときは、シャットオフ弁33をフリーにした状態で、高圧制御回路30を開通させて油圧シリンダ10のピストン下室へ高圧油を送り、収縮動作をさせる。保持状態にするときは、シャットオフ弁33を閉じ、外力が作用しても油圧シリンダ10のストロークを不変に維持させる。ワイヤー12の弛みをとる中立状態とするときは、シャットオフ弁33をフリーにした状態で、低圧制御回路31を開通状態となし、油圧シリンダ10のピストン下室へ低圧油を送り、ワイヤー12が弛まないだけの弱い引張りによって緊張状態を保つ(請求項に記載した発明)。
【0039】
要するに、図4において、符号a、b又はe、dのワイヤー12を油圧シリンダ10で引っ張ると、前後方向への位置修正ができる。符号b、c、d又はa、f、eのワイヤー12を引っ張ると、横(左右)方向への位置修正ができるのである。このとき他のワイヤー12の油圧シリンダ10はそれぞれ保持状態として、位置修正の反力を与える。その他、多様な組み合わせで、2本の駆動軸4、4、ひいては2本の掘削攪拌翼軸6、6の先端位置の位置修正に必要な制御を的確に強制的に速やかに実行することができる。
【0040】
掘削攪拌翼軸6の先端位置が計画位置(設定したラップ長の位置)から外れた場合、又は外れそうな場合には、直ちに油圧シリンダ10とワイヤー12を通じて計画位置への修正、制御が行われる。よって、予め余分なラップ長を見込んで施工する必要がない。
【0041】
2本の駆動軸4、4、ひいては2本の掘削攪拌翼軸6、6の先端位置の位置修正は、上記したように油圧シリンダ10で各個のワイヤー12を引っ張って制御するが、引張り力の大きさの調整(油圧シリンダ10へ供給する油圧の大きさ)は、掘削土質とその性状、ソイル柱列杭のラップ長の大きさ等々の条件によって変化する。そのため、先ずは試験施工を行って実地に必要な情報を収集し、その結果に基づいて制御が可能な引張り力の大きさ、油圧の大きさを求めて実施するのが好ましい。
【0042】
また、地盤改良工事の進捗に伴い、特許第3156049号の特許発明で開示したように、ソイル柱列杭の施工管理に必要な各種のデータを採取し、分析した数値を施工管理装置22へ入力・記録し、位置の修正、制御に必要な引張り力を演算させる。そして、位置検出データ及び計画と比較照合して、自動的な油圧制御に反映させ、その結果を先端位置制御にフィードバックする工程を繰り返すのが好ましい。
【0043】
ちなみに、上記した符号b、c、d又はa、f、eのワイヤー12を引っ張る横方向への位置修正に際しては、図3に示したように、軸受け部材11の軸受け部品である2個のローラベアリング軸受11a、11aをピン11dで連結したピンジョイント構造が、無用の抵抗を発生せず、応答性の良い位置修正を可能ならしめる。
【0044】
更に応答性の良い位置修正を可能にする工夫として、本発明の地盤改良処理機に係る駆動軸4は、図6A、Bに例示したように、複数本の単位軸を軸継手40で一連に接合した複数連結軸として構成される。各接合部の軸継手40に発生する遊びを利用して駆動軸4の曲がりを軸受け部材11の位置までの間で滑らかに生じさせ、掘削攪拌翼軸6の先端位置を強制的に修正することを可能ならしめる(請求項2に記載した発明)。
【0045】
掘削軸4の単位軸は一般的に5m〜10mの範囲、調整用としては1m〜4mの範囲で多種多様にある。軸継手40の遊びは、新品時には通例2.6×10−2rad程度有り、使用頻度に応じて次第に大きくなる。従って、軸継手40の個数を適切に設計することにより、曲がりやすい駆動軸4が容易に得られ、位置制御が容易になるので、1本物の駆動軸に比較して制御上はるかに有利である。しかし、ワイヤー12により駆動軸4に適度な引張り力をバランス良く加えると、駆動軸4の剛性を補助的に向上させる効果もあるので、前記遊びの弊害は心配ない。
【0046】
なお、図6A、Bに示したように、ワイヤー12を引張って駆動軸4に曲がりを生じさせ、掘削攪拌翼軸6の先端位置を修正、制御する際、駆動軸4の固定点は、下部振止め37となる。従って、この下部振止め37も、例えば特開2001−234527号公報の例えば図2Aに示したように、駆動軸4を回転自在に支持するローラを用いたローラ式ガイド機構を採用した構成で実施するのが好ましい。中間振止め38も同様に構成される。
【0047】
【発明の奏する効果】
請求項1〜に記載した発明に係る地盤改良処理機のワイヤー式掘削精度制御装置は、掘削攪拌翼軸の先端位置を3次元ジャイロセンサ装置により測定し、先に施工した改良杭の軌跡と、次いでこれにラップさせる改良杭の掘削軸先端位置とをリアルタイムに検出して比較演算し、計画位置より外れる傾向が観測された場合には、速やかに先端位置の方向修正を的確に応答性の良い制御で実行できるので、施工時に必要なラップ量を正確に確保する建て入れ精度の制御を行うことができる。
【0048】
したがって、本発明によれば、ソイル柱列杭間のラップ量を正確に一定量に確保した施工を実施することを容易に可能である。よって、設計上必要なラップ長で無駄なく施工することができる。その結果、地盤改良杭のピッチを適正にして、効率良く、経済的な地盤改良工事を行うことができるのである。
【図面の簡単な説明】
【図1】本発明に係る地盤改良処理機の立面図である。
【図2】A、Bは掘進駆動部近辺を拡大して示した正面図と側面図である。
【図3】駆動軸下部の軸受け部材近辺を拡大して示した正面図である。
【図4】軸受け部材を平面方向に見た断面図である。
【図5】油圧シリンダの制御回路図である。
【図6】A、Bは駆動軸の構成と曲がり状態を模式的に示した説明図である。
【符号の説明】
4 駆動軸
1 リーダー
2 掘進駆動部
10 油圧シリンダ
6 掘削攪拌翼軸
11 軸受け部材
12 ワイヤー等
20 センサケース(3次元ジャイロセンサ装置を内蔵)
22 施工管理装置
30 高圧制御回路
31 低圧制御回路
27 油圧シリンダ用操作盤
40 軸継手
11a ローラベアリング軸受(軸受け部品)
11d ピン
[0001]
BACKGROUND OF THE INVENTION
The present invention is a ground improvement process used when constructing a wrap-type soil column pile for the purpose of constructing earth retaining walls, foundation construction of civil engineering architecture, ground liquefaction prevention construction, construction of water blocking walls, etc. Technical field of wire-type excavation accuracy control equipment that ensures the fixed amount of lap between soil column piles by forcibly correcting or controlling the tip position of the excavator blade shaft in real time during construction Belonging to.
[0002]
[Prior art]
Conventionally, various ground improvement works have been performed using, for example, a ground improvement processing machine as shown in FIG. This is driven by the digging drive unit 2 that is suspended from the top sheave 5 of the leader 1 and moved up and down along the rails 3 while driving the drive shaft 4 suspended just below it in a vertically downward direction. The lower end of the drive shaft 4 is connected to a drilling stirring blade shaft 6 provided with a tip cutter 7 and a plurality of stirring blades 8 at the top and bottom, and excavating the ground when rotating or lifting the shaft. The soil and stabilizer are stirred and mixed to form a soil column pile with a diameter of typically about 1 m. In the case of a wrap-type soil column pile, adjacent piles are wrapped with a wrap length of about 20 cm (also referred to as a wrap width), and continuous ground improvement is performed. In order to ensure vertical erection accuracy of the drive shaft 4, the drive shafts 37 and 38 are provided at the lower and middle portions of the leader 1. The braces 37 and 38 also move up and down along the rails 3 respectively.
[0003]
In various ground improvement works by the ground improvement processing machine, if the wrap length between adjacent soil column piles (improved piles) is insufficient or does not wrap, the integrity between the improved piles (continuity) Will be damaged, the structural strength and rigidity of the improved ground will be reduced, and the construction will not be satisfactory.
[0004]
Thus, various methods and devices for controlling excavation accuracy have been studied as countermeasures for ensuring a certain amount of lap between soil column piles. This is a technology that corrects the position of the tip of the excavator stirring blade shaft in real time during construction. Examples of such conventional technologies include:
[0005]
(1) The invention disclosed in Japanese Patent No. 2736471 (filed on June 8, 1990, Japanese Patent Laid-Open No. 4-44592) “Excavation accuracy control method and apparatus for multi-axis soil column excavator” The upper and lower portions of the shaft are connected by a plurality of wires, and the movement amount of each wire is controlled by a hydraulic control device.
[0006]
(2) The invention disclosed in Japanese Patent No. 3156049 (filed on Nov. 27, 1998, Japanese Patent Laid-Open No. 2000-160549) is a construction management method for the wrap length between soil column rows. A three-dimensional gyro sensor that measures the tip position is installed near the upper part of the excavating and stirring blade shaft, equipped with a global positioning system that measures the self-position using the so-called GPS, and constructs a wrap-type soil column pile. When the measuring means measures the bending tendency of the excavation stirring blade shaft, the tip excavation cutter is operated in reverse to correct the position. When constructing an adjacent soil column pile that wraps with the previously installed soil column pile, grasp and manage the actual lap length based on the horizontal interval and horizontal cross-sectional shape of the construction record (construction trajectory) that goes back and forth. . If a lap length error, bending tendency, etc. are observed, this is a method and a ground improvement device for correcting the position by operating the tip excavation cutter in reverse.
[0007]
(3) The invention “Ground improvement method and apparatus” disclosed in Japanese Patent Application Laid-Open No. 2001-254388 (filed on Mar. 14, 2000) is a connection site between the drive shaft of the ground improvement processing machine and the excavation stirring blade shaft. Is a universal joint capable of transmitting rotational torque, and the position of the excavator stirring blade shaft can be corrected with at least three hydraulic cylinders. The excavation direction is measured by a measuring means using a three-dimensional gyro sensor. It is configured to be modifiable.
[0008]
(4) The invention “Lower Connection Band of Stirring Drilling Shaft” disclosed in Japanese Patent Application Laid-Open No. 2002-146771 (filed on November 15, 2000) facilitates the lateral control of the drilling stirring blade shaft. For this purpose, the bearings in the lower connection band (see the member 9 in FIG. 1) that keeps the distance between the plurality of excavating and stirring blade shafts are connected with horizontal pins so that they can be deformed between each other. It is configured in a free structure.
[0009]
(5) The invention “excavation accuracy control method” disclosed in Japanese Patent Application Laid-Open No. 2002-167749 (filed on Dec. 4, 2000) is a wire-type control method. The invention disclosed in the publication No. 1 “Drilling Accuracy Control Method for Multi-Axis Soil Column Excavator” has only been able to control the direction of the excavator stirring blade shaft in the front-rear direction (left-right direction in FIG. 1). Control is also possible (in a direction perpendicular to the paper surface of FIG. 1), and accuracy is improved.
[0010]
[Problems to be solved by the present invention]
In the construction of wrap-type soil column piles by ground improvement processing machines, it is necessary to design in advance as a measure to prevent inadequate construction of wrap length between soil column piles or lack of wrap. It is often constructed with an extra wrap length that is larger than the wrap length. As a result, the volume of ground improvement increased as the pitch of the ground improvement piles was reduced, which was inefficient and uneconomical.
[0011]
Therefore, improved techniques as exemplified in the above (1) to (5) have been studied, but it cannot be said that the technique is still fully ripe with satisfactory content.
[0012]
That is, the control method (1) described above is a configuration in which the wire movement amount is controlled by the hydraulic control device, but the important control target value is based on an indirect measurement method based on the wire movement amount. There is a question as to whether a control result consistent with the error in the tip position of the drilling shaft can be obtained.
[0013]
The construction management method (2) above is groundbreaking in that it uses a three-dimensional gyro sensor and uses GPS to measure and manage the actual lap length in real time using a global positioning system. is there. However, as a means for correcting the position, the tip excavating cutter is only operated in reverse to correct the position, and it is difficult to expect an agile and reliable response.
[0014]
The ground improvement method (3) above can freely transmit rotational torque to the point measured by the measuring means using a three-dimensional gyro sensor and the connection part between the drive shaft of the ground improvement processing machine and the excavation stirring blade shaft. The point that the position of the excavating stirring blade shaft can be corrected with at least three hydraulic cylinders as a joint can be expected to be more agile and reliable than the former two. However, the precise mechanical parts (universal joints, hydraulic cylinders, etc.) are deeply penetrated into the excavated soil, and there are problems in terms of ensuring durability, maintenance, and inspection.
[0015]
Although the usefulness of the lower connection band of the above (4) is sufficiently recognized, an excavation accuracy control method that fully applies this has not yet been completed.
[0016]
It can be noted that the excavation accuracy control method (5) is a wire-type control method, but its relevance to the position measurement technique of the excavation stirring blade shaft is ambiguous.
[0017]
As has been examined and examined individually, the conventional technology has its own unique features, but it has not been fully matured so that the entire system can be integrated and immediately implemented on site.
[0018]
The object of the present invention is to take advantage of the wire-type excavation accuracy control method and combine the position detection technology of the excavation agitation blade shaft tip with the three-dimensional gyro sensor described in (2) above, so that the position of the improved pile previously constructed (Trajectory) and the excavation shaft tip position of the improved pile to be wrapped next are detected in real time, and if a tendency to deviate from the planned position is observed during construction, the direction correction of the tip position is promptly and accurately corrected Wire-type excavation accuracy control for ground improvement processing machines that can be executed with highly responsive control, perform real-time position correction at the time of construction, and secure the necessary or appropriate lap amount as well as control the installation accuracy. To provide an apparatus.
[0019]
The next object of the present invention is to make it possible to easily ensure a certain amount of lap between soil column piles, and to make it possible to construct without waste with the wrap length required for the design. An object of the present invention is to provide a wire-type excavation accuracy control device for a ground improvement processing machine capable of appropriately constructing a pitch of improved piles and thus enabling efficient and economical ground improvement work.
[0020]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, a wire excavation accuracy control device for a ground improvement processing machine according to the invention described in claim 1 is:
A hydraulic cylinder 10 suspended below an excavation drive unit 2 that rotates the drive shaft 4 of the ground improvement processing machine and propels it vertically downward along the leader 1 , and an excavation stirring blade shaft 6 connected to the lower end of the drive shaft 4 A plurality of wires 12 and the like 12 are connected to a bearing member 11 provided immediately above the center of the drive shaft 4, and the wires 12 are individually pulled by the hydraulic cylinder 10 to excavate and stir blade shafts. In the wire type excavation accuracy control device for correcting and controlling the tip position of 6 ,
In the bearing member 11 that keeps the distance between the shafts of the drive shafts 4 and the excavation and stirring blade shafts 6 connected to the lower ends thereof, the bearings of the drive shafts 4 are configured as roller bearings 11a, and the adjacent drive shafts 4 and 4 are arranged. The bearings 4 are movably connected by a pin joint structure with horizontal pins 11d so as to allow lateral deformation between each other, and wires 12 and the like are connected to the brackets 15 of the horizontal arms protruding outward from the respective bearings. The lower ends are connected, and the upper ends of the wires 12 and the like are connected to the output shaft of the hydraulic cylinder 10 arranged at a ratio of one to one by a connecting tool 13,
A three-dimensional gyro sensor device that is installed near the bearing member 11 and measures the tip position of the excavating and stirring blade shaft 6 ;
A construction management device 22 to which a measurement signal of the tip position of the excavation stirring blade shaft 6 measured by the three-dimensional gyro sensor device is input;
A hydraulic control circuit for the hydraulic cylinder 10 controlled by a control signal calculated by the construction management device 22 based on the measurement signal;
The corresponding hydraulic cylinders 10 are individually controlled through the hydraulic control circuit, the wires 12 and the like are pulled, and the other hydraulic cylinders are held to forcibly correct and control the tip position of the excavating stirring blade shaft 6. Features.
[0021]
The invention described in claim 2 is the wire-type excavation accuracy control device of the ground improvement processing machine described in claim 1,
The drive shaft 4 is configured as a plurality of connecting shafts obtained by joining a plurality of unit shafts in series. The drive shaft 4 is bent using the play of the shaft joint 40 at each joint, and the tip of the excavating stirring blade shaft 6 is bent. forcibly correct the position, and characterized in that it possibly to control.
[0023]
The invention described in claim 3 is the wire-type excavation accuracy control device of the ground improvement processing machine described in claim 1,
Hydraulic control circuit of the hydraulic cylinder 10 is made comprises a shut-off valve to Rutotomoni holding state provided a high voltage control circuit 30 and the low-voltage control circuit 31 in parallel, to supply high pressure oil of the high-voltage control circuit 30 to the hydraulic cylinder 10 The wire or the like 12 is pulled and the low-pressure oil of the low-pressure control circuit 31 is supplied to take the slack of the wire 12 or the like.
[0024]
Embodiments and Examples of the Invention
Next, based on FIGS. 1-6, embodiment of the wire-type excavation precision control apparatus of the ground improvement processing machine which concerns on the invention described in Claims 1-4 is described.
[0025]
As described above, the ground improvement processing machine of FIG. 1 includes a hydraulic cylinder 10 suspended below the excavation drive unit 2 that drives the drive shaft 4 to rotate vertically along the rail 3 of the leader 1. A plurality of wires 12 (or a PC steel rod, a PC steel wire, etc.) centering on the drive shaft 4 between the shaft 11 and a bearing member 11 provided immediately above the excavating and stirring blade shaft 6 connected to the lower end of the drive shaft 4 Hereinafter, these are collectively referred to as wires, etc.), and each wire 12 is pulled individually by the hydraulic cylinder 10 to forcibly correct the tip position of the excavating stirring blade shaft 6. The wire type excavation accuracy control device to be controlled is configured.
[0026]
As shown in the enlarged view of the excavation drive unit 2 in FIGS. 2A and 2B, this is an embodiment of the biaxial ground improvement processor. Two driving shafts 4, 4 their respective two plural and excavation stirring blade axes 6, 6 connected to the lower end of the arrangement of wires 12 ... and, FIG. 3, are as illustrated in FIG. 4 There are a total of six wires 12... Surrounding the two drive shafts 4 and 4.
[0027]
FIG. 2 shows a configuration in which the upper ends of the six wires 12 are connected to the output shaft of the hydraulic cylinder 10 by a pin joint type connector 13 at a ratio of one to one. The upper end of the main body of each hydraulic cylinder 10 is also freely connected to a bracket prepared on the lower bottom of the excavation drive unit 2 by a pin joint 14.
[0028]
On the other hand, the lower ends of the six wires 12... Are extended by brackets 15 of the respective horizontal arms protruding from the bearing member 11 in the horizontal direction and the screw-type couplings 16 as shown in FIG. It is connected in a configuration that can be adjusted. A portion of the connector 16 is covered with a protective cover 17 so as not to be soiled with earth and sand.
[0029]
The bearing member 11 that keeps the two drive shafts 4, 4 at a constant inter-axis distance uses a roller bearing 11 a that supports the drive shaft 4 rotatably with low friction. The roller bearing 11a also has a characteristic that it has a high rigidity enough to withstand the force of correcting the tip position of the excavation stirring blade shaft 6 by pulling the bearing member 11 by wire control. As the specific configuration of the roller bearing 11a, a configuration in which the drive shaft 4 is rotatably supported by an angular type roller bearing as shown in FIG.
[0030]
While keeping the distance between the two drive shafts 4 and 4 and thus the two excavation stirring blade shafts 6 and 6 constant, it is possible to easily allow lateral deformation between the adjacent drive shafts 4 and 4. In order to make the configuration, the two roller bearings 11a have a bracket 11b extending in parallel in the lateral direction from the outer surface of the two roller bearings 11a so as to overlap with both ends of the hinge member 11c at the intermediate position, and the two pins 11d are inserted in the horizontal direction. It is configured to be movable by being connected by a pin joint structure connected together.
[0031]
As shown in FIG. 4, the lower ends of the six wires 12... Already described have horizontal arms at positions in three right angles included in the semicircles of the outer half of the two roller bearings 11a and 11a. projects that have been connected to each bracket 15 provided with evenly placed so moment acts.
[0032]
Therefore, strong one of the wire 12 ... six, by pulling in the hydraulic cylinder 10 of the weaker one, two drive shafts 4, 4, and thus the two excavating stirring blades shaft 6,6 The front end position can be easily and forcibly corrected and controlled in both the front-rear direction (Y direction in FIG. 4) and the lateral direction (X direction in FIG. 4).
[0033]
In addition, as a real-time measuring means of the tip positions of the two drive shafts 4 and 4 and thus the two excavating stirring blade shafts 6 and 6, the position near the bearing member 11, more specifically, shown in FIG. As shown, the illustration is omitted in the sensor case 20 fixed to the outer surface of the roller bearing 11a on the right side of the figure and positioned at the center of the two drive shafts 4, 4. For example, as disclosed in the above-mentioned Japanese Patent No. 3156049, a three-dimensional gyro sensor device comprising a combination of an inclinometer in the X and Y two-dimensional directions and a gyro sensor is installed.
[0034]
By this three-dimensional gyro sensor device, the position of the tip of the excavating stirring blade shaft 6 is accurately detected in real time in the construction process of the ground improvement work by the ground improvement processing machine. In addition, the trajectory and horizontal cross-sectional shape of the constructed soil column piles are also recorded as data. The measurement signal from the three-dimensional gyro sensor device is sent to the ground construction management device 22 (FIG. 5) through the signal line in the signal line protection tube 21 connected to the sensor case 20.
[0035]
FIG. 5 shows a hydraulic control circuit that automatically controls the hydraulic cylinder 10 in real time based on the measurement value of the three-dimensional gyro sensor device. This is a configuration in which a high pressure control circuit 30 and a low pressure control circuit 31 are provided in parallel for one hydraulic cylinder 10, and the wire 12 is pulled by the high pressure control circuit 30.
[0036]
When the measurement signal 23 measured by the three-dimensional gyro sensor device in the underground sensor case 20 is input to the construction management device 22 (this is a usual personal computer), the pressure conversion attached to each hydraulic cylinder 10 is performed. Comparison processing is performed with the pressure signal 25 input from the container 24, and the result of the comparison calculation is sent to the hydraulic cylinder operation panel 27. At the same time, the screen is displayed on the operator's monitor 26 in real time.
[0037]
The hydraulic cylinder operation panel 27 generates and transmits control signals to the high pressure control circuit 30 and the low pressure control circuit 31 of each of the six hydraulic cylinders 10 based on the result of the comparison calculation. That is, the electromagnetic relief valve 32, the shut-off valve 33, the electromagnetic switching valve 34, and the electromagnetic switching valve 35 of the low pressure control circuit 31 of the high pressure control circuit 30 are controlled.
[0038]
For example, when the wire 12 is pulled by the hydraulic cylinder 10, the high-pressure control circuit 30 is opened with the shut-off valve 33 free, and high-pressure oil is sent to the piston lower chamber of the hydraulic cylinder 10 to perform a contraction operation. When the holding state is set, the shutoff valve 33 is closed, and the stroke of the hydraulic cylinder 10 is maintained unchanged even when an external force is applied. When setting the neutral state to remove the slack of the wire 12, the low pressure control circuit 31 is opened while the shutoff valve 33 is free, the low pressure oil is sent to the piston lower chamber of the hydraulic cylinder 10, and the wire 12 A tension state is maintained by a weak tension that does not loosen (the invention according to claim 3 ).
[0039]
In short, in FIG. 4, when the wire 12 indicated by reference signs a, b or e, d is pulled by the hydraulic cylinder 10, the position correction in the front-rear direction can be performed. By pulling the wires 12 with the symbols b, c, d or a, f, e, the position can be corrected in the lateral (left / right) direction. At this time, the hydraulic cylinders 10 of the other wires 12 are each in a holding state and give a reaction force for position correction. In addition, control necessary for position correction of the tip positions of the two drive shafts 4, 4, and by extension, the two excavation stirring blade shafts 6, 6 can be accurately and forcibly executed in various combinations. .
[0040]
When the tip position of the excavating stirring blade shaft 6 deviates from or is likely to deviate from the planned position (position of the set lap length), the correction and control to the planned position are immediately performed through the hydraulic cylinder 10 and the wire 12. . Therefore, it is not necessary to work in anticipation of an extra wrap length in advance.
[0041]
The position correction of the tip positions of the two drive shafts 4 and 4 and thus the two excavation stirring blade shafts 6 and 6 is controlled by pulling each wire 12 with the hydraulic cylinder 10 as described above. The adjustment of the size (the size of the hydraulic pressure supplied to the hydraulic cylinder 10) varies depending on the conditions such as the excavated soil quality and its properties, the size of the wrap length of the soil column pile. For this reason, it is preferable to first carry out the test construction, collect information necessary for the actual site, and obtain the magnitude of the pulling force and the hydraulic pressure that can be controlled based on the result.
[0042]
Also, as the ground improvement work progresses, as disclosed in the patent invention of Japanese Patent No. 3156049, various data necessary for construction management of soil column piles are collected, and the analyzed numerical values are input to the construction management device 22・ Record and calculate the tensile force required for position correction and control. It is preferable to repeat the process of comparing and collating with the position detection data and the plan, reflecting the result in automatic hydraulic control, and feeding back the result to the tip position control.
[0043]
Incidentally, in correcting the position in the lateral direction of pulling the wire 12 of the above-mentioned symbols b, c, d or a, f, e, two rollers as bearing parts of the bearing member 11 as shown in FIG. The pin joint structure in which the bearings 11a and 11a are connected by the pin 11d does not generate unnecessary resistance, and enables position correction with good responsiveness.
[0044]
As a device that enables position correction with better responsiveness, the drive shaft 4 according to the ground improvement processing machine of the present invention has a plurality of unit shafts in series with a shaft coupling 40 as illustrated in FIGS. 6A and 6B. It is configured as a joined multiple connecting shaft. Using the play generated in the shaft joint 40 at each joint, the drive shaft 4 bends smoothly up to the position of the bearing member 11, and the tip position of the excavating stirring blade shaft 6 is forcibly corrected. Is made possible (the invention described in claim 2).
[0045]
The unit axis of the excavation shaft 4 is generally various in a range of 5 m to 10 m and for adjustment in a range of 1 m to 4 m. The play of the shaft coupling 40 is typically about 2.6 × 10 −2 rad when it is new, and gradually increases depending on the frequency of use. Therefore, by appropriately designing the number of shaft couplings 40, the drive shaft 4 that is easily bent can be easily obtained, and the position control is facilitated. Therefore, the control shaft is much more advantageous in terms of control than a single drive shaft. . However, if an appropriate tensile force is applied to the drive shaft 4 by the wire 12 in a well-balanced manner, the rigidity of the drive shaft 4 can be supplementarily improved.
[0046]
6A and 6B, when the wire 12 is pulled to cause the drive shaft 4 to bend and the tip position of the excavation stirring blade shaft 6 is corrected and controlled, the fixed point of the drive shaft 4 is the lower part. It becomes a steady rest 37. Therefore, the lower brace 37 is also implemented by a configuration employing a roller type guide mechanism using a roller that rotatably supports the drive shaft 4 as shown in FIG. 2A of Japanese Patent Laid-Open No. 2001-234527, for example. It is preferable to do this. The intermediate brace 38 is configured similarly.
[0047]
[Effects of the invention]
The wire-type excavation accuracy control device of the ground improvement processing machine according to the invention described in claims 1 to 3 measures the tip position of the excavation stirring blade shaft with a three-dimensional gyro sensor device, Then, the excavation shaft tip position of the improved pile to be wrapped next is detected and compared in real time, and if a tendency to deviate from the planned position is observed, the direction correction of the tip position is promptly corrected accurately. Since it can be executed with good control, it is possible to control the erection accuracy to ensure the lap amount necessary for construction accurately.
[0048]
Therefore, according to the present invention, it is possible to easily perform the construction in which the amount of lap between the soil column piles is ensured to be a certain amount accurately. Therefore, construction can be performed without waste with a wrap length necessary for design. As a result, the pitch of the ground improvement piles can be made appropriate, and the ground improvement work can be performed efficiently and economically.
[Brief description of the drawings]
FIG. 1 is an elevation view of a ground improvement processing machine according to the present invention.
FIGS. 2A and 2B are a front view and a side view in which the vicinity of the excavation drive unit is enlarged. FIG.
FIG. 3 is an enlarged front view showing the vicinity of a bearing member below a drive shaft.
FIG. 4 is a cross-sectional view of a bearing member as seen in a planar direction.
FIG. 5 is a control circuit diagram of a hydraulic cylinder.
FIGS. 6A and 6B are explanatory views schematically showing the configuration of a drive shaft and a bent state. FIGS.
[Explanation of symbols]
4 Drive shaft 1 Leader 2 Excavation drive unit 10 Hydraulic cylinder 6 Excavation stirring blade shaft 11 Bearing member 12 Wire etc. 20 Sensor case (built-in 3D gyro sensor device)
22 Construction Management Device 30 High Pressure Control Circuit 31 Low Pressure Control Circuit 27 Hydraulic Cylinder Operation Panel 40 Shaft Coupling 11a Roller Bearing Bearing (Bearing Parts)
11d pin

Claims (3)

地盤改良処理機の駆動軸を回転駆動しリーダーに沿って垂直下向きに推進させる掘進駆動部の下へ吊り下げた油圧シリンダと、駆動軸の下端へ接続した掘削攪拌翼軸の直上部位に設けられた軸受け部材との間に駆動軸を中心として複数本のワイヤー等を連結して成り、前記油圧シリンダによって各ワイヤー等を個別に引張り、掘削攪拌翼軸の先端位置を修正、制御するワイヤー式掘削精度制御装置において、
各駆動軸およびその下端部へ接続した掘削攪拌翼軸の軸間距離を一定に保つ軸受け部材は、各駆動軸の軸受がローラベアリング軸受として構成され、隣接する駆動軸の軸受は相互間で横方向の変形を許容するように水平方向のピンによるピンジョイント構造で可動に連結され、各軸受から外方へ突き出された水平腕のブラケットにワイヤー等の下端が連結され、各ワイヤー等の上端は1本に1基の割合で配置された油圧シリンダの出力軸と連結具で接続されており、
前記軸受け部材の近傍位置に設置され掘削攪拌翼軸の先端位置を測定する3次元ジャイロセンサ装置と、
前記3次元ジャイロセンサ装置により測定した掘削攪拌翼軸の先端位置の計測信号が入力される施工管理装置と、
前記の施工管理装置が前記計測信号に基づいて演算処理した制御信号で制御される前記油圧シリンダの油圧制御回路とを具備し、
前記油圧制御回路を通じて該当する油圧シリンダを個別に制御してそのワイヤー等を引張り、他の油圧シリンダは保持状態にして掘削攪拌翼軸の先端位置を強制的に修正、制御することを特徴とする、地盤改良処理機のワイヤー式掘削精度制御装置。
A hydraulic cylinder suspended below the excavation drive unit that rotates the drive shaft of the ground improvement processing machine and propels it vertically downward along the leader, and an excavation stirring blade shaft connected to the lower end of the drive shaft. Wire-type excavation, in which a plurality of wires, etc., are connected to the bearing member centered on the drive shaft, and each wire is individually pulled by the hydraulic cylinder to correct and control the tip position of the agitation blade shaft In the precision control device,
The bearing member that keeps the distance between the shafts of the drive shafts and the agitation blade shaft connected to the lower end of each drive shaft is configured such that the bearings of the drive shafts are roller bearings, and the bearings of the adjacent drive shafts are transverse to each other. It is movably connected with a pin joint structure with horizontal pins so as to allow deformation in the direction, and the lower end of the wire etc. is connected to the bracket of the horizontal arm protruding outward from each bearing, and the upper end of each wire etc. It is connected to the output shaft of a hydraulic cylinder arranged at a rate of one unit per one with a coupling tool,
A three-dimensional gyro sensor device installed in the vicinity of the bearing member for measuring the tip position of the excavating stirring blade shaft;
A construction management device to which a measurement signal of the tip position of the excavation stirring blade shaft measured by the three-dimensional gyro sensor device is input;
A hydraulic control circuit of the hydraulic cylinder controlled by a control signal calculated by the construction management device based on the measurement signal;
The corresponding hydraulic cylinders are individually controlled through the hydraulic control circuit to pull the wires, and the other hydraulic cylinders are held to forcibly correct and control the tip position of the excavating stirring blade shaft. , Wire type excavation accuracy control device for ground improvement processing machine.
駆動軸は複数本の単位軸を一連に接合した複数連結軸として構成され、各接合部の軸継手の遊びを利用して駆動軸に曲がりを生じさせ、掘削攪拌翼軸の先端位置を強制的に修正、制御することを可能ならしめていることを特徴とする、請求項1に記載した地盤改良処理機のワイヤー式掘削精度制御装置。The drive shaft is configured as a plurality of connecting shafts in which a plurality of unit shafts are joined in series, and the drive shaft is bent using the play of shaft joints at each joint, forcing the tip position of the excavator stirring blade shaft corrected, characterized in that it occupies if possible to control, wire drilling accuracy control of ground improvement processor according to claim 1. 油圧シリンダの油圧制御回路は、一基毎に高圧制御回路と低圧制御回路を並列に設けると共に保持状態にするシャットオフ弁を備えて成り、高圧制御回路の高圧油を油圧シリンダへ供給してワイヤー等を引張らせ、低圧制御回路の低圧油を供給してワイヤー等の弛みをとることを特徴とする、請求項1に記載した地盤改良処理機のワイヤー式掘削精度制御装置。Hydraulic control circuit of the hydraulic cylinder is made provided with a shut-off valve to Rutotomoni holding state provided a high voltage control circuit and a low-pressure control circuit in parallel for each one group, by supplying high pressure oil of the high-voltage control circuit to the hydraulic cylinder The wire-type excavation accuracy control device for a ground improvement processing machine according to claim 1, wherein the wire or the like is pulled and the low-pressure oil of the low-pressure control circuit is supplied to take the slack of the wire or the like.
JP2002052189A 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine Expired - Fee Related JP3747281B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002052189A JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine
AU2003207051A AU2003207051A1 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine
EP03703220A EP1486616A4 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine
PCT/JP2003/001256 WO2003072882A1 (en) 2002-02-27 2003-02-06 Wire type excavating accuracy control device of soil improving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052189A JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine

Publications (2)

Publication Number Publication Date
JP2003253665A JP2003253665A (en) 2003-09-10
JP3747281B2 true JP3747281B2 (en) 2006-02-22

Family

ID=27764331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052189A Expired - Fee Related JP3747281B2 (en) 2002-02-27 2002-02-27 Wire excavation accuracy controller for ground improvement processing machine

Country Status (4)

Country Link
EP (1) EP1486616A4 (en)
JP (1) JP3747281B2 (en)
AU (1) AU2003207051A1 (en)
WO (1) WO2003072882A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395153B1 (en) * 2010-06-11 2013-03-27 Bauer Spezialtiefbau GmbH Device and method for manufacturing wall panels in the floor
JP6214282B2 (en) * 2013-09-02 2017-10-18 ジェコス株式会社 Steel placing method and installation apparatus
JP6920975B2 (en) 2017-12-12 2021-08-18 愛知製鋼株式会社 Construction equipment, construction method, and construction system
CN109457747B (en) * 2018-12-12 2023-09-01 江苏徐工工程机械研究院有限公司 Multi-layer steel wire rope winch automatic calibration device of double-wheel slot milling machine
JP6881720B2 (en) * 2019-09-20 2021-06-02 株式会社丸徳基業 Multi-axis excavator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589209B2 (en) * 1980-09-06 1983-02-19 株式会社竹中工務店 Deep soft ground improvement processing machine
JPS5758718A (en) * 1980-09-25 1982-04-08 Mitsubishi Heavy Ind Ltd Drilling locus displayer for soft ground improving ship
US4436453A (en) * 1982-03-08 1984-03-13 Takenaka Komuten Co., Ltd. Machine for and method of hardening soft ground in depths
JPH0626047A (en) * 1992-05-12 1994-02-01 Kobe Steel Ltd Shaft penetrating device
JPH06173264A (en) * 1992-12-11 1994-06-21 Kobe Steel Ltd Shaft penetration device and shaft penetration method by shaft penetration device
JP2567801B2 (en) * 1993-06-30 1996-12-25 株式会社間組 Position measuring method and device for underground excavator
JP3043551B2 (en) * 1993-10-04 2000-05-22 株式会社熊谷組 Surveying equipment in places with vertical differences
JP3032133B2 (en) * 1995-03-13 2000-04-10 ライト工業株式会社 Multi-axis drilling machine with hole bending correction function
JP3742936B2 (en) * 1997-04-28 2006-02-08 株式会社竹中工務店 Method and apparatus for measuring excavation accuracy of underground excavator
JP2000038738A (en) * 1998-05-19 2000-02-08 Keisuke Hioki Underground wall excavator and excavating method using the same
JP4146579B2 (en) * 1999-06-18 2008-09-10 西松建設株式会社 Control method of groove excavator
JP3450790B2 (en) * 2000-03-14 2003-09-29 株式会社竹中土木 Ground improvement equipment

Also Published As

Publication number Publication date
AU2003207051A1 (en) 2003-09-09
EP1486616A1 (en) 2004-12-15
EP1486616A4 (en) 2008-01-09
JP2003253665A (en) 2003-09-10
WO2003072882A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
US20210198860A1 (en) Systems, methods, and machines for autonomously driving foundation components
US20010022238A1 (en) Directional drilling machine and method of directional drilling
TR201807098T4 (en) A drilling apparatus for producing a tubular bore and a method for operating a drilling apparatus.
CA2678446C (en) Sheet pile for the subterranean support of underground conduits
JPH09158681A (en) Execution work control system of tunnel excavator
JP3747281B2 (en) Wire excavation accuracy controller for ground improvement processing machine
JP3831181B2 (en) Construction management system and construction management method for rotary press-fit piles
JP2014101713A (en) Position measuring apparatus for pile driving machine
JP4400740B2 (en) Excavator for underground continuous wall construction and attitude control method
JP3450790B2 (en) Ground improvement equipment
JP3755086B2 (en) Automatic control method of ground improvement processing machine equipped with wire type excavation accuracy control device
JP4017781B2 (en) Property display method of tunnel excavated ground
JP6744135B2 (en) Expanding drilling device and expanding drilling method
KR200384077Y1 (en) Apparatus for measuring ground intensity using ground excavation apparatus
JPH0932457A (en) Detecting system for underground end position of excavating/stirring machine
JP2019173304A (en) Hillside drilling method
JP2991597B2 (en) Control method and control device for push tube type shield machine
JP5256186B2 (en) Ground improvement method
JP3695433B2 (en) Ground improvement processing machine equipped with wire-type excavation accuracy control device
JP4824077B2 (en) Remote automatic operation method and apparatus for earth resistance test equipment
EP3440266B1 (en) A method and an apparatus for determining the torque of an auger, and a pile driving rig
JPH033633Y2 (en)
JP4197473B2 (en) Elimination method of shaft bending in multi-axis drilling
JP2023068915A (en) Construction management device of pile driver
JP2015200076A (en) Pile welding joint measuring device, pile welding joint measurement correction device, and pile welding joint measurement correction method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3747281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees