JP2003224297A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JP2003224297A
JP2003224297A JP2002021126A JP2002021126A JP2003224297A JP 2003224297 A JP2003224297 A JP 2003224297A JP 2002021126 A JP2002021126 A JP 2002021126A JP 2002021126 A JP2002021126 A JP 2002021126A JP 2003224297 A JP2003224297 A JP 2003224297A
Authority
JP
Japan
Prior art keywords
layer
light emitting
ohmic electrode
emitting device
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002021126A
Other languages
Japanese (ja)
Other versions
JP4122785B2 (en
Inventor
Masahiko Sano
雅彦 佐野
Shinya Sonobe
真也 園部
Shuji Shioji
修司 塩路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2002021126A priority Critical patent/JP4122785B2/en
Publication of JP2003224297A publication Critical patent/JP2003224297A/en
Application granted granted Critical
Publication of JP4122785B2 publication Critical patent/JP4122785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor light emitting diode in which the light from an active layer can be efficiently emitted. <P>SOLUTION: The light emitting element comprises a semiconductor layer and an ohmic electrode brought into ohmic contact with the semiconductor layer so that the ohmic electrode is a translucent ohmic electrode, and a reflecting structure is formed by covering the ohmic electrode with the reflecting layer via a translucent insulating film. In this element, the reflecting layer is formed of one selected from the group consisting of Al, Ag and Rh. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化物半導体発光素
子に関する。
TECHNICAL FIELD The present invention relates to a nitride semiconductor light emitting device.

【0002】[0002]

【従来の技術】近年、窒化物半導体を用いて構成された
発光ダイオード(窒化物半導体発光ダイオード)が、主
として青色発光ダイオードとして広く用いられるように
なって来ている。この窒化物半導体発光ダイオードは、
例えば、サファイア基板上にn型窒化物半導体層、In
GaNなどからなる活性層及びp型窒化物半導体層を積
層して、活性層及びp型窒化物半導体層の一部を除去し
て露出させたn型窒化物半導体層の上にn側のオーミッ
ク電極を形成し、p型窒化物半導体層の上にp側のオー
ミック電極を形成することにより構成されている。ま
た、この窒化物半導体発光ダイオードにおいては、n型
窒化物半導体層に比べてp型窒化物半導体層の抵抗値が
高いために、p側のオーミック電極はp型窒化物半導体
層のほぼ全面に形成することにより電流を効率良く活性
層全体に注入するように構成されている。
2. Description of the Related Art In recent years, a light emitting diode (nitride semiconductor light emitting diode) composed of a nitride semiconductor has been widely used mainly as a blue light emitting diode. This nitride semiconductor light emitting diode is
For example, on a sapphire substrate, an n-type nitride semiconductor layer, In
An active layer and a p-type nitride semiconductor layer made of GaN or the like are laminated, and a part of the active layer and the p-type nitride semiconductor layer are removed to expose the exposed n-type nitride semiconductor layer. An electrode is formed, and a p-side ohmic electrode is formed on the p-type nitride semiconductor layer. Further, in this nitride semiconductor light-emitting diode, the p-type nitride semiconductor layer has a higher resistance value than the n-type nitride semiconductor layer, so that the p-side ohmic electrode is formed on almost the entire surface of the p-type nitride semiconductor layer. By forming it, the current is efficiently injected into the entire active layer.

【0003】以上のように構成された窒化物半導体発光
ダイオードにおいて、活性層において発光した光はサフ
ァイア基板が透光性を有することを利用して基板側から
出射させることもできるし、p側のオーミック電極を薄
くして透光性を有するようにしてその透光性を有するp
側のオーミック電極を介して出射させるように構成する
こともできる。
In the nitride semiconductor light emitting diode configured as described above, the light emitted in the active layer can be emitted from the substrate side by utilizing the fact that the sapphire substrate has a light-transmitting property, and the light on the p side can be emitted. The ohmic electrode is made thin so that it has a light-transmitting property.
Alternatively, the light can be emitted through the side ohmic electrode.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
窒化物半導体発光ダイオードは活性層において発光した
光を効率よく外部に出射することができないという問題
点があった。そこで、本発明は活性層において発光した
光を効率よく出射できる窒化物半導体発光ダイオードを
提供することを目的とする。
However, the conventional nitride semiconductor light emitting diode has a problem that the light emitted in the active layer cannot be efficiently emitted to the outside. Therefore, an object of the present invention is to provide a nitride semiconductor light emitting diode capable of efficiently emitting the light emitted in the active layer.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明に係る発光素子は、半導体層とその半導体
層とオーミック接触するオーミック電極とを備えた発光
素子において、反射構造を備え、その反射構造は、上記
オーミック電極を透光性オーミック電極としその透光性
オーミック電極を透光性絶縁膜を介して反射層により覆
うことにより構成され、かつ上記反射層はAl、Ag及
びRhからなる群から選択された1つからなることを特
徴とする。以上のように構成された本発明に係る発光素
子は、上記反射層によって光を反射させて、所望の方向
に光を効率よく出射させることができる。
To achieve the above object, a light emitting device according to the present invention is a light emitting device having a semiconductor layer and an ohmic electrode in ohmic contact with the semiconductor layer. The reflective structure is configured by using the ohmic electrode as a translucent ohmic electrode and covering the translucent ohmic electrode with a reflective layer via a translucent insulating film, and the reflective layer is made of Al, Ag and Rh. It is characterized by comprising one selected from the group consisting of. The light emitting device according to the present invention configured as described above can reflect light by the reflective layer and efficiently emit the light in a desired direction.

【0006】上記発光素子は、上記半導体層としてp型
窒化物半導体層からなるp型コンタクト層を含み、その
p型コンタクト層に上記透光性オーミック電極が形成さ
れたものでもよい。
The light emitting device may include a p-type contact layer made of a p-type nitride semiconductor layer as the semiconductor layer, and the translucent ohmic electrode formed on the p-type contact layer.

【0007】上記絶縁膜は、反射率を高くするために、
屈折率の低い材料であるSiOからなることが好まし
い。
In order to increase the reflectance, the above-mentioned insulating film is
It is preferably made of SiO 2 which is a material having a low refractive index.

【0008】上記絶縁膜の膜厚は、その絶縁膜を精度良
くパターンニングするために、3μm以下であることが
好ましい。
The thickness of the insulating film is preferably 3 μm or less in order to accurately pattern the insulating film.

【0009】上記反射層の膜厚は、0.05μm〜1μ
mの範囲に設定されたことが好ましい。
The thickness of the reflective layer is 0.05 μm to 1 μm.
It is preferably set in the range of m.

【0010】上記絶縁膜は開口部を有し、その開口部を
介して上記オーミック電極と上記反射層とが電気的に接
続されていいてもよい。このようにすると、上記反射層
の表面にパッド電極を形成することができる。この場
合、上記パッド電極は上記開口部の上に位置することが
好ましい。
The insulating film may have an opening, and the ohmic electrode and the reflective layer may be electrically connected to each other through the opening. By doing so, the pad electrode can be formed on the surface of the reflective layer. In this case, it is preferable that the pad electrode is located above the opening.

【0011】[0011]

【発明の実施の形態】以下、図面を参照しながら本発明
に係る実施の形態の窒化物半導体発光素子について説明
する。本発明に係る実施の形態1の窒化物半導体発光素
子は、図1及び図2に示すように、例えば、サファイア
からなる基板10上に、バッファ層11を介してn側の
窒化物半導体層20、活性層30、p側の窒化物半導体
層40を順次成長させ、n側及びp側の電極を形成する
ことにより構成されている。ここで、本実施の形態の窒
化物半導体発光素子では、特に、p側の窒化物半導体層
40(p型コンタクト層42)上のほぼ全面に透光性の
p側オーミック電極53を形成し、さらにそのオーミッ
ク電極53の上に絶縁膜2を介して覆うように、Al又
はAgからなる反射層1を形成したことを特徴とし、こ
れにより、p側における反射率を向上させることを可能
にし、基板側又は基板側面から出力される光の取り出し
効率を向上させている。尚、本実施の形態の窒化物半導
体発光素子において、n側の電極は従来と同様、p側の
窒化物半導体層40及び活性層30の一部を除去して露
出させたn側の窒化物半導体層20(n型コンタクト層
21)上に形成している。
BEST MODE FOR CARRYING OUT THE INVENTION A nitride semiconductor light emitting device according to an embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, the nitride semiconductor light emitting device according to the first embodiment of the present invention includes, for example, a substrate 10 made of sapphire and an n-side nitride semiconductor layer 20 via a buffer layer 11. The active layer 30 and the p-side nitride semiconductor layer 40 are sequentially grown to form the n-side and p-side electrodes. Here, in the nitride semiconductor light emitting device of the present embodiment, in particular, the translucent p-side ohmic electrode 53 is formed on substantially the entire surface of the p-side nitride semiconductor layer 40 (p-type contact layer 42), Further, the reflective layer 1 made of Al or Ag is formed on the ohmic electrode 53 so as to cover the ohmic electrode 53 with the insulating film 2 interposed therebetween, whereby the reflectance on the p side can be improved, The extraction efficiency of the light output from the substrate side or the substrate side surface is improved. In the nitride semiconductor light emitting device according to the present embodiment, the n-side electrode is exposed by removing a part of the p-side nitride semiconductor layer 40 and the active layer 30 as in the conventional case. It is formed on the semiconductor layer 20 (n-type contact layer 21).

【0012】以下、本実施の形態の窒化物半導体発光素
子の構成及び製造方法について詳細に説明する。本実施
の形態において、窒化物半導体発光素子の半導体積層構
造は、以下のように構成する。すなわち、サファイア基
板10上に、低温バッファ層であるAlGaN層11、
SiドープのGaNからなり、n電極が形成されるn型
コンタクト層21(例えば、厚さ約2μm)、n型Al
GaNからなるn型クラッド層22、ノンドープのIn
GaN井戸層を含む(例えば、厚さ約30Å)単一又は
多重量子井戸構造の発光層30、p型AlGaNからな
るp型クラッド層41、MgがドープされたGaNから
なるp型コンタクト層42(例えば、厚さ約1200
Å)を順に成膜する。
The structure and manufacturing method of the nitride semiconductor light emitting device of this embodiment will be described in detail below. In the present embodiment, the semiconductor laminated structure of the nitride semiconductor light emitting device is configured as follows. That is, on the sapphire substrate 10, the AlGaN layer 11, which is a low temperature buffer layer,
An n-type contact layer 21 (for example, a thickness of about 2 μm) made of Si-doped GaN and having an n-electrode formed thereon, n-type Al
N-type cladding layer 22 made of GaN, non-doped In
A light emitting layer 30 having a single or multiple quantum well structure including a GaN well layer (for example, a thickness of about 30Å), a p-type clad layer 41 made of p-type AlGaN, and a p-type contact layer 42 made of GaN doped with Mg ( For example, about 1200
Å) is formed in sequence.

【0013】また、電極構造は以下のように構成する。
本実施の形態の窒化物半導体発光素子において、n側の
オーミック電極51は従来と同様、p側の窒化物半導体
層40及び活性層30の一部を除去して露出させたn側
の窒化物半導体層20(n型コンタクト層21)上に形
成する。尚、本実施の形態の窒化物半導体発光素子で
は、図1に示すように、矩形の窒化物半導体発光素子の
1つの隅部において、扇形にp側の窒化物半導体層40
及び活性層30をn型コンタクト層21の表面を露出さ
せるようにエッチングにより除去してその露出させたn
型コンタクト層21の表面にn側のオーミック電極51
を形成し、その上にパッド電極52を形成している。ま
た、n側のオーミック電極51は厚さ100ÅのTi層
と厚さ5000ÅのAl層の2層で構成することによ
り、n型の窒化物半導体からなるn型コンタクト層21
と良好なオーミック接触を得ることができる。また、n
側のオーミック電極51では、Ti層に代えてW層を形
成することもできる。
The electrode structure is constructed as follows.
In the nitride semiconductor light emitting device of the present embodiment, the n-side ohmic electrode 51 has the same structure as the conventional one, and the n-side nitride exposed by removing a part of the p-side nitride semiconductor layer 40 and the active layer 30. It is formed on the semiconductor layer 20 (n-type contact layer 21). In the nitride semiconductor light emitting device of the present embodiment, as shown in FIG. 1, at one corner of the rectangular nitride semiconductor light emitting device, the p-side nitride semiconductor layer 40 is fan-shaped.
And the active layer 30 is removed by etching so that the surface of the n-type contact layer 21 is exposed, and the exposed n
N-type ohmic electrode 51 on the surface of the mold contact layer 21.
And the pad electrode 52 is formed thereon. Further, the n-side ohmic electrode 51 is composed of two layers of a Ti layer having a thickness of 100 Å and an Al layer having a thickness of 5000 Å, so that the n-type contact layer 21 made of an n-type nitride semiconductor is formed.
And good ohmic contact can be obtained. Also, n
On the side ohmic electrode 51, a W layer may be formed instead of the Ti layer.

【0014】本実施の形態の窒化物半導体発光素子にお
いて、p側のオーミック電極53は、p型コンタクト層
42のほぼ全面に透光性を有するように形成される。こ
のp側のオーミック電極53は、例えば、厚さ100Å
のNi層と厚さ100ÅのAu層の2層で構成すること
ができ、このように構成することによりp型コンタクト
層42とオーミック接触可能で、かつ透光性を有するp
側のオーミック電極53を形成することができる。ま
た、p型コンタクト層42とオーミック接触可能でかつ
透光性を有するp側のオーミック電極53としては、上
述のNi−Au電極のほか、Ni−Pt電極、Co−A
u電極を用いることもできる。
In the nitride semiconductor light emitting device of the present embodiment, the p-side ohmic electrode 53 is formed so as to have a light-transmitting property over substantially the entire surface of the p-type contact layer 42. The p-side ohmic electrode 53 has, for example, a thickness of 100Å
Of the Ni layer and the Au layer having a thickness of 100 Å, and with such a structure, it is possible to make ohmic contact with the p-type contact layer 42 and to have a light-transmitting property.
The ohmic electrode 53 on the side can be formed. Further, as the p-side ohmic electrode 53 capable of making ohmic contact with the p-type contact layer 42 and having a light-transmitting property, in addition to the above Ni-Au electrode, a Ni-Pt electrode, Co-A.
A u electrode can also be used.

【0015】また、透光性絶縁膜2は、窒化物半導体発
光素子全体を覆うように形成され、n側のオーミック電
極51の上に開口部2aを有し、n側のオーミック電極
51と対角をなす隅部におけるp側のオーミック電極5
3上に開口部2bを有している。この透光性絶縁膜2
は、少なくとも発光波長に対して透明であることを特徴
とし、例えば、SiO、Al、SiN、TiO
、ZrO等で構成することができる。また、この透
光性絶縁膜2の材料として、特に好ましいものはSiO
とTiOであり、これは上記例示した材料の中でも
特に反射率を高くできるからである。さらに最も好まし
いものはSiOである。この理由は最も反射率が高く
できるということだけではなく、安定性に優れているの
で信頼性を高くできるからである。また、透光性絶縁膜
2の膜厚は、発光波長以上、3μm以下の範囲に設定す
ることが好ましく、発光波長以上とすることで、反射層
との境界で高い反射が実現でき、また、3μm以下にす
ることで、透光性絶縁膜をリフトオフにより形成するこ
とが容易になり、歩留まりを向上させることができる。
The transparent insulating film 2 is formed so as to cover the entire nitride semiconductor light emitting device, has an opening 2a on the n-side ohmic electrode 51, and is opposed to the n-side ohmic electrode 51. P-side ohmic electrode 5 at the corner
3 has an opening 2b. This translucent insulating film 2
Is transparent to at least the emission wavelength, and is, for example, SiO 2 , Al 2 O 3 , SiN, or TiO 2.
2 , ZrO 2 and the like. Further, as a material of the translucent insulating film 2, particularly preferable one is SiO.
2 and TiO 2 because the reflectance can be particularly high among the materials exemplified above. Even more preferred is SiO 2 . The reason is not only that the reflectance can be the highest, but also because the stability is excellent, the reliability can be enhanced. The thickness of the translucent insulating film 2 is preferably set in the range of emission wavelength or more and 3 μm or less, and by setting it to the emission wavelength or more, high reflection can be realized at the boundary with the reflective layer, and By setting the thickness to 3 μm or less, it becomes easy to form the translucent insulating film by lift-off, and the yield can be improved.

【0016】さらに、本実施形態の窒化物半導体発光素
子において、反射層1はAl、Ag又はRhからなり、
透光性絶縁膜2を介してp側のオーミック電極53を覆
うように形成される。ここで、反射層1は、開口部2b
においてp側のオーミック電極53と電気的に接続され
ている。反射層1の膜厚は、0.05μm〜1μmの範
囲に設定することが好ましく、より好ましくは、0.1
μm〜0.3μmの範囲に設定する。反射層1の膜厚が
0.3や1μmより厚くなっても反射に関する効果には
変化はないが、製造コストが高くなる。また、反射層1
の膜厚が0.05μmより薄いと反射率が低くなるから
であり、0.1μm以上であるとより良好な反射特性が
得られる。
Further, in the nitride semiconductor light emitting device of this embodiment, the reflective layer 1 is made of Al, Ag or Rh,
It is formed so as to cover the p-side ohmic electrode 53 with the translucent insulating film 2 interposed therebetween. Here, the reflective layer 1 has an opening 2b.
At, is electrically connected to the p-side ohmic electrode 53. The thickness of the reflective layer 1 is preferably set in the range of 0.05 μm to 1 μm, more preferably 0.1 μm.
It is set in the range of μm to 0.3 μm. Even if the film thickness of the reflective layer 1 is thicker than 0.3 or 1 μm, the effect on reflection does not change, but the manufacturing cost increases. Also, the reflective layer 1
This is because if the film thickness is less than 0.05 μm, the reflectance becomes low, and if it is 0.1 μm or more, better reflection characteristics can be obtained.

【0017】また、n側のパッド電極52及びp側のパ
ッド電極54は、例えば、Ni層を1000Åの厚さに
形成した上にAu層を6000Åの厚さに形成すること
により共通の材料で構成することができる。ここで、n
側のパッド電極52は、開口部2aを介してn側のオー
ミック電極51と電気的に導通するようにn側のオーミ
ック電極51の直上に形成され、p側のパッド電極54
は反射膜1の表面に開口部2bの上に位置するように形
成される。
The n-side pad electrode 52 and the p-side pad electrode 54 are made of a common material, for example, by forming a Ni layer to a thickness of 1000 Å and an Au layer to a thickness of 6000 Å. Can be configured. Where n
The side pad electrode 52 is formed immediately above the n-side ohmic electrode 51 so as to be electrically connected to the n-side ohmic electrode 51 through the opening 2a, and the p-side pad electrode 54 is formed.
Is formed on the surface of the reflective film 1 so as to be located above the opening 2b.

【0018】以上のように構成された窒化物半導体発光
素子は、透光性オーミック電極53、透光性絶縁膜2及
び反射層1により、後述するように反射率の高い反射構
造が構成されるので、例えば、基板側又は発光素子の側
面等の所望の方向に効率良く光を取り出すことができ
る。
In the nitride semiconductor light emitting device configured as described above, the translucent ohmic electrode 53, the translucent insulating film 2 and the reflective layer 1 constitute a reflective structure having a high reflectance as described later. Therefore, for example, light can be efficiently extracted in a desired direction such as the substrate side or the side surface of the light emitting element.

【0019】次に、本実施の形態の窒化物半導体発光素
子の製造方法について説明する。 ステップ1.本方法ではまず、サファイア基板(サファ
イアウエハ)10上に、それぞれ窒化物半導体からなる
低温バッファ層11、n型コンタクト層21、n型クラ
ッド層22、発光層30、p型クラッド層41、p型コ
ンタクト層42を順に成膜し、各素子ごとに、n型コン
タクト層21の表面を露出させる部分を除いてマスク5
5を形成する(図3)。 ステップ2.次に、マスク55が形成されていない部分
をn型コンタクト層21の途中までエッチングで除去す
ることにより、各素子ごとに、n型コンタクト層21の
表面を露出させた後(図4)、マスク55を除去する
(図5)。
Next, a method of manufacturing the nitride semiconductor light emitting device of this embodiment will be described. Step 1. In this method, first, on a sapphire substrate (sapphire wafer) 10, a low-temperature buffer layer 11, an n-type contact layer 21, an n-type cladding layer 22, a light-emitting layer 30, a p-type cladding layer 41, and a p-type, which are each made of a nitride semiconductor. The contact layer 42 is sequentially formed, and the mask 5 is formed for each element except for a portion exposing the surface of the n-type contact layer 21.
5 is formed (FIG. 3). Step 2. Next, the surface of the n-type contact layer 21 is exposed for each element by etching the part where the mask 55 is not formed up to the middle of the n-type contact layer 21 (FIG. 4), and then the mask is formed. 55 is removed (FIG. 5).

【0020】ステップ3.次に、例えば、厚さ100Å
のNi層と厚さ100ÅのAu層の2層からなる電極膜
53aを形成して(図6)、マスク56を用いてエッチ
ングによりパターンニングすることにより(図7,図
8)、p型コンタクト層42とオーミック接触するp側
のオーミック電極53を各p型コンタクト層42上のほ
ぼ全面に形成する。 ステップ4.そして、各素子に対応して露出させたn型
コンタクト層21の表面にそれぞれn側のオーミック電
極51を形成して(図9)、各素子全体を覆うようにS
iO2からなる透光性絶縁膜2を形成する(図10)。
Step 3. Next, for example, thickness 100Å
The p-type contact is formed by forming an electrode film 53a consisting of two layers of a Ni layer and a 100 Å thick Au layer (FIG. 6) and patterning by etching using a mask 56 (FIGS. 7 and 8). A p-side ohmic electrode 53 that makes ohmic contact with the layer 42 is formed on substantially the entire surface of each p-type contact layer 42. Step 4. Then, an n-side ohmic electrode 51 is formed on the surface of the n-type contact layer 21 exposed corresponding to each element (FIG. 9), and S is formed so as to cover the entire element.
A transparent insulating film 2 made of iO2 is formed (FIG. 10).

【0021】ステップ5.次に、透光性絶縁膜2におい
て、n側のオーミック電極51の上に開口部2aを形成
し、各素子のn側のオーミック電極51と対角をなす隅
部に開口部2bを形成して、開口部2bにおいてp側の
オーミック電極53と接続されるように透光性絶縁膜2
を介してp側のオーミック電極53を覆う反射層1を形
成する(図11)。 ステップ6.次に、Ni層を1000Åの厚さに形成し
その上にAu層を6000Åの厚さに形成して、パター
ンニングすることにより、n側のパッド電極52は開口
部2aを介してn側のオーミック電極51と電気的に導
通するように、p側のパッド電極54は反射膜1の表面
に開口部2bの上に位置するように形成する。以上のよ
うにして、p側に透光性のオーミック電極53、透光性
絶縁膜2及び反射層2が積層された反射構造を有する窒
化物半導体発光素子を作製できる。
Step 5. Next, in the translucent insulating film 2, an opening 2a is formed on the n-side ohmic electrode 51, and an opening 2b is formed at a corner diagonal to the n-side ohmic electrode 51 of each element. The translucent insulating film 2 is connected to the ohmic electrode 53 on the p-side in the opening 2b.
The reflection layer 1 is formed so as to cover the p-side ohmic electrode 53 through (FIG. 11). Step 6. Next, a Ni layer is formed to a thickness of 1000 Å, an Au layer is formed thereon to a thickness of 6000 Å, and patterning is performed so that the pad electrode 52 on the n-side is formed on the n-side through the opening 2a. The p-side pad electrode 54 is formed on the surface of the reflective film 1 so as to be located above the opening 2b so as to be electrically connected to the ohmic electrode 51. As described above, a nitride semiconductor light emitting device having a reflective structure in which the translucent ohmic electrode 53, the translucent insulating film 2 and the reflective layer 2 are laminated on the p side can be manufactured.

【0022】以上のように構成された実施の形態の窒化
物半導体発光素子は、上述のように構成された反射構造
を有しているので、例えば、基板側から光を出力する際
に取り出し効率を高くできる。図13は、本発明に係る
反射構造の反射特性の波長依存性を示すグラフである。
図13において、L1〜L3はいずれも本発明に係る反
射構造における、SiO2膜と反射膜との界面での反射
特性を示しており、L1は反射層としてAlを用いて構
成した反射構造R1の反射特性であり、L2は反射層と
してAgを用いて構成した反射構造R2の反射特性であ
り、L3は反射層としてRhを用いて構成した反射構造
R3の反射特性である。また、図13のL4は比較のた
めに示したものであって、p型窒化物半導体層の上に従
来のNi/Auからなるオーミック電極のみを形成する
ことにより構成した従来の電極構造における、p型窒化
物半導体層とオーミック電極との界面における反射率を
示している。
Since the nitride semiconductor light emitting device of the embodiment configured as described above has the reflection structure configured as described above, for example, the extraction efficiency when light is output from the substrate side. Can be raised. FIG. 13 is a graph showing the wavelength dependence of the reflection characteristic of the reflection structure according to the present invention.
In FIG. 13, L1 to L3 each represent the reflection characteristic at the interface between the SiO2 film and the reflection film in the reflection structure according to the present invention, and L1 represents the reflection structure R1 configured by using Al as the reflection layer. L2 is the reflection characteristic of the reflection structure R2 formed by using Ag as the reflection layer, and L3 is the reflection characteristic of the reflection structure R3 formed by using Rh as the reflection layer. Further, L4 of FIG. 13 is shown for comparison, and in the conventional electrode structure constituted by forming only the conventional ohmic electrode made of Ni / Au on the p-type nitride semiconductor layer, The reflectance at the interface between the p-type nitride semiconductor layer and the ohmic electrode is shown.

【0023】図13に示す結果から、次のことがわか
る。第1に、図13に示すように、波長約350nm〜
530nmの間では、本発明に係る反射構造は従来例の
電極構造に比較して反射率が高くできるので、窒化物半
導体を用いて構成された比較的波長の短い黄色から青色
の光を発光することができる発光ダイオードにおける反
射構造として特に適している。また、図13に示すよう
に、反射層としてAlを用いて構成した本発明に係る反
射構造R1は、反射層としてAg及びRhを用いた本発
明に係る反射構造R2,R3に比較して波長約350n
m〜430nmの間で反射率を高くできるので、窒化物
半導体を用いて構成されたより波長の短い紫外光〜青色
の光を発光する発光ダイオードの反射構造として、特に
適している。さらに、図13に示すように、反射層とし
てAgを用いて構成した本発明に係る反射構造R2は、
反射層としてAl及びRhを用いた本発明に係る反射構
造R1,R3に比較して波長約430nm以上で反射率
を高くできるので、青色〜黄色の光を発光する発光ダイ
オードの反射構造として、特に適している。
From the results shown in FIG. 13, the following can be seen. First, as shown in FIG. 13, a wavelength of about 350 nm
In the range of 530 nm, the reflective structure according to the present invention can have a higher reflectance than the electrode structure of the conventional example, and thus emits yellow to blue light having a relatively short wavelength composed of a nitride semiconductor. It is particularly suitable as a reflective structure in a light emitting diode which can be. Further, as shown in FIG. 13, the reflective structure R1 according to the present invention configured by using Al as the reflective layer has a wavelength longer than that of the reflective structures R2, R3 according to the present invention using Ag and Rh as the reflective layer. About 350n
Since the reflectance can be increased in the range of m to 430 nm, it is particularly suitable as a reflecting structure of a light emitting diode configured to use nitride semiconductor to emit light of ultraviolet light to blue light having a shorter wavelength. Further, as shown in FIG. 13, the reflective structure R2 according to the present invention configured by using Ag as the reflective layer is
Compared with the reflective structures R1 and R3 according to the present invention using Al and Rh as the reflective layer, the reflectance can be increased at a wavelength of about 430 nm or more, and therefore, as a reflective structure of a light emitting diode that emits blue to yellow light, Are suitable.

【0024】また、図14〜図16にそれぞれ反射構造
R1,R2,R3において光の入射角を変化させたとき
の反射特性を示している。ここで、図14〜図16にお
けるL11,L21,L31は入射角20度の時の反射
特性であり、図14〜図16におけるL12,L22,
L32は入射角40度の時の反射特性であり、図14〜
図16におけるL13,L23,L33は入射角60度
の時の反射特性である。また、図17は従来の電極構造
における、入射角が20度の場合(L41)、入射角が
40度の場合(L42)、入射角が60度の場合(L4
3)、の各反射特性を示している。図14〜図16か
ら、本発明に係る反射構造は入射角にほとんど依存しな
いことがわかる。ここで、本検討において、p側オーミ
ック電極の膜厚は、0.02μmとし、SiO2膜2の
膜厚は、0.5μmとし、反射層1の膜厚は、0.2μ
mとした。
14 to 16 show the reflection characteristics of the reflecting structures R1, R2 and R3 when the incident angle of light is changed. Here, L11, L21, and L31 in FIGS. 14 to 16 are reflection characteristics when the incident angle is 20 degrees, and L11, L21, and L22 in FIGS.
L32 is the reflection characteristic when the incident angle is 40 degrees, and is shown in FIG.
L13, L23, and L33 in FIG. 16 are reflection characteristics when the incident angle is 60 degrees. Further, FIG. 17 shows a case where the incident angle is 20 degrees (L41), the incident angle is 40 degrees (L42), and the incident angle is 60 degrees (L4) in the conventional electrode structure.
3) shows the respective reflection characteristics. It can be seen from FIGS. 14 to 16 that the reflective structure according to the present invention hardly depends on the incident angle. In this study, the p-side ohmic electrode has a thickness of 0.02 μm, the SiO 2 film 2 has a thickness of 0.5 μm, and the reflective layer 1 has a thickness of 0.2 μm.
m.

【0025】[0025]

【発明の効果】以上、詳細に説明したように、本発明に
係る発光素子は、半導体層とその半導体層とオーミック
接触するオーミック電極とを備えた発光素子において、
上記透光性オーミック電極の上に透光性絶縁膜を介して
反射層により覆うことにより構成された反射構造を備
え、その反射層はAl、Ag及びRhからなる群から選
択された1つにより構成されているので、上記反射層に
よって光を反射させて、所望の方向に光を効率よく出射
させることができ、発光した光を効率よく出射できる。
As described above in detail, the light emitting device according to the present invention is a light emitting device having a semiconductor layer and an ohmic electrode in ohmic contact with the semiconductor layer.
A reflective structure is formed by covering the translucent ohmic electrode with a reflective layer via a translucent insulating film, and the reflective layer is formed of one selected from the group consisting of Al, Ag and Rh. Since it is configured, the light can be efficiently emitted in a desired direction by reflecting the light by the reflective layer, and the emitted light can be efficiently emitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る実施の形態の窒化物半導体発光
素子の構成を示す平面図である。
FIG. 1 is a plan view showing a configuration of a nitride semiconductor light emitting device according to an embodiment of the present invention.

【図2】 図1のA−A’線についての断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ in FIG.

【図3】 実施の形態の製造方法における、n型コンタ
クト層21の表面を露出させるエッチング前の断面図で
ある。
FIG. 3 is a cross-sectional view before etching for exposing the surface of the n-type contact layer 21 in the manufacturing method according to the embodiment.

【図4】 実施の形態の製造方法における、n型コンタ
クト層21の表面を露出させるエッチング後の断面図で
ある。
FIG. 4 is a cross-sectional view after etching to expose the surface of n-type contact layer 21 in the manufacturing method according to the embodiment.

【図5】 図4のエッチング後にマスク55を除去した
後の断面図である。
5 is a cross-sectional view after removing the mask 55 after the etching of FIG.

【図6】 p側オーミック電極を形成するための電極膜
53aを形成した後の断面図である。
FIG. 6 is a cross-sectional view after forming an electrode film 53a for forming a p-side ohmic electrode.

【図7】 電極膜53aの上にマスク56を形成した後
の断面図である。
FIG. 7 is a cross-sectional view after a mask 56 is formed on the electrode film 53a.

【図8】 マスク56を用いてエッチングした後(p側
のオーミック電極53を各p型コンタクト層42上のほ
ぼ全面に形成した後)の断面図である。
FIG. 8 is a cross-sectional view after etching using the mask 56 (after forming the p-side ohmic electrode 53 on substantially the entire surface of each p-type contact layer 42).

【図9】 n型コンタクト層21の表面にn側のオーミ
ック電極51を形成した後の断面図である。
FIG. 9 is a cross-sectional view after an n-side ohmic electrode 51 is formed on the surface of the n-type contact layer 21.

【図10】 各素子全体を覆うようにSiO2からなる
透光性絶縁膜2を形成した後の断面図である。
FIG. 10 is a cross-sectional view after a translucent insulating film 2 made of SiO 2 is formed so as to cover the entire elements.

【図11】 反射層1を形成した後の断面図である。FIG. 11 is a cross-sectional view after forming a reflective layer 1.

【図12】 n側のパッド電極52とp側のパッド電極
54とを形成した後の断面図である。
FIG. 12 is a cross-sectional view after forming an n-side pad electrode 52 and a p-side pad electrode 54.

【図13】 本発明に係る反射構造の反射特性の波長依
存性を示すグラフである。
FIG. 13 is a graph showing the wavelength dependence of the reflection characteristics of the reflection structure according to the present invention.

【図14】 本発明に係る反射構造R1において、光の
入射角を変化させたときの反射特性を示すグラフであ
る。
FIG. 14 is a graph showing reflection characteristics when the incident angle of light is changed in the reflection structure R1 according to the present invention.

【図15】 本発明に係る反射構造R2において、光の
入射角を変化させたときの反射特性を示すグラフであ
る。
FIG. 15 is a graph showing reflection characteristics when the incident angle of light is changed in the reflection structure R2 according to the present invention.

【図16】 本発明に係る反射構造R3において、光の
入射角を変化させたときの反射特性を示すグラフであ
る。
FIG. 16 is a graph showing reflection characteristics when the incident angle of light is changed in the reflection structure R3 according to the present invention.

【図17】 従来の電極構造における反射特性を示すグ
ラフである。
FIG. 17 is a graph showing reflection characteristics in a conventional electrode structure.

【符号の説明】[Explanation of symbols]

1…反射層、 2…絶縁膜、 2a…開口部、2b…開口部、 10…基板、 11…バッファ層、 20…n側の窒化物半導体層、 21…n型コンタクト層、 22…n型クラッド層、 30…活性層、 40…p側の窒化物半導体層、 41…p型クラッド層、 42…p型コンタクト層、 51…n側のオーミック電極、 52,54…パッド電極 53…p側オーミック電極、 53a…電極膜、 55,56…マスク。 1 ... Reflective layer, 2 ... Insulating film, 2a ... opening, 2b ... opening, 10 ... substrate, 11 ... buffer layer, 20 ... N-side nitride semiconductor layer, 21 ... n-type contact layer, 22 ... n-type cladding layer, 30 ... Active layer, 40 ... p-side nitride semiconductor layer, 41 ... p-type cladding layer, 42 ... p-type contact layer, 51 ... n-side ohmic electrode, 52, 54 ... Pad electrodes 53 ... p-side ohmic electrode, 53a ... Electrode film, 55, 56 ... Mask.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩路 修司 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 Fターム(参考) 5F041 AA03 CA05 CA13 CA40 CA46 CA82 CA88 CA92 CB15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Shioji             100, 491, Oka, Kaminaka-cho, Anan City, Tokushima Prefecture             Gaku Kogyo Co., Ltd. F-term (reference) 5F041 AA03 CA05 CA13 CA40 CA46                       CA82 CA88 CA92 CB15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体層とその半導体層とオーミック接
触するオーミック電極とを備えた発光素子において、 反射構造を備え、その反射構造は、上記オーミック電極
を透光性オーミック電極としその透光性オーミック電極
を透光性絶縁膜を介して反射層により覆うことにより構
成され、かつ上記反射層はAl、Ag及びRhからなる
群から選択された1つからなることを特徴とする発光素
子。
1. A light emitting device comprising a semiconductor layer and an ohmic electrode in ohmic contact with the semiconductor layer, comprising a reflective structure, wherein the reflective structure uses the ohmic electrode as a translucent ohmic electrode. A light emitting device, characterized in that the electrode is covered with a reflective layer via a translucent insulating film, and the reflective layer is composed of one selected from the group consisting of Al, Ag and Rh.
【請求項2】 上記半導体層としてp型窒化物半導体層
からなるp型コンタクト層を含み、そのp型コンタクト
層に上記透光性オーミック電極が形成された請求項1記
載の発光素子。
2. The light emitting device according to claim 1, wherein the semiconductor layer includes a p-type contact layer made of a p-type nitride semiconductor layer, and the translucent ohmic electrode is formed on the p-type contact layer.
【請求項3】 上記絶縁膜はSiOからなる請求項1
又は2記載の窒化物半導体発光素子。
3. The insulating film is made of SiO 2.
Alternatively, the nitride semiconductor light emitting device according to item 2.
【請求項4】 上記絶縁膜の膜厚は、3μm以下である
請求項1〜3のうちのいずれか1つに記載の発光素子。
4. The light emitting device according to claim 1, wherein the insulating film has a thickness of 3 μm or less.
【請求項5】 上記反射層の膜厚は、0.05μm〜1
μmの範囲に設定された請求項1〜4のうちのいずれか
1つに記載の発光素子。
5. The reflective layer has a thickness of 0.05 μm to 1
The light emitting device according to claim 1, wherein the light emitting device is set in a range of μm.
【請求項6】 上記絶縁膜は開口部を有し、その開口部
を介して上記オーミック電極と上記反射層とが電気的に
接続されている請求項1〜5のうちのいずれか1つに記
載の発光素子。
6. The insulating film according to claim 1, wherein the insulating film has an opening, and the ohmic electrode and the reflective layer are electrically connected through the opening. The light emitting device described.
【請求項7】 上記反射層の表面の上記開口部の上に位
置する部分にパッド電極が形成された請求項6記載の発
光素子。
7. The light emitting device according to claim 6, wherein a pad electrode is formed on a portion of the surface of the reflective layer located above the opening.
JP2002021126A 2002-01-30 2002-01-30 Light emitting element Expired - Lifetime JP4122785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021126A JP4122785B2 (en) 2002-01-30 2002-01-30 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021126A JP4122785B2 (en) 2002-01-30 2002-01-30 Light emitting element

Publications (2)

Publication Number Publication Date
JP2003224297A true JP2003224297A (en) 2003-08-08
JP4122785B2 JP4122785B2 (en) 2008-07-23

Family

ID=27744451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021126A Expired - Lifetime JP4122785B2 (en) 2002-01-30 2002-01-30 Light emitting element

Country Status (1)

Country Link
JP (1) JP4122785B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197289A (en) * 2003-12-26 2005-07-21 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its manufacturing method
WO2006006555A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light-emitting device
JP2006032952A (en) * 2004-07-12 2006-02-02 Shogen Koden Kofun Yugenkoshi Light emitting diode having omnidirectional reflector including transparent conductive layer
JP2006108698A (en) * 2004-10-06 2006-04-20 Lumileds Lighting Us Llc Contact for flip-chip light-emitting device and omnidirectional reflecting mirror
WO2006082687A1 (en) * 2005-02-07 2006-08-10 Mitsubishi Cable Industries, Ltd. GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JP2006237386A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Nitride system semiconductor light emitting diode
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
US7141825B2 (en) 2004-03-29 2006-11-28 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
JP2007081313A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element and manufacturing method thereof
JP2007081088A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
US7199401B2 (en) 2004-02-25 2007-04-03 Sanken Electric Co., Ltd. Light-emitting semiconductor device
JP2007184313A (en) * 2005-12-29 2007-07-19 Rohm Co Ltd Semiconductor light emitting element and method of fabricating same
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
CN100369279C (en) * 2005-05-27 2008-02-13 中国科学院物理研究所 Bridge N-electrode type gallium nitride base large tube core LED and preparation method
CN100383992C (en) * 2005-09-21 2008-04-23 南茂科技股份有限公司 Light-emitting diode and its manufacturing method
CN100383989C (en) * 2004-11-23 2008-04-23 北京大学 Laser stripped power LED chip on thermal metal deposition and production thereof
JP2009027175A (en) * 2007-07-23 2009-02-05 Samsung Electro-Mechanics Co Ltd Semiconductor light-emitting device
JP2009200178A (en) * 2008-02-20 2009-09-03 Hitachi Cable Ltd Semiconductor light-emitting device
JP2009537982A (en) * 2006-05-19 2009-10-29 ブリッジラックス インコーポレイテッド Low optical loss electrode structure for LED
JP2010525585A (en) * 2007-04-26 2010-07-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor body and manufacturing method thereof
JP2010171142A (en) * 2009-01-21 2010-08-05 Toshiba Corp Semiconductor light emitting element, and semiconductor light emitting device
JP2010272592A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Semiconductor light emitting element
KR101008023B1 (en) 2004-08-04 2011-01-14 광주과학기술원 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
US7982236B2 (en) 2007-02-01 2011-07-19 Nichia Corporation Semiconductor light emitting element
US8080879B2 (en) 2006-05-19 2011-12-20 Bridgelux, Inc. Electrode structures for LEDs with increased active area
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
CN102456799A (en) * 2010-10-25 2012-05-16 三星Led株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2012142639A (en) * 2012-04-27 2012-07-26 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
CN101322255B (en) * 2005-12-09 2012-09-05 罗姆股份有限公司 Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP2012195602A (en) * 2012-05-31 2012-10-11 Toshiba Corp Semiconductor light-emitting element
US8330181B2 (en) 2007-06-15 2012-12-11 Rohm Co., Ltd. Semiconductor light-emitting device
WO2013021991A1 (en) * 2011-08-11 2013-02-14 昭和電工株式会社 Light emitting diode and method of manufacturing same
JP2013211598A (en) * 2013-07-10 2013-10-10 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
WO2014036803A1 (en) * 2012-09-07 2014-03-13 晶能光电(江西)有限公司 Light emitting diode flip chip for improving light emitting rate and preparation method thereof
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
CN104170104A (en) * 2012-03-13 2014-11-26 欧司朗光电半导体有限公司 Radiation-emitting semiconductor component, lighting device and display device
JP2015102592A (en) * 2013-11-21 2015-06-04 スタンレー電気株式会社 Optical deflector and manufacturing method therefor
US9130127B2 (en) 2011-03-14 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JP2016015467A (en) * 2014-06-13 2016-01-28 日亜化学工業株式会社 Method of manufacturing light emitting element
US11695099B2 (en) 2009-06-25 2023-07-04 Lumileds Llc Contact for a semiconductor light emitting device

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197289A (en) * 2003-12-26 2005-07-21 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its manufacturing method
JP4604488B2 (en) * 2003-12-26 2011-01-05 日亜化学工業株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
US7199401B2 (en) 2004-02-25 2007-04-03 Sanken Electric Co., Ltd. Light-emitting semiconductor device
US7141825B2 (en) 2004-03-29 2006-11-28 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
WO2006006555A1 (en) * 2004-07-12 2006-01-19 Rohm Co., Ltd. Semiconductor light-emitting device
JP2006032952A (en) * 2004-07-12 2006-02-02 Shogen Koden Kofun Yugenkoshi Light emitting diode having omnidirectional reflector including transparent conductive layer
JP4976849B2 (en) * 2004-07-12 2012-07-18 ローム株式会社 Semiconductor light emitting device
US7375380B2 (en) 2004-07-12 2008-05-20 Rohm Co., Ltd. Semiconductor light emitting device
JPWO2006006555A1 (en) * 2004-07-12 2008-04-24 ローム株式会社 Semiconductor light emitting device
KR101008023B1 (en) 2004-08-04 2011-01-14 광주과학기술원 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
US7291865B2 (en) 2004-09-29 2007-11-06 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device
JP2006108698A (en) * 2004-10-06 2006-04-20 Lumileds Lighting Us Llc Contact for flip-chip light-emitting device and omnidirectional reflecting mirror
CN100383989C (en) * 2004-11-23 2008-04-23 北京大学 Laser stripped power LED chip on thermal metal deposition and production thereof
WO2006082687A1 (en) * 2005-02-07 2006-08-10 Mitsubishi Cable Industries, Ltd. GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JP2006237386A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Nitride system semiconductor light emitting diode
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
CN100369279C (en) * 2005-05-27 2008-02-13 中国科学院物理研究所 Bridge N-electrode type gallium nitride base large tube core LED and preparation method
JP2007081088A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
JP2007081313A (en) * 2005-09-16 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element and manufacturing method thereof
CN100383992C (en) * 2005-09-21 2008-04-23 南茂科技股份有限公司 Light-emitting diode and its manufacturing method
CN101322255B (en) * 2005-12-09 2012-09-05 罗姆股份有限公司 Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP2007184313A (en) * 2005-12-29 2007-07-19 Rohm Co Ltd Semiconductor light emitting element and method of fabricating same
US8304795B2 (en) 2005-12-29 2012-11-06 Rohm Co., Ltd. Semiconductor light emitting device with concave-convex pattern and method for manufacturing the same
US8124433B2 (en) 2006-05-19 2012-02-28 Bridgelux, Inc. Low optical loss electrode structures for LEDs
US10199543B2 (en) 2006-05-19 2019-02-05 Bridgelux, Inc. LEDs with efficient electrode structures
US9105815B2 (en) 2006-05-19 2015-08-11 Bridgelux, Inc. LEDs with efficient electrode structures
US7897992B2 (en) 2006-05-19 2011-03-01 Bridgelux, Inc. Low optical loss electrode structures for LEDs
US9356194B2 (en) 2006-05-19 2016-05-31 Bridgelux, Inc. LEDs with efficient electrode structures
USRE46058E1 (en) 2006-05-19 2016-07-05 Kabushiki Kaisha Toshiba Electrode structures for LEDs with increased active area
US8026524B2 (en) 2006-05-19 2011-09-27 Bridgelux, Inc. LEDs with low optical loss electrode structures
US8080879B2 (en) 2006-05-19 2011-12-20 Bridgelux, Inc. Electrode structures for LEDs with increased active area
US9627589B2 (en) 2006-05-19 2017-04-18 Bridgelux, Inc. LEDs with efficient electrode structures
US8115226B2 (en) 2006-05-19 2012-02-14 Bridgelux, Inc. Low optical loss electrode structures for LEDs
US8114690B2 (en) 2006-05-19 2012-02-14 Bridgelux, Inc. Methods of low loss electrode structures for LEDs
JP2009537982A (en) * 2006-05-19 2009-10-29 ブリッジラックス インコーポレイテッド Low optical loss electrode structure for LED
US10741726B2 (en) 2006-05-19 2020-08-11 Bridgelux Inc. LEDs with efficient electrode structures
US9099613B2 (en) 2006-05-19 2015-08-04 Bridgelux, Inc. LEDs with efficient electrode structures
US7947996B2 (en) 2006-06-28 2011-05-24 Nichia Corporation Semiconductor light emitting element
US8120057B2 (en) 2007-02-01 2012-02-21 Nichia Corporation Semiconductor light emitting element
USRE49298E1 (en) 2007-02-01 2022-11-15 Nichia Corporation Semiconductor light emitting element
US7982236B2 (en) 2007-02-01 2011-07-19 Nichia Corporation Semiconductor light emitting element
USRE49406E1 (en) 2007-02-01 2023-01-31 Nichia Corporation Semiconductor light emitting element
US8653540B2 (en) 2007-04-26 2014-02-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
US8450751B2 (en) 2007-04-26 2013-05-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
JP2010525585A (en) * 2007-04-26 2010-07-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor body and manufacturing method thereof
US8330181B2 (en) 2007-06-15 2012-12-11 Rohm Co., Ltd. Semiconductor light-emitting device
JP2009027175A (en) * 2007-07-23 2009-02-05 Samsung Electro-Mechanics Co Ltd Semiconductor light-emitting device
JP2009200178A (en) * 2008-02-20 2009-09-03 Hitachi Cable Ltd Semiconductor light-emitting device
JP2010171142A (en) * 2009-01-21 2010-08-05 Toshiba Corp Semiconductor light emitting element, and semiconductor light emitting device
JP2010272592A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Semiconductor light emitting element
US11695099B2 (en) 2009-06-25 2023-07-04 Lumileds Llc Contact for a semiconductor light emitting device
US8969895B2 (en) * 2010-10-25 2015-03-03 Samsung Electronics Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
TWI472062B (en) * 2010-10-25 2015-02-01 Samsung Electronics Co Ltd Semiconductor light emitting device and manufacturing method thereof
CN102456799A (en) * 2010-10-25 2012-05-16 三星Led株式会社 Semiconductor light emitting device and manufacturing method thereof
US9105762B2 (en) 2010-10-25 2015-08-11 Samsung Electronics Co., Ltd. Semiconductor light emitting device and manufacturing method thereof
US9130127B2 (en) 2011-03-14 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device
WO2013021991A1 (en) * 2011-08-11 2013-02-14 昭和電工株式会社 Light emitting diode and method of manufacturing same
US9741913B2 (en) 2011-08-11 2017-08-22 Showa Denko K.K. Light-emitting diode and method of manufacturing same
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
CN104170104A (en) * 2012-03-13 2014-11-26 欧司朗光电半导体有限公司 Radiation-emitting semiconductor component, lighting device and display device
JP2015512157A (en) * 2012-03-13 2015-04-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Beam emitting semiconductor element, lighting device and display device
JP2012142639A (en) * 2012-04-27 2012-07-26 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
JP2012195602A (en) * 2012-05-31 2012-10-11 Toshiba Corp Semiconductor light-emitting element
WO2014036803A1 (en) * 2012-09-07 2014-03-13 晶能光电(江西)有限公司 Light emitting diode flip chip for improving light emitting rate and preparation method thereof
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
JP2013211598A (en) * 2013-07-10 2013-10-10 Toshiba Corp Semiconductor light-emitting diode element and semiconductor light-emitting device
JP2015102592A (en) * 2013-11-21 2015-06-04 スタンレー電気株式会社 Optical deflector and manufacturing method therefor
JP2016015467A (en) * 2014-06-13 2016-01-28 日亜化学工業株式会社 Method of manufacturing light emitting element

Also Published As

Publication number Publication date
JP4122785B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4122785B2 (en) Light emitting element
JP4330476B2 (en) Semiconductor light emitting device
US7982207B2 (en) Light emitting diode
JP3693468B2 (en) Semiconductor light emitting device
US8076686B2 (en) Light emitting diode and manufacturing method thereof
JP5021693B2 (en) Semiconductor light emitting device
KR930015124A (en) Light emitting diode
JP2008523608A (en) Silicon-based light emitting diode
US20140353709A1 (en) Light emitting diode
JP4946663B2 (en) Semiconductor light emitting device
JP4849866B2 (en) Lighting device
JP2002111054A5 (en)
JPH05327012A (en) Silicon carbide light emitting diode
JP2000216431A (en) Light emitting element
JP4873930B2 (en) REFLECTIVE ELECTRODE AND COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE EQUIPPED WITH THE SAME
KR101165253B1 (en) Light emitting diode
JP2008130894A (en) Light emitting element and illumination apparatus
JP2008098249A (en) Light-emitting element
JP2005302803A (en) Nitride semiconductor light emitting element and its manufacturing method
JP2001267686A (en) Laser device
JP3212008B2 (en) Gallium nitride based compound semiconductor laser device
JP2009038355A (en) Light emitting device
KR100413435B1 (en) Light Emitting Diode and Fabrication Method for the same
JP2009238931A (en) Semiconductor light-emitting element and manufacturing method therefor, and luminaire using the element
JP2006190854A (en) Light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Ref document number: 4122785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term