JP2008130894A - Light emitting element and illumination apparatus - Google Patents

Light emitting element and illumination apparatus Download PDF

Info

Publication number
JP2008130894A
JP2008130894A JP2006315512A JP2006315512A JP2008130894A JP 2008130894 A JP2008130894 A JP 2008130894A JP 2006315512 A JP2006315512 A JP 2006315512A JP 2006315512 A JP2006315512 A JP 2006315512A JP 2008130894 A JP2008130894 A JP 2008130894A
Authority
JP
Japan
Prior art keywords
layer
light
semiconductor layer
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315512A
Other languages
Japanese (ja)
Other versions
JP5116291B2 (en
Inventor
Yoshiyuki Kawaguchi
義之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006315512A priority Critical patent/JP5116291B2/en
Publication of JP2008130894A publication Critical patent/JP2008130894A/en
Application granted granted Critical
Publication of JP5116291B2 publication Critical patent/JP5116291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that light extraction efficiency may be reduced in a configuration for extracting light through a transparent conductive layer formed on one main surface of a semiconductor layer because light reflection occurs owing to a large refractive index difference of an interference between the transparent conductive layer and air and the reflected light is returned and absorbed into the transparent conductive layer or the semiconductor layer. <P>SOLUTION: A light emitting element has a semiconductor layer 8 including a lamination body composed of an n-type gallium nitride-based compound semiconductor layer 8a, a light emitting layer 8b composed of a gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor layer 8c, a transparent conductive layer 10 and a transparent layer 13 are successively formed on one main surface of the semiconductor layer 8, and the refractive index of the transparent layer 13 is the refractive index of the transparent conductive layer 10 and more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒化物ガリウム系化合物半導体を利用した発光ダイオード(LED:Light Emitting Diode)等の発光素子及び照明装置に関するものである。   The present invention relates to a light emitting element such as a light emitting diode (LED) using a nitride gallium compound semiconductor and an illumination device.

近年、紫外光領域から青色光までの光を発光する発光素子として、AlGaIn1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される窒化ガリウム系化合物半導体や窒化物系半導体を用いた発光素子が注目されている。 In recent years, Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is used as a light emitting element that emits light from the ultraviolet region to blue light. A light emitting device using a gallium nitride compound semiconductor or a nitride semiconductor is attracting attention.

このような窒化ガリウム系化合物半導体を用いた発光素子は、蛍光体と組み合わせることにより白色の光を発光することが可能であり、また省エネルギーかつ長寿命であることから、白熱電球や蛍光ランプの代替品として有望視されると共に実用化が始まっている。しかしながら、窒化ガリウム系化合物半導体を用いた発光素子の発光効率は、蛍光灯に比較すると低いため、更なる高効率化が求められており、そのための様々な研究が行われている。   A light-emitting element using such a gallium nitride-based compound semiconductor can emit white light when combined with a phosphor, and has an energy saving and long life. As it is considered promising as a product, its practical application has begun. However, since the luminous efficiency of a light-emitting element using a gallium nitride-based compound semiconductor is lower than that of a fluorescent lamp, further improvement in efficiency has been demanded, and various studies have been conducted for that purpose.

ところで、発光素子の発光効率である外部量子効率は、発光層で電気エネルギーが光エネルギーに変換される割合を示す内部量子効率と、変換された光エネルギーが外部へ放出される割合を示す光取り出し効率との積によって決定される。   By the way, the external quantum efficiency, which is the light emission efficiency of the light emitting element, is the internal quantum efficiency indicating the rate at which electrical energy is converted into light energy in the light emitting layer, and the light extraction indicating the rate at which the converted light energy is emitted to the outside. Determined by product with efficiency.

内部量子効率は、発光素子を形成する窒化ガリウム系化合物半導体の結晶性に大きく影響を受ける。内部量子効率を向上させる方策として、サファイア等から成る基板上に非晶質または多結晶のAlN系またはAlGaN系の材料のバッファ層を形成し、このバッファ層上に窒化ガリウム系化合物半導体層を成長させることにより、基板と窒化ガリウム系化合物半導体層との格子不整合を緩和させ、窒化ガリウム系化合物半導体層の結晶性を向上させるという方法が、公知の技術として知られている(例えば、下記の特許文献1を参照)。   The internal quantum efficiency is greatly influenced by the crystallinity of the gallium nitride compound semiconductor forming the light emitting element. As a measure to improve internal quantum efficiency, a buffer layer of amorphous or polycrystalline AlN-based or AlGaN-based material is formed on a substrate made of sapphire or the like, and a gallium nitride-based compound semiconductor layer is grown on the buffer layer. Is known as a known technique (for example, the following method) for relaxing the lattice mismatch between the substrate and the gallium nitride compound semiconductor layer and improving the crystallinity of the gallium nitride compound semiconductor layer. (See Patent Document 1).

一方、光取り出し効率の向上に関しても種々の技術が公開されており、発光素子または電極の表面に凹凸構造を形成することによって外部との屈折率差を緩和し、内部全反射を抑制する方法がある(例えば、特許文献2、非特許文献1を参照)。   On the other hand, various techniques for improving the light extraction efficiency have been disclosed, and there is a method of reducing the difference in refractive index from the outside by forming a concavo-convex structure on the surface of the light emitting element or electrode and suppressing the total internal reflection. (For example, refer to Patent Document 2 and Non-Patent Document 1).

従来の発光素子の一例の断面図を図4に示す。基板1上にn型窒化ガリウム系化合物半導体層2a、窒化ガリウム系化合物半導体層からなる発光層2b及びp型窒化ガリウム系化合物半導体層2cより成る半導体層2が形成されていると共に、n型窒化ガリウム系化合物半導体層2a上とp型窒化ガリウム系化合物半導体層2c上に、それぞれn型電極3及びp型電極4が形成されている。p型電極4としては発光した光に対して透明な導電層が用いられ、p型窒化ガリウム系化合物半導体層2cに電流を均一に拡散させるためp型窒化ガリウム系化合物半導体層2cの上面の全面に形成される。n型電極3及びp型電極4の一部には、外部から電流を注入するために、それぞれn型パッド電極5、p型パッド電極6が設けられており、ワイヤーボンディングによってパッケージの配線等と接続される。窒化ガリウム系化合物半導体層の形成に使用される基板1としては、一般的にサファイア基板が使用されている。
特許第3026087号公報 特開平17−259970号公報 アプライド.フィジックス.レターズ.86.221101(2005)(APPLIED.PHYSICS.LETTERS.86.221101 (2005))
A cross-sectional view of an example of a conventional light-emitting element is shown in FIG. An n-type gallium nitride compound semiconductor layer 2a, a light emitting layer 2b made of a gallium nitride compound semiconductor layer, and a semiconductor layer 2 made of a p-type gallium nitride compound semiconductor layer 2c are formed on the substrate 1, and n-type nitride An n-type electrode 3 and a p-type electrode 4 are formed on the gallium compound semiconductor layer 2a and the p-type gallium nitride compound semiconductor layer 2c, respectively. As the p-type electrode 4, a conductive layer that is transparent to the emitted light is used, and the entire upper surface of the p-type gallium nitride compound semiconductor layer 2 c is used to uniformly diffuse the current in the p-type gallium nitride compound semiconductor layer 2 c. Formed. An n-type pad electrode 5 and a p-type pad electrode 6 are respectively provided in part of the n-type electrode 3 and the p-type electrode 4 in order to inject current from the outside. Connected. As the substrate 1 used for forming the gallium nitride compound semiconductor layer, a sapphire substrate is generally used.
Japanese Patent No. 3026087 JP-A-17-259970 Applied. Physics. Letters. 86.2211101 (2005) (APPLIED.PHYSICS.LETTERS.86.221101 (2005))

図4の従来の発光素子においては、サファイア基板の屈折率は発光層2bで発光した光の波長を400nmとした場合に約1.78であるのに対し、窒化ガリウム系化合物半導体の屈折率は約2.55と高い。そのため、発光層2bで発光した光のうち、サファイア基板への入射角が臨界角θの約44°(θ=arcsin(1.78/2.55))を超える角度で入射する光は、各窒化ガリウム系化合物半導体層を積層してなる半導体層2の内部で全反射を繰り返す。従って、光は半導体層2で全反射を繰り返す過程で大部分が半導体層2に吸収され、残った光が半導体層2の端部から外部へ向かって放射されるため、発光量が低下するという問題点がある。 In the conventional light emitting device of FIG. 4, the refractive index of the sapphire substrate is about 1.78 when the wavelength of the light emitted from the light emitting layer 2b is 400 nm, whereas the refractive index of the gallium nitride compound semiconductor is It is as high as about 2.55. For this reason, of the light emitted from the light emitting layer 2b, light incident at an angle exceeding the critical angle θ r of about 44 ° (θ r = arcsin (1.78 / 2.55)) is incident on the sapphire substrate. The total reflection is repeated inside the semiconductor layer 2 formed by laminating each gallium nitride compound semiconductor layer. Therefore, most of the light is absorbed by the semiconductor layer 2 in the process of repeating total reflection at the semiconductor layer 2, and the remaining light is emitted from the end of the semiconductor layer 2 to the outside, so that the amount of light emission is reduced. There is a problem.

さらに、半導体層2との境界が空気(屈折率≒1)である場合は、これらの媒質間の屈折率差がさらに大きくなり、境界で半導体層2側に反射される光の量が一層増えるため、光取り出し効率はさらに悪くなる。   Further, when the boundary with the semiconductor layer 2 is air (refractive index≈1), the refractive index difference between these media is further increased, and the amount of light reflected to the semiconductor layer 2 side at the boundary is further increased. Therefore, the light extraction efficiency is further deteriorated.

上記の問題点を解決するために、特許文献2の方法を用いて発光素子の光取り出し効率を向上させる場合では、p型窒化ガリウム系化合物半導体層の一方主面に形成された凹凸構造により、p型窒化ガリウム系化合物半導体層とp型電極としての透明導電層との界面における反射を抑制することによって光取り出し効率を向上させているが、透明導電層と空気の屈折率差が大きいため、これらの界面で反射する光の量が多く、反射した光は再び透明導電層内あるいは半導体層内に戻って吸収されるため、光取り出し効率を高めるには限界がある。   In order to solve the above problems, in the case of improving the light extraction efficiency of the light emitting device using the method of Patent Document 2, the uneven structure formed on one main surface of the p-type gallium nitride compound semiconductor layer, Light extraction efficiency is improved by suppressing reflection at the interface between the p-type gallium nitride compound semiconductor layer and the transparent conductive layer as the p-type electrode, but the refractive index difference between the transparent conductive layer and air is large. The amount of light reflected at these interfaces is large, and the reflected light is again returned to and absorbed in the transparent conductive layer or semiconductor layer, so there is a limit to increasing the light extraction efficiency.

また、非特許文献1の方法では、p型電極としての透明導電層上に凹凸構造を形成することによって、透明導電層と空気との界面での反射を抑制し、光取り出し効率を改善しているが、透明導電層に凹凸構造を形成する場合は、凹凸構造を形成する分だけ透明導電層の厚みが増えるため、外部へ取り出される前に透明導電層内で吸収される光の量が多くなるという問題点があった。   Further, in the method of Non-Patent Document 1, by forming a concavo-convex structure on a transparent conductive layer as a p-type electrode, reflection at the interface between the transparent conductive layer and air is suppressed, and light extraction efficiency is improved. However, when forming a concavo-convex structure in the transparent conductive layer, the thickness of the transparent conductive layer increases by the amount of forming the concavo-convex structure, so that the amount of light absorbed in the transparent conductive layer is large before being taken out to the outside. There was a problem of becoming.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、光取り出し効率を飛躍的に向上させることが可能な発光素子を提供することである。   Accordingly, the present invention has been completed in view of the above-described problems in the prior art, and an object of the present invention is to provide a light-emitting element capable of dramatically improving light extraction efficiency.

本発明の発光素子は、n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及びp型窒化ガリウム系化合物半導体層で構成される積層体を含む半導体層を有し、前記半導体層の一方主面に透明導電層と透明層とが順次形成されており、前記透明層の屈折率が前記透明導電層の屈折率以上であることを特徴とする。   The light-emitting element of the present invention includes an n-type gallium nitride-based compound semiconductor layer, a light-emitting layer made of a gallium nitride-based compound semiconductor, and a semiconductor layer including a laminate composed of a p-type gallium nitride-based compound semiconductor layer, A transparent conductive layer and a transparent layer are sequentially formed on one main surface of the layer, and the refractive index of the transparent layer is equal to or higher than the refractive index of the transparent conductive layer.

本発明の発光素子は好ましくは、前記透明層の表面に凹凸構造が形成されていることを特徴とする。   The light emitting device of the present invention is preferably characterized in that an uneven structure is formed on the surface of the transparent layer.

本発明の発光素子は好ましくは、前記半導体層と前記透明導電層が接する界面に凹凸構造が形成されていることを特徴とする。   The light emitting device of the present invention is preferably characterized in that a concavo-convex structure is formed at the interface where the semiconductor layer and the transparent conductive layer are in contact.

本発明の発光素子は好ましくは、前記半導体層は、基板上に形成した反射層上にエピタキシャル成長されていることを特徴とする。   The light emitting device of the present invention is preferably characterized in that the semiconductor layer is epitaxially grown on a reflective layer formed on a substrate.

本発明の照明装置は、本発明の発光素子と、前記発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることを特徴とする。   The illuminating device of the present invention includes the light emitting element of the present invention and at least one of a phosphor and a phosphor that emits light upon receiving light emitted from the light emitting element.

本発明の発光素子は、n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及びp型窒化ガリウム系化合物半導体層で構成される積層体を含む半導体層を有し、半導体層の一方主面に透明導電層と透明層とが順次形成されており、透明層の屈折率が透明導電層の屈折率以上であることによって、透明導電層と透明層との界面における光の反射が大幅に抑制されるため、透明導電層内に戻る光が減少する。その結果、光吸収係数が比較的大きいITO層等から成る透明導電層内での光の吸収量が低減し、光取り出し効率を大幅に向上させることが可能になる。   The light-emitting element of the present invention includes a semiconductor layer including an n-type gallium nitride-based compound semiconductor layer, a light-emitting layer made of a gallium nitride-based compound semiconductor, and a stacked body composed of a p-type gallium nitride-based compound semiconductor layer. The transparent conductive layer and the transparent layer are sequentially formed on one main surface of the transparent layer, and the refractive index of the transparent layer is equal to or higher than the refractive index of the transparent conductive layer, thereby reflecting light at the interface between the transparent conductive layer and the transparent layer. Is significantly suppressed, and the light returning into the transparent conductive layer is reduced. As a result, the amount of light absorbed in the transparent conductive layer made of an ITO layer or the like having a relatively large light absorption coefficient can be reduced, and the light extraction efficiency can be greatly improved.

また、本発明の発光素子は好ましくは、透明層の表面に凹凸構造が形成されていることから、透明層と空気との界面における屈折率差が緩和されて、光の反射量が減少するため、透明導電層から透明層へ入った光を外部へと有効に取り出すことが可能となり、光取り出し効率をさらに高めることができる。   The light emitting device of the present invention preferably has a concavo-convex structure formed on the surface of the transparent layer, so that the refractive index difference at the interface between the transparent layer and air is relaxed and the amount of reflected light is reduced. The light that has entered the transparent layer from the transparent conductive layer can be effectively extracted to the outside, and the light extraction efficiency can be further increased.

また、本発明の発光素子は好ましくは、半導体層と透明導電層が接する界面に凹凸構造が形成されていることにより、半導体層と透明導電層との界面における屈折率差が緩和されて、光の反射量が減少する。そのため、半導体層から透明導電層へと入射する光の量を増加させることが可能となり、光取り出し効率が一層向上する。   In the light-emitting element of the present invention, preferably, a concavo-convex structure is formed at the interface where the semiconductor layer and the transparent conductive layer are in contact with each other, so that the difference in refractive index at the interface between the semiconductor layer and the transparent conductive layer is reduced. The amount of reflection decreases. Therefore, it becomes possible to increase the amount of light incident on the transparent conductive layer from the semiconductor layer, and the light extraction efficiency is further improved.

また、本発明の発光素子は好ましくは、半導体層は、基板上に形成した反射層上にエピタキシャル成長されていることによって、基板側へ向かう光は反射層によって光取り出し方向となる透明層側へと反射され、光取り出し方向へと効果的に光を集めることが可能となるため、光取り出し効率が向上する。   In the light-emitting element of the present invention, preferably, the semiconductor layer is epitaxially grown on the reflective layer formed on the substrate, so that the light traveling toward the substrate side is directed to the transparent layer side where light is extracted by the reflective layer. Since it is reflected and light can be collected effectively in the light extraction direction, the light extraction efficiency is improved.

本発明の照明装置は、本発明の発光素子と、発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることから、従来の蛍光灯等よりも消費電力が小さく、小型であることから、小型で高輝度の照明装置となる。   The illuminating device of the present invention includes the light emitting element of the present invention and at least one of a phosphor and a phosphor that emits light upon receiving light emitted from the light emitting element. Since the electric power is small and small, the lighting device is small and has high brightness.

以下、本発明の発光素子の実施の形態について、図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of a light emitting device of the present invention will be described in detail with reference to the drawings.

図1は本発明の発光素子について実施の形態の一例を示す模式的な断面図である。図1において、8は窒化ガリウム系化合物半導体層を複数層積層して成る半導体層(積層体)であり、8aはn型窒化ガリウム系化合物半導体層、8bは窒化ガリウム系化合物半導体層からなる発光層、8cはp型窒化ガリウム系化合物半導体層、9はn側電極としての、あるいはn側電極を形成するためのn側導電層、10はp側電極としての、あるいはp側電極を形成するためのp側導電層である。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a light emitting device of the present invention. In FIG. 1, 8 is a semiconductor layer (stacked body) formed by laminating a plurality of gallium nitride compound semiconductor layers, 8a is an n-type gallium nitride compound semiconductor layer, and 8b is a light emission composed of a gallium nitride compound semiconductor layer. A layer, 8c is a p-type gallium nitride compound semiconductor layer, 9 is an n-side electrode or an n-side conductive layer for forming an n-side electrode, and 10 is a p-side electrode or a p-side electrode This is a p-side conductive layer.

本発明の発光素子は、n型窒化ガリウム系化合物半導体層8a、窒化ガリウム系化合物半導体からなる発光層8b及びp型窒化ガリウム系化合物半導体層8cで構成される積層体を含む半導体層8を有し、半導体層8の一方主面(図1では基板7と逆側の面)に透明導電層10と透明層13とが順次形成されており、透明層13の屈折率が透明導電層10の屈折率以上である構成である。   The light-emitting element of the present invention has a semiconductor layer 8 including a laminate composed of an n-type gallium nitride compound semiconductor layer 8a, a light-emitting layer 8b made of a gallium nitride compound semiconductor, and a p-type gallium nitride compound semiconductor layer 8c. The transparent conductive layer 10 and the transparent layer 13 are sequentially formed on one main surface of the semiconductor layer 8 (the surface opposite to the substrate 7 in FIG. 1), and the refractive index of the transparent layer 13 is that of the transparent conductive layer 10. It is the structure which is more than a refractive index.

透明導電層10としては、酸化インジウム錫(ITO),酸化錫(SnO),酸化亜鉛(ZnO)等の金属酸化物系のものが使用されるが、これらの中では特に酸化インジウム錫(ITO)は紫外光から青色光に対して高い透過率を有するだけでなく、p型窒化ガリウム系化合物半導体層8cと良好なオーミック接触が取れるために好適である。 As the transparent conductive layer 10, metal oxides such as indium tin oxide (ITO), tin oxide (SnO 2 ), and zinc oxide (ZnO) are used. Among these, indium tin oxide (ITO) is particularly used. ) Is suitable not only because it has high transmittance from ultraviolet light to blue light, but also because good ohmic contact can be obtained with the p-type gallium nitride compound semiconductor layer 8c.

透明層13としては、透明導電層10の屈折率が、紫外光から青色光に対して約2.0であることから、この値以上の屈折率を有するとともに、光の吸収係数の小さいものを用いることが好ましい。そのような材質のものとしては、酸化ジルコニウム(ZrO),酸化チタン(TiO),酸化タンタル(Ta),炭化ケイ素(SiC)等がよく、これらの屈折率は2.2〜2.8である。 As the transparent layer 13, since the refractive index of the transparent conductive layer 10 is about 2.0 with respect to ultraviolet light to blue light, it has a refractive index higher than this value and a small light absorption coefficient. It is preferable to use it. As such a material, zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon carbide (SiC), and the like are good, and the refractive index thereof is 2.2 to 2.8.

透明層13の屈折率と透明導電層10の屈折率との差は、0〜1であることが好ましい。屈折率の差が1を超えると、透明層13と空気との界面における光の反射が大きくなり、また屈折率差が増加するために凹凸構造14による屈折率差の緩和の効果が十分に得られない。   The difference between the refractive index of the transparent layer 13 and the refractive index of the transparent conductive layer 10 is preferably 0 to 1. When the difference in refractive index exceeds 1, the reflection of light at the interface between the transparent layer 13 and air increases, and the difference in refractive index increases, so that the effect of reducing the refractive index difference by the concavo-convex structure 14 is sufficiently obtained. I can't.

透明導電層10の厚みは250nm〜500nmがよい。250nm未満では、p型窒化ガリウム系化合物半導体8cと良好なオーミック接触が形成できない傾向があり、500nmを超えると、透明導電層10での光吸収量が増加し、光取り出し効率が低下し易くなる。   The thickness of the transparent conductive layer 10 is preferably 250 nm to 500 nm. If it is less than 250 nm, there is a tendency that good ohmic contact cannot be formed with the p-type gallium nitride compound semiconductor 8c. If it exceeds 500 nm, the amount of light absorption in the transparent conductive layer 10 increases and the light extraction efficiency tends to decrease. .

透明層13の厚みは500nm〜5μmがよい。500nm未満では、光の透過率を向上させるために十分な高さを有する凹凸構造14が形成できない傾向がある。5μmを超えると、透明層13での光吸収量が増加するだけでなく、透明層13の材質と成膜方法に依るが、蒸着法やスパッタリング法などの一般的な成膜方法を用いる場合において、成膜時間が非常に長くなり、生産性が低下する。   The thickness of the transparent layer 13 is preferably 500 nm to 5 μm. If it is less than 500 nm, the concavo-convex structure 14 having a sufficient height for improving the light transmittance tends to be unable to be formed. When the thickness exceeds 5 μm, not only the light absorption amount in the transparent layer 13 increases, but also depends on the material of the transparent layer 13 and the film forming method, but in the case of using a general film forming method such as an evaporation method or a sputtering method. The film formation time becomes very long and the productivity is lowered.

透明層13の表面に凹凸構造14が形成されていること、即ち透明層13と空気との界面に凹凸構造14が形成されていることが好ましい。   It is preferable that the uneven structure 14 is formed on the surface of the transparent layer 13, that is, the uneven structure 14 is formed at the interface between the transparent layer 13 and air.

また、半導体層8と透明導電層10が接する界面に凹凸構造14が形成されていること、即ちp型窒化ガリウム系化合物半導体層8cと透明導電層10の界面に凹凸構造14が形成されていることが好ましい。   Further, the concavo-convex structure 14 is formed at the interface between the semiconductor layer 8 and the transparent conductive layer 10, that is, the concavo-convex structure 14 is formed at the interface between the p-type gallium nitride compound semiconductor layer 8 c and the transparent conductive layer 10. It is preferable.

勿論、図1に示すように、透明層13の表面に凹凸構造14が形成されているとともに、半導体層8と透明導電層10が接する界面に凹凸構造14が形成されていてもよい。   Of course, as shown in FIG. 1, the concavo-convex structure 14 may be formed on the surface of the transparent layer 13, and the concavo-convex structure 14 may be formed at the interface between the semiconductor layer 8 and the transparent conductive layer 10.

凹凸構造14の大きさは、凹凸の突起同士の平均間隔が媒質(透明層13、p型窒化ガリウム系化合物半導体層8c)中の実効波長と同程度かそれ以下、また高さについても媒質中の実効波長と同程度かそれ以上のものであることが好ましい。この場合、界面の上下層間の屈折率差がより緩和されて光の反射が抑制されるとともに、光散乱の効果が得られる。その結果、凹凸構造14がない場合には、臨界角を超えて界面で全反射し、透明層や半導体層の内部に閉じ込められていた光も、光の進行方向が変化するために、臨界角以内に入る割合が増加することによって光取り出し量が向上する。   The size of the concavo-convex structure 14 is such that the average interval between the concavo-convex protrusions is equal to or less than the effective wavelength in the medium (transparent layer 13, p-type gallium nitride compound semiconductor layer 8c), and the height is also in the medium. It is preferable that the wavelength is equal to or greater than the effective wavelength. In this case, the refractive index difference between the upper and lower layers of the interface is further relaxed, light reflection is suppressed, and the effect of light scattering is obtained. As a result, in the case where there is no concavo-convex structure 14, the light that is totally reflected at the interface beyond the critical angle and confined inside the transparent layer or the semiconductor layer also changes the traveling direction of the light. The amount of light extraction is improved by increasing the ratio within the range.

凹凸構造14は、基板7上にn型窒化ガリウム系化合物半導体層8a、発光層8b及びp型窒化ガリウム系化合物半導体層8cをこれらの順で形成した後、p型窒化ガリウム系化合物半導体層8aの表面上にレジスト層や金属層等から成るマスクを形成し、反応性イオンエッチング(RIE:Riactive Ion Ettching)法のドライエッチング法等を用いることによって、容易に形成することができる。また、透明層13上の凹凸構造14も同様の方法で形成することが可能である。   The concavo-convex structure 14 is formed by forming an n-type gallium nitride compound semiconductor layer 8a, a light emitting layer 8b, and a p-type gallium nitride compound semiconductor layer 8c on the substrate 7 in this order, and then forming a p-type gallium nitride compound semiconductor layer 8a. A mask made of a resist layer, a metal layer, or the like is formed on the surface, and a reactive ion etching (RIE: dry ion etching) method or the like is used to form the mask easily. The uneven structure 14 on the transparent layer 13 can also be formed by the same method.

本発明の半導体層8は、基板7上に形成された反射層15上にエピタキシャル成長されていることが好ましい。反射層15により、基板7側へ向かう光は光取り出し方向である透明層13側に反射されるために、光取り出し方向へと有効に光が集めることが可能になる。   The semiconductor layer 8 of the present invention is preferably epitaxially grown on the reflective layer 15 formed on the substrate 7. Since the light directed toward the substrate 7 is reflected by the reflective layer 15 toward the transparent layer 13 that is the light extraction direction, the light can be effectively collected in the light extraction direction.

反射層15としては、例えば、高屈折率層と低屈折率層を交互に複数層重ねることによって、光の干渉効果によるブラッグ反射により高屈折率層と低屈折率層の反射が強め合う効果を有する分布型ブラッグ反射鏡(DBR:Distributed Bragg Reflectors)を用いることがよい。具体的には、厚みが41.5nmのGaN層と、厚みが38.5nmのAl0.52Ga0.48N層を20組積層した、DBR周期構造を形成することによって、発光波長400nmの光に対して非常に良好な反射率を有する反射層15が得られる。 As the reflective layer 15, for example, by alternately stacking a plurality of high refractive index layers and low refractive index layers, the reflection of the high refractive index layer and the low refractive index layer is strengthened by Bragg reflection due to the light interference effect. It is preferable to use distributed Bragg reflectors (DBR). Specifically, by forming a DBR periodic structure in which 20 pairs of a GaN layer having a thickness of 41.5 nm and an Al 0.52 Ga 0.48 N layer having a thickness of 38.5 nm are stacked, an emission wavelength of 400 nm A reflection layer 15 having a very good reflectance with respect to light is obtained.

本発明の半導体層8は、発光層8bを、n型窒化ガリウム系化合物半導体層8aとp型窒化ガリウム系化合物半導体層8cとで挟んだ構成であるが、例えば、n型窒化ガリウム系化合物半導体層8aは、第1のn型クラッド層としてのGaN層、第2のn型クラッド層としてのIn0.02Ga0.98N層の積層体等からなる。このn型窒化ガリウム系化合物半導体層8aの厚みは2μm〜3μm程度である。 The semiconductor layer 8 of the present invention has a configuration in which the light emitting layer 8b is sandwiched between an n-type gallium nitride compound semiconductor layer 8a and a p-type gallium nitride compound semiconductor layer 8c. The layer 8a is formed of a stacked body of a GaN layer as a first n-type cladding layer, an In 0.02 Ga 0.98 N layer as a second n-type cladding layer, and the like. The n-type gallium nitride compound semiconductor layer 8a has a thickness of about 2 μm to 3 μm.

また、例えば、p型窒化ガリウム系化合物半導体層8cは、第1のp型クラッド層としてのAl0.15Ga0.85N層、第2のp型クラッド層としてのAl0.2Ga0.8N層、p型コンタクト層としてのGaN層の積層体等からなる。このp型窒化ガリウム系化合物半導体層8cの厚みは200nm〜300nm程度である。 In addition, for example, the p-type gallium nitride compound semiconductor layer 8c includes an Al 0.15 Ga 0.85 N layer as a first p-type cladding layer and an Al 0.2 Ga 0 as a second p-type cladding layer. .8 It consists of a laminate of an N layer, a GaN layer as a p-type contact layer, and the like. The p-type gallium nitride compound semiconductor layer 8c has a thickness of about 200 nm to 300 nm.

また、例えば、発光層8bは、禁制帯幅の広い障壁層としてのIn0.01Ga0.99N層と、禁制帯幅の狭い井戸層としてのIn0.11Ga0.89N層とを、交互に例えば3回繰り返し規則的に積層した多重量子井戸構造(MQW:Muliti Quantum Well)等からなる。この発光層8bの厚みは25nm〜150nm程度である。 Further, for example, the light emitting layer 8b includes an In 0.01 Ga 0.99 N layer as a barrier layer having a wide forbidden band and an In 0.11 Ga 0.89 N layer as a well layer having a narrow forbidden band. Are composed of a multiple quantum well structure (MQW: Muliti Quantum Well) or the like that is alternately and regularly stacked three times. The thickness of the light emitting layer 8b is about 25 nm to 150 nm.

本発明のn型窒化ガリウム系化合物半導体層8a、発光層8b、p型窒化ガリウム系化合物半導体層8cを含む半導体層8の成長方法は、有機金属気相成長法(MOVPE)法が用いられるが、その他分子線エピタキシー(MBE)法やハイドライド気相成長(HVPE)法、パルスレーザデポジション(PLD)法等が挙げられる。   The growth method of the semiconductor layer 8 including the n-type gallium nitride compound semiconductor layer 8a, the light emitting layer 8b, and the p-type gallium nitride compound semiconductor layer 8c of the present invention is a metal organic vapor phase epitaxy (MOVPE) method. Other examples include molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), and pulsed laser deposition (PLD).

n側導電層9の材質は、発光層8bが発生した光を損失なく反射し、かつn型窒化ガリウム系化合物半導体層8aと良好なオーミック接続がとれるものがよい。   The material of the n-side conductive layer 9 is preferably a material that reflects the light generated by the light emitting layer 8b without loss and can have a good ohmic connection with the n-type gallium nitride compound semiconductor layer 8a.

そのような材質のものとしては、例えばアルミニウム(Al),チタン(Ti),ニッケル(Ni),クロム(Cr),インジウム(In),錫(Sn),モリブデン(Mo),銀(Ag),金(Au),ニオブ(Nb),タンタル(Ta),バナジウム(V),白金(Pt),鉛(Pb),ベリリウム(Be),酸化インジウム(In),金−シリコン合金(Au−Si合金),金−ゲルマニウム合金(Au−Ge合金),金−亜鉛合金(Au−Zn合金),金−ベリリウム合金(Au−Be合金)等を用いればよい。これらの中でも、アルミニウム(Al)または銀(Ag)は、発光層8bが発光する青色光(波長450nm)〜紫外光(波長350nm)の光に対して反射率が高いので好適である。また、アルミニウム(Al)はn型窒化ガリウム系化合物半導体層8aとのオーミック接合の点でも特に好適である。また、上記材料の中から選択した層を複数層積層したものとしても構わない。 Examples of such materials include aluminum (Al), titanium (Ti), nickel (Ni), chromium (Cr), indium (In), tin (Sn), molybdenum (Mo), silver (Ag), Gold (Au), Niobium (Nb), Tantalum (Ta), Vanadium (V), Platinum (Pt), Lead (Pb), Beryllium (Be), Indium oxide (In 2 O 3 ), Gold-silicon alloy (Au -Si alloy), gold-germanium alloy (Au-Ge alloy), gold-zinc alloy (Au-Zn alloy), gold-beryllium alloy (Au-Be alloy), or the like may be used. Among these, aluminum (Al) or silver (Ag) is preferable because it has a high reflectance with respect to blue light (wavelength 450 nm) to ultraviolet light (wavelength 350 nm) emitted from the light emitting layer 8b. Aluminum (Al) is also particularly suitable in terms of ohmic junction with the n-type gallium nitride compound semiconductor layer 8a. Further, a plurality of layers selected from the above materials may be stacked.

また、n型電極9及びp側の透明導電層10上には、それぞれ外部との電気的接続をとるための導線等を接続するn側パッド電極11とp側パッド電極12が設けられている。両電極は、例えばチタン(Ti)層、またはチタン(Ti)層を下地層として金(Au)層を積層したものを用いればよい。   Further, an n-side pad electrode 11 and a p-side pad electrode 12 are provided on the n-type electrode 9 and the p-side transparent conductive layer 10 for connecting a conductive wire or the like for electrical connection with the outside. . Both electrodes may be, for example, a titanium (Ti) layer or a layer in which a gold (Au) layer is stacked with a titanium (Ti) layer as a base layer.

また、半導体層8は、サファイア,SiC等から成る基板7上に窒化ガリウム系化合物半導体から成るバッファ層を介して形成してもよく、また、化学式XB(ただし、XはZr,Ti及びHfのうち少なくとも1種を含む。)で表される二ホウ化物単結晶から成る基板7上に直接形成してもよい。 The semiconductor layer 8 may be formed on the substrate 7 made of sapphire, SiC or the like through a buffer layer made of a gallium nitride compound semiconductor, and the chemical formula XB 2 (where X is Zr, Ti and Hf). May be directly formed on the substrate 7 made of a diboride single crystal represented by the following formula.

化学式XBで表される二硼化物単結晶から成る基板7を使用することによって、窒化ガリウム系化合物半導体との格子定数差が0.57%、熱膨張係数差が2.7×10−6/Kと小さい基板7となるため、転位密度が低く、残留歪の小さい窒化ガリウム系化合物半導体層を形成することが可能となる。 By using the substrate 7 made of diboride single crystal represented by a chemical formula XB 2, the lattice constant difference between the gallium nitride compound semiconductor is 0.57%, the difference of thermal expansion coefficient of 2.7 × 10 -6 Since the substrate 7 is as small as / K, it becomes possible to form a gallium nitride compound semiconductor layer with a low dislocation density and a small residual strain.

化学式XBで表される二硼化物単結晶から成る基板7は、ZrB単結晶,TiB単結晶,HfB単結晶等からなるが、窒化ガリウム系化合物半導体との格子整合性及び熱膨張係数の整合性の点で優れていることを考慮すると、ZrB単結晶からなるものを使用することが好ましい。また、ZrB単結晶において、Zrの一部がTiやHfに置換されているものであってもよい。また、ZrB単結晶において、その結晶性また格子定数が大きく変化しない程度に不純物としてTi,Hf,Mg,Al等を含んでいても構わない。 A substrate 7 made of a diboride single crystal represented by the chemical formula XB 2 is made of a ZrB 2 single crystal, a TiB 2 single crystal, an HfB 2 single crystal, or the like, but has lattice matching and thermal expansion with a gallium nitride compound semiconductor. In view of excellent coefficient consistency, it is preferable to use a ZrB 2 single crystal. In the ZrB 2 single crystal, a part of Zr may be substituted with Ti or Hf. Further, the ZrB 2 single crystal may contain Ti, Hf, Mg, Al, etc. as impurities to such an extent that the crystallinity and lattice constant do not change greatly.

なお、本発明の窒化ガリウム系化合物半導体を適用した発光素子は、発光ダイオード(LED)として使用することができる。   Note that a light-emitting element to which the gallium nitride compound semiconductor of the present invention is applied can be used as a light-emitting diode (LED).

また、本発明の上記の発光素子(LED)は次のように動作する。即ち、発光層8bを含む半導体層8にバイアス電流を流して、発光層8bで波長350〜400nm程度の紫外光〜近紫外光や紫光を発生させ、発光素子の外側にその紫外光〜近紫外光や紫光を取り出すように動作する。   Moreover, said light emitting element (LED) of this invention operate | moves as follows. That is, by applying a bias current to the semiconductor layer 8 including the light emitting layer 8b, the light emitting layer 8b generates ultraviolet light to near ultraviolet light or violet light having a wavelength of about 350 to 400 nm, and the ultraviolet light to near ultraviolet light outside the light emitting element. Operates to extract light and purple light.

また、本発明の発光素子は照明装置に適用できるものであり、その照明装置は、本発明の発光素子と、発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備している構成である。この構成により、輝度及び照度の高い照明装置を得ることができる。この照明装置は、本発明の発光素子を透明樹脂等で覆うか内包するようにし、その透明樹脂等に蛍光体や燐光体を混入させた構成とすればよく、蛍光体や燐光体によって発光素子の紫外光〜近紫外光を白色光等に変換するものとすることができる。また、集光性を高めるために透明樹脂等に凹面鏡等の光反射部材を設けることもできる。このような照明装置は、従来の蛍光灯等よりも消費電力が小さく、小型であることから、小型で高輝度の照明装置として有効である。   The light-emitting element of the present invention can be applied to a lighting device, and the lighting device includes the light-emitting element of the present invention and at least one of a phosphor and a phosphor that emit light by receiving light emitted from the light-emitting element. It is the structure which has. With this configuration, a lighting device with high luminance and illuminance can be obtained. The lighting device may be configured such that the light-emitting element of the present invention is covered or encapsulated with a transparent resin or the like, and a phosphor or phosphor is mixed in the transparent resin or the like. The ultraviolet light to near ultraviolet light can be converted into white light or the like. In addition, a light reflecting member such as a concave mirror can be provided in a transparent resin or the like in order to improve the light collecting property. Such an illuminating device consumes less power than a conventional fluorescent lamp or the like, and is small in size. Therefore, the illuminating device is effective as a small and high-luminance lighting device.

本発明の発光素子の実施例について以下に説明する。本発明の発光素子の効果を確認するために、有限差分時間領域(FDTD:Finite Difference Time Domain Method)法と光線追跡法を用いて、光散乱性及び光取り出し効率のコンピュータシミュレーションを実施した。   Examples of the light emitting device of the present invention will be described below. In order to confirm the effect of the light emitting element of the present invention, a computer simulation of light scattering and light extraction efficiency was performed using a finite difference time domain (FDTD) method and a ray tracing method.

まず最初に、凹凸構造のみのモデルを用いてFDTD法による光散乱のシミュレーションを行い、散乱光の散乱角分布を求めた。次に、その分布を光線追跡法における凹凸構造の境界条件として適用し、本発明の発光素子(LED素子)における光取り出し効率のコンピュータシミュレーションを行った。   First, a light scattering simulation by the FDTD method was performed using a model having only a concavo-convex structure, and a scattering angle distribution of scattered light was obtained. Next, the distribution was applied as a boundary condition of the uneven structure in the ray tracing method, and a computer simulation of the light extraction efficiency in the light emitting element (LED element) of the present invention was performed.

図2は従来の発光素子の一例についてのシミュレーションモデルの断面図であり、p型窒化ガリウム系化合物半導体層2cと透明導電層4との界面、及び透明導電層4と空気との界面に凹凸構造14が形成されている。なお、図2において、2は半導体層、2aはn型窒化ガリウム系化合物半導体層、2bは窒化ガリウム系化合物半導体から成る発光層、3はn側導電層、15は反射層である。   FIG. 2 is a cross-sectional view of a simulation model of an example of a conventional light emitting device, and has an uneven structure at the interface between the p-type gallium nitride compound semiconductor layer 2c and the transparent conductive layer 4 and the interface between the transparent conductive layer 4 and air. 14 is formed. In FIG. 2, 2 is a semiconductor layer, 2a is an n-type gallium nitride compound semiconductor layer, 2b is a light emitting layer made of a gallium nitride compound semiconductor, 3 is an n-side conductive layer, and 15 is a reflective layer.

一方、図3は本発明の発光素子の一例についてのシミュレーションモデルの断面図であり、p型窒化ガリウム系化合物半導体層8cと透明導電層10の界面、及び透明導電層10上に形成された透明層13と空気との界面に凹凸構造14が形成されている。   On the other hand, FIG. 3 is a cross-sectional view of a simulation model of an example of the light-emitting element of the present invention. The transparent model is formed on the interface between the p-type gallium nitride compound semiconductor layer 8c and the transparent conductive layer 10 and on the transparent conductive layer 10. An uneven structure 14 is formed at the interface between the layer 13 and air.

両モデルにおいて、反射層15に向かう光は反射層15でほぼ完全に反射されるか、または一部透過吸収されて基板には到達しないため、基板はシミュレーションモデルに含めないものとする。   In both models, light directed toward the reflective layer 15 is almost completely reflected by the reflective layer 15 or partially transmitted and absorbed and does not reach the substrate. Therefore, the substrate is not included in the simulation model.

また、発光波長は400nmであるとして、発光層から等方的に光が放射されるものとする。   Further, assuming that the emission wavelength is 400 nm, light is emitted from the light emitting layer isotropically.

さらに、n型窒化ガリウム系化合物半導体層2a,8a、発光層2b,8b及びp型窒化ガリウム系化合物半導体層2c,8cからなる厚み3.2μmの半導体層2,8の屈折率を2.5とした。このとき、n型窒化ガリウム系化合物半導体層2a,8a、発光層2b,8b及びp型窒化ガリウム系化合物半導体層2c,8cについて、屈折率の変化はほとんどないため、全て同じ屈折率とした。   Further, the refractive index of the semiconductor layers 2 and 8 having a thickness of 3.2 μm composed of the n-type gallium nitride compound semiconductor layers 2a and 8a, the light emitting layers 2b and 8b, and the p-type gallium nitride compound semiconductor layers 2c and 8c is 2.5. It was. At this time, the n-type gallium nitride compound semiconductor layers 2a and 8a, the light emitting layers 2b and 8b, and the p-type gallium nitride compound semiconductor layers 2c and 8c have almost no change in the refractive index, and thus all have the same refractive index.

また、酸化インジウム錫(ITO)からなる厚み0.5μmの透明導電層4,10の屈折率を2.06、アルミニウム(Al)からなるn型電極3及び厚み0.5μmの反射層15の屈折率を0.49とした。   Further, the refractive index of the transparent conductive layers 4 and 10 made of indium tin oxide (ITO) having a thickness of 0.5 μm is 2.06, the refraction of the n-type electrode 3 made of aluminum (Al) and the reflective layer 15 having a thickness of 0.5 μm. The rate was 0.49.

凹凸構造14の大きさは、凹凸の突起同士の間隔を320nm、突起の高さを960nmとする。   The size of the concavo-convex structure 14 is such that the interval between the concavo-convex protrusions is 320 nm and the protrusion height is 960 nm.

図5に、厚み1μmの透明層13の屈折率を1.5〜3まで変化させていったときの光取り出し効率をコンピューターシミュレーションによって求めた結果のグラフを示す。これより、透明層13の屈折率が酸化インジウム錫(ITO)からなる透明導電層10の屈折率2.06以上である場合において、従来の光取り出し効率(点線部)より大幅に向上しており、本発明の有効性が明確に示されていることが分かる。   FIG. 5 is a graph showing the result of calculating the light extraction efficiency by computer simulation when the refractive index of the transparent layer 13 having a thickness of 1 μm is changed from 1.5 to 3. As a result, when the refractive index of the transparent layer 13 is 2.06 or more of the transparent conductive layer 10 made of indium tin oxide (ITO), the light extraction efficiency (dotted line portion) is greatly improved. It can be seen that the effectiveness of the present invention is clearly shown.

本発明の発光素子について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the light emitting element of this invention. 従来の発光素子の一例についてのシミュレーションモデルを示す断面図である。It is sectional drawing which shows the simulation model about an example of the conventional light emitting element. 本発明の発光素子の一例についてのシミュレーションモデルを示す断面図である。It is sectional drawing which shows the simulation model about an example of the light emitting element of this invention. 従来の発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional light emitting element. 本発明の実施例の発光素子と従来の発光素子について、光り取り出し効率をコンピュータシミュレーションにより求めた結果のグラフである。It is the graph of the result of having calculated | required light extraction efficiency by computer simulation about the light emitting element of the Example of this invention, and the conventional light emitting element.

符号の説明Explanation of symbols

7:基板
8:半導体層
8a:n型窒化ガリウム系化合物半導体層
8b:発光層
8c:p型窒化ガリウム系化合物半導体層
9:n側導電層
10:p側透明導電層
11:n側パッド電極
12:p側パッド電極
13:透明層
14:凹凸構造
15:反射層
7: Substrate 8: Semiconductor layer 8a: n-type gallium nitride compound semiconductor layer 8b: light emitting layer 8c: p-type gallium nitride compound semiconductor layer 9: n-side conductive layer 10: p-side transparent conductive layer 11: n-side pad electrode 12: p-side pad electrode 13: transparent layer 14: uneven structure 15: reflective layer

Claims (5)

n型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及びp型窒化ガリウム系化合物半導体層で構成される積層体を含む半導体層を有し、前記半導体層の一方主面に透明導電層と透明層とが順次形成されており、前記透明層の屈折率が前記透明導電層の屈折率以上であることを特徴とする発光素子。   An n-type gallium nitride-based compound semiconductor layer, a light-emitting layer made of a gallium nitride-based compound semiconductor, and a semiconductor layer including a laminate composed of a p-type gallium nitride-based compound semiconductor layer, and transparent on one main surface of the semiconductor layer A light emitting device, wherein a conductive layer and a transparent layer are sequentially formed, and a refractive index of the transparent layer is equal to or higher than a refractive index of the transparent conductive layer. 前記透明層の表面に凹凸構造が形成されていることを特徴とする請求項1記載の発光素子。   The light emitting device according to claim 1, wherein an uneven structure is formed on a surface of the transparent layer. 前記半導体層と前記透明導電層が接する界面に凹凸構造が形成されていることを特徴とする請求項1または2記載の発光素子。   The light emitting device according to claim 1, wherein an uneven structure is formed at an interface where the semiconductor layer and the transparent conductive layer are in contact with each other. 前記半導体層は、基板上に形成した反射層上にエピタキシャル成長されていることを特徴とする請求項1乃至3のいずれか記載の発光素子。   4. The light emitting device according to claim 1, wherein the semiconductor layer is epitaxially grown on a reflective layer formed on a substrate. 請求項1乃至4のいずれかの発光素子と、前記発光素子からの発光を受けて光を発する蛍光体及び燐光体の少なくとも一方とを具備していることを特徴とする照明装置。   An illumination device comprising: the light-emitting element according to claim 1; and at least one of a phosphor and a phosphor that emit light upon receiving light emitted from the light-emitting element.
JP2006315512A 2006-11-22 2006-11-22 LIGHT EMITTING ELEMENT AND LIGHTING DEVICE Expired - Fee Related JP5116291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315512A JP5116291B2 (en) 2006-11-22 2006-11-22 LIGHT EMITTING ELEMENT AND LIGHTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315512A JP5116291B2 (en) 2006-11-22 2006-11-22 LIGHT EMITTING ELEMENT AND LIGHTING DEVICE

Publications (2)

Publication Number Publication Date
JP2008130894A true JP2008130894A (en) 2008-06-05
JP5116291B2 JP5116291B2 (en) 2013-01-09

Family

ID=39556412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315512A Expired - Fee Related JP5116291B2 (en) 2006-11-22 2006-11-22 LIGHT EMITTING ELEMENT AND LIGHTING DEVICE

Country Status (1)

Country Link
JP (1) JP5116291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147191A (en) * 2008-12-17 2010-07-01 Panasonic Electric Works Co Ltd Light-emitting device
WO2010147012A1 (en) * 2009-06-17 2010-12-23 住友電気工業株式会社 Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
JP2011066047A (en) * 2009-09-15 2011-03-31 Sharp Corp Nitride semiconductor light emitting element
WO2011059173A2 (en) * 2009-11-13 2011-05-19 Seoul Opto Device Co., Ltd. Light emitting diode chip having distributed bragg reflector, method of fabricating the same, and light emitting diode package having distributed bragg reflector
JP2011216643A (en) * 2010-03-31 2011-10-27 Sharp Corp Method of manufacturing thin film metal oxide
TWI632693B (en) * 2013-04-25 2018-08-11 晶元光電股份有限公司 Light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174191A (en) * 2001-06-25 2003-06-20 Toshiba Corp Semiconductor light-emitting device and manufacturing method thereof
JP2005259970A (en) * 2004-03-11 2005-09-22 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2005268601A (en) * 2004-03-19 2005-09-29 Sumitomo Chemical Co Ltd Compound semiconductor light-emitting device
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2006216706A (en) * 2005-02-02 2006-08-17 Hitachi Cable Ltd Semiconductor light emitting device
JP2006278751A (en) * 2005-03-29 2006-10-12 Mitsubishi Cable Ind Ltd Garium nitride-based semiconductor light emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174191A (en) * 2001-06-25 2003-06-20 Toshiba Corp Semiconductor light-emitting device and manufacturing method thereof
JP2005259970A (en) * 2004-03-11 2005-09-22 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2005268601A (en) * 2004-03-19 2005-09-29 Sumitomo Chemical Co Ltd Compound semiconductor light-emitting device
JP2006191103A (en) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2006216706A (en) * 2005-02-02 2006-08-17 Hitachi Cable Ltd Semiconductor light emitting device
JP2006278751A (en) * 2005-03-29 2006-10-12 Mitsubishi Cable Ind Ltd Garium nitride-based semiconductor light emitting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147191A (en) * 2008-12-17 2010-07-01 Panasonic Electric Works Co Ltd Light-emitting device
WO2010147012A1 (en) * 2009-06-17 2010-12-23 住友電気工業株式会社 Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
JP2011066047A (en) * 2009-09-15 2011-03-31 Sharp Corp Nitride semiconductor light emitting element
WO2011059173A2 (en) * 2009-11-13 2011-05-19 Seoul Opto Device Co., Ltd. Light emitting diode chip having distributed bragg reflector, method of fabricating the same, and light emitting diode package having distributed bragg reflector
WO2011059173A3 (en) * 2009-11-13 2011-09-29 Seoul Opto Device Co., Ltd. Light emitting diode chip having distributed bragg reflector, method of fabricating the same, and light emitting diode package having distributed bragg reflector
JP2011216643A (en) * 2010-03-31 2011-10-27 Sharp Corp Method of manufacturing thin film metal oxide
TWI632693B (en) * 2013-04-25 2018-08-11 晶元光電股份有限公司 Light emitting device

Also Published As

Publication number Publication date
JP5116291B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
KR101449030B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
US7518153B2 (en) Nitride semiconductor light emitting device
JP5237274B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
US20100148199A1 (en) Light emitting device with fine pattern
WO2006132013A1 (en) Semiconductor light emitting element
JP5091823B2 (en) Semiconductor light emitting device
JP5963004B2 (en) Nitride semiconductor light emitting device
JP2007019488A (en) Semiconductor light emitting element
KR20090106299A (en) group 3 nitride-based semiconductor light emitting diodes with ohmic contact light extraction structured layers and methods to fabricate them
JP5116291B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
JP4849866B2 (en) Lighting device
JP5227334B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
JP2005268601A (en) Compound semiconductor light-emitting device
KR100601992B1 (en) Reflective electrode and compound semiconductor light emitting device including the same
TW201417340A (en) Semiconductor light emitting device having with excellent light emitting distribution
JP2008159894A (en) Light emitting element and illuminator
KR101165253B1 (en) Light emitting diode
JP2009032958A (en) Light-emitting element and illuminator
JP2009135192A (en) Light emitting element
JP2006140234A (en) Semiconductor light emitting element and its manufacturing method
JP5037980B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2007250714A (en) Light emitting element
JP2008277430A (en) Nitride semiconductor light-emitting element
JP2009289947A (en) Light emitting element, and lighting apparatus
JP2006339384A (en) Light emitting element, method of manufacturing same, and illuminating apparatus using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5116291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees