TWI632693B - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TWI632693B
TWI632693B TW106133021A TW106133021A TWI632693B TW I632693 B TWI632693 B TW I632693B TW 106133021 A TW106133021 A TW 106133021A TW 106133021 A TW106133021 A TW 106133021A TW I632693 B TWI632693 B TW I632693B
Authority
TW
Taiwan
Prior art keywords
layer
type semiconductor
semiconductor layer
interface
light
Prior art date
Application number
TW106133021A
Other languages
Chinese (zh)
Other versions
TW201743465A (en
Inventor
陳怡名
顧浩民
呂志強
徐子傑
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW106133021A priority Critical patent/TWI632693B/en
Publication of TW201743465A publication Critical patent/TW201743465A/en
Application granted granted Critical
Publication of TWI632693B publication Critical patent/TWI632693B/en

Links

Abstract

一種發光二極體裝置,包含:一發光疊層包含一第一型半導體層、一第二型半導體層及一活性層形成在該第一型半導體層與該第二型半導體層間且發出一光線;以及一反射結構形成於該第一型半導體層上並具有一第一界面與一第二界面,該光線於該第一界面所產生之全反射角大於該光線於該第二界面所產生之全反射角,且該第一型半導體層透過該第一界面與該反射結構電性連接,且該反射結構包含一孔隙;以及一電極結構形成於該第二型半導體層上,且該孔隙係對應於該電極結構的位置。 A light emitting diode device comprising: a light emitting layer comprising a first type semiconductor layer, a second type semiconductor layer and an active layer formed between the first type semiconductor layer and the second type semiconductor layer and emitting a light And a reflective structure formed on the first type semiconductor layer and having a first interface and a second interface, the total reflection angle of the light generated at the first interface is greater than the light generated by the second interface a total reflection angle, and the first type semiconductor layer is electrically connected to the reflective structure through the first interface, and the reflective structure comprises an aperture; and an electrode structure is formed on the second type semiconductor layer, and the aperture system Corresponds to the position of the electrode structure.

Description

發光二極體裝置 Light-emitting diode device

本發明係關於一種發光二極體裝置,更具體而言,係關於一種具有孔隙之發光二極體裝置。 The present invention relates to a light emitting diode device, and more particularly to a light emitting diode device having a void.

固態發光元件中之發光二極體元件(Light Emitting Diode;LED)具有低耗電量、低發熱量、操作壽命長、耐撞擊、體積小、反應速度快、以及可發出穩定波長的色光等良好光電特性,因此常應用於家電、儀表之指示燈及光電產品等領域。然而,如何改善發光二極體元件的發光效率在此領域中仍是一項很重要的議題。 Light Emitting Diode (LED) in solid-state light-emitting elements has low power consumption, low heat generation, long operating life, impact resistance, small volume, fast response, and good color light with stable wavelength. Photoelectric characteristics, so it is often used in the fields of home appliances, instrument indicators and optoelectronic products. However, how to improve the luminous efficiency of the light-emitting diode element is still an important issue in this field.

此外,以上發光二極體元件可進一步結合一次載體(sub-mount)而形成一發光裝置,例如發光二極體封裝結構。所述發光裝置包含一具有至少一電路之次載體;至少一焊料(solder)位於上述次載體上,藉由此焊料將上述發光二極體固定於次載體上並使發光二極體之基板與次載體上之電路形成電連接;以及,一電性連接結構,以電性連接發光二極體之電極墊與次載體上之電路;其中,上述之次載體可以是導線架(lead frame)或大尺寸鑲嵌基底(mounting substrate),以方便發光裝置之電路規劃並提高其散熱效果。 In addition, the above light emitting diode elements may be further combined with a sub-mount to form a light emitting device, such as a light emitting diode package structure. The illuminating device comprises a sub-carrier having at least one circuit; at least one solder is disposed on the sub-carrier, and the illuminating diode is fixed on the sub-carrier by the solder and the substrate of the illuminating diode is The circuit on the secondary carrier forms an electrical connection; and an electrical connection structure electrically connects the electrode pad of the light emitting diode to the circuit on the secondary carrier; wherein the secondary carrier may be a lead frame or A large-sized mounting substrate is used to facilitate the circuit planning of the light-emitting device and improve the heat dissipation effect.

因此,本發明係關於一種具有孔隙之發光二極體裝置。 Accordingly, the present invention is directed to a light emitting diode device having apertures.

一種發光二極體裝置,包含:一發光疊層包含一第一型半導體層、一第二型半導體層及一活性層形成在該第一型半導體層與該第二型半導體層間且發出一光線;一反射結構形成於該第一型半導體層上並具有一第一界面與一第二界面,該光線於該第一界面所產生之全反射角大於該光線於該第二界面所產生之全反射角,且該第一型半導體層透過該第一界面與該反射結構電性連接,且該反射結構包含一孔隙;以及一電極結構形成於該第二型半導體層上,且該孔隙係對應於該電極結構的位置。 A light emitting diode device comprising: a light emitting layer comprising a first type semiconductor layer, a second type semiconductor layer and an active layer formed between the first type semiconductor layer and the second type semiconductor layer and emitting a light a reflective structure is formed on the first type semiconductor layer and has a first interface and a second interface, and the total reflection angle of the light generated at the first interface is greater than the total light generated by the light at the second interface a reflection angle, and the first type semiconductor layer is electrically connected to the reflective structure through the first interface, and the reflective structure includes an aperture; and an electrode structure is formed on the second type semiconductor layer, and the aperture system corresponds to At the location of the electrode structure.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

100、200、300‧‧‧發光二極體裝置 100, 200, 300‧‧‧Lighting diode devices

10‧‧‧基板 10‧‧‧Substrate

12‧‧‧結合結構 12‧‧‧Combination structure

121‧‧‧第一結合層 121‧‧‧First bonding layer

122‧‧‧第二結合層 122‧‧‧Second bonding layer

123‧‧‧第三結合層 123‧‧‧ third bonding layer

14‧‧‧反射結構 14‧‧‧Reflective structure

141‧‧‧金屬層 141‧‧‧metal layer

142‧‧‧透明導電層 142‧‧‧Transparent conductive layer

143‧‧‧孔隙 143‧‧ ‧ pores

144‧‧‧第一界面 144‧‧‧ first interface

145‧‧‧第二界面 145‧‧‧Second interface

146‧‧‧第三界面 146‧‧‧ third interface

147‧‧‧接觸層 147‧‧‧Contact layer

148‧‧‧第四界面 148‧‧‧ fourth interface

15‧‧‧犧牲層 15‧‧‧ sacrificial layer

151、151'、151"‧‧‧圖案化犧牲層 151, 151', 151" ‧ ‧ patterned sacrificial layer

16‧‧‧發光疊層 16‧‧‧Lighting laminate

161‧‧‧第一型半導體層 161‧‧‧First type semiconductor layer

162‧‧‧活性層 162‧‧‧Active layer

163‧‧‧第二型半導體層 163‧‧‧Second type semiconductor layer

17‧‧‧保護層 17‧‧‧Protective layer

18‧‧‧第二電極 18‧‧‧second electrode

180‧‧‧電極墊 180‧‧‧electrode pad

181‧‧‧第一延伸電極部 181‧‧‧First extension electrode

182‧‧‧第二延伸電極部 182‧‧‧Second extension electrode

183‧‧‧第三延伸電極部 183‧‧‧ Third extension electrode

19‧‧‧第一電極 19‧‧‧First electrode

20‧‧‧成長基板 20‧‧‧ Growth substrate

21‧‧‧燈罩 21‧‧‧shade

22‧‧‧透鏡 22‧‧‧ lens

23‧‧‧載體 23‧‧‧ Carrier

24‧‧‧發光模組 24‧‧‧Lighting module

25‧‧‧載板 25‧‧‧ Carrier Board

26‧‧‧散熱元件 26‧‧‧Heat components

27‧‧‧連接件 27‧‧‧Connecting parts

28‧‧‧電路單元 28‧‧‧ circuit unit

30‧‧‧燈泡 30‧‧‧Light bulb

第1圖為為本發明之一實施例中一發光二極體裝置之剖面圖。 1 is a cross-sectional view of a light emitting diode device in accordance with an embodiment of the present invention.

第2圖為為本發明之一實施例中發光二極體裝置之上視圖。 Fig. 2 is a top plan view of a light emitting diode device in accordance with an embodiment of the present invention.

第3A-3E圖為本發明一實施例之製造發光二極體裝置之流程剖面圖。 3A-3E is a cross-sectional view showing the process of manufacturing a light-emitting diode device according to an embodiment of the present invention.

第4A-4H圖為為本發明另一實施例之製造發光二極體裝置之流程剖面圖。 4A-4H is a cross-sectional view showing the process of manufacturing a light-emitting diode device according to another embodiment of the present invention.

第5A及5B圖為另一實施例中圖案化犧牲層與透明導電層之上視圖。 5A and 5B are top views of the patterned sacrificial layer and the transparent conductive layer in another embodiment.

第6圖為為本發明之另一實施例中發光二極體裝置之剖面圖。 Figure 6 is a cross-sectional view showing a light-emitting diode device according to another embodiment of the present invention.

第7圖顯示本發明之發光二極體裝置應用於一燈泡之燈泡爆炸圖。 Fig. 7 is a view showing the explosion of the bulb of the light-emitting diode device of the present invention applied to a light bulb.

以下實施例將伴隨著圖式說明本發明之概念,在圖式或說明中,相似或相同之部分係使用相同之標號,並且在圖式中,元件之形狀或厚度可擴大或縮小。需特別注意的是,圖中未繪示或描述之元件,可以是熟習此技藝之人士所知之形式。 The present invention will be described with reference to the drawings, in which the same or the same reference numerals are used in the drawings or the description, and in the drawings, the shape or thickness of the elements may be enlarged or reduced. It is to be noted that elements not shown or described in the figures may be in a form known to those skilled in the art.

第1圖為本發明之一實施例中一發光二極體裝置100之剖面圖。參照第1圖,發光二極體裝置100包含一基板10,一結合結構12形成在基板10上、一反射結構14形成在結合結構12上、一發光疊層16形成在反射結構14上、一第一電極19形成在基板10上及一第二電極18形成在發光疊層16上。結合結構12包含一第一結合層121、一第二結合層122、及一第三結合層123。反射結構14包含一金屬層141形成在第一結合層121上、一透明導電層142形成在金屬層141上、及一孔隙143形成在透明導電層142與發光疊層16間。發光疊層16包含一第一型半導體層161、活性層162形成在第一型半導體層161上並發出一光線,及一第二型半導體層163形成在活性層162上。第一型半導體層161及第二型半導體層163例如為包覆層(cladding layer)或限制層(confinement layer),可分別提供電子、電洞,使電子、電洞於活性層162中結合以發光。在本實施例中,第一型半導體層161與透明導電層142直接接觸以具有一第一界面144,及第一型半導體層161與孔隙143直接接觸以具有一第二界面145。孔隙143形成在透明導電層142內並未與金屬層141直接接觸。更者,孔隙143之折射率小於透明導電層142之折射率,即第一型半導體層161與透明導電層142的折射率差小於第一型半導體層161與孔隙143的折射率差。因此,當活性層162所發出的光線朝向反射結構14行進時,於第一界面144所產生之全反射角大於光線於第二界面145所產生之全反射角,意即,光線於第二界面145發生全反射的機率大於第一界面144。此外,第一型半導體層161與透明導電層142之第一界面144形成 歐姆接觸,而第一型半導體層161與孔隙143之第二界面144形成非歐姆接觸。 1 is a cross-sectional view of a light emitting diode device 100 in accordance with an embodiment of the present invention. Referring to FIG. 1 , the LED device 100 includes a substrate 10 , a bonding structure 12 is formed on the substrate 10 , a reflective structure 14 is formed on the bonding structure 12 , and a light emitting layer 16 is formed on the reflective structure 14 . The first electrode 19 is formed on the substrate 10 and a second electrode 18 is formed on the light emitting laminate 16. The bonding structure 12 includes a first bonding layer 121, a second bonding layer 122, and a third bonding layer 123. The reflective structure 14 includes a metal layer 141 formed on the first bonding layer 121, a transparent conductive layer 142 formed on the metal layer 141, and an aperture 143 formed between the transparent conductive layer 142 and the light emitting laminate 16. The light emitting laminate 16 includes a first type semiconductor layer 161, an active layer 162 is formed on the first type semiconductor layer 161 to emit a light, and a second type semiconductor layer 163 is formed on the active layer 162. The first type semiconductor layer 161 and the second type semiconductor layer 163 are, for example, a cladding layer or a confinement layer, and respectively provide electrons and holes to combine electrons and holes in the active layer 162. Glowing. In the present embodiment, the first type semiconductor layer 161 is in direct contact with the transparent conductive layer 142 to have a first interface 144, and the first type semiconductor layer 161 is in direct contact with the aperture 143 to have a second interface 145. The voids 143 are formed in the transparent conductive layer 142 and are not in direct contact with the metal layer 141. Moreover, the refractive index of the aperture 143 is smaller than the refractive index of the transparent conductive layer 142, that is, the refractive index difference between the first type semiconductor layer 161 and the transparent conductive layer 142 is smaller than the refractive index difference between the first type semiconductor layer 161 and the aperture 143. Therefore, when the light emitted by the active layer 162 travels toward the reflective structure 14, the total reflection angle generated at the first interface 144 is greater than the total reflection angle generated by the light at the second interface 145, that is, the light is at the second interface. The probability of total reflection occurring at 145 is greater than the first interface 144. In addition, the first interface 144 of the first type semiconductor layer 161 and the transparent conductive layer 142 are formed. The ohmic contact, while the first type semiconductor layer 161 forms a non-ohmic contact with the second interface 144 of the aperture 143.

第2圖顯示之本發明之發光二極體裝置100之上視圖。第2圖中沿著AA’之剖面圖顯示在第1圖。在本實施例中,第二電極18具有一電極墊180及複數個第一電極延伸部181、複數個第二延伸部182、及複數個第三延伸部183。複數第一電極延伸部181由電極墊180沿著X方向往發光二極體裝置100的左右兩側延伸並排列成一直線;複數第二延伸部182由電極墊180沿著Y方向往發光二極體裝置100的上下兩側延伸並排列成一直線且與第一電極延伸部181互相垂直;第三電極延伸部183係與第二延伸部182物理性連接以和電極墊180形成電連接。第三電極延伸部183係平行於第一電極延伸部181,且第一電極延伸部181位於複數第三電極延伸部183之間且可與複數第三電極延伸部183相距相同或不同之距離。部分第一電極延伸部181與第三電極延伸部183之下方係形成於孔隙143,且孔隙143之寬度大於第一電極延伸部181與第三電極延伸部183之寬度(Y方向)。電極墊180下方並未形成孔隙143。孔隙143僅對應形成於電極延伸部181、183的位置且延伸至發光二極體裝置100的兩側邊。在本實施例中,第一電極延伸部181靠近電極墊180之下方並未形成孔隙143。對應於第三電極延伸部183下方之孔隙143的長度(X方向)大於第三電極延伸部183之長度。在另一實施例中,電極延伸部的數目及排列方式,可依實際需求作變化。 Fig. 2 is a top view of the light emitting diode device 100 of the present invention. The cross-sectional view along AA' in Fig. 2 is shown in Fig. 1. In this embodiment, the second electrode 18 has an electrode pad 180, a plurality of first electrode extensions 181, a plurality of second extensions 182, and a plurality of third extensions 183. The plurality of first electrode extensions 181 extend from the electrode pads 180 along the X direction to the left and right sides of the LED device 100 and are arranged in a line; the plurality of second extensions 182 are moved from the electrode pads 180 along the Y direction to the LEDs. The upper and lower sides of the body device 100 extend and are arranged in a straight line and are perpendicular to the first electrode extension portion 181; the third electrode extension portion 183 is physically connected to the second extension portion 182 to form an electrical connection with the electrode pad 180. The third electrode extension portion 183 is parallel to the first electrode extension portion 181, and the first electrode extension portion 181 is located between the plurality of third electrode extension portions 183 and may be the same or different distance from the plurality of third electrode extension portions 183. The lower portions of the first electrode extension portion 181 and the third electrode extension portion 183 are formed in the aperture 143, and the width of the aperture 143 is larger than the width (Y direction) of the first electrode extension portion 181 and the third electrode extension portion 183. No pores 143 are formed under the electrode pads 180. The apertures 143 correspond only to the positions formed at the electrode extensions 181, 183 and extend to both sides of the light emitting diode device 100. In the present embodiment, the first electrode extension portion 181 is not formed below the electrode pad 180 and does not form the aperture 143. The length (X direction) of the aperture 143 corresponding to the lower side of the third electrode extension portion 183 is larger than the length of the third electrode extension portion 183. In another embodiment, the number and arrangement of the electrode extensions can be varied according to actual needs.

在本實施例中,第一型半導體層可為n型半導體層且第二型半導體層可為p型半導體,第一型半導體層及第二型半導體層且包含選自於AlGaAs、AlGaInP、AlInP、InGaP、GaP、及GaAs所構成材料群組中的一種材料或AlInGaN、InGaN、AlGaN及GaN所構成材料群組中的一種材料;p型半導體之摻雜物包含鎂、鈹、鋅、碳、或其組合;n型半導體之摻雜物包含矽、磷、砷、銻或其組合。選擇性地,第一型半導體層可為p型半導體層且第二型半導體層可為n型半導 體。活性層可包含選自於AlGaAs、AlGaInP、AlInP、InGaP、GaP、及GaAs所構成材料群組中的一種材料或AlInGaN、InGaN、AlGaN及GaN所構成材料群組中的一種材料。活性層結構可為單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙側雙異質結構(double-side double heterostructure;DDH)、或多層量子井(multi-quantum well;MQW)。基板則包含選自砷化鎵(GaAs)、磷化鎵(GaP)、鍺(Ge)、藍寶石、玻璃、鑽石、碳化矽(SiC)、矽、氮化鎵(GaN)、及氧化鋅(ZnO)所構成材料組群中之至少一種材料或其它替代性材料取代之。金屬層可為單層或多層結構,包含銀、鋁、金、鎳或及其組合。第一結合層、一第二結合層、及一第三結合層分別可為單層或多層,且包含金屬或膠材。金屬包含金、銦、錫、鈦、鉑、鉍或其組合。膠材包含苯環丁烯(BCB)、環氧樹脂(Epoxy)、聚二甲基矽氧烷(PDMS)、矽膠(SiOx)、氧化鋁(Al2O3)、二氧化鈦(TiO2)、氮化矽(SiNx)、或其組合。透明導電層可包含金屬氧化物,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鋅(IZO)、類鑽碳薄膜(DLC)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)或上述材料之化合物。孔隙可包含空氣、氮氣、氦氣、或氬氣。 In this embodiment, the first type semiconductor layer may be an n-type semiconductor layer and the second type semiconductor layer may be a p-type semiconductor, the first type semiconductor layer and the second type semiconductor layer and include one selected from the group consisting of AlGaAs, AlGaInP, and AlInP. a material in a group of materials composed of InGaP, GaP, and GaAs or a material in a group of materials composed of AlInGaN, InGaN, AlGaN, and GaN; the dopant of the p-type semiconductor includes magnesium, germanium, zinc, carbon, Or a combination thereof; the dopant of the n-type semiconductor comprises germanium, phosphorus, arsenic, antimony or a combination thereof. Alternatively, the first type semiconductor layer may be a p-type semiconductor layer and the second type semiconductor layer may be an n-type semiconductor. The active layer may include one selected from the group consisting of AlGaAs, AlGaInP, AlInP, InGaP, GaP, and GaAs, or one of a group of materials composed of AlInGaN, InGaN, AlGaN, and GaN. The active layer structure may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum well (multi-quantum well; MQW). The substrate comprises a material selected from the group consisting of gallium arsenide (GaAs), gallium phosphide (GaP), germanium (Ge), sapphire, glass, diamond, tantalum carbide (SiC), germanium, gallium nitride (GaN), and zinc oxide (ZnO). Substituting at least one of the constituent material groups or other alternative materials. The metal layer can be a single layer or a multilayer structure comprising silver, aluminum, gold, nickel, or a combination thereof. The first bonding layer, the second bonding layer, and the third bonding layer may each be a single layer or a plurality of layers, and comprise a metal or a glue. The metal comprises gold, indium, tin, titanium, platinum, rhodium or a combination thereof. The rubber material comprises benzocyclobutene (BCB), epoxy resin (Epoxy), polydimethyl methoxy oxane (PDMS), yttrium (SiO x ), alumina (Al 2 O 3 ), titanium dioxide (TiO 2 ), Niobium nitride (SiN x ), or a combination thereof. The transparent conductive layer may include a metal oxide such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), Zinc oxide oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium zinc oxide (IZO), diamond-like carbon film (DLC), indium gallium oxide (IGO), oxidation Gallium aluminum zinc (GAZO) or a compound of the above materials. The pores may comprise air, nitrogen, helium, or argon.

第3A-3E圖為依本發明之一實施例製造發光二極體裝置100之流程剖面圖。參照第3A圖,提供成長基板20(例如:GaAs),及一發光疊層16磊晶形成於成長基板20上。發光疊層16依序包含第二型半導體層163(例如:AlGaInP)、活性層162(例如:AlGaInP)及第一型半導體層161(例如:GaP)。參照第3B圖,形成一犧牲層15(例如:二氧化矽(SiO2))於第一型半導體層161上。在另一實施例,犧牲層15亦可包含光阻、氮化矽(SiNx)或金屬(例如:鎳)。參照第3C圖,利用黃光製程將犧牲層15圖案化以形成一圖案化犧牲層151。形成透明導電層142(例如:ITO)於圖案化犧牲層151與第一型半導體層161上,以包覆圖 案化犧牲層151於其內。參照第3D圖,形成金屬層141(例如:銀)於透明導電層142上;第一結合層122與第二結合層123形成於金屬層141上;及第三結合層形成於基板10(例如:矽)上。藉由接合第二結合層122與第三結合層123,將基板10接合至金屬層141。在另一實施例中,第一結合層121包含多層(例如:Ti/Pt/Au)。Ti層可做為障蔽層(barrier layer)以防止金屬層141之金屬擴散至結合層;Pt層可做為黏結層(adhesion layer)以增加Ti層與Au層間的黏著力。參照第3E圖,利用蝕刻方式移除圖案化犧牲層151以形成孔隙143。蝕刻方式可使用氣相蝕刻或液相蝕刻;氣相蝕刻可包含氣相氟化氫;液相蝕刻可包含氫氧化鈉、氟化氫、氟化銨或其混和物。在移除成長基板20以暴露出第二型半導體層163之後,分別形成第一電極19於基板10上,第二電極18於第二型半導體層163上。第二電極18包含電極墊180及延伸電極部183。延伸電極部183係對應於孔隙143位置。在另一實施例中,可先移除基板,再進行蝕刻圖案化犧牲層步驟。需注意的是,當藉由氣相蝕刻方式來蝕刻圖案化犧牲層151時,因氣相蝕刻未包含液體(例如:水),當圖案化犧牲層151被移除時,第一型半導體層161與透明導電層142並不因表面張力而互相黏結。藉此,圖案化犧牲層151與孔隙143實質上具有相同的形狀。此外,圖案化犧牲層151可具有一小於800Å的高度,意即,孔隙143亦具有一小於800Å的高度。 3A-3E is a cross-sectional view showing the process of fabricating a light-emitting diode device 100 in accordance with an embodiment of the present invention. Referring to FIG. 3A, a growth substrate 20 (for example, GaAs) is provided, and a light-emitting laminate 16 is epitaxially formed on the growth substrate 20. The light emitting laminate 16 sequentially includes a second type semiconductor layer 163 (for example, AlGaInP), an active layer 162 (for example, AlGaInP), and a first type semiconductor layer 161 (for example, GaP). Referring to FIG. 3B, a sacrificial layer 15 (for example, cerium oxide (SiO 2 )) is formed on the first type semiconductor layer 161. In another embodiment, the sacrificial layer 15 may also comprise photoresist, tantalum nitride (SiN x ) or metal (eg, nickel). Referring to FIG. 3C, the sacrificial layer 15 is patterned using a yellow light process to form a patterned sacrificial layer 151. A transparent conductive layer 142 (eg, ITO) is formed on the patterned sacrificial layer 151 and the first type semiconductor layer 161 to coat the patterned sacrificial layer 151 therein. Referring to FIG. 3D, a metal layer 141 (eg, silver) is formed on the transparent conductive layer 142; a first bonding layer 122 and a second bonding layer 123 are formed on the metal layer 141; and a third bonding layer is formed on the substrate 10 (for example) :矽). The substrate 10 is bonded to the metal layer 141 by bonding the second bonding layer 122 and the third bonding layer 123. In another embodiment, the first bonding layer 121 comprises a plurality of layers (eg, Ti/Pt/Au). The Ti layer can serve as a barrier layer to prevent the metal of the metal layer 141 from diffusing to the bonding layer; the Pt layer can be used as an adhesion layer to increase the adhesion between the Ti layer and the Au layer. Referring to FIG. 3E, the patterned sacrificial layer 151 is removed by etching to form the voids 143. The etching may use vapor phase etching or liquid phase etching; the vapor phase etching may include vapor phase hydrogen fluoride; the liquid phase etching may include sodium hydroxide, hydrogen fluoride, ammonium fluoride, or a mixture thereof. After the growth substrate 20 is removed to expose the second type semiconductor layer 163, the first electrode 19 is formed on the substrate 10, and the second electrode 18 is on the second type semiconductor layer 163. The second electrode 18 includes an electrode pad 180 and an extended electrode portion 183. The extended electrode portion 183 corresponds to the position of the aperture 143. In another embodiment, the substrate may be removed prior to etching the patterned sacrificial layer step. It should be noted that when the patterned sacrificial layer 151 is etched by vapor phase etching, since the vapor phase etching does not contain a liquid (for example, water), when the patterned sacrificial layer 151 is removed, the first type semiconductor layer is removed. 161 and the transparent conductive layer 142 are not bonded to each other due to surface tension. Thereby, the patterned sacrificial layer 151 and the aperture 143 have substantially the same shape. Furthermore, the patterned sacrificial layer 151 can have a height of less than 800 Å, that is, the aperture 143 also has a height of less than 800 Å.

第4A-4H圖為本發明之另一實施例中製造發光二極體裝置200之流程剖面圖。發光二極體裝置200與發光二極體裝置100結構類似,其中相同的符號或是記號所對應的元件、裝置或步驟,為具有類似或是相同的元件、裝置或步驟。參照第4A圖,提供成長基板20(例如:GaAs),及一發光疊層16磊晶形成於成長基板20上。發光疊層16依序包含第二型半導體層163(例如:AlGaInP)、活性層162(例如:AlGaInP)及第一型半導體層161(例如:GaP)。參照第4B圖,形成一犧牲層15(例如:二氧化矽(SiO2))於第一型半導體層161上。參照第4C 圖,利用黃光製程將犧牲層15圖案化以形成一圖案化犧牲層151'。形成透明導電層142(例如:ITO)於部分圖案化犧牲層151'與第一型半導體層161上,且此透明導電層142並未完全包覆圖案化犧牲層151'而暴露出部分圖案化犧牲層151'。參照第4D圖,形成金屬層141於透明導電層142上。形成保護層17以覆蓋透明導電層142及金屬層141之側壁及部分圖案化犧牲層151'。參照第4E圖,利用氣相蝕刻方式(例如:氣相氟化氫,HF)移除圖案化犧牲層151'以形成孔隙143。接著,參照第4F圖,移除保護層17後,形成第一結合層121以覆蓋透明導電層142及金屬層131之側壁,藉此,孔隙143可形成並埋入於第一結合層121內與透明導電層142之間。第一結合層121可為單層或多層。在一實施例中,第一結合層121包含多層(例如:Ti/Pt/Au)。Ti層可做為障蔽層(barrier layer)以防止金屬層141之金屬擴散至結合層;Pt層可做為黏結層(adhesion layer)以增加Ti層與Au層間的黏著力。 4A-4H is a cross-sectional view showing the process of manufacturing the light-emitting diode device 200 in another embodiment of the present invention. The illuminating diode device 200 is similar in structure to the illuminating diode device 100, wherein the same symbols or components, devices or steps corresponding to the symbols have similar or identical components, devices or steps. Referring to FIG. 4A, a growth substrate 20 (for example, GaAs) is provided, and a light-emitting laminate 16 is epitaxially formed on the growth substrate 20. The light emitting laminate 16 sequentially includes a second type semiconductor layer 163 (for example, AlGaInP), an active layer 162 (for example, AlGaInP), and a first type semiconductor layer 161 (for example, GaP). Referring to FIG. 4B, a sacrificial layer 15 (for example, cerium oxide (SiO 2 )) is formed on the first type semiconductor layer 161. Referring to FIG. 4C, the sacrificial layer 15 is patterned using a yellow light process to form a patterned sacrificial layer 151'. Forming a transparent conductive layer 142 (eg, ITO) on the partially patterned sacrificial layer 151' and the first type semiconductor layer 161, and the transparent conductive layer 142 does not completely cover the patterned sacrificial layer 151' to expose a partial patterning Sacrificial layer 151'. Referring to FIG. 4D, a metal layer 141 is formed on the transparent conductive layer 142. A protective layer 17 is formed to cover the sidewalls of the transparent conductive layer 142 and the metal layer 141 and partially patterned the sacrificial layer 151'. Referring to FIG. 4E, the patterned sacrificial layer 151' is removed by a vapor phase etching method (for example, vapor phase hydrogen fluoride, HF) to form the voids 143. Next, referring to FIG. 4F, after the protective layer 17 is removed, the first bonding layer 121 is formed to cover the sidewalls of the transparent conductive layer 142 and the metal layer 131, whereby the aperture 143 can be formed and buried in the first bonding layer 121. Between the transparent conductive layer 142. The first bonding layer 121 may be a single layer or a plurality of layers. In an embodiment, the first bonding layer 121 comprises a plurality of layers (eg, Ti/Pt/Au). The Ti layer can serve as a barrier layer to prevent the metal of the metal layer 141 from diffusing to the bonding layer; the Pt layer can be used as an adhesion layer to increase the adhesion between the Ti layer and the Au layer.

參照第4G圖,藉由第一結合層121、第二結合層122、第三結合層123以將基板10(例如:矽)結合至發光疊層16。參照第4H圖,移除成長基板20後,分別形成第一電極19於基板10上、第二電極18於第二型半導體層163上。在此實施例中,第二電極18並未對應於孔隙143位置。第一型半導體層161與透明導電層142直接接觸以具有一第一界面144、第一型半導體層161與孔隙143直接接觸以具有一第二界面145以及第一型半導體層161與第一結合層121以具有一第三界面146。孔隙143亦未與金屬層141直接接觸。更者,孔隙143之折射率小於透明導電層142與第一結合層121之折射率,即第一型半導體層161與透明導電層142的折射率差小於第一型半導體層161與孔隙143的折射率差,以及第一型半導體層161與第一結合層121的折射率差小於第一型半導體層161與孔隙143的折射率差。因此,當活性層162所發出的光線朝向反射結構14行進時,光線於第一界面144與第三界面146所產生之全反射角大於光線於第二 界面145所產生之全反射角,意即,光線於第二界面145發生全反射的機率大於第一界面144與第三界面146。需注意的是,當活性層162所發出的光線為藍光(波峰值約為430nm-480nm)時,第一結合層121對於藍光之折射率小於透明導電層之折射率,例如當第一結合層121為Ti或Pt,透明導電層為ITO時,第一結合層121之折射率約為1.6-1.9,透明導電層之折射率約為2.0-2.3。意即,藍光於第一界面144所產生之全反射角大於光線於第三界面146所產生之全反射角,意即,光線於第三界面146發生全反射的機率大於第一界面144。當活性層162所發出的光線為紅光(波峰值約為630nm-670nm)時,第一結合層121對於紅光之折射率大於透明導電層之折射率142,例如當第一結合層121為Ti或Pt,透明導電層為ITO時,第一結合層121之折射率約為2.0-2.3,透明導電層之折射率約為1.7-1.9。紅光於第三界面146所產生之全反射角大於光線於第一界面144所產生之全反射角,意即,光線於第一界面144發生全反射的機率大於第三界面146。當活性層162所發出的光線為藍光或紅光時,孔隙143的折射率皆約略為1。此外,第一型半導體層161與透明導電層142之第一界面144形成歐姆接觸;第一型半導體層161與孔隙143之第二界面144形成非歐姆接觸;且第一型半導體層161與第一結合層121之第三界面146形成非歐姆接觸。 Referring to FIG. 4G, the substrate 10 (eg, germanium) is bonded to the light emitting laminate 16 by the first bonding layer 121, the second bonding layer 122, and the third bonding layer 123. Referring to FIG. 4H, after the growth substrate 20 is removed, the first electrode 19 is formed on the substrate 10 and the second electrode 18 is formed on the second semiconductor layer 163. In this embodiment, the second electrode 18 does not correspond to the location of the aperture 143. The first type semiconductor layer 161 is in direct contact with the transparent conductive layer 142 to have a first interface 144. The first type semiconductor layer 161 is in direct contact with the aperture 143 to have a second interface 145 and the first type semiconductor layer 161 is combined with the first layer. Layer 121 has a third interface 146. The pores 143 are also not in direct contact with the metal layer 141. Moreover, the refractive index of the aperture 143 is smaller than the refractive index of the transparent conductive layer 142 and the first bonding layer 121, that is, the refractive index difference between the first type semiconductor layer 161 and the transparent conductive layer 142 is smaller than that of the first type semiconductor layer 161 and the aperture 143. The refractive index difference and the refractive index difference between the first type semiconductor layer 161 and the first bonding layer 121 are smaller than the refractive index difference between the first type semiconductor layer 161 and the aperture 143. Therefore, when the light emitted by the active layer 162 travels toward the reflective structure 14, the total reflection angle of the light generated by the first interface 144 and the third interface 146 is greater than that of the second light. The total reflection angle generated by the interface 145, that is, the probability that the light is totally reflected at the second interface 145 is greater than the first interface 144 and the third interface 146. It should be noted that when the light emitted by the active layer 162 is blue light (wave peak is about 430 nm to 480 nm), the refractive index of the first bonding layer 121 for blue light is smaller than that of the transparent conductive layer, for example, when the first bonding layer 121 is Ti or Pt. When the transparent conductive layer is ITO, the first bonding layer 121 has a refractive index of about 1.6-1.9, and the transparent conductive layer has a refractive index of about 2.0-2.3. That is, the total reflection angle generated by the blue light at the first interface 144 is greater than the total reflection angle generated by the light at the third interface 146, that is, the probability of total reflection of the light at the third interface 146 is greater than the first interface 144. When the light emitted by the active layer 162 is red light (wave peak is about 630 nm to 670 nm), the refractive index of the first bonding layer 121 for red light is greater than the refractive index 142 of the transparent conductive layer, for example, when the first bonding layer 121 is Ti or Pt, when the transparent conductive layer is ITO, the first bonding layer 121 has a refractive index of about 2.0 to 2.3, and the transparent conductive layer has a refractive index of about 1.7 to 1.9. The total reflection angle generated by the red light at the third interface 146 is greater than the total reflection angle generated by the light at the first interface 144, that is, the probability of total reflection of the light at the first interface 144 is greater than the third interface 146. When the light emitted by the active layer 162 is blue or red, the refractive index of the aperture 143 is approximately one. In addition, the first type semiconductor layer 161 forms an ohmic contact with the first interface 144 of the transparent conductive layer 142; the first type semiconductor layer 161 forms a non-ohmic contact with the second interface 144 of the aperture 143; and the first type semiconductor layer 161 and the A third interface 146 of a bonding layer 121 forms a non-ohmic contact.

第5A及5B圖顯示發光二極體裝置200之圖案化犧牲層151'與透明導電層142之上視圖。參照第5A圖,圖案化犧牲層151'係包含複數個長條狀結構,且透明導電層142係形成於長條狀結構上並覆蓋部分之長條狀結構。參照第5B圖,圖案化犧牲層151"包含複數個彼此垂直之長條狀結構以形成網格狀之結構。透明導電層142亦係形成於網格狀之結構上並覆蓋部分網格狀之結構。在一實施例中,圖案化犧牲層151'、151"之表面積與第一型半導體層161之表面積之面積比介於10%至90%、或50%至90%。然,圖案化犧牲層151'、151"之面積、形狀、及數目,可依實際需求作變化。透明導電層142之表面積與第一型半導體 層161之表面積之面積比介於10%至90%、或10%至50%。 5A and 5B are views showing a top view of the patterned sacrificial layer 151' and the transparent conductive layer 142 of the light emitting diode device 200. Referring to FIG. 5A, the patterned sacrificial layer 151' includes a plurality of elongated structures, and the transparent conductive layer 142 is formed on the elongated structure and covers a portion of the elongated structure. Referring to FIG. 5B, the patterned sacrificial layer 151" includes a plurality of elongated strip structures perpendicular to each other to form a grid-like structure. The transparent conductive layer 142 is also formed on the grid-like structure and covers a portion of the grid. In one embodiment, the area ratio of the surface area of the patterned sacrificial layer 151', 151" to the surface area of the first type semiconductor layer 161 is between 10% and 90%, or between 50% and 90%. However, the area, shape, and number of the patterned sacrificial layers 151', 151" can be varied according to actual needs. The surface area of the transparent conductive layer 142 and the first type semiconductor The area ratio of the surface area of layer 161 is between 10% and 90%, or between 10% and 50%.

第6圖顯示本發明之另一實施例中一發光二極體裝置300之剖面圖。發光二極體裝置300與發光二極體裝置200結構類似,其中相同的符號或是記號所對應的元件、裝置或步驟,為具有類似或是相同的元件、裝置或步驟。在此實施例中,發光二極體裝置300更包含接觸層147形成於透明導電層142與第一型半導體161間以幫助電流分散。接觸層147被透明導電層142包覆或埋入於其內且並未與金屬層141直接接觸。第一型半導體層161與接觸層147直接接觸以具有一第四界面148並形成歐姆接觸。接觸層147可包含金屬或合金。金屬可包含銅、鋁、銦、錫、金、鉑、鋅、銀、鈦、鎳、鉛、鈀、或鉻;合金可包含鈹-金、鍺-金、鉻-金、銀-鈦、銅-錫、銅-鋅、銅-鎘、錫-鉛-錫、錫-鉛-鋅、鎳-錫、或鎳-鈷。 Figure 6 is a cross-sectional view showing a light emitting diode device 300 in another embodiment of the present invention. The illuminating diode device 300 is similar in structure to the illuminating diode device 200, wherein the same symbols or components, devices or steps corresponding to the symbols have similar or identical components, devices or steps. In this embodiment, the LED device 300 further includes a contact layer 147 formed between the transparent conductive layer 142 and the first type semiconductor 161 to facilitate current dispersion. The contact layer 147 is covered or embedded in the transparent conductive layer 142 and is not in direct contact with the metal layer 141. The first type semiconductor layer 161 is in direct contact with the contact layer 147 to have a fourth interface 148 and form an ohmic contact. Contact layer 147 can comprise a metal or an alloy. The metal may comprise copper, aluminum, indium, tin, gold, platinum, zinc, silver, titanium, nickel, lead, palladium, or chromium; the alloy may comprise bismuth-gold, bismuth-gold, chromium-gold, silver-titanium, copper - tin, copper-zinc, copper-cadmium, tin-lead-tin, tin-lead-zinc, nickel-tin, or nickel-cobalt.

第7圖為本發明之之發光二極體裝置應用於一燈泡之燈泡爆炸圖。燈泡30包含一燈罩21、一透鏡22、一發光模組24、一載板25、一散熱元件26、一連接件27、及一電路單元28。發光模組24包含一載體23及複數個發光裝置。發光裝置可為任何上述所提及之發光二極體裝置100(200、300)。如第7圖所示,例如,12個發光裝置位於載體23上,其中包含六個紅光發光裝置及六個藍光發光裝置彼此交錯排列且彼此電性連接(可為串聯、並聯或橋式聯接)。藍光發光裝置可包含一螢光粉置於其上以轉換藍光發光裝置所發出的光。藍光發光裝置所發出的光與轉換的光混和以形成一白光,並搭配紅光發光裝置後使燈泡30發出一色溫為2400-3000K之暖白光。 Fig. 7 is a view showing the explosion of a light bulb of a light-emitting diode device of the present invention applied to a light bulb. The light bulb 30 includes a lamp cover 21, a lens 22, a light emitting module 24, a carrier 25, a heat dissipating component 26, a connecting member 27, and a circuit unit 28. The light module 24 includes a carrier 23 and a plurality of light emitting devices. The illumination device can be any of the above-described light-emitting diode devices 100 (200, 300). As shown in FIG. 7, for example, 12 illuminating devices are located on the carrier 23, wherein the six red illuminating devices and the six blue illuminating devices are staggered and electrically connected to each other (can be connected in series, in parallel or in a bridge) ). The blue light emitting device may include a phosphor powder disposed thereon to convert light emitted by the blue light emitting device. The light emitted by the blue light emitting device is mixed with the converted light to form a white light, and is matched with the red light emitting device to cause the bulb 30 to emit a warm white light having a color temperature of 2400-3000K.

本發明所列舉之各實施例僅用以說明本發明,並非用幾限制本發明之範圍。任何人對本發明所作之任何顯而易見之修飾或變更接不脫離本發明之精神與範圍。 The examples of the invention are intended to be illustrative only and not to limit the scope of the invention. Any obvious modifications or variations of the present invention are possible without departing from the spirit and scope of the invention.

Claims (10)

一種發光二極體裝置,包含:一發光疊層包含一第一型半導體層、一第二型半導體層及一活性層形成在該第一型半導體層與該第二型半導體層間且發出一光線;一反射結構形成於該第一型半導體層上並具有一第一界面與一第二界面,該光線於該第一界面所產生之全反射角大於該光線於該第二界面所產生之全反射角,且該第一型半導體層透過該第一界面與該反射結構電性連接,且該反射結構包含一孔隙;以及一電極結構形成於該第二型半導體層上,且該孔隙係對應於該電極結構的位置。 A light emitting diode device comprising: a light emitting layer comprising a first type semiconductor layer, a second type semiconductor layer and an active layer formed between the first type semiconductor layer and the second type semiconductor layer and emitting a light a reflective structure is formed on the first type semiconductor layer and has a first interface and a second interface, and the total reflection angle of the light generated at the first interface is greater than the total light generated by the light at the second interface a reflection angle, and the first type semiconductor layer is electrically connected to the reflective structure through the first interface, and the reflective structure includes an aperture; and an electrode structure is formed on the second type semiconductor layer, and the aperture system corresponds to At the location of the electrode structure. 如申請專利範圍第1項所述之發光二極體裝置,其中,該反射結構包含一透明導電層,且該第一界面位於該第一型半導體層與該透明導電層之間。 The light emitting diode device of claim 1, wherein the reflective structure comprises a transparent conductive layer, and the first interface is located between the first type semiconductor layer and the transparent conductive layer. 如申請專利範圍第2項所述之發光二極體裝置,其中,該第二界面位於該第一型半導體層與該孔隙之間。 The light emitting diode device of claim 2, wherein the second interface is between the first type semiconductor layer and the aperture. 如申請專利範圍第3項所述之發光二極體裝置,其中,該反射結構包含一金屬層與該透明導電層接觸。 The light emitting diode device of claim 3, wherein the reflective structure comprises a metal layer in contact with the transparent conductive layer. 如申請專利範圍第4項所述之發光二極體裝置,其中,該孔隙未與該金屬層接觸。 The light-emitting diode device of claim 4, wherein the aperture is not in contact with the metal layer. 如申請專利範圍第1項所述之發光二極體裝置,其中,該孔隙包含空氣、氮氣、氦氣或氬氣。 The light-emitting diode device of claim 1, wherein the pores comprise air, nitrogen, helium or argon. 如申請專利範圍第1項所述之發光二極體裝置,更包含一接觸層形成於該反射結構與該第一型半導體層之間。 The light emitting diode device of claim 1, further comprising a contact layer formed between the reflective structure and the first type semiconductor layer. 如申請專利範圍第1項所述之發光二極體裝置,其中,由一剖面 觀之,該孔隙具有一寬度大於該電極結構之寬度。 The light-emitting diode device according to claim 1, wherein the profile is In view, the aperture has a width greater than the width of the electrode structure. 如申請專利範圍第1項所述之發光二極體裝置,其中,更包含一結合層包覆該反射結構,且該結合層與該第一型半導體層相接觸。 The illuminating diode device of claim 1, further comprising a bonding layer covering the reflective structure, wherein the bonding layer is in contact with the first type semiconductor layer. 一種發光二極體裝置,包含:一發光疊層包含一第一型半導體層、一第二型半導體層及一活性層形成在該第一型半導體層與該第二型半導體層間且發出一光線;以及一反射結構形成於該第一型半導體層上並具有一第一界面與一第二界面,該光線於該第一界面所產生之全反射角大於該光線於該第二界面所產生之全反射角,且該第一型半導體層透過該第一界面與該反射結構電性連接,且該反射結構包含一金屬層、一孔隙及一透明導電層,其中該孔隙未接觸於該金屬層,且該金屬層與該透明導電層接觸。 A light emitting diode device comprising: a light emitting layer comprising a first type semiconductor layer, a second type semiconductor layer and an active layer formed between the first type semiconductor layer and the second type semiconductor layer and emitting a light And a reflective structure formed on the first type semiconductor layer and having a first interface and a second interface, the total reflection angle of the light generated at the first interface is greater than the light generated by the second interface a total reflection angle, and the first type semiconductor layer is electrically connected to the reflective structure through the first interface, and the reflective structure comprises a metal layer, a hole and a transparent conductive layer, wherein the hole is not in contact with the metal layer And the metal layer is in contact with the transparent conductive layer.
TW106133021A 2013-04-25 2013-04-25 Light emitting device TWI632693B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106133021A TWI632693B (en) 2013-04-25 2013-04-25 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106133021A TWI632693B (en) 2013-04-25 2013-04-25 Light emitting device

Publications (2)

Publication Number Publication Date
TW201743465A TW201743465A (en) 2017-12-16
TWI632693B true TWI632693B (en) 2018-08-11

Family

ID=61230469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106133021A TWI632693B (en) 2013-04-25 2013-04-25 Light emitting device

Country Status (1)

Country Link
TW (1) TWI632693B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130894A (en) * 2006-11-22 2008-06-05 Kyocera Corp Light emitting element and illumination apparatus
TW200828611A (en) * 2006-12-18 2008-07-01 Delta Electronics Inc Electroluminescent device, and fabrication method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130894A (en) * 2006-11-22 2008-06-05 Kyocera Corp Light emitting element and illumination apparatus
TW200828611A (en) * 2006-12-18 2008-07-01 Delta Electronics Inc Electroluminescent device, and fabrication method thereof

Also Published As

Publication number Publication date
TW201743465A (en) 2017-12-16

Similar Documents

Publication Publication Date Title
US10797201B2 (en) High voltage monolithic LED chip
KR102239627B1 (en) Light emitting device package
KR102027301B1 (en) Enhancement in the light extraction efficiencies of Light Emitting Diode by adoption of reflection layer
US8823031B2 (en) Semiconductor light emitting device including metal reflecting layer
JP5858633B2 (en) Light emitting device, light emitting device package
JP2009164423A (en) Light-emitting element
TWI625868B (en) Optoelectronic device and method for manufacturing the same
KR20110107665A (en) Light emitting diode and light emitting device comprising the same
US11349047B2 (en) Light-emitting device
KR101769078B1 (en) Light emitting diode chip having electrode pad
KR100836494B1 (en) Semiconductor light emitting device
WO2017215423A1 (en) Light-emitting diode and method for manufacturing same
TWI538184B (en) Light-emitting diode array
JP5266349B2 (en) Light emitting device
KR102413447B1 (en) Light emitting device
WO2014192226A1 (en) Light-emitting element
KR102455091B1 (en) Light emitting device and light emitting device package including the device
KR102445547B1 (en) Light emitting device and light emitting device package including the device
TWI632693B (en) Light emitting device
CN110246946B (en) Light-emitting diode dielectric mirror
TW201424043A (en) Method of making a light emitting device and light emitting devive made thereof
KR101944410B1 (en) Light emitting device
KR101776302B1 (en) Light emitting device and light emitting device package
KR101710889B1 (en) Light Emitting Device
KR101781217B1 (en) Light emitting device and light emitting device package