JP2005268601A - Compound semiconductor light-emitting device - Google Patents

Compound semiconductor light-emitting device Download PDF

Info

Publication number
JP2005268601A
JP2005268601A JP2004080415A JP2004080415A JP2005268601A JP 2005268601 A JP2005268601 A JP 2005268601A JP 2004080415 A JP2004080415 A JP 2004080415A JP 2004080415 A JP2004080415 A JP 2004080415A JP 2005268601 A JP2005268601 A JP 2005268601A
Authority
JP
Japan
Prior art keywords
layer
film
thin film
transparent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004080415A
Other languages
Japanese (ja)
Inventor
Hisamitsu Abe
Yoshinobu Ono
Sadanori Yamanaka
寿充 安部
善伸 小野
貞則 山中
Original Assignee
Sumitomo Chemical Co Ltd
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, 住友化学株式会社 filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004080415A priority Critical patent/JP2005268601A/en
Publication of JP2005268601A publication Critical patent/JP2005268601A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers]
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well lasers [SQW-lasers], multiple quantum well lasers [MQW-lasers] or graded index separate confinement heterostructure lasers [GRINSCH-lasers] in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Abstract

<P>PROBLEM TO BE SOLVED: To improve light extraction efficiency in a compound semiconductor light-emitting device. <P>SOLUTION: An ohmic electrode layer 4 for hole injection is provided in contact with a tunneling contact layer (CTL layer) 38 of a nitride semiconductor layer 3 in a light-emitting diode 10 as a transparent conductive ohmic electrode layer, and further a transparent thin-film layer 5 is provided in contact with the ohmic electrode layer 4 for hole injection. By setting the ohmic electrode layer 4 for hole injection to be an ITO, an electrode having high light transmission efficiency can be composed, thus improving light extraction efficiency. By setting the optical film thickness of the ohmic electrode layer 4 for hole injection to an integer multiple of 1/4 of the emission wavelength, the light extraction efficiency can be improved further. And, by providing the transparent thin-film layer 5, a reflection factor can be reduced further by adjusting an refractive index and a film thickness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化物系化合物半導体を用いた発光素子に関するものである。 The present invention relates to a light emitting device using a nitride-based compound semiconductor.

近年、窒化物系化合物半導体を利用した発光ダイオードやレーザーダイオードなどの発光素子が実用化されている。 Recently, light emitting elements such as light emitting diodes and laser diodes utilizing a nitride-based compound semiconductor has been put to practical use. 中でも発光ダイオードの用途は、ディスプレイや信号から白色光を利用したバックライト、一般照明分野へと広がろうとしており、そのためには発光素子の発光効率の向上が求められている。 Among these light emitting diode applications, backlight using white light from a display or signal, and trying to spread to general lighting field, in order that has been required to improve the luminous efficiency of the light-emitting element.

発光効率を向上させるために、光取出し面の側に形成するオーミック電極として従来用いられている金属薄膜に代えて、より光透過性が高く、透明導電膜として知られているスズドープ酸化インジウム(以下、「ITO」と称する。)の厚さ300nm程度の膜をオーミック電極として利用することが試みられ、n型GaNに対して電子注入用オーミック電極として利用できることが報告されている(例えば、非特許文献1参照。)が、発光効率の向上は十分ではなかった。 In order to improve the luminous efficiency, in place of the metal thin film is conventionally used as an ohmic electrode formed on the side of the light extraction surface, more light-transmitting high, tin-doped indium oxide, known as a transparent conductive film (hereinafter , referred to as "ITO".) of being the thickness of 300nm approximately membrane attempt be utilized as an ohmic electrode, it has been reported that can be used as an ohmic electrode for electrons injected into the n-type GaN (e.g., non-patent reference 1.) is, improvement in luminous efficiency was not sufficient.

本発明の目的は、光取出し面に透明導電膜からなるオーミック電極を有してなり、発光効率の高い化合物半導体発光素子を提供することにある。 An object of the present invention, it has an ohmic electrode made of a transparent conductive film on the light extraction surface, and to provide a high luminous efficiency compound semiconductor light-emitting device.

従来技術における上述の問題を解決するために、オーミック電極としてITO等の透明導電膜を用いても発光素子の発光効率が十分ではない原因について本発明者が鋭意検討した結果、発光層から発生した光が透明導電膜により反射され、光の取出し面から出射する光の量が減少することが発光効率が上がらない原因であることを見出し、光の取出し面における反射率を低減させる機能を透明導電膜に備えてなる発光素子の発光効率が高いことを見出し、本発明を完成させるに至ったものである。 In order to solve the aforementioned problems in the prior art, the present inventors have studied intensively about the cause luminous efficiency is not sufficient for the light emitting element is also a transparent conductive film such as ITO as an ohmic electrode, generated from the light emitting layer light is reflected by the transparent conductive film, found that the amount of light emitted from the extraction surface of the light is reduced is responsible does not increase the emission efficiency, the transparent conductive function that reduces the reflectivity at the extraction surface of the light found that a high luminous efficiency of the light-emitting device comprising comprising a film, which has led to the completion of the present invention.

さらに、この透明導電膜の膜厚を例えばλ/4(λは発光層から出射された光の波長)に調整したものは、界面での反射率が非常に小さくできるので、さらに光取出し効率が高められる。 Moreover, those the thickness for example of the transparent conductive film lambda / 4 (lambda is the wavelength of light emitted from the light-emitting layer) was adjusted to, since the reflectance at the interface can be made very small, more light extraction efficiency It is enhanced.

さらに検討を重ねた結果、上述の透明導電膜にさらに他の材料からなる1層以上の透明性薄膜を積層し、各々の屈折率と層厚とを調整して、反射率を極めて小さくすることにより、透明導電膜を積層していない従来技術のものに比べて、光取出し効率を各段に向上させることができる。 As a result of further extensive investigations, further laminating one or more layers of transparent thin film made of other materials transparent conductive film described above, it adjusts the respective refractive index and the layer thickness to very small reflectance Accordingly, a transparent conductive film as compared with those of the prior art is not laminated, the light extraction efficiency can be improved in each stage.

請求項1の発明によれば、発光層とオーミック電極とを有し、前記発光層からの光を光取出し面から素子の外部に出射する化合物半導体発光素子であって、前記発光層に関して光取出し面側にあるオーミック電極が透明導電膜からなり、該透明導電膜の面であって発光層側の面と反対側の面に接して前記光の反射を低減する機能を有する反射率低減層が設けられており、該反射率低減層が1つ以上の透明性薄膜を含んで成っていることを特徴とする化合物半導体発光素子が提案される。 According to the invention of claim 1, and a light-emitting layer and the ohmic electrode, a compound semiconductor light-emitting device emitted from the light extraction surface on the outside of the device the light from the light emitting layer, light extraction with respect to the light-emitting layer ohmic electrodes on the surface side of a transparent conductive film, the reflectivity reducing layer having a function of reducing the reflection of the light in contact with the surface opposite to the surface of a surface-emitting layer side of the transparent conductive film It provided the compound semiconductor light-emitting device, characterized in that the reflectivity reducing layer is comprise one or more transparent thin film is proposed.

請求項2の発明によれば、請求項1の発明において、前記反射率低減層が、2つ以上の透明性薄膜を積層してなる層である化合物半導体発光素子が提案される。 According to the invention of claim 2, in the invention of claim 1, wherein the reflectivity reducing layer, two or more transparent film is a layer formed by laminating a compound semiconductor light-emitting device is proposed.

請求項3の発明によれば、請求項1または2の発明において、前記透明導電膜が、その発光層側の面でコンタクト層と接している化合物半導体発光素子が提案される。 According to the invention of claim 3, in the invention of claim 1 or 2, wherein the transparent conductive film, a compound semiconductor light-emitting device is in contact with the contact layer at the surface of the emission layer side is proposed.

請求項4の発明によれば、請求項1、2または3の発明において、前記透明導電膜の光学膜厚が、発光波長のm/4倍(ただしmは正の整数)である化合物半導体発光素子が提案される。 According to the invention of claim 4, in the invention of claim 1, 2 or 3, wherein the optical thickness of the transparent conductive film, m / 4 times (wherein m is a positive integer) of the emission wavelength compound semiconductor light-emitting is element is proposed.

請求項5の発明によれば、請求項1、2、3または4の発明において、前記透明導電膜が、酸化スズが固溶した酸化インジウムからなる透明導電膜である化合物半導体発光素子が提案される。 According to the invention of claim 5, in the invention of claim 1, 2, 3 or 4, wherein the transparent conductive film, a transparent conductive film made of indium oxide and tin oxide is a solid solution compound semiconductor light-emitting element is proposed that.

請求項6の発明によれば、請求項1、2、3、4又は5の発明において、前記透明導電膜と前記各々の透明性薄膜とのいずれの膜においても、膜厚dと、屈折率nと、発光波長λとの間に、式 n×d=mλ/4(mは正の整数) According to the invention of claim 6, in the invention of claim 1, 2, 3, 4 or 5, in any of the film with the transparent thin film of said each said transparent conductive film, and the film thickness d, refractive index and n, between the light emitting wavelength lambda, wherein n × d = mλ / 4 (m is a positive integer)
で示される関係が成り立つ化合物半導体発光素子が提案される。 In compound semiconductor light-emitting device relation holds shown is proposed.

請求項7の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/2であり、前記反射率低減層が1つの透明性薄膜からなり、透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲または1.4〜1.6の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 7, characterized in that in the invention of claim 5, the optical thickness of the transparent conductive film is 1/2 of the emission wavelength, the reflectivity reducing layer is made from a single transparent film, transparent a 1/4 optical thickness of the emission wavelength of the thin film, the refractive index is in the range of range or 1.4 to 1.6 of 1.8-2.0 compound semiconductor light-emitting device is proposed.

請求項8の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が2つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.45〜1.65の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.4〜1.6の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 8, characterized in that in the invention of claim 5, wherein a 1/4 optical thickness of the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the transparent the optical thickness of the transparent thin film on the side in contact with the conductive film is a quarter of the emission wavelength ranges of the refractive index is 1.45 to 1.65, the side of the transparent thin film which is not in contact with the transparent conductive film the optical thickness is a quarter of the emission wavelength, the refractive index is in the range of 1.4 to 1.6 compound semiconductor light-emitting device is proposed.

請求項9の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が2つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.4〜1.6の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 9, characterized in that in the invention of claim 5, wherein a 1/4 optical thickness of the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the transparent the optical thickness of the transparent thin film on the side in contact with the conductive film is a quarter of the emission wavelength ranges of the refractive index is 1.8 to 2.0, the side of the transparent thin film which is not in contact with the transparent conductive film the optical thickness is a quarter of the emission wavelength, the refractive index is in the range of 1.4 to 1.6 compound semiconductor light-emitting device is proposed.

請求項10の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が2つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.7〜1.9の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 10, characterized in that in the invention of claim 5, wherein a 1/4 optical thickness of the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the transparent the optical thickness of the transparent thin film on the side in contact with the conductive film is a quarter of the emission wavelength ranges of the refractive index is 1.8 to 2.0, the side of the transparent thin film which is not in contact with the transparent conductive film the optical thickness is a quarter of the emission wavelength, the refractive index is in the range of 1.7 and 1.9 compound semiconductor light-emitting device is proposed.

請求項11の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が2つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.45〜1.65の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.1〜1.3の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 11, characterized in that in the invention of claim 5, wherein a 1/4 optical thickness of the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the transparent the optical thickness of the transparent thin film on the side in contact with the conductive film is a quarter of the emission wavelength ranges of the refractive index is 1.45 to 1.65, the side of the transparent thin film which is not in contact with the transparent conductive film the optical thickness is a quarter of the emission wavelength, the refractive index is in the range of 1.1 to 1.3 compound semiconductor light-emitting device is proposed.

請求項12の発明によれば、請求項5の発明において、前記透明導電膜の光学膜厚が発光波長の1/4または3/4であり、前記反射率低減層が2つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/2であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.5〜1.7の範囲または1.2〜1.4の範囲である化合物半導体発光素子が提案される。 According to the invention of claim 12, characterized in that in the invention of claim 5, the optical thickness of the transparent conductive film is 1/4 or 3/4 of the emission wavelength, the reflectivity reducing layer is from two transparent thin film becomes, the 1/2 optical thickness of the emission wavelength on the side of the transparent thin film in contact with the transparent conductive film, an optical film thickness of the transparent thin film on the side not in contact with the transparent conductive film of the emission wavelength 1/4 , and the refractive index in the range of range or 1.2 to 1.4 1.5 to 1.7 compound semiconductor light-emitting device is proposed.

本発明によれば、光取り出し効率の高い化合物半導体発光素子を実現させることができる。 According to the present invention, it is possible to realize a high compound semiconductor light-emitting element light extraction efficiency.

本発明の化合物半導体発光素子は、発光層とオーミック電極を有し、発光層からの光を光取出し面から素子の外部に出射するようにした化合物半導体発光素子において、該オーミック電極のうち発光層に関し光取出し面側にあるオーミック電極が透明導電膜からなっている。 Compound semiconductor light-emitting device of the present invention, a light-emitting layer and the ohmic electrode, in the compound semiconductor light emitting device wherein the light from the light emitting layer to be emitted from the light extraction surface on the outside of the device, the light emitting layer of the ohmic electrode ohmic electrodes on the light extraction surface side is made of a transparent conductive film relates. そして、該透明導電膜の面であって発光層側の面と反対側の面は光の反射を低減する機能を有し、この機能は1つ以上の透明性薄膜を含み且つ該面に接するように設けられた反射率低減層により果される。 Then, the surface of a surface of the transparent conductive film and the surface of the light emitting layer side opposite to have a function of reducing the reflection of light, this feature contact with and said surface comprises one or more transparent thin film played by reflectivity reducing layer provided so as to.

本発明の化合物半導体発光素子が有するオーミック電極は、発光層に対して少なくとも光取出し面側と、その反対側に設けられている。 Ohmic electrode compound semiconductor light-emitting device of the present invention includes at least the light extraction surface side of the light-emitting layer is provided on the opposite side. そのうち、光取出し面側のオーミック電極が透明導電膜からなる。 Among them, the ohmic electrode on the light extraction surface side of a transparent conductive film. このオーミック電極として好適な透明導電膜の材質としては、酸化インジウム、酸化スズ(SnO 2 )、酸化亜鉛(ZnO)のいずれか1つを主成分とする金属酸化物を挙げることができ、さらに具体的には、これらの金属酸化物に添加物を加えた、ITO、アンチモン(Sb)ドープSnO 2 、フッ素(F)ドープSnO 2 、アルミニウム(Al)ドープZnO、インジウム(In)ドープZnO、ガリウム(Ga)ドープZnO等が好適に用いられる。 The material of suitable transparent conductive film as the ohmic electrode, indium oxide, tin oxide (SnO 2), mention may be made of metal oxide mainly composed of any one of zinc oxide (ZnO), more specifically specifically, the addition of additives to these metal oxides, ITO, antimony (Sb) doped SnO 2, fluorine (F) doped SnO 2, aluminum (Al) doped ZnO, indium (in) doped ZnO, gallium ( Ga) doped ZnO or the like is preferably used. なかでもITOは小さな接触抵抗と高い光透過率が得られるので特に好ましい。 Particularly preferred since inter alia ITO small contact resistance and high light transmittance.

透明導電膜からなる前記オーミック電極は、発光層側の面とその反対側の面の2つの面を有している。 The ohmic electrode made of a transparent conductive film has a surface of the light emitting layer side and the two faces of the opposite surface. 本発明の化合物半導体発光素子は、発光層とは反対側の面に、その面における光の反射を低減する機能を有する反射率低減層を有する。 Compound semiconductor light-emitting device of the present invention, the light emitting layer on the opposite side has a reflectivity reducing layer having a function of reducing the reflection of light in that plane. この反射率低減層は、オーミック電極とは異なる物質からなる1つ以上の透明性薄膜を含む。 The reflectivity reducing layer comprises one or more transparent thin film made of different materials than the ohmic electrode. この透明性薄膜を該透明導電膜の該面に接して設けることにより、化合物半導体発光素子の発光効率が向上する。 By providing the transparent thin film in contact with said surface of the transparent conductive film, thereby improving the luminous efficiency of the compound semiconductor light-emitting device. すなわち、透明性薄膜を備えていないことを除き素子構造が同一である従来の化合物半導体発光素子を駆動電圧等を同一とする条件で発光させた場合と比較して、本発明の化合物半導体発光素子は従来のそれより高い光出力(輝度)を示すのである。 That is, as compared with the case where light is emitted under a condition that the same conventional compound semiconductor light-emitting element driving voltage or the like element structure is identical except that it does not comprise a transparent thin film, a compound semiconductor light-emitting device of the present invention is indicate higher light output than a conventional (luminance). この反射率低減層を2つ以上の透明性薄膜から構成すると、化合物半導体発光素子の出力が高くなるので、好ましい。 When configuring this reflectivity reducing layer from two or more transparent thin film, the output of the compound semiconductor light-emitting device is increased, preferred.

本発明の化合物半導体が、従来のそれより高い出力を示す理由は必ずしも明らかではないが、次のような機構に基くものと思われる。 Compound semiconductor of the present invention have reason to show a conventional higher output is not necessarily clear, it is believed that based on the following mechanism. 透明導電膜からなるオーミック電極として通常用いられる物質はITOである。 Substances normally used as an ohmic electrode made of a transparent conductive film is ITO. このITOは2.0という比較的高い屈折率を有するため、化合物半導体発光素子を被覆している外部の樹脂とITOとの屈折率差あるいは外部の空気とITOとの屈折率差が大きく、そのためにITOと空気との界面、あるいは化合物半導体発光素子を被覆している樹脂とITOとの界面において光が反射し、射出する光の量が少なくなり、発光効率が上がらなかったものと思われる。 Therefore ITO is having a relatively high refractive index of 2.0, large refractive index difference between the refractive index difference or the external air and ITO with an external resin and ITO coating the compound semiconductor light emitting device, since the the interface between the ITO and the air, or a compound semiconductor light-emitting element light is reflected at the interface between the resin and ITO are coated, the amount of emitted light is reduced, it is believed that luminous efficiency did not rise.

ここで、透明導電膜からなるオーミック電極の面のうち発光層と反対側の面に接してITOの屈折率に比較的近くITOより屈折率の低い反射率低減層を設けることにより、屈折率差の少ないオーミック電極/反射率低減層界面および、屈折率差の少ない反射率低減層/外部空気または樹脂界面が形成され、この結果、これらの界面で反射する光が少なくなるものと考えられる。 Here, by providing the low reflectivity reducing layer refractive index than relatively close ITO to the refractive index of ITO in contact with a surface opposite to the light-emitting layer of the surfaces of the ohmic electrode made of a transparent conductive film, the refractive index difference ohmic electrodes / reflectivity reducing layer interface and less, less refractive index difference reflectivity reducing layer / external air or resin interface is formed, as a result, it is considered that light reflected at these interfaces is reduced. さらに、透明性薄膜とオーミック電極との界面で反射して発光層側に向かう光と外部に出射する方向の光との干渉、オーミック電極と外部との界面で反射して発光層側に向かう光と外部に出射する方向の光との干渉により、前記2ヶ所で反射する光がさらに減少し、その結果、発光素子から出射する光の量が多くなるものと思われる。 Further, interference between the direction of light emitted to the light and outside is reflected at the interface between the transparent thin film and the ohmic electrode to the light emitting layer side, the light directed to the light-emitting layer side is reflected at the interface between the ohmic electrode and an external and the interference between the direction of light emitted to the outside, the light reflected is further reduced in two places, as a result, it is believed that the amount of light emitted from the light emitting element is increased.

透明導電膜からなるオーミック電極の内部で、発光層から外部に出射する方向に進む光と、発光層から出射した後オーミック電極と透明性薄膜の界面で反射した光とが効率よく干渉して反射光を小さくするように、透明導電膜の光学膜厚(厚さ×屈折率)が発光波長のm/4(mは正の整数である。)倍であることが好ましい。 In the inside of the transparent conductive consisting film ohmic electrode, and the light traveling in a direction emitted to the outside from the light emitting layer, and the light reflected at the interface between the ohmic electrode and the transparent thin film after exiting from the light-emitting layer interferes efficiently reflected so as to reduce the light, it is preferable (where m is a positive integer.) m / 4 optical thickness of the transparent conductive film (thickness × refractive index) of the emission wavelength is a factor.

また、透明性薄膜の内部でも、発光層から外部に出射する方向に進む光と、発光層から出射した後透明性薄膜と外部との界面で反射した光とが干渉して反射光を小さくするように、透明性薄膜の光学膜厚も発光波長のm/4(mは正の整数である。)倍であることがより好ましい。 Further, even in the inside of the transparent thin film, to reduce the light traveling in a direction emitted to the outside from the light emitting layer, the light reflected and light interferes reflected at the interface between the transparent thin film and the outside after exiting from the light-emitting layer as, m / 4 of the optical thickness of the transparent thin films emission wavelength (m is a positive integer.) it is more preferably a factor.

透明性薄膜を構成する物質は、オーミック電極を構成する物質より屈折率が小さいことが好ましい。 Material constituting the transparent thin film is preferably a refractive index of a material constituting the ohmic electrode is small. オーミック電極を構成する物質としては、通常は屈折率が2.0のITOが用いられるので、透明性薄膜を構成する物質は、屈折率が2.0以下のものが好ましい。 The material constituting the ohmic electrode, since the normal refractive index of 2.0 of the ITO is used, the material constituting the transparent thin film has a refractive index preferably from 2.0. 透明性薄膜を構成する物質の屈折率は、透明性薄膜が空気と接しているときは、空気の屈折率が1.0なので1.0以上であり、樹脂と接しているときは、樹脂の屈折率は通常は1.4程度なので、1.4以上が好ましい。 Refractive index of the material constituting the transparent thin film may, when transparent thin film is in contact with air, having a refractive index of air is 1.0 since 1.0 or higher, when in contact with the resin, the resin since the refractive index typically degree 1.4, preferably 1.4 or more.

透明性薄膜を構成する物質としては、具体的には、屈折率が1.9のSnO 2 、屈折率が1.8のMgO、屈折率が1.46のSiO 2 、屈折率が1.59のLaF 3 、屈折率が1.24のCaF 2が挙げられる。 The material constituting the transparent thin film, specifically, SnO 2 with a refractive index of 1.9, MgO having a refractive index of 1.8, SiO 2, the refractive index of the refractive index is 1.46 is 1.59 of LaF 3, the refractive index can be cited CaF 2 1.24.

ここで、反射率低減層が1つの透明性薄膜からなる場合は、さらに次の条件を満たすことがさらに好ましい。 Here, if the reflectivity reducing layer is formed of one transparent thin film is more preferably further satisfies the following conditions.
すなわち、 That is,
n1=√(n0・ns) n1 = √ (n0 · ns)
n1・d1=λ/4 n1 · d1 = λ / 4
no・do=λ/2 no · do = λ / 2
である。 It is. ただし、n1、d1はそれぞれ透明性薄膜層の屈折率と膜厚、no、doはそれぞれオーミック電極の屈折率と膜厚、nsは化合物半導体のうちのオーミック電極と接している層を構成する物質の屈折率、n0は外部空気または外部樹脂の屈折率、λは発光波長である。 However, n1, d1 is the refractive index and film thickness of each transparent thin film layer, no, the refractive index and thickness of each do ohmic electrode, ns constitutes the layer in contact with the ohmic electrode of the compound semiconductor material refractive index of, n0 is the refractive index of external air or external resin, lambda is the emission wavelength. なお、化合物半導体のうちのオーミック電極と接している層が窒化ガリウムからなる場合は、nsは2.4である。 Incidentally, if the layer in contact with the ohmic electrode of the compound semiconductor consists of gallium nitride, ns is 2.4.

オーミック電極がITOの膜からなり、反射率低減層が樹脂に接する場合には、例えば、透明性薄膜層の屈折率を1.8〜2.0とすることができる。 Ohmic electrode is made of film of ITO, reflectivity reducing layer when in contact with the resin, for example, the refractive index of the transparent thin film layer can be 1.8 to 2.0. このような物質の例として、透明性薄膜層がSnO 2 、SiO 2またはMgOからなる場合が挙げられる。 Examples of such materials include the transparency of the thin film layer is made of SnO 2, SiO 2 or MgO. また、オーミック電極がITOの膜からなり反射率低減層が空気に接する場合には、例えば、透明性薄膜層の屈折率を1.4〜1.6とすることができる。 The reflectance reducing layer becomes ohmic electrode from the membrane of ITO is when in contact with air, for example, the refractive index of the transparent thin film layer can be 1.4 to 1.6. このような物質の例として、透明性薄膜層がSiO 2またはLaF 3からなる場合が挙げられる。 Examples of such materials include the transparency of the thin film layer is made of SiO 2 or LaF 3.

さらに、反射率低減層が2つの透明性薄膜を積層してなる場合は、以下に示す第1〜第3の条件のうちのいずれかの条件を満たすことがさらに好ましい。 Further, if the reflectivity reducing layer is formed by laminating two transparent thin film is more preferably either satisfies one of the first to third conditions described below.
すなわち、第1の条件は、 In other words, the first condition,
n1/n2=no/√(ns・n0) n1 / n2 = no / √ (ns · n0)
n1・d1=λ/4 n1 · d1 = λ / 4
n2・d2=λ/4 n2 · d2 = λ / 4
no・do=λ/4 no · do = λ / 4
である。 It is. ただし、n1、d1はそれぞれ、2つの透明性薄膜のうちのオーミック電極に接する側の膜の屈折率と膜厚、n2、d2はそれぞれ、2つの透明性薄膜のうちのオーミック電極に接していない側の膜の屈折率と膜厚、no、doはそれぞれオーミック電極の屈折率と膜厚、nsは化合物半導体のうちのオーミック電極と接している層を構成する物質の屈折率、n0はは外部空気または外部樹脂の屈折率、λは発光波長である。 However, n1, d1, respectively, the refractive index and thickness of the side of the membrane in contact with the ohmic electrode of the two transparent thin film, n2, d2, respectively, not in contact with the ohmic electrode of the two transparent thin film side of the membrane refractive index of the film thickness, no, the refractive index of each do the ohmic electrode and the film thickness, the refractive index of the material ns is constituting the layer in contact with the ohmic electrode of the compound semiconductor, n0 mother external refractive index of air or external resin, lambda is the emission wavelength.

オーミック電極がITOの膜からなり、反射率低減層が樹脂に接する場合には、例えば、ITO膜に接する側の透明性薄膜層の屈折率を1.45〜1.65とし、樹脂に接する側の透明性薄膜の屈折率を1.4〜1.6とすることができる。 Becomes ohmic electrode from the membrane of ITO, reflectivity reducing layer when in contact with the resin, for example, the refractive index of the transparent thin film layer on the side in contact with the ITO film and 1.45 to 1.65, the side in contact with the resin the refractive index of the transparent thin film of can be 1.4 to 1.6. このような例として、ITO膜に接する側の透明性薄膜層がLaF 3で樹脂に接する側の透明性薄膜がSiO 2からなる場合が挙げられる。 As such an example, a transparent thin film on the side where the transparent thin film layer on the side in contact with the ITO film in contact with the resin in LaF 3 can be mentioned may become of SiO 2. また、オーミック電極がITOの膜からなり反射率低減層が空気に接する場合には、例えば、ITO膜に接する側の透明性薄膜層の屈折率を1.8〜2.0とし、空気に接する側の透明性薄膜層の屈折率を1.4〜1.6とすることができる。 The reflectance reducing layer becomes ohmic electrode from the membrane of ITO is when in contact with air, for example, the refractive index of the transparent thin film layer on the side in contact with the ITO film and 1.8 to 2.0, in contact with air the refractive index of the transparent thin film layer on the side can be 1.4 to 1.6. このような物質の例として、ITO膜に接する側の透明性薄膜層がSnO 2で空気に接する側の透明性薄膜層がSiO 2からなる場合が挙げられる。 Examples of such materials include transparent thin film layer on the side where the transparent thin film layer on the side in contact with the ITO film in contact with the air SnO 2 and the like may become of SiO 2.

第2の条件は、 The second condition is that,
n1=√(n0・ns)、 n2=n1 2 /no n1 = √ (n0 · ns) , n2 = n1 2 / no
n1・d1=mλ/4 n1 · d1 = mλ / 4
n2・d2=mλ/4 n2 · d2 = mλ / 4
no・do=mλ/4 no · do = mλ / 4
である。 It is. n1、n2、no、n0、ns、d1、d2、λはそれぞれ前記と同じ意味を示す。 n1, n2, no, n0, ns, d1, d2, λ each as defined above.

オーミック電極がITOの膜からなり、反射率低減層が樹脂に接する場合には、例えば、ITO膜に接する側の透明性薄膜の屈折率を1.8〜2.0とし、樹脂に接する側の透明性薄膜の屈折率を1.7〜1.9とすることができる。 Ohmic electrode is made of film of ITO, reflectivity reducing layer when in contact with the resin, for example, the refractive index of the transparent thin film on the side in contact with the ITO film as a 1.8 to 2.0, the side in contact with the resin the refractive index of the transparent thin film can be 1.7 to 1.9. このような物質の例として、ITO膜に接する側の透明性薄膜がSnO 2で樹脂に接する側の透明性薄膜がMgOからなる場合が挙げられる。 Examples of such materials include transparent thin film on the side in contact with the ITO film and the like whereby the transparency film on the side in contact with the resin with SnO 2 is made of MgO. また、オーミック電極がITOの膜からなり、反射率低減層が空気に接する場合には、例えば、ITO膜に接する側の透明性薄膜の屈折率を1.45〜1.65とし、空気に接する側の透明性薄膜の屈折率を1.1〜1.3とすることができる。 Further, it ohmic electrode from the membrane of the ITO, if the reflectivity reducing layer is in contact with the air, for example, the refractive index of the transparent thin film on the side in contact with the ITO film and 1.45 to 1.65, in contact with air the refractive index of the transparent thin film side can be 1.1 to 1.3. このような物質の例として、ITO膜に接する側の透明性薄膜がLaF 3で空気に接する側の透明性薄膜がCaF 2からなる場合が挙げられる。 Examples of such materials include transparent thin film on the side where the transparent thin film on the side in contact with the ITO film in contact with the air in LaF 3 can be mentioned may consist CaF 2.

第3の条件は、 The third condition,
n2=no・√(n0/ns) n2 = no · √ (n0 / ns)
n1・d1=λ/4 n1 · d1 = λ / 4
n2・d2=λ/2 n2 · d2 = λ / 2
no・do=λ/4 または 3λ/4 no · do = λ / 4 or 3λ / 4
である。 It is. n1、n2、no、n0、ns、d1、d2、λはそれぞれ前記と同じ意味を示す。 n1, n2, no, n0, ns, d1, d2, λ each as defined above.

この場合は、オーミック電極に接する側の透明性薄膜の屈折率は任意でよいが、オーミック電極がITOの膜からなり、反射率低減層が樹脂に接する場合には、例えば、樹脂に接する側の透明性薄膜の屈折率を1.5〜1.7とすることができる。 In this case, the refractive index of the transparent thin film on the side in contact with the ohmic electrode may be arbitrary, but it ohmic electrode from the membrane of ITO, reflectivity reducing layer when in contact with the resin, for example, the side in contact with the resin the refractive index of the transparent thin film can be 1.5 to 1.7. このような物質の例として、樹脂に接する側の透明性薄膜がLaF 3 、NdF 3からなる場合が挙げられる。 Examples of such materials include the transparency of the thin film on the side in contact with the resin is made of LaF 3, NdF 3. また、オーミック電極がITOの膜からなり、反射率低減層が空気に接する場合には、例えば、空気に接する側の透明性薄膜の屈折率を1.2〜1.4とすることができる。 Further, the ohmic electrode is made of a film of ITO, when reflectivity reducing layer is in contact with the air, for example, the refractive index of the transparent thin film on the side in contact with the air can be 1.2 to 1.4. このような物質の例として、空気に接する側の透明性薄膜がCaF 2からなる場合が挙げられる。 Examples of such materials include the transparency of the thin film on the side in contact with the air is made of CaF 2.

このような、反射率低減層が1つの透明性薄膜からなる場合の1つの条件、または2つの透明性薄膜からなる場合の3つの条件のいずれかを満たした場合、理論的には反射光がをゼロとすることができる。 Such, one condition when the reflectivity reducing layer is formed of one transparent thin film or if it meets any of the three conditions when consisting of two transparent thin film, reflected light is theoretically found it can be a zero.

以下、図面を参照して本発明の実施の形態の一例につき詳細に説明する。 Hereinafter will be described in detail an embodiment of the present invention with reference to the drawings.

図1は、本発明による化合物半導体発光素子の実施の形態の一例を示す層構造図である。 Figure 1 is a layer structural diagram showing an example of an embodiment of a compound semiconductor light emitting device according to the present invention. 図1に示す化合物半導体発光素子は、サファイア基板上に化合物半導体からなる薄膜層が積層されて発光素子が構成されている発光ダイオードの場合の例であり、p型GaN層の上にトンネリングコンタクト層と透明性薄膜層とを積層する構成とすることにより、窒化物半導体結晶内部からの光をそのp層側から効率よく取り出すことができるようにしたものである。 Compound semiconductor light-emitting element shown in FIG. 1 is an example of a case of a light emitting diode thin film layer made of a compound semiconductor on a sapphire substrate is made light emitting element are stacked, the tunneling contact layer on the p-type GaN layer with the structure of laminating a transparent thin film layer and, in which to be able to efficiently extract light from the interior nitride semiconductor crystal from the p-layer side.

発光ダイオード(発光素子)10はサファイア基板1上にGaN低温バッファ層2を設け、GaN低温バッファ層2の上に発光ダイオード構造の窒化物系半導体エピタキシャル結晶薄膜層を有機金属気相成長法により積層して成長し、これにより、活性層を構成する化合物半導体層(窒化物半導体層)3が形成されている。 Emitting diode (light emitting element) 10 is a GaN low temperature buffer layer 2 formed on the sapphire substrate 1, stacked by organometallic vapor phase epitaxy nitride semiconductor epitaxial crystal thin film layer of a light-emitting diode structure on the GaN low-temperature buffer layer 2 and growing, thereby, a compound semiconductor layer constituting the active layer (nitride semiconductor layer) 3 is formed.

窒化物半導体層3は、高濃度Siドープn + −GaN層31、Siドープn−GaN層32、アンドープGaN層33、多重量子井戸活性層(MQW層)34、アンドープGaN層35、Mgドープn−Al 0.15 Ga 0.85 N層36、Mgドープp−GaN層37、及びトンネリングコンタクト層(CTL層)38を積層して構成されている。 Nitride semiconductor layer 3, the high concentration Si-doped n + -GaN layer 31, Si-doped n-GaN layer 32, an undoped GaN layer 33, a multiple quantum well active layer (MQW layer) 34, an undoped GaN layer 35, Mg-doped n -Al 0.15 Ga 0.85 N layer 36, Mg-doped p-GaN layer 37, and tunneling contact layer (CTL layer) 38 is formed by laminating.

ここで、発光層であるMQW層34は、アンドープGaN層とInGaN層とを交互に5回繰り返して積層した多重量子井戸であり、CTL層38はSiドープn−GaN層とSiドープp型InGaN層の5回繰り返しから成る層構成とされている。 Here, MQW layer 34 is a light emitting layer is a multiple quantum well laminated by repeating 5 times the undoped GaN layer and the InGaN layer are alternately, CTL layer 38 is Si-doped n-GaN layer and the Si-doped p-type InGaN there is a layer structure consisting of five repetitions of the layers.

サファイア基板1から見て窒化物半導体層3の最上層であるCTL層38の上には、ホール注入用オーミック電極層4が形成されている。 On the CTL layer 38 which is the uppermost layer of the nitride semiconductor layer 3 when viewed from the sapphire substrate 1, the hole injection ohmic electrode layer 4 is formed. ここでは、ホール注入用オーミック電極層4としてITO膜が電子ビーム蒸着法によりその全面に亘って形成されている。 Here, ITO film is formed over the entire surface by an electron beam evaporation method as a hole injection ohmic electrode layer 4. ホール注入用オーミック電極層4の上には透明薄膜層5が形成されている。 Transparent film layers 5 on the hole injection ohmic electrode layer 4 is formed. 6、7は取り出し電極である。 6 and 7 is a take-out electrode. ここで、CTL層38が窒化物半導体層3からの光を取り出す光取出し側となっており、CTL層38のホール注入用オーミック電極層4側の表面38Aが光取出し面となっている。 Here, CTL layer 38 has a light extraction side of extracting light from the nitride semiconductor layer 3, the surface 38A of the hole injection ohmic electrode layer 4 side of the CTL layer 38 is a light extraction surface.

反射率低減層5は反射率低減層として働く層であり、2層以上の透明性薄膜からなる構成が好ましい。 Reflectivity reducing layer 5 is a layer serving as a reflectivity reducing layer configuration consisting of two or more layers of transparent thin film is preferable. 図2には、そのような場合の構成の一例の要部が示されている。 2, such a main portion of an example of a configuration is shown in the case. ここでは、反射率低減層を構成する2つの透明性薄膜51、52のうち、オーミック電極41に接する側の透明性薄膜51の屈折率と膜厚をそれぞれn1、d1、オーミック電極41に接していない側の透明性薄膜52の屈折率と膜厚をそれぞれn2、d2、オーミック電極41の屈折率と膜厚をそれぞれno、do、化合物半導体のうちのオーミック電極41と接している層30を構成する物質の屈折率をnsで示してある。 Here, of the two transparent films 51 and 52 constituting the reflectivity reducing layer, respectively n1, d1 refractive index and the thickness of the side of the transparent thin film 51 in contact with the ohmic electrode 41, in contact with the ohmic electrode 41 n2 no side refractive index and thickness of the transparent thin film 52, respectively, d2, the refractive index and thickness of each of the ohmic electrodes 41 no, do, configure and has a layer 30 which is in contact with the ohmic electrode 41 of the compound semiconductor It is the refractive index of a substance in ns.

このように、発光ダイオード10の光取出し面側には、ITO膜によるホール注入用オーミック電極層4が光透過性で導電性の膜として形成されている構造となっている。 Thus, the light extraction surface side of the light emitting diode 10, the hole injection ohmic electrode layer 4 made of ITO film has a structure which is formed as a conductive film with light transparency. しかし、光取出し面と反対側の電極においても、ITO透明導電膜を利用することができるものの、これを用いることは必ずしも必須ではなく、接触抵抗の小さな電極であれば適宜利用可能である。 However, even in the opposite side of the electrode and the light extraction surface, although it is possible to use an ITO transparent conductive film is not necessarily required to use this can be appropriately employed if small electrode contact resistance.

図3には、本発明による発光ダイオードの他の実施の形態を示す層構造図を示した。 FIG. 3 shows a layer structure view showing another embodiment of a light emitting diode according to the present invention. 図3の各部のうち、図1の各部に対応する部分には同一の符号が付されている。 Among those in FIG. 3, it is denoted by the same reference numerals are assigned to corresponding parts in FIG. 図3に示した発光ダイオード(発光素子)20は、p層側の構造は図1に示した発光ダイオード10と略同じであるが、サファイア基板1に代えて導電性基板21を利用し、化合物半導体層3の最下層のn + −GaN層31と導電性基板21との間に光反射層22を設けた構成となっている点で図1に示した発光ダイオード10と異なっている。 Emitting diode (light emitting element) 20 shown in FIG. 3, although the structure of the p-layer side is substantially the same as the light emitting diode 10 shown in FIG. 1, using a conductive substrate 21 instead of the sapphire substrate 1, compound is different from the light emitting diode 10 shown in FIG. 1 in that has a structure in which a light-reflecting layer 22 between the lowermost n + -GaN layer 31 and the conductive substrate 21 of the semiconductor layer 3.

光反射層22は、接着および反射の機能を有する接着/反射層221と、透明導電膜からなる電子注入用オーミック電極層222との2層構造で、接着/反射層221が導電性基板21に接し、電子注入用オーミック電極層222がn + −GaN層31に接する構成となっている。 The light reflecting layer 22 is an adhesive / reflective layer 221 having the function of adhesion and reflection, a two-layer structure of the electron injection ohmic electrode layer 222 made of a transparent conductive film, adhesive / reflective layer 221 on the conductive substrate 21 contact, and has a structure in which an electron injection ohmic electrode layer 222 is in contact with the n + -GaN layer 31. 図3において、23はヒートシンク、24は接着層である。 3, 23 is a heat sink, 24 is an adhesive layer.

発光ダイオード20の構成によれば、窒化物半導体層3から導電性基板21に向けて放射された光が光反射層22により反射され光取出し面側に取り出せるので、図1に示した構成の場合に比べて光取り出しの効率をより高くすることができる。 According to the configuration of the light emitting diode 20, the light emitted toward the conductive substrate 21 from the nitride semiconductor layer 3 can be taken out on the light extraction surface side is reflected by the light reflecting layer 22, in the configuration shown in FIG. 1 it is possible to increase the efficiency of light extraction compared to.

図4には、本発明による発光ダイオードの別の実施の形態を示す層構造図を示した。 FIG. 4 shows a layer structure view showing another embodiment of a light emitting diode according to the present invention. 図4に示す発光ダイオード30は、n型層側から光を取り出す構成となっている点で図3に示した発光ダイオード20と異なっている。 Emitting diode 30 shown in FIG. 4 is different from the light emitting diode 20 shown in FIG. 3 in that has a structure in which light is extracted from the n-type layer side. このため、窒化物半導体層3を構成する窒化物半導体薄膜層の積層順序が発光ダイオード20と発光ダイオード30とで逆になっているが、発光ダイオード40はn型層側から光を取り出すようになっている点を除き、発光ダイオード30と同一の機能を有しており、光取出し効率を発光ダイオード30の場合と同様に向上させることができる。 Therefore, as is the order of stacking the nitride semiconductor thin film layer constituting the nitride semiconductor layer 3 are reversed in the light emitting diode 30 and the light emitting diode 20, light emitting diode 40 light is taken out from the n-type layer side is it except that has the same function as the light emitting diode 30, thereby improving the light extraction efficiency as in the case of the light emitting diode 30.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The following explains Examples of the present invention, the present invention is not limited to these examples.

図4に示した層構造の発光ダイオードを以下のようにして製作した。 The light emitting diode of the layer structure shown in FIG. 4 was fabricated as follows. 成長用基板1としてサファイア(表面は(001)面の方位面を有する。)基板を用い、サファイア基板1上に、図1の2および3に相当する発光ダイオード構造の窒化物系半導体エピタキシャル結晶を有機金属気相成長法により成長した。 Sapphire (surface. Having an orientation plane of (001) plane) as the growth substrate 1 using the substrate, on the sapphire substrate 1, a nitride semiconductor epitaxial crystal of the light emitting diode structure corresponding to 2 and 3 of FIG. 1 It is grown by metal organic vapor phase epitaxy. すなわち、GaN低温バッファ層2、高濃度Siドープn + −GaN層31(不純物濃度:2×10 19 、層厚:1μm)、Siドープn−GaN層32(不純物濃度:2×10 18 、層厚:3μm)、アンドープGaN層33(層厚:300nm)、アンドープGaN層(層厚:15nm)とInGaN層(層厚:3nm)の5回繰り返しからなるMQW層34、アンドープGaN層35(層厚:18nm)、Mgドープn−AlGaN層36(Al5%、不純物濃度=2×10 16 、層厚:25nm)、Mgドープp−GaN層37(層厚:150nm)、Siドープn−GaN層(不純物濃度:2×10 20 、層厚:1nm)とSiドープn−InGaN層(不純物濃度:2×10 20 、層厚:1nm)の5回繰り返しからなるCTL層38を成長 That, GaN low temperature buffer layer 2, the high-concentration Si-doped n + -GaN layer 31 (impurity concentration: 2 × 10 19, thickness: 1 [mu] m), Si-doped n-GaN layer 32 (impurity concentration: 2 × 10 18, the layer thickness: 3 [mu] m), an undoped GaN layer 33 (thickness: 300 nm), an undoped GaN layer (layer thickness: 15 nm) and InGaN layer (thickness: MQW layer 34 of five iterations 3 nm), an undoped GaN layer 35 (the layer thickness: 18 nm), Mg-doped n-AlGaN layer 36 (Al5%, impurity concentration = 2 × 10 16, thickness: 25 nm), Mg-doped p-GaN layer 37 (thickness: 150 nm), Si-doped n-GaN layer (impurity concentration: 2 × 10 20, thickness: 1 nm) and Si-doped n-InGaN layer (impurity concentration: 2 × 10 20, thickness: 1 nm) growing the CTL layer 38 of five iterations させた。 It was. なお活性層のInGaN層のIn組成は電流注入により発光層から射出される光の波長が470nmとなるように調整して決めた。 Note In composition of the InGaN layer of the active layer is decided by adjusting so that the wavelength of light emitted from the light-emitting layer by current injection becomes 470 nm.

次に、透明導電性のホール注入用オーミック電極層4として、膜厚59nmのITO膜を電子ビーム蒸着法により全面に形成した。 Next, as a hole injection ohmic electrode layer 4 of transparent conductive, an ITO film having a thickness of 59nm was formed on the entire surface by an electron beam evaporation method.

このホール注入用オーミック電極層4の上に、引き続いて、次の工程で接着層/反射層221となるTi/Al/Au積層膜を、50/200/500nmの厚さとなるように蒸着法により全面に形成した。 On the hole injection ohmic electrode layer 4, subsequently, the adhesive layer / the reflecting layer 221 Ti / Al / Au laminated film in the next step, by deposition to a thickness of 50/200/500 nm Method It was formed on the entire surface.

導電性基板21として低抵抗Si(100)基板を用い、この両面にSi基板に対するオーミック性電極であるAlと、後の工程で接着層として用いるAuの積層膜(図示しない)を200/500nm形成した後350℃で30分間熱処理したものを準備し、先のITO4およびTi/Al/Au積層膜221を形成した窒化物半導体エピタキシャル結晶と、基板貼り合わせ装置を用いて貼り合わせた。 Using a low-resistance Si (100) substrate as a conductive substrate 21, and Al is an ohmic electrode for a Si substrate to the double-sided, after the (not shown) stacked film of Au used as the adhesive layer in the process of 200/500 nm formed to prepare the heat treated for 30 minutes at 350 ° C. after the nitride semiconductor epitaxial crystals formed ahead of ITO4 and Ti / Al / Au laminated film 221 was bonded with the substrate bonding device.

次に貼り合わせた基板から、研磨装置とラッピング装置によりサファイアを削りサファイア厚さ20μmまでした。 From then bonded substrates, sapphire grinding sapphire was thick 20μm Madeshi by a polishing apparatus and lapping device. この後、ICPエッチング装置を用いて、更にサファイアを削り完全に除去し、さらに低温バッファ層2も除去した。 Thereafter, using an ICP etching apparatus, further to completely remove shaving sapphire, further low-temperature buffer layer 2 was also removed. こうしてSi基板上にLED構造の窒化物半導体が形成され、最表面がSiドープn型高濃度GaN31である構造体が得られた。 Thus nitride semiconductor LED structure is formed on the Si substrate, the structure outermost surface is a Si-doped n-type high concentration GaN31 was obtained.

この構造体(ウェハー)を数個に分割し、最表面のSiドープn型高濃度GaN層31にITO透明導電膜からなる電子注入用オーミック電極層222と種々の透明性薄膜層5を形成した。 Dividing the structure (wafer) into several, to form an electron injection ohmic electrode layer 222 and the various transparent thin film layer 5 made of ITO transparent conductive film on the Si-doped n-type high-concentration GaN layer 31 of the outermost surface .

〔膜厚λ/2のITO+膜厚λ/4の透明性薄膜(空気用)の構成〕 Configuration of thickness lambda / 2 of ITO + thickness lambda / 4 of the transparent thin film (air)]
分割片の1つに、最表面であるSiドープn型高濃度GaN層上に、膜厚118nmのITO膜を電子ビーム蒸着法により全面に形成し、フォトリソグラフィによりパターニングを行った後、ITO膜の上に(取出し電極部を除いて)厚さ80nmのSiO 2膜を形成しLEDウェハを作製した。 One of the split pieces, the Si-doped n-type high-concentration GaN layer as the outermost surface, an ITO film having a film thickness of 118nm is formed on the entire surface by an electron beam evaporation method was patterned by photolithography, an ITO film was prepared (extraction electrode portions except for) thickness 80nm formed LED wafer of SiO 2 film on the.

〔膜厚λ/4のITO+膜厚λ/4の透明性薄膜+膜厚λ/4の透明性薄膜(空気用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 4 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (air)]
分割片の1つに、膜厚59nmのITO膜を電子ビーム蒸着法により全面に形成し、ITO膜の上に(取出し電極部を除いて)厚さ62nmのSnO 2膜と、厚さ80nmのSiO 2膜をこの順に形成したことを除いては実施例1と同じ方法によりLEDウェハを作製した。 One of the split pieces, an ITO film having a film thickness of 59nm is formed on the entire surface by an electron beam evaporation method, on the ITO film (with the exception of the take-out electrode portion) having a thickness of 62nm and SnO 2 film, a thickness of 80nm except that the formation of the SiO 2 film in this order to prepare a LED wafer in the same manner as in example 1.

〔膜厚λ/4のITO+膜厚λ/4の透明性薄膜+膜厚λ/4の透明性薄膜(空気用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 4 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (air)]
ITO膜の上に(取出し電極部を除いて)厚さ74nmのLaF 3膜と、厚さ95nmのCaF 2膜をこの順に形成したことを除いては実施例2と同じ方法によりLEDウェハを作製した。 Produce LED wafer and (except for the extraction electrode portion) having a thickness of 74 nm LaF 3 film on the ITO film, the CaF 2 film having a thickness of 95nm, except that it has formed in this order by the same method as in Example 2 did.

〔膜厚λ/4のITO+膜厚λ/2の透明性薄膜+膜厚λ/4の透明性薄膜(空気用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 2 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (air)]
ITO膜の上に(取出し電極部を除いて)厚さ160nmのSiO 2膜と、厚さ95nmCaF 2膜をこの順に形成したことを除いては実施例2と同じ方法によりLEDウェハを作製した。 And (except for the extraction electrode unit) thickness 160nm of SiO 2 film on the ITO film, the LED wafer fabricated by the same method as in Example 2 except that the formation of the thick 95NmCaF 2 film in this order.

(比較例1) (Comparative Example 1)
〔ITOのみの構成〕 Configuration of only ITO]
分割片の1つに、膜厚59nmのITO膜を電子ビーム蒸着法により全面に形成し、フォトリソグラフィによりパターニングを行なう工程のみを行ない、透明性薄膜を形成しなかったことを除いては、実施例2と同様にしてLEDウェハを作製した。 One of the split pieces, except that an ITO film having a film thickness of 59nm is formed on the entire surface by an electron beam evaporation method, performs only the step of performing patterning by photolithography, it did not form a transparent thin film, carried to prepare a LED wafer in the same manner as in example 2.

(比較例2) (Comparative Example 2)
〔従来TiAl金属系メッシュ電極〕 [Conventional TiAl metallic mesh electrode]
分割片の1つに、ITO透明電極を形成する替わりに、最表面であるSiドープn型高濃度GaN層上に、TiAlを10/100nm堆積しメッシュ状パターンにした後N 2中700℃でアニールにとりオーミック電極を形成したことを除いては、実施例1と同様にしてLEDウェハを作製した。 One of the split pieces, instead of forming the ITO transparent electrode, a Si-doped n-type high-concentration GaN layer is the outermost surface, in an N 2 700 ° C. After a mesh-like pattern 10/100 nm deposited TiAl except that the formation of the ohmic electrode taken to annealing to prepare a LED wafer in the same manner as in example 1.

(参考例1) (Reference Example 1)
上記実施例1〜5および比較例1で得られたLEDの20mAにおける光出力の平均値の比較例に対する相対値を表1にしめす。 Table 1 shows the relative values ​​to Comparative Example of the mean value of the optical output of the LED of 20mA obtained in Examples 1 to 5 and Comparative Example 1. 表1からわかるように、本発明の透明性薄膜を積層することにより、光出力が25〜50%増大した。 As can be seen from Table 1, by laminating a transparent thin film of the present invention, the optical output was increased 25-50%.

(表1) (Table 1)
積層透明膜の構成 光出力(相対値*) Configuration optical output of the laminated transparent film (relative value *)
実施例1 ITO/SiO 2 1.45 Example 1 ITO / SiO 2 1.45
実施例2 ITO/SnO 2 /SiO 2 1.48 Example 2 ITO / SnO 2 / SiO 2 1.48
実施例3 ITO/LaF 3 /CaF 2 1.43 Example 3 ITO / LaF 3 / CaF 2 1.43
実施例4 ITO/SiO 2 /CaF 2 1.45 Example 4 ITO / SiO 2 / CaF 2 1.45
比較例1 ITOのみ 1.26 Comparative Example 1 ITO only 1.26
比較例2 TiAlメッシュ電極 1.00 Comparative Example 2 TiAl mesh electrode 1.00
*比較例2を1.00とした相対値。 * Relative value with 1.00 Comparative Example 2.

〔膜厚λ/2のITO+膜厚λ/4の透明性薄膜(樹脂用)の構成〕 Configuration of thickness lambda / 2 of ITO + thickness lambda / 4 of the transparent thin film (resin)]
分割片の1つに、最表面であるSiドープn型高濃度GaN層上に、厚さ膜厚118nmのITO膜を電子ビーム蒸着法により全面に形成し、フォトリソグラフィによりパターニングを行った後、ITO膜の上に(取出し電極部を除いて)厚さ62nmのSnO 2膜を形成した。 One of the split pieces, after the Si-doped n-type high-concentration GaN layer as the outermost surface, an ITO film having a thickness of thickness 118nm was formed on the entire surface by an electron beam evaporation method, patterned by photolithography, on the ITO film (with the exception of the take-out electrode portion) were formed SnO 2 film having a thickness of 62 nm.

こうして作製したLED構造エピタキシャル基板を、スクライブ・ブレークによりチップ分離して、LEDチップをリードにボンディングした後、樹脂包埋してLEDを作製した。 The LED structure epitaxial substrate manufactured in this way, and the chip separated by scribing and breaking, after bonding the LED chip to a lead, an LED was formed by resin embedding.

〔膜厚λ/4のITO+膜厚λ/4の透明性薄膜+膜厚λ/4の透明性薄膜(樹脂用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 4 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (resin)]
分割片の1つに、膜厚59nmのITO膜を形成し、ITO膜の上に(取出し電極部を除いて)厚さ74nmのLaF 3膜と厚さ80nmのSiO 2膜をこの順に形成したことを除いて実施例5と同様の工程によりLEDを作製した。 One of the split pieces, to form an ITO film having a thickness of 59 nm, on the ITO film (with the exception of the take-out electrode portion) of the SiO 2 film of LaF 3 film and the thickness 80nm thick 74nm were formed in this order an LED was formed by the same process as in example 5 except that.

〔膜厚λ/4のITO+膜厚λ/4の透明性薄膜+膜厚λ/4の透明性薄膜(樹脂用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 4 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (resin)]
分割片の1つに、膜厚59nmのITO膜を形成し、ITO膜の上に(取出し電極部を除いて)厚さ62nmのSnO 2膜と厚さ67nmのMgO膜をこの順に形成したことを除いて実施例5と同様の工程によりLEDを作製した。 One of the split pieces to form the ITO film having a thickness of 59 nm, on the ITO film (with the exception of the take-out electrode portion) of the SnO 2 film and the thickness of 67 nm MgO film having a thickness of 62nm was formed in this order an LED was formed by the same process as in example 5 except for the.

〔膜厚λ/4のITO+膜厚λ/2の透明性薄膜+膜厚λ/4の透明性薄膜(樹脂用)の構成〕 Configuration of thickness lambda / 4 of the ITO + thickness lambda / 2 of the transparent thin film + film thickness lambda / 4 of the transparent thin film (resin)]
分割片の1つに、厚さ膜厚59nmのITO膜を形成し、ITO膜の上に(取出し電極部を除いて)厚さ161nmのSiO 2膜と厚さ74nmのLaF 3膜をこの順に形成したことを除いて実施例5と同様の工程によりLEDを作製した。 One of the split pieces, forming a thick ITO film thickness 59 nm, on the ITO film (with the exception of the take-out electrode portion) of the SiO 2 film and the thickness of 74 nm LaF 3 film having a thickness of 161nm in this order an LED was formed by the same process as in example 5 except that the formed.

比較例3 Comparative Example 3
〔従来TiAl金属系メッシュ電極〕 [Conventional TiAl metallic mesh electrode]
分割片の1つに、ITO電極を形成する替わりに、最表面であるSiドープn型高濃度GaN層上に、TiAlを10/100nm形成した後N 2中700℃にでアニールを行いオーミック電極を形成したことを除いて、実施例6と同様の工程によりLEDを作製した。 One of the split pieces, instead of forming the ITO electrodes, the Si-doped n-type high-concentration GaN layer as the outermost surface, the ohmic electrode annealing is performed in the N 2 in 700 ° C. After the 10/100 nm formed TiAl except that the formation of the, an LED was formed by the same process as in example 6.

上記実施例6〜10および比較例2で得られたLEDの20mAにおける光出力の平均値の比較例2に対する相対値を表2に示す。 Table 2 shows the relative values ​​to Comparative Example 2 of the average values ​​of the light output of the LED of 20mA obtained in Examples 6-10 and Comparative Example 2. 表2からわかるように、本発明の透明性薄膜を積層することにより、比較例に比べ光出力が40〜50%増大した。 As it is seen from Table 2, by laminating a transparent thin film of the present invention, compared light output is increased 40-50% in the comparative example.

(表2) (Table 2)
積層透明膜の構成 光出力(相対値**) Configuration optical output of the laminated transparent film (relative value **)
実施例5 ITO/SnO 2 1.47 Example 5 ITO / SnO 2 1.47
実施例6 ITO/LaF 3 /SiO 2 1.44 Example 6 ITO / LaF 3 / SiO 2 1.44
実施例7 ITO/SnO 2 /MgO 1.45 Example 7 ITO / SnO 2 / MgO 1.45
実施例8 ITO/SiO 2 /LaF 3 1.46 Example 8 ITO / SiO 2 / LaF 3 1.46
比較例3 TiAlメッシュ電極 1.00 Comparative Example 3 TiAl mesh electrode 1.00
**比較例3を1.00とした相対値。 Relative value was 1.00 ** Comparative Example 3.

本発明による発光ダイオードの実施の形態の一例を示す層構造図。 Layer structure diagram showing an example of an embodiment of a light emitting diode according to the present invention. 透明性薄膜を2層設けた場合の構成例の要部を示す図。 Drawing showing the essential components of the structure example of a case in which the transparent thin film 2 layers. 本発明による発光ダイオードの他の実施の形態を示す層構造図。 Layer structure view showing another embodiment of a light emitting diode according to the present invention. 本発明による発光ダイオードの別の実施の形態を示す層構造図。 Layer structure view showing another embodiment of a light emitting diode according to the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1 サファイア基板 2 GaN低温バッファ層 3 窒化物半導体層 4 ホール注入用オーミック電極層 5 透明薄膜層 6、7 取り出し電極 10、20、30 発光ダイオード 22 光反射層 31 n + −GaN層 32 n−GaN層 33 GaN層 34 MQW層 35 GaN層 36 n−Al 0.15 Ga 0.85 N層 37 p−GaN層 38 CTL層 221 接着/反射層 222 電子注入用オーミック電極層 1 sapphire substrate 2 GaN low temperature buffer layer 3 nitride semiconductor layer 4 hole injection ohmic electrode layer 5 transparent film layers 6 and 7 take-out electrode 10, 20, 30 light emitting diode 22 the light reflective layer 31 n + -GaN layer 32 n-GaN layer 33 GaN layer 34 MQW layer 35 GaN layer 36 n-Al 0.15 Ga 0.85 n layer 37 p-GaN layer 38 CTL layer 221 adhesive / reflective layer 222 electron injection ohmic electrode layer

Claims (12)

  1. 発光層とオーミック電極とを有し、前記発光層からの光を光取出し面から素子の外部に出射する化合物半導体発光素子であって、前記発光層に関して光取出し面側にあるオーミック電極が透明導電膜からなり、該透明導電膜の面であって発光層側の面と反対側の面に接して前記光の反射を低減する機能を有する反射率低減層が設けられており、該反射率低減層が1つ以上の透明性薄膜を含んで成っていることを特徴とする化合物半導体発光素子。 And a light-emitting layer and the ohmic electrode, a compound semiconductor light-emitting device emitted from the light extraction surface on the outside of the device the light from the light emitting layer, an ohmic electrode is a transparent conductive in the light extraction surface side with respect to the light-emitting layer consists film has reflectivity reducing layer having a function of reducing the reflection of the light in contact with the surface opposite to the surface of a surface-emitting layer side of the transparent conductive film is provided, reducing the reflectance compound semiconductor light-emitting device, wherein the layer is comprised of one or more transparent thin film.
  2. 前記反射率低減層が、2つ以上の透明性薄膜を積層してなる層である請求項1記載の化合物半導体発光素子。 The reflectivity reducing layer, two or more compound semiconductor light-emitting device according to claim 1, wherein the transparent film is a layer formed by laminating.
  3. 前記透明導電膜が、その発光層側の面でコンタクト層と接している請求項1または2記載の化合物半導体発光素子。 The transparent conductive film, a compound semiconductor light-emitting device according to claim 1 or 2, wherein in contact with the contact layer at the surface of the emission layer side.
  4. 前記透明導電膜の光学膜厚が、発光波長のm/4倍(ただしmは正の整数)である請求項1〜3のいずれかに記載の化合物半導体発光素子。 The optical thickness of the transparent conductive film, m / 4 times (wherein m is a positive integer) of the emission wavelength compound semiconductor light-emitting device according to any one of claims 1 to 3 is.
  5. 前記透明導電膜が、酸化スズが固溶した酸化インジウムからなる透明導電膜である請求項1〜4のいずれかに記載の化合物半導体発光素子。 The transparent conductive film, a compound semiconductor light-emitting device according to any one of claims 1 to 4 tin oxide is a transparent conductive film made of indium oxide solid solution.
  6. 前記透明導電膜と前記各々の透明性薄膜とのいずれの膜においても、膜厚dと、屈折率nと、発光波長λとの間に、式 n×d=mλ/4(mは正の整数) In any of the film with the transparent thin film of said each said transparent conductive film, and the film thickness d, the refractive index n, between the light emitting wavelength lambda, wherein n × d = mλ / 4 (m is a positive integer)
    で示される関係が成り立つ請求項1〜5のいずれかに記載の化合物半導体発光素子。 In a compound semiconductor light-emitting device according to claim 1 relationship is established as shown.
  7. 前記透明導電膜の光学膜厚が発光波長の1/2であり、前記反射率低減層が一つの透明性薄膜からなり、透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲または1.4〜1.6の範囲である請求項5記載の化合物半導体発光素子。 The 1/2 optical thickness of the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of one transparent thin film, the optical thickness of the transparent thin film is a quarter of the emission wavelength, the refractive compound semiconductor light-emitting device according to claim 5, wherein the rate is in the range of range or 1.4 to 1.6 of the 1.8 to 2.0.
  8. 前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が二つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.45〜1.65の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.4〜1.6の範囲である請求項5記載の化合物半導体発光素子。 Is 1/4 of the optical film thickness is the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the optical thickness of the transparent thin film on the side in contact with the transparent conductive film is an emission wavelength It is 1/4 of a range of the refractive index is 1.45 to 1.65, the optical thickness of the transparent thin film on the side not in contact with the transparent conductive film is a quarter of the emission wavelength, the refractive index compound semiconductor light-emitting device according to claim 5, wherein but is in the range of 1.4 to 1.6.
  9. 前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が二つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.4〜1.6の範囲である請求項5記載の化合物半導体発光素子。 Is 1/4 of the optical film thickness is the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the optical thickness of the transparent thin film on the side in contact with the transparent conductive film is an emission wavelength is 1/4 of a range of the refractive index is 1.8 to 2.0, the optical thickness of the transparent thin film on the side not in contact with the transparent conductive film is a quarter of the emission wavelength, the refractive index compound semiconductor light-emitting device according to claim 5, wherein but is in the range of 1.4 to 1.6.
  10. 前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が二つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.8〜2.0の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.7〜1.9の範囲である請求項5記載の化合物半導体発光素子。 Is 1/4 of the optical film thickness is the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the optical thickness of the transparent thin film on the side in contact with the transparent conductive film is an emission wavelength is 1/4 of a range of the refractive index is 1.8 to 2.0, the optical thickness of the transparent thin film on the side not in contact with the transparent conductive film is a quarter of the emission wavelength, the refractive index compound semiconductor light-emitting device according to claim 5, wherein but is in the range of 1.7 to 1.9.
  11. 前記透明導電膜の光学膜厚が発光波長の1/4であり、前記反射率低減層が二つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.45〜1.65の範囲であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.1〜1.3の範囲である請求項5記載の化合物半導体発光素子。 Is 1/4 of the optical film thickness is the emission wavelength of the transparent conductive film, the reflectivity reducing layer is made of two transparent thin film, the optical thickness of the transparent thin film on the side in contact with the transparent conductive film is an emission wavelength It is 1/4 of a range of the refractive index is 1.45 to 1.65, the optical thickness of the transparent thin film on the side not in contact with the transparent conductive film is a quarter of the emission wavelength, the refractive index compound semiconductor light-emitting device according to claim 5, wherein but is in the range of 1.1 to 1.3.
  12. 前記透明導電膜の光学膜厚が発光波長の1/4または3/4であり、前記反射率低減層が二つの透明性薄膜からなり、前記透明導電膜に接する側の透明性薄膜の光学膜厚が発光波長の1/2であり、前記透明導電膜に接しない側の透明性薄膜の光学膜厚が発光波長の1/4であり、屈折率が1.5〜1.7の範囲または1.2〜1.4の範囲である請求項5記載の化合物半導体発光素子。 The transparent optical film thickness of the conductive film is 1/4 or 3/4 of the emission wavelength, the reflectivity reducing layer is made of two transparent thin film, the optical film of transparent thin film on the side in contact with the transparent conductive film the thickness is 1/2 of the emission wavelength, said a quarter of the optical thickness of the transparent thin film not in contact with the transparent conductive film side is the emission wavelength, the range of the refractive index is 1.5 to 1.7 or compound semiconductor light-emitting device according to claim 5, wherein in the range of 1.2 to 1.4.
JP2004080415A 2004-03-19 2004-03-19 Compound semiconductor light-emitting device Pending JP2005268601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004080415A JP2005268601A (en) 2004-03-19 2004-03-19 Compound semiconductor light-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004080415A JP2005268601A (en) 2004-03-19 2004-03-19 Compound semiconductor light-emitting device
PCT/JP2005/004878 WO2005091384A1 (en) 2004-03-19 2005-03-14 Compound semiconductor light-emitting device
TW94107896A TW200536158A (en) 2004-03-19 2005-03-15 Compound semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2005268601A true JP2005268601A (en) 2005-09-29

Family

ID=34993985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080415A Pending JP2005268601A (en) 2004-03-19 2004-03-19 Compound semiconductor light-emitting device

Country Status (3)

Country Link
JP (1) JP2005268601A (en)
TW (1) TW200536158A (en)
WO (1) WO2005091384A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322923A (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Light-emitting diode device
JP2007103689A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2008085337A (en) * 2006-09-27 2008-04-10 Osram Opto Semiconductors Gmbh Semiconductor body and semiconductor chip
JP2008130894A (en) * 2006-11-22 2008-06-05 Kyocera Corp Light emitting element and illumination apparatus
JP2009033157A (en) * 2007-07-12 2009-02-12 Osram Opto Semiconductors Gmbh Semiconductor chip and method of manufacturing the same
US7535026B2 (en) 2005-09-30 2009-05-19 Hitachi Cable, Ltd. Semiconductor light-emitting device with high brightness and low operating voltage
JP2009524918A (en) * 2006-01-27 2009-07-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Photoelectric semiconductor chip
US7569866B2 (en) 2005-09-30 2009-08-04 Hitachi Cable, Ltd. Semiconductor light-emitting device
US7608859B2 (en) 2005-09-30 2009-10-27 Hitachi Cable, Ltd. Semiconductor light-emitting device with transparent conductive film
JP2010525574A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diode having a carrier substrate
JP2010525573A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diodes with growth substrate
US7893446B2 (en) 2007-01-30 2011-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device providing efficient light extraction
JP2012212896A (en) * 2006-03-21 2012-11-01 Lg Electronics Inc Vertical light-emitting device
JP2013532908A (en) * 2010-12-30 2013-08-19 ポステック・アカデミー‐インダストリー・ファウンデーション Manufacturing method of nanoimprint mold, manufacturing method of light emitting diode using nanoimprint mold manufactured by this method, and light emitting diode manufactured by this method
JP2013539419A (en) * 2010-12-30 2013-10-24 ポステック・アカデミー‐インダストリー・ファウンデーション Manufacturing method of nanoimprint mold, manufacturing method of light emitting diode using nanoimprint mold manufactured by this method, and light emitting diode manufactured by this method
JP2014170815A (en) * 2013-03-01 2014-09-18 Ushio Inc LED element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294878A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor layer, depositing method, semiconductor light emitting device and semiconductor luminescent device
CN106098878A (en) * 2016-06-28 2016-11-09 华灿光电(苏州)有限公司 Light-emitting diode epitaxial wafer and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351255A (en) * 1992-05-12 1994-09-27 North Carolina State University Of Raleigh Inverted integrated heterostructure of group II-VI semiconductor materials including epitaxial ohmic contact and method of fabricating same
EP0856202A2 (en) * 1996-06-11 1998-08-05 Philips Electronics N.V. Visible light emitting devices including uv-light emitting diode and uv-excitable, visible light emitting phosphor, and method of producing such devices
JPH10321913A (en) * 1997-05-19 1998-12-04 Sharp Corp Gallium nitride based light-emitting compound semiconductor element and its manufacture
JP2002141492A (en) * 2000-10-31 2002-05-17 Canon Inc Light-emitting diode display panel and manufacturing method thereof
JP2003051610A (en) * 2001-08-03 2003-02-21 Nichia Chem Ind Ltd Led element
DE10203809B4 (en) * 2002-01-31 2010-05-27 Osram Opto Semiconductors Gmbh The radiation-emitting semiconductor component
JP3889662B2 (en) * 2002-05-10 2007-03-07 三菱電線工業株式会社 Method of manufacturing a GaN-based semiconductor light-emitting element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322923A (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Light-emitting diode device
US7569866B2 (en) 2005-09-30 2009-08-04 Hitachi Cable, Ltd. Semiconductor light-emitting device
US7608859B2 (en) 2005-09-30 2009-10-27 Hitachi Cable, Ltd. Semiconductor light-emitting device with transparent conductive film
US7535026B2 (en) 2005-09-30 2009-05-19 Hitachi Cable, Ltd. Semiconductor light-emitting device with high brightness and low operating voltage
JP2007103689A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
US8581280B2 (en) 2006-01-27 2013-11-12 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2009524918A (en) * 2006-01-27 2009-07-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Photoelectric semiconductor chip
JP2007221146A (en) * 2006-02-16 2007-08-30 Lg Electronics Inc Vertical light emitting device and its manufacturing method
JP2013034010A (en) * 2006-02-16 2013-02-14 Lg Electronics Inc Vertical light-emitting device
JP2012212896A (en) * 2006-03-21 2012-11-01 Lg Electronics Inc Vertical light-emitting device
JP2008085337A (en) * 2006-09-27 2008-04-10 Osram Opto Semiconductors Gmbh Semiconductor body and semiconductor chip
JP2008130894A (en) * 2006-11-22 2008-06-05 Kyocera Corp Light emitting element and illumination apparatus
US7893446B2 (en) 2007-01-30 2011-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device providing efficient light extraction
JP2010525573A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diodes with growth substrate
JP2010525574A (en) * 2007-04-20 2010-07-22 クリー, インコーポレイティッド Transparent ohmic contact on the light emitting diode having a carrier substrate
US9484499B2 (en) 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
JP2009033157A (en) * 2007-07-12 2009-02-12 Osram Opto Semiconductors Gmbh Semiconductor chip and method of manufacturing the same
JP2013532908A (en) * 2010-12-30 2013-08-19 ポステック・アカデミー‐インダストリー・ファウンデーション Manufacturing method of nanoimprint mold, manufacturing method of light emitting diode using nanoimprint mold manufactured by this method, and light emitting diode manufactured by this method
JP2013539419A (en) * 2010-12-30 2013-10-24 ポステック・アカデミー‐インダストリー・ファウンデーション Manufacturing method of nanoimprint mold, manufacturing method of light emitting diode using nanoimprint mold manufactured by this method, and light emitting diode manufactured by this method
JP2014170815A (en) * 2013-03-01 2014-09-18 Ushio Inc LED element

Also Published As

Publication number Publication date
TW200536158A (en) 2005-11-01
WO2005091384A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
CN1224113C (en) Semiconductor luminous element
JP4148264B2 (en) Semiconductor device and manufacturing method thereof
US8525204B2 (en) Semiconductor light emitting element and illuminating apparatus using the same
US7385226B2 (en) Light-emitting device
JP3439063B2 (en) The semiconductor light emitting device and a light emitting lamp
JP4516749B2 (en) Method for producing a diode having a reflecting layer
US6249534B1 (en) Nitride semiconductor laser device
US6914268B2 (en) LED device, flip-chip LED package and light reflecting structure
KR200370465Y1 (en) Vertical electrode structure of gallium nitride based light emitting diode
US6967117B2 (en) Method for producing high brightness LED
CN102969414B (en) The semiconductor light emitting element
US20090140279A1 (en) Substrate-free light emitting diode chip
US7483212B2 (en) Optical thin film, semiconductor light emitting device having the same and methods of fabricating the same
US7173277B2 (en) Semiconductor light emitting device and method for fabricating the same
US20050269588A1 (en) Flip chip type nitride semiconductor light-emitting diode
US7518153B2 (en) Nitride semiconductor light emitting device
US7345315B2 (en) Gallium nitride based light-emitting device
US20050062061A1 (en) High brightness light emitting diode
CN101645482B (en) Nitride semiconductor light emitting device and method of manufacturing the same
US20080179605A1 (en) Nitride semiconductor light emitting device and method for fabricating the same
CN100533792C (en) Semiconductor light-emitting device and method of manufacturing the same
JP5074458B2 (en) Light emitting diode and manufacturing method thereof
US7061065B2 (en) Light emitting diode and method for producing the same
JP4453515B2 (en) Semiconductor light-emitting element
US20080308832A1 (en) Light-emitting device