JP2007250714A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2007250714A
JP2007250714A JP2006070395A JP2006070395A JP2007250714A JP 2007250714 A JP2007250714 A JP 2007250714A JP 2006070395 A JP2006070395 A JP 2006070395A JP 2006070395 A JP2006070395 A JP 2006070395A JP 2007250714 A JP2007250714 A JP 2007250714A
Authority
JP
Japan
Prior art keywords
light
semiconductor layer
gallium nitride
compound semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070395A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kawaguchi
義之 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006070395A priority Critical patent/JP2007250714A/en
Publication of JP2007250714A publication Critical patent/JP2007250714A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance gallium nitride based compound semiconductor light emitting element in which light take-out efficiency can be enhanced easily while sustaining crystallinity of a compound semiconductor layer. <P>SOLUTION: In the light emitting element having a semiconductor layer 6 including a laminate where a first conductivity type gallium nitride based compound semiconductor layer 6a, a light emitting layer 6b composed of a gallium nitride based compound semiconductor, and a second conductivity type gallium nitride based compound semiconductor layer 6c are laminated sequentially, a reflection conductive layer 7 for scattering light by protrusions and recesses formed on the upper surface of the second conductivity type gallium nitride based compound semiconductor layer 6c is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化物ガリウム系化合物半導体を利用した発光ダイオード(LED:Light Emitting Diode)等の発光素子に関するものである。   The present invention relates to a light emitting element such as a light emitting diode (LED) using a nitride gallium compound semiconductor.

近年、紫外光領域から青色光までの光を発光する発光素子として、AlGaIn1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表される窒化ガリウム系化合物半導体(窒化物系半導体)を用いた発光素子が注目されている(例えば、特許文献1を参照)。 In recent years, Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is used as a light emitting element that emits light from the ultraviolet region to blue light. A light emitting element using a gallium nitride compound semiconductor (nitride semiconductor) is attracting attention (see, for example, Patent Document 1).

このような窒化ガリウム系化合物半導体を用いた発光素子は、蛍光体と組み合わせることにより白色の光を発光することが可能であり、また省エネルギーかつ長寿命であることから、白熱電球や蛍光ランプの代替品として有望視されると共に実用化が始まっている。しかしながら、窒化ガリウム系化合物半導体を用いた発光素子の発光効率は、蛍光灯に比較すると低いため、更なる高効率化が求められており、そのための様々な研究が行われている。   A light-emitting element using such a gallium nitride-based compound semiconductor can emit white light when combined with a phosphor, and has an energy saving and long life. As it is considered promising as a product, its practical application has begun. However, since the luminous efficiency of a light-emitting element using a gallium nitride-based compound semiconductor is lower than that of a fluorescent lamp, further improvement in efficiency has been demanded, and various studies have been conducted for that purpose.

ところで、発光素子の発光効率である外部量子効率は、発光層で電気エネルギーが光エネルギーに変換される割合を示す内部量子効率と、変換された光エネルギーが外部へ放出される割合を示す光取り出し効率の積によって決定される。   By the way, the external quantum efficiency, which is the light emission efficiency of the light emitting element, is the internal quantum efficiency indicating the rate at which electrical energy is converted into light energy in the light emitting layer, and the light extraction indicating the rate at which the converted light energy is emitted to the outside. Determined by product of efficiency.

内部量子効率は、発光素子を形成する窒化ガリウム系化合物半導体層の結晶性に大きく影響を受ける。内部量子効率を向上させる方策として、基板上に非晶質または多結晶のAlN系またはAlGaN系の材料のバッファ層を形成し、このバッファ層上に窒化ガリウム系化合物半導体層を成長させることにより、基板と窒化ガリウム系化合物半導体層との格子不整合を緩和させ、窒化ガリウム系化合物半導体層の結晶性を向上させるという方法が、公知の技術として知られている(例えば、特許文献2を参照)。   The internal quantum efficiency is greatly affected by the crystallinity of the gallium nitride compound semiconductor layer forming the light emitting element. As a measure for improving the internal quantum efficiency, by forming a buffer layer of an amorphous or polycrystalline AlN-based or AlGaN-based material on a substrate and growing a gallium nitride-based compound semiconductor layer on the buffer layer, A method of relaxing the lattice mismatch between the substrate and the gallium nitride compound semiconductor layer and improving the crystallinity of the gallium nitride compound semiconductor layer is known as a known technique (for example, see Patent Document 2). .

一方、光取り出し効率の向上に関しても種々の技術が公開されており、窒化ガリウム系化合物半導体層の表面に凹凸構造を形成することで外部との屈折率差を緩和して内部全反射を抑制する方法(例えば、特許文献3を参照)や、基板裏面に凹凸構造を形成することによって、基板に入射した光を乱反射させ基板側面から効率よく取り出す方法(例えば、特許文献4を参照)、また基板表面に突出部及び陥凹部を設けることで、同様の効果を生み出す方法(例えば、特許文献5を参照)等がある。
特開平2−42770号公報 特公平4−15200号公報 特開平15−69075号公報 特開平14−368261号公報 特開平11−274568号公報
On the other hand, various techniques for improving the light extraction efficiency have been disclosed, and by forming a concavo-convex structure on the surface of the gallium nitride compound semiconductor layer, the difference in refractive index from the outside is alleviated to suppress internal total reflection. A method (for example, see Patent Document 3), a method for efficiently extracting light incident on the substrate by irregularly reflecting the light incident on the substrate by forming an uneven structure on the back surface of the substrate (for example, see Patent Document 4), or a substrate There is a method of producing a similar effect by providing a protrusion and a recess on the surface (for example, see Patent Document 5).
JP-A-2-42770 Japanese Patent Publication No. 4-15200 Japanese Patent Laid-Open No. 15-69075 JP-A-14-368261 JP 11-274568 A

従来の発光素子の断面図を図1に示す。基板1上にn型窒化ガリウム系化合物半導体層2a、窒化ガリウム系化合物半導体層からなる発光層2b及びp型窒化ガリウム系化合物半導体層2cより成る半導体層2が形成されていると共に、n型窒化ガリウム系化合物半導体層2a上とp型窒化ガリウム系化合物半導体層2c上に、それぞれn型電極3及びp型電極4が形成されている。   A cross-sectional view of a conventional light emitting device is shown in FIG. An n-type gallium nitride compound semiconductor layer 2a, a light emitting layer 2b made of a gallium nitride compound semiconductor layer, and a semiconductor layer 2 made of a p-type gallium nitride compound semiconductor layer 2c are formed on the substrate 1, and n-type nitride An n-type electrode 3 and a p-type electrode 4 are formed on the gallium compound semiconductor layer 2a and the p-type gallium nitride compound semiconductor layer 2c, respectively.

窒化ガリウム系化合物半導体層の形成に使用される基板1としては、一般的にサファイア基板が使用されているが、その屈折率は発光層2bで発光した光の波長を400nmとした場合に約1.78であるのに対し、窒化ガリウム系化合物半導体の屈折率は約2.55と高い。そのため、発光層2bで発光した光のうち、サファイア基板への入射角が臨界角θの約44°(θ=arcsin(1.78/2.55))を超える角度で入射する光は、各窒化ガリウム系化合物半導体層を積層してなる半導体層2の内部で全反射を繰り返す。従って、光は半導体層2で全反射を繰り返す過程で大部分が吸収され、残った光が半導体層2の端部から外部へ向かって放射されるため、発光量が低下するという問題がある。 As the substrate 1 used for forming the gallium nitride compound semiconductor layer, a sapphire substrate is generally used, but its refractive index is about 1 when the wavelength of light emitted from the light emitting layer 2b is 400 nm. The refractive index of a gallium nitride compound semiconductor is as high as about 2.55, while .78. For this reason, of the light emitted from the light emitting layer 2b, light incident at an angle exceeding the critical angle θ r of about 44 ° (θ r = arcsin (1.78 / 2.55)) is incident on the sapphire substrate. The total reflection is repeated inside the semiconductor layer 2 formed by laminating each gallium nitride compound semiconductor layer. Therefore, most of the light is absorbed in the process of repeating total reflection at the semiconductor layer 2, and the remaining light is emitted from the end of the semiconductor layer 2 to the outside.

上記問題を解決するために、特許文献3の方法を用いて光取り出し効率を向上させる場合、半導体層から基板を機械的に研磨して除去した後、ウェットエッチングまたはドライエッチングによって凹凸構造を形成する必要があるため、製造プロセスが複雑になるだけでなく、研磨による半導体層へのダメージが懸念される。   In order to solve the above problem, when the light extraction efficiency is improved by using the method of Patent Document 3, the substrate is mechanically polished and removed from the semiconductor layer, and then the concavo-convex structure is formed by wet etching or dry etching. Since it is necessary, not only the manufacturing process becomes complicated, but also there is a concern about damage to the semiconductor layer due to polishing.

また、特許文献4の方法において、基板裏面に形成された凹凸によって乱反射を引き起こして基板側面から外部へ取り出された光は、基板へ侵入した光に対してのみ有効であるが、発光層で発光した光の大部分は、上記のように基板及び電極の界面で全反射を繰り返して半導体層の端面から外部へ放出されるか、または半導体層内で吸収されるため、光取り出し効率向上の効果は十分に得られない。   Further, in the method of Patent Document 4, light extracted from the side surface of the substrate due to irregular reflection due to the unevenness formed on the back surface of the substrate is effective only for light that has entered the substrate, but is emitted from the light emitting layer. Most of the emitted light is repeatedly totally reflected at the interface between the substrate and the electrode as described above, and is emitted from the end face of the semiconductor layer to the outside or absorbed in the semiconductor layer, thereby improving the light extraction efficiency. Is not enough.

さらに、特許文献5の方法では、突出部及び陥凹部の設けられた基板表面から半導体層を成長させる必要がある。つまり、平坦ではない荒れた基板表面からの窒化ガリウム系化合物半導体層の成長となるため、転位や欠陥等が入りやすく、結晶性のよい平坦な半導体層を得ることは難しいという問題がある。   Furthermore, in the method of Patent Document 5, it is necessary to grow a semiconductor layer from the substrate surface provided with the protrusions and the recesses. That is, since the gallium nitride compound semiconductor layer grows from a rough substrate surface that is not flat, there is a problem that it is difficult to obtain a flat semiconductor layer with good crystallinity due to dislocations and defects.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、複雑な製造プロセスを必要とせず、かつ窒化ガリウム系化合物半導体層の結晶性を維持したまま、容易に光取り出し効率を向上させることが可能である高性能な発光素子を提供することである。   Therefore, the present invention has been completed in view of the problems in the above-described conventional technology, and the object thereof is not to require a complicated manufacturing process, and while maintaining the crystallinity of the gallium nitride compound semiconductor layer, It is an object to provide a high-performance light-emitting element that can easily improve the light extraction efficiency.

本発明の発光素子は、第1導電型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及び第2導電型窒化ガリウム系化合物半導体層を順次積層した積層体を含む半導体層を有した発光素子であって、前記第2導電型窒化ガリウム系化合物半導体層の上面に、表面に形成された凹凸によって光を散乱させる光散乱性反射導電層が形成されていることを特徴とする。   The light emitting device of the present invention has a semiconductor layer including a first conductive type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a stacked body in which a second conductive type gallium nitride compound semiconductor layer is sequentially laminated. The light-emitting element is characterized in that a light-scattering reflective conductive layer that scatters light by unevenness formed on the surface is formed on the upper surface of the second conductivity type gallium nitride compound semiconductor layer.

本発明の発光素子は好ましくは、前記光散乱性反射導電層は、前記第2導電型窒化ガリウム系化合物半導体層と接する界面側の表面に前記凹凸が形成されていることを特徴とする。   The light-emitting element of the present invention is preferably characterized in that the light-scattering reflective conductive layer has the irregularities formed on the surface on the interface side in contact with the second conductivity type gallium nitride compound semiconductor layer.

また、本発明の発光素子は好ましくは、前記凹凸が規則的に形成されており、その平均周期Tは、前記発光層で発光した光の波長をλ、前記λに対する前記p型窒化ガリウム系化合物半導体層の屈折率をnとしたとき、1.5λ/n≦T≦3.5λ/nであることを特徴とする。   In the light emitting device of the present invention, preferably, the irregularities are regularly formed, and the average period T is λ the wavelength of light emitted from the light emitting layer, and the p-type gallium nitride compound with respect to λ. When the refractive index of the semiconductor layer is n, 1.5λ / n ≦ T ≦ 3.5λ / n.

本発明の発光素子は、第1導電型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及び第2導電型窒化ガリウム系化合物半導体層を順次積層した積層体を含む半導体層を有した発光素子であって、第2導電型窒化ガリウム系化合物半導体層の上面に、表面に形成された凹凸によって光を散乱させる光散乱性反射導電層が形成されていることにより、発光層で発光した光のうち、第2導電型窒化ガリウム系化合物半導体層の上面に向かう光は、光散乱性反射導電層により光取り出し方向である第1導電型窒化ガリウム系化合物半導体層側へと反射されるため、光取り出し側へ効率よく光を集めて放出させることが可能になる。   The light emitting device of the present invention has a semiconductor layer including a first conductive type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a stacked body in which a second conductive type gallium nitride compound semiconductor layer is sequentially laminated. A light-scattering reflective conductive layer that scatters light by unevenness formed on the surface is formed on the upper surface of the second conductivity type gallium nitride compound semiconductor layer, so that the light-emitting layer emits light. The light directed toward the upper surface of the second conductivity type gallium nitride compound semiconductor layer is reflected by the light-scattering reflective conductive layer toward the first conductivity type gallium nitride compound semiconductor layer which is the light extraction direction. Therefore, light can be efficiently collected and emitted to the light extraction side.

さらに、従来、半導体層と外部との界面において臨界角を超える角度で入射して半導体層側へ全反射し、各窒化ガリウム系化合物半導体層を積層してなる半導体層の内部で全反射を繰り返して吸収されていた光は、光散乱性反射導電層によって様々な角度に散乱されるため、半導体層と外部との界面において臨界角以内に入る光の割合が増加し、光取り出し効率を大幅に向上させることが可能になる。   Furthermore, conventionally, the incident light exceeds the critical angle at the interface between the semiconductor layer and the external surface, and is totally reflected to the semiconductor layer side. The light absorbed in this way is scattered at various angles by the light-scattering reflective conductive layer, increasing the proportion of light that falls within the critical angle at the interface between the semiconductor layer and the outside, greatly increasing the light extraction efficiency. It becomes possible to improve.

また、光散乱性反射導電層における1回の反射、散乱によって他の界面で入射角が臨界角以内に入らない場合でも、光散乱性反射導電層における反射、散乱を複数回繰り返すうちに他の界面で入射角が臨界角以内に入るため、外部へ取り出せる光の量は格段に増加する。   Even if the incident angle does not fall within the critical angle at the other interface due to one reflection / scattering in the light-scattering reflective conductive layer, the reflection / scattering in the light-scattering reflective conductive layer is repeated several times. Since the incident angle falls within the critical angle at the interface, the amount of light that can be extracted to the outside increases dramatically.

また、本発明の発光素子は好ましくは、光散乱性反射導電層は、第2導電型窒化ガリウム系化合物半導体層と接する界面側の表面に凹凸が形成されていることにより、光は光散乱性反射導電層と第2導電性窒化ガリウム半導体層の界面部分で散乱し、第2導電型窒化ガリウム半導体層側へと反射、散乱されるため、光散乱性反射導電層内部へ進入して吸収される光の量を大幅に減少させることができる。   In the light-emitting element of the present invention, preferably, the light-scattering reflective conductive layer has irregularities formed on the surface on the interface side in contact with the second-conductivity-type gallium nitride compound semiconductor layer. Scattered at the interface between the reflective conductive layer and the second conductive gallium nitride semiconductor layer, reflected and scattered toward the second conductive type gallium nitride semiconductor layer, so that it enters the light scattering reflective conductive layer and is absorbed. The amount of light that is generated can be greatly reduced.

また、本発明の発光素子は好ましくは、凹凸が規則的に形成されており、その平均周期Tが、発光層で発光した光の波長をλ、波長λに対するp型窒化ガリウム系化合物半導体層の屈折率をnとしたとき、1.5λ/n≦T≦3.5λ/nであることから、凹凸によって散乱される光の角度分布を最大限に広げることが可能であり、外部に取り出せる光の量を最も効果的に増加させることができる。   The light emitting device of the present invention preferably has irregularities regularly formed, the average period T of which is the wavelength of the light emitted from the light emitting layer is λ, and the p-type gallium nitride compound semiconductor layer has a wavelength λ. When the refractive index is n, it is 1.5λ / n ≦ T ≦ 3.5λ / n, so that the angular distribution of the light scattered by the unevenness can be maximized, and the light that can be extracted outside Can be most effectively increased.

以下、本発明の発光素子について、図面を参照しつつ詳細に説明する。   Hereinafter, the light emitting device of the present invention will be described in detail with reference to the drawings.

図2は本発明の発光素子の実施の形態の一例を示す模式的な断面図である。図2において、5は窒化ガリウム系化合物半導体層をエピタキシャル成長するために用いる基板、6は窒化ガリウム系化合物半導体層を複数層積層して成る半導体層(積層体)であり、6aは第1導電型(例えばn型)窒化ガリウム系化合物半導体層、6bは窒化ガリウム系化合物半導体層からなる発光層、6cは第2導電型(例えばp型)窒化ガリウム系化合物半導体層、7は光散乱性反射導電層、8は第2導電(例えばp)側電極としての、あるいは第2導電側電極を形成するための第2導電側導電層、9は第1導電(例えばn)側電極としての、あるいは第1導電側電極を形成するための第1導電側導電層である。   FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of a light emitting device of the present invention. In FIG. 2, 5 is a substrate used for epitaxial growth of a gallium nitride compound semiconductor layer, 6 is a semiconductor layer (stacked body) formed by laminating a plurality of gallium nitride compound semiconductor layers, and 6a is a first conductivity type. (Eg, n-type) gallium nitride compound semiconductor layer, 6b is a light emitting layer made of a gallium nitride compound semiconductor layer, 6c is a second conductivity type (eg, p-type) gallium nitride compound semiconductor layer, and 7 is a light-scattering reflective conductor. The layer 8 is a second conductive side conductive layer for forming a second conductive side electrode or a second conductive side electrode, 9 is a first conductive (for example n) side electrode, or This is a first conductive side conductive layer for forming one conductive side electrode.

なお、図2の例では、第1導電型をn型、第2導電型をp型とする。   In the example of FIG. 2, the first conductivity type is n-type and the second conductivity type is p-type.

本例の発光素子は、p側導電層8及びn側導電層9を外部実装基板の配線導体等に電気的に接続して発光素子を実装する、いわゆるフリップ実装が可能なフリップチップ構造であり、従って光の取り出し方向は基板5の側である。従って、基板5は発光層6bが発光する光に対して透明な材料からなるものがよい。また、基板5を半導体層6からエッチング等によって除去する場合には、基板5は不透明な材料からなっていてもよい。   The light-emitting element of this example has a flip-chip structure capable of so-called flip mounting, in which the p-side conductive layer 8 and the n-side conductive layer 9 are electrically connected to a wiring conductor or the like of an external mounting board to mount the light-emitting element. Therefore, the light extraction direction is the substrate 5 side. Accordingly, the substrate 5 is preferably made of a material that is transparent to the light emitted from the light emitting layer 6b. When the substrate 5 is removed from the semiconductor layer 6 by etching or the like, the substrate 5 may be made of an opaque material.

本発明の光散乱性反射導電層7は、発光層6bが発光する光に対して反射性の高いアルミニウム等からなるとともに、p型窒化ガリウム系化合物半導体層6cとp側導電層8との導通がとれるように導電性を有し、さらに発光層6bが発光する光に対して散乱性をも有するものである。   The light-scattering reflective conductive layer 7 of the present invention is made of aluminum or the like having high reflectivity with respect to the light emitted from the light-emitting layer 6b, and the continuity between the p-type gallium nitride compound semiconductor layer 6c and the p-side conductive layer 8. It has conductivity so that it can be removed, and it also has a scattering property for the light emitted from the light emitting layer 6b.

この光散乱性反射導電層7は、基板5上にn型窒化ガリウム系化合物半導体層6a、発光層6b及びp型窒化ガリウム系化合物半導体層6cをこれらの順で成膜した後、p型窒化ガリウム系化合物半導体層6c上にマスクを形成し、反応性イオンエッチング(RIE)法によるドライエッチングでp型窒化ガリウム系化合物半導体層6cの上面に凹凸を形成し、さらにその上面から高い反射率を持つアルミニウム等からなる導電層を蒸着により成膜することにより、p型窒化ガリウム系化合物半導体層6cの高い結晶性を維持したまま、容易に形成することができる。   The light-scattering reflective conductive layer 7 is formed by forming an n-type gallium nitride compound semiconductor layer 6a, a light emitting layer 6b, and a p-type gallium nitride compound semiconductor layer 6c on the substrate 5 in this order, and then p-type nitrided. A mask is formed on the gallium compound semiconductor layer 6c, and irregularities are formed on the upper surface of the p-type gallium nitride compound semiconductor layer 6c by dry etching using a reactive ion etching (RIE) method. By depositing the conductive layer made of aluminum or the like having a vapor deposition, it can be easily formed while maintaining the high crystallinity of the p-type gallium nitride compound semiconductor layer 6c.

光散乱性反射導電層7の凹凸の平均周期Tは、発光層6bで発光した光の波長をλ、波長λに対するp型窒化ガリウム系化合物半導体層6cの屈折率をnとしたとき、1.5λ/n≦T≦3.5λ/nであることが好ましい。具体的には、λが400nmにおけるp型窒化ガリウム系化合物半導体層6cの屈折率を2.5としたとき、Tは、1.5×400÷2.5=240nmから3.5×400÷2.5=560nmの範囲とするのが好ましい。240nm未満もしくは560nmより大きい範囲では、凹凸によって散乱された散乱光の角度分布が狭くなり、半導体層6と外部との界面での入射角が臨界角以内に入る、外部に取り出すことが可能な散乱光が減少するため、光り取り出し効率向上の効果が十分に得られない。   The average period T of the unevenness of the light-scattering reflective conductive layer 7 is as follows: λ is the wavelength of light emitted from the light emitting layer 6b, and n is the refractive index of the p-type gallium nitride compound semiconductor layer 6c with respect to the wavelength λ. It is preferable that 5λ / n ≦ T ≦ 3.5λ / n. Specifically, when the refractive index of the p-type gallium nitride compound semiconductor layer 6c when λ is 400 nm is 2.5, T is 1.5 × 400 ÷ 2.5 = 240 nm to 3.5 × 400 ÷. A range of 2.5 = 560 nm is preferable. In the range of less than 240 nm or greater than 560 nm, the angular distribution of the scattered light scattered by the unevenness becomes narrow, the incident angle at the interface between the semiconductor layer 6 and the outside falls within the critical angle, and the scattering that can be extracted outside. Since the light is reduced, the effect of improving the light extraction efficiency cannot be sufficiently obtained.

また、光散乱性反射導電層7に形成された複数の凹凸は、Tが240nm〜560nmであれば、単位長さ1μm当り2個〜4個の凹凸が存在することとなる。   The plurality of irregularities formed in the light-scattering reflective conductive layer 7 has 2 to 4 irregularities per unit length of 1 μm when T is 240 nm to 560 nm.

また、光散乱性反射導電層7の凹凸の高さに関しては、単位長さあたりの先端部の数、つまり凹凸の周期が散乱に大きく関与するため、特に限定はされないが、平均周期Tと同じぐらいであればよい。   Further, the height of the unevenness of the light-scattering reflective conductive layer 7 is not particularly limited because the number of tip portions per unit length, that is, the period of the unevenness is greatly involved in the scattering, but is the same as the average period T. If it is about.

本発明における光散乱性反射導電層7の凹凸の形成方法について以下に具体的に述べる。まず、p型窒化ガリウム系化合物半導体層6cの上にスピンコートによりフォトマスク用のレジスト層を形成した後、電子ビーム描画法を用いて露光することによってパターニングを行い、現像処理を行う。次に、NiまたはTi等を蒸着し、リフトオフを実施することで、マスクパターンが完成する。最後に、このマスクパターン上からp型窒化ガリウム系化合物半導体層6cをRIE法によってドライエッチングすることで、凹凸が形成される。   The method for forming irregularities of the light-scattering reflective conductive layer 7 in the present invention will be specifically described below. First, after a resist layer for a photomask is formed on the p-type gallium nitride compound semiconductor layer 6c by spin coating, patterning is performed by exposure using an electron beam drawing method, and development processing is performed. Next, Ni or Ti is vapor-deposited and lift-off is performed to complete the mask pattern. Finally, the p-type gallium nitride compound semiconductor layer 6c is dry-etched by RIE from the mask pattern, thereby forming irregularities.

また、光散乱性反射導電層7の厚み(凹凸も含めた厚み)は340nm〜1μm程度がよく、340nm未満では、厚みが薄いために高い反射率が得られず、1μmを超えると、電極抵抗増加により電流注入効率が低下する。   Moreover, the thickness (thickness including unevenness) of the light-scattering reflective conductive layer 7 is preferably about 340 nm to 1 μm, and if it is less than 340 nm, a high reflectance cannot be obtained because the thickness is thin, and if it exceeds 1 μm, the electrode resistance The increase in current injection efficiency decreases.

本発明のn型窒化ガリウム系化合物半導体層6a、発光層6b、p型窒化ガリウム系化合物半導体層6cを含む半導体層6の成長方法は、有機金属気相成長法(MOVPE)法が用いられるが、その他分子線エピタキシー(MBE)法やハイドライド気相成長(HVPE)法、パルスレーザデポジション(PLD)法等が挙げられる。   The growth method of the semiconductor layer 6 including the n-type gallium nitride compound semiconductor layer 6a, the light emitting layer 6b, and the p-type gallium nitride compound semiconductor layer 6c of the present invention is a metal organic vapor phase epitaxy (MOVPE) method. Other examples include molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), and pulsed laser deposition (PLD).

本発明の半導体層6は、発光層6bを、p型窒化ガリウム系化合物半導体層6c及びn型窒化ガリウム系化合物半導体層6aで挟んだ構成であるが、例えば、p型窒化ガリウム系化合物半導体層6cは、第1のp型クラッド層としてのAl0.15Ga0.85N層、第2のp型クラッド層としてのAl0.2Ga0.8N層、p型コンタクト層としてのGaN層の積層体等からなる。このp型窒化ガリウム系化合物半導体層6cの厚みは200nm〜300nm程度である。 The semiconductor layer 6 of the present invention has a configuration in which the light emitting layer 6b is sandwiched between the p-type gallium nitride compound semiconductor layer 6c and the n-type gallium nitride compound semiconductor layer 6a. 6c is an Al 0.15 Ga 0.85 N layer as a first p-type cladding layer, an Al 0.2 Ga 0.8 N layer as a second p-type cladding layer, and GaN as a p-type contact layer It consists of a laminate of layers. The p-type gallium nitride compound semiconductor layer 6c has a thickness of about 200 nm to 300 nm.

また、例えば、n型窒化ガリウム系化合物半導体層6aは、第1のn型クラッド層としてのGaN層、第2のn型クラッド層としてのIn0.02Ga0.98N層の積層体等からなる。このn型窒化ガリウム系化合物半導体層6aの厚みは2μm〜3μm程度である。 Further, for example, the n-type gallium nitride compound semiconductor layer 6a includes a stacked body of a GaN layer as a first n-type cladding layer, an In 0.02 Ga 0.98 N layer as a second n-type cladding layer, and the like. Consists of. The n-type gallium nitride compound semiconductor layer 6a has a thickness of about 2 μm to 3 μm.

また、例えば、発光層6bは、禁制帯幅の広い障壁層としてのIn0.01Ga0.99N層と、禁制帯幅の狭い井戸層としてのIn0.11Ga0.89N層とを、交互に例えば3回繰り返し規則的に積層した多重量子井戸構造(MQW:Muliti Quantum Well)等からなる。この発光層6bの厚みは25nm〜150nm程度である。 Further, for example, the light emitting layer 6b includes an In 0.01 Ga 0.99 N layer as a barrier layer having a wide forbidden band and an In 0.11 Ga 0.89 N layer as a well layer having a narrow forbidden band. Are composed of a multiple quantum well structure (MQW: Muliti Quantum Well) or the like that is alternately and regularly stacked three times. The thickness of the light emitting layer 6b is about 25 nm to 150 nm.

なお、p型窒化ガリウム系化合物半導体層6c及びn型窒化ガリウム系化合物半導体層6aは、互いに逆の導電型であってもよい。   The p-type gallium nitride compound semiconductor layer 6c and the n-type gallium nitride compound semiconductor layer 6a may have opposite conductivity types.

光散乱性反射導電層7、p側導電層8及びn側導電層9の材質は、発光層6bが発生した光を損失なく反射し、かつ光散乱性反射導電層7及びn側導電層9は、それぞれp型窒化ガリウム系化合物半導体層6c及びn型窒化ガリウム系化合物半導体層6aと良好なオーミック接続がとれるものがよい。   The material of the light-scattering reflective conductive layer 7, the p-side conductive layer 8, and the n-side conductive layer 9 reflects the light generated by the light emitting layer 6b without loss, and the light-scattering reflective conductive layer 7 and the n-side conductive layer 9 Are preferably those that can form a good ohmic connection with the p-type gallium nitride compound semiconductor layer 6c and the n-type gallium nitride compound semiconductor layer 6a, respectively.

そのような材質のものとしては、例えばアルミニウム(Al),チタン(Ti),ニッケル(Ni),クロム(Cr),インジウム(In),錫(Sn),モリブデン(Mo),銀(Ag),金(Au),ニオブ(Nb),タンタル(Ta),バナジウム(V),白金(Pt),鉛(Pb),ベリリウム(Be),酸化インジウム(In),金−シリコン合金(Au−Si合金),金−ゲルマニウム合金(Au−Ge合金),金−亜鉛合金(Au−Zn合金),金−ベリリウム合金(Au−Be合金)等を用いればよい。これらの中でも、アルミニウム(Al)または銀(Ag)は、発光層6bが発光する青色光(波長450nm)〜紫外光(波長350nm)の光に対して反射率が高いので好適である。また、アルミニウム(Al)はn型窒化ガリウム系化合物半導体層6aとのオーミック接合の点でも特に好適である。また、上記材料の中から選択した層を複数層積層したものとしても構わない。 Examples of such materials include aluminum (Al), titanium (Ti), nickel (Ni), chromium (Cr), indium (In), tin (Sn), molybdenum (Mo), silver (Ag), Gold (Au), Niobium (Nb), Tantalum (Ta), Vanadium (V), Platinum (Pt), Lead (Pb), Beryllium (Be), Indium oxide (In 2 O 3 ), Gold-silicon alloy (Au -Si alloy), gold-germanium alloy (Au-Ge alloy), gold-zinc alloy (Au-Zn alloy), gold-beryllium alloy (Au-Be alloy), or the like may be used. Among these, aluminum (Al) or silver (Ag) is preferable because it has a high reflectance with respect to light of blue light (wavelength 450 nm) to ultraviolet light (wavelength 350 nm) emitted from the light emitting layer 6b. Aluminum (Al) is also particularly suitable in terms of ohmic junction with the n-type gallium nitride compound semiconductor layer 6a. Further, a plurality of layers selected from the above materials may be stacked.

また、本発明において、半導体層6は透明な基板5上にエピタキシャル成長法によって形成されていることが好ましい。この場合、例えば半導体層6内部で発光した光のうち光散乱性反射導電層7及び光反射層からなるn側導電層9で基板5側に反射された光を、透明な基板5から外部へ放出することが可能となる。この透明な基板5としては、サファイア、炭化ケイ素(SiC)等からなるものがよい。   In the present invention, the semiconductor layer 6 is preferably formed on the transparent substrate 5 by an epitaxial growth method. In this case, for example, of the light emitted inside the semiconductor layer 6, the light reflected to the substrate 5 side by the light-scattering reflective conductive layer 7 and the n-side conductive layer 9 composed of the light reflective layer is transmitted from the transparent substrate 5 to the outside. It becomes possible to release. The transparent substrate 5 is preferably made of sapphire, silicon carbide (SiC) or the like.

また、基板5として、不透明なものでよい場合、ZrB等のニホウ化物単結晶からなる基板を用いてもよい。この場合、基板5が窒化ガリウム系化合物半導体層との格子整合性及び熱膨張係数の整合性が優れたものとなるため、結晶欠陥の少ない窒化ガリウム系化合物半導体層を形成することができる。またこの場合、基板5はエッチング等によって除去されることが好ましく、発光層6bで発光した光をn型窒化ガリウム系化合物半導体層6a側から外部に出射させることができる。 Further, when the substrate 5 may be opaque, a substrate made of a monoboride single crystal such as ZrB 2 may be used. In this case, since the substrate 5 has excellent lattice matching and thermal expansion coefficient matching with the gallium nitride compound semiconductor layer, a gallium nitride compound semiconductor layer with few crystal defects can be formed. In this case, the substrate 5 is preferably removed by etching or the like, and the light emitted from the light emitting layer 6b can be emitted to the outside from the n-type gallium nitride compound semiconductor layer 6a side.

また、p側導電層8及びn側導電層9上には、それぞれ外部との電気的接続をとるための導線等を接続するp側電極とn側電極(共に図示せず)が設けられている。両電極は、例えばチタン(Ti)層、またはチタン(Ti)層を下地層として金(Au)層を積層したものを用いればよい。   Further, on the p-side conductive layer 8 and the n-side conductive layer 9, a p-side electrode and an n-side electrode (both not shown) for connecting a conductive wire for electrical connection with the outside are provided. Yes. Both electrodes may be, for example, a titanium (Ti) layer or a layer in which a gold (Au) layer is stacked with a titanium (Ti) layer as a base layer.

上記本発明の構成によれば、半導体層6を構成する発光層6bで発光した光のうち、p型窒化ガリウム系化合物半導体層6cの上面に向かう光は、光散乱性反射導電層7により光取り出し方向である基板5の裏面側へと反射される際に、様々な角度に光が散乱されるため、半導体層6と外部との界面で入射角が臨界角以内に入る光の割合が増加し、光取り出し効率を飛躍的に向上させることが可能である。   According to the configuration of the present invention, the light emitted from the light emitting layer 6 b constituting the semiconductor layer 6 is directed toward the upper surface of the p-type gallium nitride compound semiconductor layer 6 c by the light scattering reflective conductive layer 7. Since light is scattered at various angles when reflected to the back side of the substrate 5 in the extraction direction, the proportion of light whose incident angle falls within the critical angle at the interface between the semiconductor layer 6 and the outside increases. In addition, it is possible to dramatically improve the light extraction efficiency.

もちろん、n型窒化ガリウム系化合物半導体層6aの下面側へ向かう光が、半導体層6と外部との界面で臨界角を超えて全反射した場合であっても、再度光散乱性反射導電層7に到達することにより、再び光取り出し方向である基板5側に向かって様々な角度で散乱されるため、半導体層6と外部との界面で入射角が臨界角以内に入る光の割合が増加し、外部へ取り出せる光の量を増やすことが可能である。   Of course, even when the light traveling toward the lower surface side of the n-type gallium nitride compound semiconductor layer 6a is totally reflected beyond the critical angle at the interface between the semiconductor layer 6 and the outside, the light-scattering reflective conductive layer 7 again. , The light is scattered again at various angles toward the substrate 5 side, which is the light extraction direction, so that the ratio of light whose incident angle falls within the critical angle at the interface between the semiconductor layer 6 and the outside increases. It is possible to increase the amount of light that can be extracted to the outside.

本発明の発光素子の実施例について以下に説明する。本発明の発光素子の効果を確認するために、有限差分時間領域(FDTD:Finite Difference Time Domain Method)法と光線追跡法を用いて、光散乱性及び光取り出し効率のシミュレーションを実施した。   Examples of the light emitting device of the present invention will be described below. In order to confirm the effect of the light-emitting element of the present invention, a light scattering property and a light extraction efficiency were simulated using a finite difference time domain (FDTD) method and a ray tracing method.

まず最初に、凹凸のみのモデルを用いてFDTD法による光散乱のシミュレーションを行い、散乱光の散乱角分布を求めた。次に、その分布を光線追跡法における光散乱性反射導電層の境界条件として適用し、光散乱性反射導電層で反射した光に対し分布を持たせることによって、本発明の発光素子(LED素子)における光取り出し効率のシミュレーションを行った。   First, light scattering simulation by the FDTD method was performed using a model with only irregularities, and the scattering angle distribution of scattered light was obtained. Next, the distribution is applied as a boundary condition of the light-scattering reflective conductive layer in the ray tracing method, and the light reflected by the light-scattering reflective conductive layer is given a distribution, whereby the light-emitting element (LED element) of the present invention. The light extraction efficiency was simulated.

発光波長は400nmであるとし、サファイアからなる基板(厚み330μm)の屈折率を1.75、n型窒化ガリウム系化合物半導体層、発光層及びp型窒化ガリウム系化合物半導体層からなる半導体層(厚み3.2μm)の屈折率を2.5(n型窒化ガリウム系化合物半導体層、発光層及びp型窒化ガリウム系化合物半導体層について、屈折率の変化はほとんどないため、全て同じ屈折率とした)、アルミニウム(Al)からなる光散乱性反射導電層(厚み0.5μm)の屈折率を0.49として計算を行った。   The emission wavelength is 400 nm, the refractive index of the substrate (thickness 330 μm) made of sapphire is 1.75, and the semiconductor layer (thickness) is made of an n-type gallium nitride compound semiconductor layer, a light emitting layer, and a p-type gallium nitride compound semiconductor layer. The refractive index of 3.2 μm) is 2.5 (the n-type gallium nitride compound semiconductor layer, the light-emitting layer, and the p-type gallium nitride compound semiconductor layer have almost no change in the refractive index, and thus all have the same refractive index) The light scattering reflective conductive layer (thickness 0.5 μm) made of aluminum (Al) was calculated to have a refractive index of 0.49.

図3に凹凸の周期を変化させたときの散乱光の分布を表したシミュレーション結果を示す。なお、実際の光散乱性反射導電層に形成された複数の凹凸は、規則的ではあるが厳密に均一な周期を有する凹凸からなるものではなく、従って複数の凹凸の周期は全体として平均的な周期(平均周期)で表されるが、本シミュレーションにおいては、計算の都合上、複数の凹凸は均一な周期を有する凹凸からなるものとして計算を行った。   FIG. 3 shows a simulation result showing the distribution of scattered light when the period of unevenness is changed. Note that the plurality of irregularities formed on the actual light-scattering reflective conductive layer is not composed of irregularities having a regular but strictly uniform period, and therefore the period of the plurality of irregularities is an average as a whole. Although expressed by a period (average period), in this simulation, for the convenience of calculation, the calculation was performed on the assumption that the plurality of irregularities consist of irregularities having a uniform period.

図3は、散乱角度の大きい範囲にまで散乱分布の値が存在するほど、散乱光がより幅広い角度範囲に及んでいることを示す。同図より、凹凸周期が240nmから560nmの範囲において、散乱光が幅広い角度範囲に及んでいることがわかる。即ち、凹凸周期が240nmから560nmの範囲において、散乱光が幅広い角度範囲で散乱光強度(散乱分布)が大きくなっており、特に散乱角度が0〜30°程度の範囲において、160nm,640nmの場合よりも散乱光強度が大きくなっている。また、散乱角度が30〜60°においても、散乱光強度は、160nm,640nmの場合と同等程度以上となっている。   FIG. 3 shows that as the value of the scattering distribution exists in a range where the scattering angle is large, the scattered light extends over a wider angular range. From the figure, it can be seen that the scattered light extends over a wide range of angles in the range of the unevenness period from 240 nm to 560 nm. That is, when the uneven period is in the range of 240 nm to 560 nm, the scattered light intensity (scattering distribution) is large in the wide angle range of the scattered light, particularly in the range of 160 to 640 nm in the range of the scattering angle of about 0 to 30 °. The scattered light intensity is larger than that. In addition, even when the scattering angle is 30 to 60 °, the scattered light intensity is equal to or higher than that in the case of 160 nm and 640 nm.

次に、凹凸の周期を変化させたときの光り取り出し効率のシミュレーション結果を図4に示す。同図より、周期が240nmから560nmの範囲で、光り取り出し効率の向上効果が顕著に現れており、本発明の有効性が明確に現れていることが示された。   Next, FIG. 4 shows a simulation result of the light extraction efficiency when the period of the unevenness is changed. From the figure, it can be seen that when the period is in the range of 240 nm to 560 nm, the effect of improving the light extraction efficiency appears remarkably, and the effectiveness of the present invention clearly appears.

従来の発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional light emitting element. 本発明の発光素子について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the light emitting element of this invention. 本発明の発光素子における光散乱性反射導電層について、光の散乱角度と散乱分布との関係をシミュレーションにより求めた結果のグラフである。It is a graph of the result of having calculated | required the relationship between the scattering angle of light, and scattering distribution about the light-scattering reflective conductive layer in the light emitting element of this invention by simulation. 本発明の発光素子の光り取り出し効率をシミュレーションにより求めた結果のグラフである。It is a graph of the result of having calculated | required the light extraction efficiency of the light emitting element of this invention by simulation.

符号の説明Explanation of symbols

5:基板
6:半導体層
6a:第1導電型(n型)窒化ガリウム系化合物半導体層
6b:発光層
6c:第2導電型(p型)窒化ガリウム系化合物半導体層
7:光散乱性反射導電層
8:第1導電(n)側導電層
9:第2導電(p)側導電層
5: Substrate 6: Semiconductor layer 6a: First conductivity type (n-type) gallium nitride compound semiconductor layer 6b: Light emitting layer 6c: Second conductivity type (p-type) gallium nitride compound semiconductor layer 7: Light scattering reflective conduction Layer 8: First conductive (n) side conductive layer 9: Second conductive (p) side conductive layer

Claims (3)

第1導電型窒化ガリウム系化合物半導体層、窒化ガリウム系化合物半導体からなる発光層及び第2導電型窒化ガリウム系化合物半導体層を順次積層した積層体を含む半導体層を有した発光素子であって、前記第2導電型窒化ガリウム系化合物半導体層の上面に、表面に形成された凹凸によって光を散乱させる光散乱性反射導電層が形成されていることを特徴とする発光素子。   A light emitting device having a semiconductor layer including a first conductive type gallium nitride compound semiconductor layer, a light emitting layer made of a gallium nitride compound semiconductor, and a second conductive type gallium nitride compound semiconductor layer sequentially laminated, A light-emitting element, characterized in that a light-scattering reflective conductive layer that scatters light is formed on the upper surface of the second-conductivity-type gallium nitride compound semiconductor layer by unevenness formed on the surface. 前記光散乱性反射導電層は、前記第2導電型窒化ガリウム系化合物半導体層と接する界面側の表面に前記凹凸が形成されていることを特徴とする請求項1記載の発光素子。   2. The light emitting device according to claim 1, wherein the light-scattering reflective conductive layer has the irregularities formed on a surface on an interface side in contact with the second conductive type gallium nitride compound semiconductor layer. 前記凹凸が規則的に形成されており、その平均周期Tは、前記発光層で発光した光の波長をλ、前記λに対する前記p型窒化ガリウム系化合物半導体層の屈折率をnとしたとき、1.5λ/n≦T≦3.5λ/nであることを特徴とする請求項2記載の発光素子。

The irregularities are regularly formed, and the average period T is λ the wavelength of light emitted from the light emitting layer, and n is the refractive index of the p-type gallium nitride compound semiconductor layer with respect to λ, 3. The light emitting device according to claim 2, wherein 1.5λ / n ≦ T ≦ 3.5λ / n.

JP2006070395A 2006-03-15 2006-03-15 Light emitting element Pending JP2007250714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070395A JP2007250714A (en) 2006-03-15 2006-03-15 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070395A JP2007250714A (en) 2006-03-15 2006-03-15 Light emitting element

Publications (1)

Publication Number Publication Date
JP2007250714A true JP2007250714A (en) 2007-09-27

Family

ID=38594706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070395A Pending JP2007250714A (en) 2006-03-15 2006-03-15 Light emitting element

Country Status (1)

Country Link
JP (1) JP2007250714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103211A (en) * 2012-11-19 2014-06-05 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
KR20150036383A (en) * 2012-07-05 2015-04-07 코닌클리케 필립스 엔.브이. Phosphor separated from led by transparent spacer
JP2017112203A (en) * 2015-12-16 2017-06-22 シャープ株式会社 Semiconductor light emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106454A (en) * 1998-07-28 2000-04-11 Interuniv Micro Electronica Centrum Vzw Device for emitting radiation with high efficiency and fabrication thereof
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2007095744A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Semiconductor light-emitting element and manufacturing method thereof, and luminaire using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106454A (en) * 1998-07-28 2000-04-11 Interuniv Micro Electronica Centrum Vzw Device for emitting radiation with high efficiency and fabrication thereof
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2007095744A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Semiconductor light-emitting element and manufacturing method thereof, and luminaire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036383A (en) * 2012-07-05 2015-04-07 코닌클리케 필립스 엔.브이. Phosphor separated from led by transparent spacer
KR102183516B1 (en) 2012-07-05 2020-11-27 루미리즈 홀딩 비.브이. Phosphor separated from led by transparent spacer
JP2014103211A (en) * 2012-11-19 2014-06-05 Stanley Electric Co Ltd Semiconductor light-emitting element and manufacturing method of the same
JP2017112203A (en) * 2015-12-16 2017-06-22 シャープ株式会社 Semiconductor light emitting element

Similar Documents

Publication Publication Date Title
EP1968124B1 (en) Semiconductor light emitting element and process for producing the same
US7294862B2 (en) Photonic crystal light emitting device
US8709845B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
JP5391469B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP5030398B2 (en) Gallium nitride compound semiconductor light emitting device
US20110133208A1 (en) Semiconductor element
CN105009308B (en) Method and apparatus for creating porous reflective contact part
JPWO2009084325A1 (en) LED element and method for manufacturing LED element
KR20080087135A (en) Nitride semiconductor light emitting element
JP2007019488A (en) Semiconductor light emitting element
US20070096123A1 (en) Nitride semiconductor light-emitting element and manufacturing method thereof
TW202029533A (en) Light-emitting device and manufacturing method thereof
JP5116291B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
JP2008159894A (en) Light emitting element and illuminator
JP4824129B2 (en) Light emitting element
JP2009032958A (en) Light-emitting element and illuminator
KR100969160B1 (en) Light emitting device and method for fabricating the same
JP2009135192A (en) Light emitting element
JP2007250714A (en) Light emitting element
JP4751093B2 (en) Semiconductor light emitting device
JP5037980B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2008277430A (en) Nitride semiconductor light-emitting element
JP2006339384A (en) Light emitting element, method of manufacturing same, and illuminating apparatus using same
JP2008091664A (en) Light-emitting element, illuminator, and optical pickup
JP2007173569A (en) Light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705